JP2010284995A - Noncontact power supply apparatus - Google Patents

Noncontact power supply apparatus Download PDF

Info

Publication number
JP2010284995A
JP2010284995A JP2009138248A JP2009138248A JP2010284995A JP 2010284995 A JP2010284995 A JP 2010284995A JP 2009138248 A JP2009138248 A JP 2009138248A JP 2009138248 A JP2009138248 A JP 2009138248A JP 2010284995 A JP2010284995 A JP 2010284995A
Authority
JP
Japan
Prior art keywords
power feeding
unit
heat
power supply
generation circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009138248A
Other languages
Japanese (ja)
Inventor
Hideaki Kotoi
英明 小樋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009138248A priority Critical patent/JP2010284995A/en
Publication of JP2010284995A publication Critical patent/JP2010284995A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact power supply apparatus which has a power supply part provided with a heat radiation structure. <P>SOLUTION: The noncontact power supply apparatus is structured by installing the power supply part provided with a high-frequency generation circuit part and a power supply core part on a structure and by installing a power receiving part provided with a power receiving core part coupled electromagnetically with the power supply core part on an apparatus and the like. The high-frequency generation circuit part is superposed on the power supply core part and at least a heat insulating material is arranged between the high-frequency generation circuit part and the power supply core part. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、物資搬送車、昇降機、ショッピングカート、自走式掃除機、歩行ロボットなどの移動体を含み、その他の電子機器及び電気機器(以下、機器等という。)に電力を供給する非接触給電装置に関し、特に、放熱構造を備え、建物など構造物に設置される給電部に特徴を有する非接触給電装置に関する。   The present invention includes a moving body such as a material transport vehicle, an elevator, a shopping cart, a self-propelled cleaner, a walking robot, and the like, and supplies non-contact power to other electronic devices and electric devices (hereinafter referred to as devices). More particularly, the present invention relates to a non-contact power feeding device having a heat dissipation structure and having a feature in a power feeding unit installed in a structure such as a building.

非接触給電装置は、機器等に設けた受電部と、建物など構造物に設置した給電部を磁気結合によりコイルに誘導起電力を発生させて電力を供給するものである。非接触給電装置は、摩擦部がないので集電子の磨耗がなく、また火花の発生がないので安全である。この非接触給電装置の給電部を建物のコンセントに適用する場合、建物の壁面内に設置されるが、これまで、一般的な建物では商用交流電源が配電されているため、この商用交流電源が非接触給電装置に接続される。この非接触給電装置の給電部では、交流−直流変換回路にて直流電力に変換した後、高周波生成回路にて高周波へ変換し、1次側コイルを巻いた給電コアのコイルに高周波電流を流して磁界を発生させる。そして、受電部では、2次側コイルを巻いた受電コアによって磁界を捉え、受電回路で直流に整流して所望の負荷へ直流電力を給電するものである。また、建物内に直流電力が配電される場合は、給電部で交流−直流変換後に直流電力を直接供給することが公知である。   The non-contact power supply device supplies power by generating an induced electromotive force in a coil by magnetic coupling between a power receiving unit provided in a device or the like and a power supply unit installed in a structure such as a building. The non-contact power feeding device is safe because there is no friction part, so there is no wear of the current collector and no spark is generated. When the power supply unit of this non-contact power supply device is applied to the wall outlet of a building, it is installed on the wall of the building. Until now, commercial AC power has been distributed in general buildings. Connected to a non-contact power feeding device. In the power feeding unit of this non-contact power feeding device, the power is converted to DC power by an AC-DC converter circuit, then converted to a high frequency by a high frequency generator circuit, and a high frequency current is passed through the coil of the power supply core wound with the primary coil. To generate a magnetic field. The power receiving unit captures the magnetic field by the power receiving core around which the secondary coil is wound, rectifies it into direct current by the power receiving circuit, and supplies DC power to a desired load. In addition, when DC power is distributed in a building, it is known to supply DC power directly after AC-DC conversion at a power feeding unit.

非接触給電装置は、給電中に給電部が発熱するので、給電部の放熱に関する技術が公知である。例えば、特許文献1は、搬送車および搬送システムに用いられる非接触給電用ピックアップに関し、ピックアップコアの外側に放熱部材を設ける技術を開示している。また、特許文献2は、ショッピングカート用の非接触給電方法において、給電コアに放熱板を設ける技術を開示している。また特許文献3は、非接触給電装置の給電回路の背面板に放熱部材を設ける技術を開示している。   Since the power supply unit generates heat during power supply in the non-contact power supply device, a technique related to heat dissipation of the power supply unit is known. For example, Patent Document 1 discloses a technique of providing a heat radiating member on the outside of a pickup core with respect to a non-contact power feeding pickup used in a transport vehicle and a transport system. Patent Document 2 discloses a technique of providing a heat sink on a power feeding core in a non-contact power feeding method for a shopping cart. Patent Document 3 discloses a technique in which a heat dissipation member is provided on a back plate of a power feeding circuit of a non-contact power feeding device.

特開2002−78103JP 2002-78103 A 特開2006−128381JP 2006-128381 A 特開2006−280163JP 2006-280163 A

特許文献1に開示の技術は、搬送車用の非接触給電部の受電コアから発生する熱を放熱する技術に関するものであり、特許文献2に開示の技術は、ショッピングカート用非接触給電部の給電コアに放熱板を設置し、床に固定する技術に関するものであり、特許文献3に開示の技術は、平面ディスプレイ用非接触給電部の給電回路の背面板に放熱部材を設けた構造に関するものである。
これらの技術はそれぞれ、公知の課題を解決するための一つの手段を示すものではあるが、従来の商用交流電源のコンセントボディと同様に、建物の壁面に非接触給電装置のコンセントボディを設置する場合、人が近づく可能性がある面は可能な限り温度の上昇を抑制する必要がある。更に、非接触給電装置のコンセントボディのカバーには、従来のコンセントカバーと同程度のサイズのものを用いつつ、修理時にコンセントボディの取替えを考慮した構造を実現することが問題となる。
The technique disclosed in Patent Document 1 relates to a technique for dissipating heat generated from a power receiving core of a non-contact power feeding unit for a transport vehicle. The technique disclosed in Patent Document 2 is a non-contact power feeding part for a shopping cart. The technology disclosed in Patent Document 3 relates to a structure in which a heat radiating plate is provided on a back plate of a power supply circuit of a non-contact power feeding portion for a flat display. It is.
Each of these technologies shows one means for solving a known problem, but like a conventional commercial AC power outlet body, a non-contact power supply outlet body is installed on the wall of the building. In such a case, it is necessary to suppress the temperature rise as much as possible on the surface where the person may approach. In addition, there is a problem in realizing a structure that considers replacement of the outlet body at the time of repair while using a cover of the outlet body of the non-contact power feeding device having a size similar to that of the conventional outlet cover.

本発明は上記のような問題を解決するため、給電部の放熱を効率よく行い、コンセントカバーの温度上昇を抑制できる非接触給電装置を提供することを目的とする。また、本発明の非接触給電装置は、構造物、例えば建物の壁面の限られた開口部から壁内に設置可能で、且つ、給電コア部と高周波生成回路部の発熱を断熱する構造を持ち、給電コア部と高周波生成回路部の発熱を所望の経路で放熱することを実現する非接触給電用コンセントボディを有する非接触給電装置を提供することを目的とする。   In order to solve the above-described problems, an object of the present invention is to provide a non-contact power feeding device that can efficiently dissipate heat from a power feeding unit and suppress an increase in temperature of an outlet cover. The contactless power feeding device of the present invention can be installed in a wall from a limited opening of a structure, for example, a wall of a building, and has a structure that insulates heat generated by the power feeding core unit and the high-frequency generation circuit unit. An object of the present invention is to provide a non-contact power feeding device having a non-contact power feeding outlet body that realizes heat dissipation of a heat generation from a power feeding core unit and a high-frequency generation circuit unit through a desired path.

本発明に係る、非接触給電装置は、上記課題を解決するため高周波生成回路部及び給電コア部を備える給電部を構造物に設置し、前記給電コア部に電磁結合する受電コア部を備える受電部を機器等に設置して構成され、前記高周波生成回路部と給電コア部を重ね合わせ、前記高周波生成回路部と給電コア部の間に断熱材を配置したことを特徴とする。この構成において、断熱材は、例えば真空断熱材、グラスウール、ロックウール、セラミックファイバーが用いられ、これらはそれぞれ単独に使用してもよいし、各々組み合わせて複合材としてもよい。このような断熱材料を使用して、高周波生成回路部及び給電コア部の断面積と同じ面積またはそれ以下の面積を有する断熱材に形成される。
これにより、高周波生成回路部と給電コア部を熱的に分離することができ、その結果、各部の個別放熱が可能となり、コンセントカバーに近い側に位置する給電コア部の放熱をよくして、コンセントカバーの温度上昇を抑制できる。
In order to solve the above problems, a contactless power supply device according to the present invention includes a power supply unit including a high-frequency generation circuit unit and a power supply core unit in a structure, and includes a power reception core unit that is electromagnetically coupled to the power supply core unit. The high frequency generation circuit unit and the power supply core unit are overlapped, and a heat insulating material is disposed between the high frequency generation circuit unit and the power supply core unit. In this configuration, for example, a vacuum heat insulating material, glass wool, rock wool, or ceramic fiber is used as the heat insulating material, and these may be used alone or in combination as a composite material. Using such a heat insulating material, it is formed into a heat insulating material having an area equal to or smaller than the cross-sectional areas of the high-frequency generating circuit section and the power feeding core section.
As a result, the high-frequency generation circuit unit and the power supply core unit can be thermally separated, and as a result, individual heat dissipation of each unit is possible, improving the heat dissipation of the power supply core unit located on the side close to the outlet cover, The temperature rise of the outlet cover can be suppressed.

本発明の非接触給電装置は、好ましくは、前記高周波生成回路部と前記給電コア部の間に更に放熱材を配置し、給電コア部側に前記放熱材を配置するものである。これにより、給電コア部の個別放熱を効率よく実施することができるので、コンセントカバーの温度上昇を抑制できる。   In the non-contact power feeding device of the present invention, preferably, a heat dissipating material is further disposed between the high frequency generation circuit unit and the power feeding core unit, and the heat dissipating material is disposed on the power feeding core unit side. Thereby, since the individual heat radiation of the power feeding core portion can be efficiently performed, the temperature rise of the outlet cover can be suppressed.

また本発明の非接触給電装置は、好ましくは前記給電コア部が前記構造物と熱的に接続される。これにより、給電コア部は構造物によって放熱することができるので、コンセントカバーの温度上昇を抑制できる。
また本発明の非接触給電装置は、前記高周波生成回路部が前記構造物と熱的に接続されることが好ましい。これにより、高周波生成回路部は構造物によって放熱することができる。
In the contactless power supply device of the present invention, preferably, the power supply core portion is thermally connected to the structure. Thereby, since the electric power feeding core part can radiate heat by the structure, the temperature rise of the outlet cover can be suppressed.
In the contactless power supply device of the present invention, it is preferable that the high-frequency generation circuit unit is thermally connected to the structure. Thereby, the high frequency generation circuit unit can dissipate heat by the structure.

また本発明の非接触給電装置は、好ましくは前記高周波生成回路部と前記給電コア部の間に少なくとも断熱材を間に有する2つの放熱材を配置するものである。これにより、高周波生成回路部と給電コア部をそれぞれの放熱材によって放熱することができる。   In the non-contact power feeding device of the present invention, preferably, two heat dissipating materials having at least a heat insulating material between the high frequency generating circuit portion and the power feeding core portion are arranged. Thereby, the high frequency generation circuit unit and the power feeding core unit can be radiated by the respective heat radiating materials.

また本発明の非接触給電装置は、前記高周波生成回路部と給電コア部を重ね合わせた給電部の最大断面積がコンセント設置用開口部の面積より小さい構造である。これによりコンセントの設置、または修理時の交換をコンセント設置用開口部より行なうことができる。 Moreover, the non-contact electric power feeder of this invention is a structure where the largest cross-sectional area of the electric power feeding part which piled up the said high frequency generation circuit part and electric power feeding core part is smaller than the area of the opening part for outlet installation. As a result, the outlet can be installed or replaced at the time of repair from the outlet installation opening.

また本発明の非接触給電装置は、前記高周波生成回路部と前記給電コア部の間に配置する放熱材がコンセント設置用開口部より広い面積を持つことが好ましい。これにより、放熱材はコンセント設置用開口部の面積に制限を受けることなく、広い面積の放熱材により放熱することができる。   In the non-contact power feeding device of the present invention, it is preferable that the heat dissipating material disposed between the high frequency generation circuit unit and the power feeding core unit has a larger area than the outlet installation opening. Thereby, the heat radiating material can be radiated by the heat radiating material having a large area without being limited by the area of the outlet installation opening.

また本発明の非接触給電装置は、前記放熱材がコンセント設置用開口部より挿入可能な形状であることが好ましい。これによりコンセントの設置、または修理時の交換を容易に実施することができる。 Moreover, it is preferable that the non-contact electric power feeder of this invention is a shape which can insert the said heat radiating material from the opening part for outlet installation. As a result, the outlet can be easily installed or replaced at the time of repair.

本発明によれば、高周波生成回路部と給電コア部を熱的に分離したので、高周波生成回路部の放熱と給電コア部の放熱が個別に実施でき、互いの熱的影響が抑制される。したがって、給電コア部の放熱が高周波生成回路部へ伝わり高周波生成回路部の放熱が阻害されたり、逆に高周波生成回路部の放熱が給電コア部へ伝わり給電コア部の放熱が阻害されたりすることがない。その結果、コンセントカバーの温度上昇を抑制できる。   According to the present invention, since the high-frequency generation circuit unit and the power supply core unit are thermally separated, the heat dissipation of the high-frequency generation circuit unit and the heat dissipation of the power supply core unit can be performed separately, and the mutual thermal influence is suppressed. Therefore, the heat dissipation of the power supply core section is transmitted to the high frequency generation circuit section and the heat dissipation of the high frequency generation circuit section is inhibited, or conversely, the heat dissipation of the high frequency generation circuit section is transmitted to the power supply core section and the heat dissipation of the power supply core section is inhibited. There is no. As a result, the temperature rise of the outlet cover can be suppressed.

本発明の第1の実施形態に係る非接触給電装置の給電部の構成図を示す。The block diagram of the electric power feeding part of the non-contact electric power feeder which concerns on the 1st Embodiment of this invention is shown. 本発明の第1の実施形態に係る非接触給電装置の構成図を示す。The block diagram of the non-contact electric power feeder which concerns on the 1st Embodiment of this invention is shown. 本発明の第1の実施形態に係る非接触給電装置の放熱時の伝熱経路図を示す。The heat-transfer route figure at the time of heat radiation of the non-contact electric power feeder which concerns on the 1st Embodiment of this invention is shown. 本発明の第2の実施形態に係る非接触給電装置の給電部の構成図を示す。The block diagram of the electric power feeding part of the non-contact electric power feeder which concerns on the 2nd Embodiment of this invention is shown. 本発明の第3の実施形態に係る非接触給電装置の給電部の構成図を示す。The block diagram of the electric power feeding part of the non-contact electric power feeder which concerns on the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態に係る非接触給電装置の給電部の組立て図を示す。The assembly figure of the electric power feeding part of the non-contact electric power feeder which concerns on the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態に用いられる放熱板の例1の構成図を示す。The block diagram of Example 1 of the heat sink used for the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態に用いられる放熱板の例2の構成図を示す。The block diagram of Example 2 of the heat sink used for the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態に用いられる放熱板の例3の構成図を示す。The block diagram of Example 3 of the heat sink used for the 3rd Embodiment of this invention is shown. 本発明の第3の実施形態に係る非接触給電装置の放熱時の伝熱経路図を示す。The heat-transfer route figure at the time of heat dissipation of the non-contact electric power feeder which concerns on the 3rd Embodiment of this invention is shown. 本発明の第4の実施形態に係る非接触給電装置の構成図を示す。The block diagram of the non-contact electric power feeder which concerns on the 4th Embodiment of this invention is shown. 本発明の第4の実施形態の非接触給電装置の給電部の組立て図を示す。The assembly figure of the electric power feeding part of the non-contact electric power feeder of the 4th Embodiment of this invention is shown. 本発明の第4の実施形態に係る非接触給電装置の放熱時の伝熱経路図を示す。The heat-transfer route figure at the time of heat radiation of the non-contact electric power feeder which concerns on the 4th Embodiment of this invention is shown.

以下、本発明の実施形態について図面を参照して説明する。図において、同じ部品には同じ参照符号を付してある。それらの名称及び機能も同一である。したがって、それらについての詳細な説明は繰返さない。   Embodiments of the present invention will be described below with reference to the drawings. In the figure, the same parts are denoted by the same reference numerals. Their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

(第1の実施形態)
第1の実施形態に係る非接触給電装置の構成について、図1〜図3を用いて以下詳細に説明する。
図1は、第1の実施形態に係る非接触給電装置の給電部100の構成を示す図である。給電部100は、高周波生成回路部110と、給電コア部120と、断熱材130を備える。断熱材130は、例えば真空断熱材、グラスウール、ロックウール、セラミックファイバーなどの断熱材料が使用され、これらはそれぞれ単独に使用してもよいし、各々組み合わせて複合材としてもよい。このような断熱材料を使用して、高周波生成回路部110及び給電コア部120の断面積と同じ面積またはそれ以下の面積を有する断熱材130に形成される。断熱材130は、図1に示すように高周波生成回路部110と給電コア部120の間に挟まれ、3層構造に構成される。
高周波生成回路部110は公知の回路よりなり、直流を交流に変換するインバータである。インバータは、例えばMOSFETやIGBTからなる4つのスイッチ素子をブリッジ接続して構成され、約20kHzでPWM駆動され、出力がリアクトルやコンデンサなどにより平滑化することにより正弦波を得る。このインバータは交流負荷が接続され、出力電圧が一定になるよう電圧型インバータとして制御される。この実施形態では直流電源が配電されるので、インバータを使用したが、交流電源が配電される場合は、交流―直流変換後、高周波生成回路によって高周波電力を出力するコンバータであってもよい。
(First embodiment)
The configuration of the non-contact power feeding device according to the first embodiment will be described in detail below with reference to FIGS.
FIG. 1 is a diagram illustrating a configuration of a power feeding unit 100 of the contactless power feeding device according to the first embodiment. The power supply unit 100 includes a high frequency generation circuit unit 110, a power supply core unit 120, and a heat insulating material 130. As the heat insulating material 130, for example, a heat insulating material such as a vacuum heat insulating material, glass wool, rock wool, ceramic fiber or the like is used, and these may be used alone or in combination as a composite material. Using such a heat insulating material, the heat insulating material 130 having an area equal to or smaller than the cross-sectional areas of the high-frequency generating circuit unit 110 and the power feeding core unit 120 is formed. As shown in FIG. 1, the heat insulating material 130 is sandwiched between the high-frequency generating circuit unit 110 and the power feeding core unit 120 and has a three-layer structure.
The high-frequency generation circuit unit 110 is a known circuit and is an inverter that converts direct current into alternating current. The inverter is configured by bridge-connecting four switch elements made of, for example, MOSFETs or IGBTs, is PWM driven at about 20 kHz, and obtains a sine wave by smoothing the output by a reactor or a capacitor. This inverter is connected as an AC load, and is controlled as a voltage type inverter so that the output voltage becomes constant. In this embodiment, a DC power supply is distributed, and thus an inverter is used. However, when an AC power supply is distributed, a converter that outputs high-frequency power by a high-frequency generation circuit after AC-DC conversion may be used.

高周波生成回路部110は、高周波発生回路111と、例えば、ステンレス、アルミニウムなど金属製筐体からなる第1の筐体112とから構成され、一対の高周波出力端子113を持つ。高周波生成回路部110の出力と給電コイル121は、シールド線よりなる一対の高周波出力端子113により電気的に接続され、高周波生成回路部110で生成した高周波電流は高周波出力端子線113を通じて給電コイル121に供給し、給電コア121で磁界を発生させる。高周波出力端子113は、図1では断熱材130を貫通するように示しているが、必ずしも断熱材130を貫通する必要はなく、設計の変更によって断熱材130の外側を迂回することも可能であり、また、2本をより線とし、1本にまとまった形状にすることも可能であることは以降の実施の形態でも同様である。 The high frequency generation circuit unit 110 includes a high frequency generation circuit 111 and a first housing 112 made of a metal housing such as stainless steel or aluminum, and has a pair of high frequency output terminals 113. The output of the high-frequency generation circuit unit 110 and the power supply coil 121 are electrically connected by a pair of high-frequency output terminals 113 made of shielded wires, and the high-frequency current generated by the high-frequency generation circuit unit 110 passes through the high-frequency output terminal line 113. And a magnetic field is generated by the power feeding core 121. Although the high-frequency output terminal 113 is shown as penetrating the heat insulating material 130 in FIG. 1, it is not always necessary to penetrate the heat insulating material 130, and it is possible to bypass the outside of the heat insulating material 130 by changing the design. In addition, the same can be said in the following embodiments that two wires can be formed as a stranded wire to form a single shape.

給電コア部120は、給電コア122に捲回された給電コイル121と、その周りをコーティングする絶縁体123と、これらを囲む第2の筐体124とからなる。コーティング絶縁体としては、例えばエナメル、アセチルセルロースが適している。上記一対の高周波出力端子113は、給電コイル121に接続され、一次側励磁回路を構成する。第2の筐体124は、例えばステンレス、アルミニウムなどからなる金属製筐体である。給電コア部120が壁220から露出する部分には、例えばプラスチック製の給電部カバー125が被せられる。給電部カバー125は給電コア部120から取り外せる構造でも良い。 The power supply core unit 120 includes a power supply coil 121 wound around the power supply core 122, an insulator 123 that coats the periphery of the power supply coil 121, and a second casing 124 that surrounds the insulator 123. For example, enamel and acetylcellulose are suitable as the coating insulator. The pair of high-frequency output terminals 113 are connected to the feeding coil 121 and constitute a primary side excitation circuit. The second housing 124 is a metal housing made of, for example, stainless steel or aluminum. A portion where the power feeding core portion 120 is exposed from the wall 220 is covered with a power feeding portion cover 125 made of plastic, for example. The power feeding unit cover 125 may be configured to be removable from the power feeding core unit 120.

以上のように構成される非接触給電装置の給電部100は、図2に示すように、外断熱構造で用いられる断熱材211に放熱材212を配置した壁210と、建物内側から見える壁220からなる壁構造200の空間230に設置される。
また、この空間内、または外部には一般的に鉄骨材や補強部材である建築部材201、202、203・・・が存在する。この建築部材201、202、203・・・は熱を放熱できる材質であれば建物の基礎部分、鉄骨、石材、コンクリートでも良く、限定しない。このような壁構造は一例であり、内壁同士、外壁材と内壁であってもよく、建築部材201、202、203・・・もどのような形状及び配置でもかまわない。このように壁210と壁220の間に空間230が存在し、この空間230に直流電力配線231が巡らされる。
壁220の適当な位置に開口部221(図4の破線部分)が形成され、この開口部221に非接触給電装置の給電部100が設置される。給電部100は、その表面を保護するように設けた給電部カバー125を2本の固定具(例えば、ネジ)126にて壁220に固定する。この構造によってコンセントボディが構成される。
As shown in FIG. 2, the power feeding unit 100 of the non-contact power feeding device configured as described above includes a wall 210 in which a heat radiating material 212 is disposed on a heat insulating material 211 used in an outer heat insulating structure, and a wall 220 that is visible from the inside of the building. It is installed in the space 230 of the wall structure 200 consisting of
In addition, in this space or outside, there are generally building members 201, 202, 203... That are steel frames and reinforcing members. The building members 201, 202, 203... Are not limited as long as they are materials that can dissipate heat, and may be building foundations, steel frames, stones, or concrete. Such a wall structure is merely an example, and may be inner walls, outer wall materials and inner walls, and the building members 201, 202, 203... May have any shape and arrangement. Thus, the space 230 exists between the wall 210 and the wall 220, and the DC power wiring 231 is circulated in this space 230.
An opening 221 (a broken line portion in FIG. 4) is formed at an appropriate position of the wall 220, and the power feeding unit 100 of the non-contact power feeding device is installed in the opening 221. The power supply unit 100 fixes a power supply unit cover 125 provided to protect the surface of the power supply unit 100 to the wall 220 with two fixing tools (for example, screws) 126. This structure constitutes the outlet body.

図2に示す実施形態は、給電部100が壁210と壁220の間の空間230にきっちりと挟まれ、壁210と壁220によって給電部100が保持されるように示している。しかし、このような構成は一例であり、空間230が給電部100より大きい場合は、高周波生成回路部110と、給電コア部120と、断熱材130を結合する構造、例えばネジ、ボルトあるいは接着剤、または結束バンドによって、高周波生成回路部110、給電コア部120と断熱材130を結合させ、一体化するとよい。あるいは、高周波出力端子113によって、高周波生成回路部110と給電コア部120を接続すると同時に、3者を一体化させてもよい。   In the embodiment shown in FIG. 2, the power feeding unit 100 is tightly sandwiched between the spaces 230 between the walls 210 and 220, and the power feeding unit 100 is held by the walls 210 and 220. However, such a configuration is an example, and when the space 230 is larger than the power supply unit 100, a structure that couples the high-frequency generation circuit unit 110, the power supply core unit 120, and the heat insulating material 130, such as screws, bolts, or an adhesive. Alternatively, the high-frequency generating circuit unit 110, the power feeding core unit 120, and the heat insulating material 130 may be coupled and integrated by a binding band. Alternatively, the high frequency output terminal 113 may connect the high frequency generation circuit unit 110 and the power feeding core unit 120 at the same time, and the three parties may be integrated.

物資搬送車、昇降機、ショッピングカート、自走式掃除機、歩行ロボットなどの移動体(図示しない)を含み、その他の電機機器及び電子機器(機器等)が給電部100と対向する箇所に受電部250を設ける。より詳しくは、給電コア部122と、受電部250の受電コア部252が磁気結合するように設ける。受電部250は、電力コード256を通じて負荷257に接続される。
受電部250は、受電コイル251を巻きつけた受電コア部252と、整流回路253とからなる。受電部250は、その周囲をカバーする受電部筐体255と、その前面を覆う受電部カバー254を備える。受電部筐体255と受電部カバー254によって囲まれた内部にコーティング絶縁体258を充填する。コーティング絶縁体は給電部100のコーティング絶縁体123と同じであってもよいし、異なっていてもよい。機器等が給電部100に接近して、受電コア部252と給電コア部122が磁気結合すると、給電コア部122で発生した磁界は、給電部カバー125、受電部カバー254を貫通して受電コア部252で捉えられる。捉えた磁界によって受電コイル251に交流電流が発生し、整流回路253によって直流電流に整流される。そして、直流電流は電力コード256を通じて負荷257へ給電される。ただし、受電部筐体255は磁力を遮蔽する機能を持った筐体が使用される。
A power receiving unit including a moving body (not shown) such as a material transport vehicle, an elevator, a shopping cart, a self-propelled cleaner, a walking robot, or the like where other electrical equipment and electronic equipment (equipment, etc.) face the power feeding unit 100. 250 is provided. More specifically, the power feeding core unit 122 and the power receiving core unit 252 of the power receiving unit 250 are provided so as to be magnetically coupled. The power receiving unit 250 is connected to the load 257 through the power cord 256.
The power receiving unit 250 includes a power receiving core unit 252 around which a power receiving coil 251 is wound, and a rectifier circuit 253. The power receiving unit 250 includes a power receiving unit housing 255 that covers the periphery thereof and a power receiving unit cover 254 that covers the front surface thereof. The interior surrounded by the power receiving unit housing 255 and the power receiving unit cover 254 is filled with a coating insulator 258. The coating insulator may be the same as or different from the coating insulator 123 of the power feeding unit 100. When a device or the like approaches the power feeding unit 100 and the power receiving core unit 252 and the power feeding core unit 122 are magnetically coupled, the magnetic field generated in the power feeding core unit 122 penetrates the power feeding unit cover 125 and the power receiving unit cover 254 and receives the power receiving core. Captured at part 252. An alternating current is generated in the power receiving coil 251 by the captured magnetic field and is rectified to a direct current by the rectifier circuit 253. The direct current is supplied to the load 257 through the power cord 256. However, the power receiving unit housing 255 is a housing having a function of shielding magnetic force.

上記構成において、本発明の非接触給電装置の給電部100は、高周波生成回路部110で発生した熱を建築部材201へ放熱するための構造として、放熱用接続部材241を配置する。また、給電コア部120で発生した熱を建築部材202への放熱するための構造として、放熱用接続部材242を配置する。このようにして、高周波生成回路部110と給電コア部120で発生する熱をそれぞれ放熱する構造である。放熱用接続部材211、212の形状及び材質は特に限定しないが、アルミニウム、銅、鉄のような熱伝導率のよい材質及び形状を選択することが有利である。
図2に示す実施形態は、高周波生成回路部110が放熱材212に密着する構造となっているので、高周波生成回路部110から発生する熱は放熱材212を介し、壁210に放熱することができ、このような構造も可能である。
In the above configuration, the power feeding unit 100 of the non-contact power feeding device of the present invention arranges the heat radiation connecting member 241 as a structure for radiating the heat generated in the high frequency generation circuit unit 110 to the building member 201. Further, a heat radiation connecting member 242 is disposed as a structure for radiating heat generated in the power feeding core portion 120 to the building member 202. In this manner, the heat generated in the high-frequency generation circuit unit 110 and the power feeding core unit 120 is radiated. The shape and material of the heat radiation connecting members 211 and 212 are not particularly limited, but it is advantageous to select a material and shape having good thermal conductivity such as aluminum, copper, and iron.
The embodiment shown in FIG. 2 has a structure in which the high-frequency generation circuit unit 110 is in close contact with the heat radiation material 212, so that heat generated from the high-frequency generation circuit unit 110 can be radiated to the wall 210 via the heat radiation material 212. Such a structure is also possible.

以上のように、高周波生成回路部110、給電コア部120と断熱材130を重ねてネジ、ボルトあるいは接着剤、または結束バンドによって、給電部100を一体化する。この一体化した給電部100の最大断面積は、壁220の開口部221の面積より小さくすることが大事である。次に直流電力配線231を高周波生成回路部110に接続して、壁220の開口部221より挿入し、放熱用接続材241が高周波生成回路部110に接触し、放熱用接続材242が給電コア部120に接触するように設置する。そして、給電部カバー125を固定具126により壁220に固定する。このようにして、給電部コンセントボディが壁220に固定される。 As described above, the high frequency generation circuit unit 110, the power supply core unit 120, and the heat insulating material 130 are overlapped, and the power supply unit 100 is integrated by screws, bolts, an adhesive, or a binding band. It is important that the maximum cross-sectional area of the integrated power supply unit 100 be smaller than the area of the opening 221 of the wall 220. Next, the DC power wiring 231 is connected to the high frequency generation circuit unit 110 and inserted through the opening 221 of the wall 220, the heat radiation connecting member 241 contacts the high frequency generation circuit unit 110, and the heat radiation connecting member 242 is the power feeding core. It installs so that the part 120 may be contacted. Then, the power supply cover 125 is fixed to the wall 220 by the fixing tool 126. In this way, the power feeding unit outlet body is fixed to the wall 220.

図3を使って第1の実施形態における放熱経路を説明する。
給電部100の高周波生成回路部110では高周波発生回路111が主な発熱源であり、そこで発生した熱は、第1の筐体112に伝わり、空気中に放熱される。また、放熱用接続部材242を通じて建築部材202に伝わり放熱される。また、放熱材212に伝わり放熱される。一方、断熱材130には放熱を遮断されるが、断熱材130の配置が無い部分では空気中に放熱される。さらに、建築部材202、203に伝わった後、空気中に放熱される。
また、給電コア部120では、給電コア122及び給電コイル121が主な発熱源であり、それらで発生した熱は、第2の筐体124に伝わり、空気中に放熱される。また、放熱用接続部材241を通じて建築部材201に伝わり放熱される。第1の筐体112への熱の伝播は断熱材130によって遮断される。
以上のようにして、高周波生成回路部110と給電コア部120を熱的に分離することができ、その結果、各部の個別放熱が可能となり、給電部カバー125に近い側に位置する給電コア部120の放熱をよくして、給電部カバー125の温度上昇を抑制できる。
このような伝熱経路を矢印で示す。矢印の方向は伝熱方向を示す。なお、以降の実施の形態を通して、給電時は給電部100と受電部250を接続した状態であるが、給電コア部122と受電コア部252の間に多少隙間があっても給電は可能である。この接触面の位置決めをアシストするとより好ましい。
The heat dissipation path in the first embodiment will be described with reference to FIG.
In the high frequency generation circuit unit 110 of the power supply unit 100, the high frequency generation circuit 111 is a main heat source, and the heat generated there is transmitted to the first housing 112 and is radiated into the air. Further, the heat is transmitted to the building member 202 through the heat radiation connecting member 242 and radiated. Further, the heat is transmitted to the heat radiating material 212 and is radiated. On the other hand, heat dissipation is blocked by the heat insulating material 130, but heat is radiated into the air at a portion where the heat insulating material 130 is not disposed. Further, after being transmitted to the building members 202 and 203, the heat is radiated into the air.
In the power feeding core unit 120, the power feeding core 122 and the power feeding coil 121 are main heat sources, and the heat generated by them is transmitted to the second casing 124 and radiated into the air. Further, the heat is transmitted to the building member 201 through the heat radiation connecting member 241 and is radiated. Heat propagation to the first housing 112 is blocked by the heat insulating material 130.
As described above, the high-frequency generation circuit unit 110 and the power supply core unit 120 can be thermally separated, and as a result, individual heat dissipation of each unit is possible, and the power supply core unit located on the side closer to the power supply unit cover 125 The heat dissipation of 120 can be improved and the temperature rise of the power supply cover 125 can be suppressed.
Such a heat transfer path is indicated by an arrow. The direction of the arrow indicates the heat transfer direction. Through the following embodiments, the power feeding unit 100 and the power receiving unit 250 are connected at the time of power feeding. However, even if there is a slight gap between the power feeding core unit 122 and the power receiving core unit 252, power feeding is possible. . It is more preferable to assist the positioning of the contact surface.

(第2の実施形態)
第2の実施形態に係る非接触給電装置について、図4を用いて以下詳細に説明する。
第2の実施形態が第1の実施形態の給電部100と異なる構造は、断熱材130と給電コア部120の間に放熱板131を配置したことである。その他構造は図示を省略しているが同じである。
第2の実施形態において、放熱板131は、例えばアルミニウム、銅、鉄のような良熱伝導材料を用いて形成されるこれにより、給電コア部120の発熱は、放熱板131によって放熱することができる。しかも高周波生成回路部110の発熱は断熱材130によって断熱されるので、高周波生成回路部110の発熱のために給電コア部120が過熱することはない。これにより、第1の実施形態のように、放熱用接続部材241または242を配置してもよいが、放熱用接続部材241または242が配置できない場合でも、給電コア部120の放熱を十分にすることができる。
(Second Embodiment)
The non-contact power feeding device according to the second embodiment will be described in detail below with reference to FIG.
The structure in which the second embodiment is different from the power supply unit 100 of the first embodiment is that a heat radiating plate 131 is disposed between the heat insulating material 130 and the power supply core unit 120. Other structures are the same although not shown.
In the second embodiment, the heat radiating plate 131 is formed by using a heat conductive material such as aluminum, copper, or iron, so that the heat generated by the power feeding core unit 120 can be radiated by the heat radiating plate 131. it can. In addition, since the heat generation of the high frequency generation circuit unit 110 is insulated by the heat insulating material 130, the power supply core unit 120 does not overheat due to the heat generation of the high frequency generation circuit unit 110. As a result, the heat radiation connecting member 241 or 242 may be disposed as in the first embodiment, but even when the heat radiation connecting member 241 or 242 cannot be disposed, sufficient heat radiation of the power feeding core unit 120 is achieved. be able to.

第2の実施形態では、放熱板131は、断熱材130と同形状で同サイズに形成されるので、壁220の開口部221(図4の破線部分)から給電部100を挿入して空間230に設置できる非接触給電装置が実現できる。
断熱材130は、放熱板131と貼り合わせるなどして組み合わせた複合材も可能である。放熱板131の構造は断熱材130側に向く面が波状に形状が加工されていても良く、そのほか従来技術のさまざまな形状が考えられる。
In the second embodiment, the heat radiating plate 131 is formed in the same shape and size as the heat insulating material 130, and therefore the power supply unit 100 is inserted from the opening 221 (the broken line portion in FIG. 4) of the wall 220 to form the space 230. A non-contact power feeding device that can be installed in a vehicle can be realized.
The heat insulating material 130 may be a composite material that is combined with the heat radiating plate 131. As for the structure of the heat sink 131, the surface facing the heat insulating material 130 may be processed into a wave shape, and various other shapes in the prior art can be considered.

(第3の実施形態)
第3の実施形態に係る非接触給電装置について、図5〜9を用いて詳細に説明する。
図5に示すように、第3の実施形態が第2の実施形態の給電部100と異なる構造は、断熱材130と給電コア部120の間に、壁220の開口部221(図4の破線部分)の面積よりも広い面積を持つ放熱板132を配置した点と、図6のように給電部100を高周波生成回路部110と、断熱材130と、放熱板132と、給電コア部120よりなる構成部分に分割した点と、シールド線よりなる一対の高周波出力端子113をプラグ方式の抜き差し構造で実現した点である。
さらに、図7、8、9のように放熱板133、134、135を複数に分割可能構造とした点である。図7、8、9のように放熱板を複数に分割可能構造とすることにより、放熱用接続部材241、242が配置できない場合でも、開口部221(図4の破線部分)から放熱板を挿入して、開口部221の面積よりも広い面積を持つ放熱板132を備える非接触給電装置を実現できる。
(Third embodiment)
A non-contact power feeding device according to the third embodiment will be described in detail with reference to FIGS.
As shown in FIG. 5, the structure of the third embodiment different from that of the power supply unit 100 of the second embodiment is that an opening 221 of the wall 220 (a broken line in FIG. 4) is interposed between the heat insulating material 130 and the power supply core unit 120. And the power supply unit 100 as shown in FIG. 6 from the high frequency generation circuit unit 110, the heat insulating material 130, the heat dissipation plate 132, and the power supply core unit 120. And a pair of high-frequency output terminals 113 made of shielded wires are realized by a plug-type insertion / removal structure.
Further, as shown in FIGS. 7, 8, and 9, the heat dissipating plates 133, 134, and 135 can be divided into a plurality of parts. 7, 8, and 9, the heat radiating plate can be divided into a plurality of parts so that the heat radiating plate can be inserted from the opening 221 (broken line portion in FIG. 4) even when the heat radiating connection members 241 and 242 can not be arranged. Thus, it is possible to realize a non-contact power feeding device including the heat radiating plate 132 having an area larger than the area of the opening 221.

図7(a)は、放熱板133を放熱板133aと133bのように左右に2分割して、それを組み合わせたとき、分割線上に2つの穴137が形成されるように配置する。このように2つの穴137を形成することによって、一対の高周波出力端子113を通すことが可能となる。また、上記2つの穴137より外側に形成した穴138は、放熱板133の位置決めや落下防止の為の突起と合わせる穴である。突起は断熱材130側、第2筐体124側のいずれかまたは両方に実現されても良い。
図7(b)は、断熱板130を示し、左側は断熱板130の側面図、右側は平面図を示す。断熱板130は、放熱板133と同様に左右2分割され、断熱板130aと130bとなる。そして、分割線上に穴143を形成して一対の高周波出力端子113を通す。
上記説明は、放熱材133を左右2分割した構造を例示したが、放熱材133を壁220の開口部221(図7の破線部分)に斜めにするなどして、開口部221から放熱材133を挿入して、高周波生成回路部110と給電コア部120の間に設置できる形状であれば、分割する必要はない。また、断熱材130と放熱板133を組み合わせた複合材の場合は、複合材を分割して構成してもよい。
In FIG. 7A, the heat radiating plate 133 is divided into left and right like the heat radiating plates 133a and 133b, and when they are combined, the two holes 137 are formed on the dividing line. By forming the two holes 137 in this way, a pair of high frequency output terminals 113 can be passed. Further, the hole 138 formed outside the two holes 137 is a hole to be aligned with the protrusion for positioning the heat sink 133 and preventing the fall. The protrusions may be realized on either or both of the heat insulating material 130 side and the second housing 124 side.
FIG.7 (b) shows the heat insulation board 130, the left side shows the side view of the heat insulation board 130, and the right side shows a top view. The heat insulating plate 130 is divided into left and right parts in the same manner as the heat radiating plate 133 to form heat insulating plates 130a and 130b. Then, a hole 143 is formed on the dividing line and a pair of high frequency output terminals 113 are passed therethrough.
The above description exemplifies a structure in which the heat radiating material 133 is divided into left and right parts, but the heat radiating material 133 is inclined from the opening 221 to the opening 221 of the wall 220 (broken line portion in FIG. 7). If it is a shape that can be installed between the high-frequency generating circuit unit 110 and the power feeding core unit 120, it is not necessary to divide. In the case of a composite material in which the heat insulating material 130 and the heat sink 133 are combined, the composite material may be divided.

同様に、図8は、放熱板134を放熱板134aと134bのように上下に2分割して、それぞれの放熱板134a、134bにそれぞれ穴139を形成した構成である。2つの放熱板134にそれぞれ形成した穴139は一対の高周波出力端子113を通す穴となる。また、2つの穴139より外側に形成した穴140は放熱板134の位置決めや落下防止の為の突起と合わせる穴である。
断熱板130は図示しないが、断熱板130aと130bのように、放熱板134と同様に上下2分割され、一対の高周波出力端子113を通す穴143を形成する。
Similarly, FIG. 8 shows a configuration in which the heat radiating plate 134 is divided into two vertically such as the heat radiating plates 134a and 134b, and holes 139 are formed in the respective heat radiating plates 134a and 134b. The holes 139 formed in the two heat sinks 134 are holes through which the pair of high frequency output terminals 113 are passed. A hole 140 formed outside the two holes 139 is a hole to be aligned with a protrusion for positioning and preventing the heat sink 134 from falling.
Although the heat insulating plate 130 is not illustrated, like the heat insulating plates 130 a and 130 b, the heat insulating plate 130 is divided into two parts in the same manner as the heat radiating plate 134, and a hole 143 through which the pair of high frequency output terminals 113 is passed is formed.

図9は放熱板135を放熱板135a、135b、135c、135dのように左右及び上下に4分割した例であり、縦方向中心線上の穴141は、一対の高周波出力端子113を通す穴となる。また、穴141より外側に配置した穴142は放熱板135の位置決めや落下防止の為の突起と合わせる穴である。
図9に断熱板130は図示しないが、放熱板135と同様に左右及び上下4分割され、断熱板130a、130b、130c、130dとなり、分割線上に穴143を形成して一対の高周波出力端子113を通す。
放熱板133、134、135の分割数や形状は、壁220の開口部221から挿入して設置可能であれば、限定されない。また、放熱板133、134、135として素材が柔軟なもの(例えばグラファイトシート、金属製網)を用いれば分割しなくて設置することができる。
FIG. 9 shows an example in which the heat sink 135 is divided into left and right and top and bottom like the heat sinks 135 a, 135 b, 135 c, and 135 d, and the hole 141 on the vertical center line is a hole through which the pair of high frequency output terminals 113 are passed. . A hole 142 arranged outside the hole 141 is a hole to be matched with a protrusion for positioning the heat sink 135 and preventing dropping.
Although the heat insulating plate 130 is not shown in FIG. 9, it is divided into left and right and upper and lower four parts similarly to the heat radiating plate 135 to form heat insulating plates 130a, 130b, 130c, and 130d, and a hole 143 is formed on the dividing line to form a pair of high frequency output terminals 113. Through.
The number and shape of the radiator plates 133, 134, and 135 are not limited as long as they can be installed by being inserted from the opening 221 of the wall 220. Further, if the heat sinks 133, 134, 135 are made of a flexible material (for example, a graphite sheet or a metal net), they can be installed without being divided.

第3の実施形態の非接触給電装置の給電部の組立てを図6を使用して説明する。図6に示すように、壁220の開口部221より高周波生成回路部110を挿入する。次に、一対のプラグ式高周波出力端子113付き給電コア部120に放熱板132と断熱材130を重ね、これらを開口部221より挿入する。このとき、放熱板132は開口部221の面積より大きいので、放熱板132、断熱材130と給電コア部120を開口部221より空間230内に入れ、空間内で給電コア部120に放熱板132と断熱材130を重ねるとよい。その後、高周波生成回路部110のソケット端子に一対のプラグ式高周波出力端子113を差し込み一体化する。そして、給電部カバー125をネジのような固定具126によって壁220に固定する。これによってコンセントボディが壁220に設置される。   The assembly of the power feeding part of the non-contact power feeding device of the third embodiment will be described with reference to FIG. As shown in FIG. 6, the high frequency generation circuit unit 110 is inserted from the opening 221 of the wall 220. Next, a heat radiating plate 132 and a heat insulating material 130 are overlapped on a pair of plug-type high frequency output terminals 113 and a power supply core portion 120, and these are inserted through the opening 221. At this time, since the heat radiating plate 132 is larger than the area of the opening 221, the heat radiating plate 132, the heat insulating material 130 and the power feeding core portion 120 are put into the space 230 through the opening 221, and the heat radiating plate 132 is placed in the power feeding core portion 120 in the space. And the heat insulating material 130 may be stacked. Thereafter, a pair of plug type high frequency output terminals 113 are inserted into the socket terminals of the high frequency generation circuit unit 110 and integrated. And the electric power feeding part cover 125 is fixed to the wall 220 with the fixing tool 126 like a screw. As a result, the outlet body is installed on the wall 220.

図10を使って第3の実施の形態における放熱の説明をする。
給電コア部120の給電コイル121及び給電コア122で発生した熱は、第2の筐体124の外殻および、放熱材132に伝わった後、空気中に発散する。第2の筐体124から第1の筐体112への熱の伝播は、断熱材130によって遮断される。
高周波生成回路部110の放熱についての説明は図3と同様のため省略する。
The heat dissipation in the third embodiment will be described with reference to FIG.
The heat generated in the power supply coil 121 and the power supply core 122 of the power supply core unit 120 is transmitted to the outer shell of the second casing 124 and the heat radiating material 132 and then diffused into the air. Heat propagation from the second casing 124 to the first casing 112 is blocked by the heat insulating material 130.
The description of heat dissipation of the high-frequency generation circuit unit 110 is the same as in FIG.

(第4の実施形態)
第4の実施形態に係る建物の非接触給電装置の放熱構造の構成について、図11を用いて以下詳細に説明する。図11に示すように第4の実施形態が第3の実施形態の給電部100と異なる構造は、高周波生成回路部110と断熱材130の間に放熱板136aを配置し、断熱材130と給電コア部120の間に放熱板136bを配置した部分である。即ち、高周波生成回路部110と給電コア部120の間に、断熱材130を間に有する2つの放熱板136a及び136bを配置して構成する。放熱板136a及び136bは、設置時の全体の形状としては壁220の開口部221(図4の破線部分)の面積よりも広い形状にする。また、第3の実施の形態と同様に、給電部100の高周波生成回路部110と、放熱板136aと、断熱材130と、放熱板136bと、給電コア部120の構造は分離することができる構造にし、一対の高周波出力端子113の端子はプラグ方式の抜き差し構造とする。この実施形態で2つの放熱板136a、136bは同一の形状で記載しているが、特に同一である必要はない。放熱板136a、136bは断熱板130と同様の形状でも良い。
(Fourth embodiment)
The structure of the heat dissipation structure of the non-contact power feeding apparatus for buildings according to the fourth embodiment will be described in detail below with reference to FIG. As shown in FIG. 11, the fourth embodiment is different from the power feeding unit 100 of the third embodiment in that a heat radiating plate 136 a is disposed between the high frequency generation circuit unit 110 and the heat insulating material 130 to supply power to the heat insulating material 130. This is a portion in which a heat radiating plate 136b is disposed between the core portions 120. That is, two heat sinks 136 a and 136 b each having a heat insulating material 130 are disposed between the high frequency generation circuit unit 110 and the power feeding core unit 120. The heat sinks 136a and 136b have a shape wider than the area of the opening 221 (the broken line portion in FIG. 4) of the wall 220 as an overall shape at the time of installation. Further, similarly to the third embodiment, the structures of the high-frequency generation circuit unit 110, the heat radiating plate 136a, the heat insulating material 130, the heat radiating plate 136b, and the power feeding core unit 120 of the power feeding unit 100 can be separated. The terminals of the pair of high-frequency output terminals 113 have a plug-type insertion / removal structure. In this embodiment, the two heat sinks 136a and 136b are described in the same shape, but need not be the same. The heat sinks 136a and 136b may have the same shape as the heat insulating plate 130.

図12は、第4の実施形態の非接触給電装置の給電部の組立て図を示す。図12に示すように、開口部221より高周波生成回路部110を挿入する。次に、放熱板136a、断熱材130及び136bを開口部221より挿入して順次重ねる。放熱板136a、断熱材130及び136bは、重ねてから開口部221に挿入してもよい。次に、一対のプラグ式高周波出力端子113付き給電コア部120を開口部221より挿入し、高周波生成回路部110のソケット端子に一対のプラグ式高周波出力端子113を差し込み一体化する。そして、給電部カバー125をネジのような固定具126によって壁220に固定する。これによってコンセントボディが壁220に設置される。   FIG. 12 is an assembly diagram of the power feeding unit of the contactless power feeding device according to the fourth embodiment. As shown in FIG. 12, the high frequency generation circuit unit 110 is inserted from the opening 221. Next, the heat sink 136a and the heat insulating materials 130 and 136b are inserted from the opening 221 and sequentially stacked. The heat radiating plate 136a and the heat insulating materials 130 and 136b may be stacked and then inserted into the opening 221. Next, the feeding core portion 120 with a pair of plug type high frequency output terminals 113 is inserted from the opening 221, and the pair of plug type high frequency output terminals 113 are inserted into the socket terminals of the high frequency generation circuit portion 110 and integrated. And the electric power feeding part cover 125 is fixed to the wall 220 with the fixing tool 126 like a screw. As a result, the outlet body is installed on the wall 220.

図13に第4の実施形態における放熱の説明をする。
高周波生成回路部110の放熱材136aによる放熱について説明する。
高周波生成回路部110で発生した熱は、第1の筐体112を通じて放熱材136aへ伝わり、断熱材130に遮断され、壁220の平面方向に伝わる。また放熱材136aの主に壁220の開口部221の面よりも外側の空間に面する部分から空気中へ放熱する。断熱材130の形状は壁220の開口部221の面に一致する必要は無い。
放熱材136b方面以外の放熱についての説明は第1の実施の形態で説明済みのため省略する。また、給電コア部120の放熱については第3の実施の形態で説明済みのため省略する。
FIG. 13 illustrates heat dissipation in the fourth embodiment.
The heat radiation by the heat radiation material 136a of the high frequency generation circuit unit 110 will be described.
The heat generated in the high frequency generation circuit unit 110 is transmitted to the heat radiating material 136 a through the first housing 112, blocked by the heat insulating material 130, and transmitted in the plane direction of the wall 220. Further, heat is dissipated into the air mainly from the portion of the heat dissipating material 136a facing the space outside the surface of the opening 221 of the wall 220. The shape of the heat insulating material 130 does not need to match the surface of the opening 221 of the wall 220.
Description of heat dissipation other than the direction of the heat dissipating material 136b has already been described in the first embodiment, and is omitted. Further, the heat dissipation of the power feeding core unit 120 is omitted since it has already been described in the third embodiment.

100 給電部
110 高周波生成回路部
111 高周波発生回路
112 第1の筐体
113 高周波出力端子線
120 給電コア部
121 給電コイル(1次側コイル)
122 給電コア
124 第2の筐体
125 給電部カバー
130 断熱材
131、132、133、134、135、136 放熱板
137 穴
201、202、203 建築部材
210 壁
212 放熱材
220 壁
221 壁の開口部
241、242 放熱用接続部材
250 受電部
251 受電コイル
252 受電コア部
DESCRIPTION OF SYMBOLS 100 Feed part 110 High frequency generation circuit part 111 High frequency generation circuit 112 1st housing | casing 113 High frequency output terminal wire 120 Feed core part 121 Feed coil (primary coil)
122 power supply core 124 second housing 125 power supply cover 130 heat insulating material 131, 132, 133, 134, 135, 136 heat sink 137 hole 201, 202, 203 building member 210 wall 212 heat sink 220 wall 221 opening in wall 241, 242 heat dissipation connection member 250 power receiving unit 251 power receiving coil 252 power receiving core unit

Claims (8)

高周波生成回路部及び給電コア部を備える給電部を構造物に設置し、前記給電コア部に電磁結合する受電コア部を備える受電部を機器等に有する非接触給電装置であって、前記高周波生成回路部と給電コア部を重ね合わせて構成し、前記高周波生成回路部と給電コア部の間に少なくとも断熱材を配置したことを特徴とする非接触給電装置。 A non-contact power feeding device having a power receiving unit having a power receiving core unit electromagnetically coupled to the power feeding core unit, wherein the power feeding unit including a high frequency generating circuit unit and a power feeding core unit is electromagnetically coupled to the power feeding core unit. A non-contact power feeding apparatus comprising: a circuit unit and a power feeding core unit, wherein at least a heat insulating material is disposed between the high frequency generation circuit unit and the power feeding core unit. 前記高周波生成回路部と前記給電コア部の間に、更に放熱材を配置し、給電コア部側に前記放熱材を配置する請求項1に記載の非接触給電装置。 The non-contact electric power feeder of Claim 1 which arrange | positions a heat dissipation material further between the said high frequency generation circuit part and the said electric power feeding core part, and arrange | positions the said heat radiating material on the electric power feeding core part side. 前記給電コア部が前記構造物と熱的に接続される請求項1または2に記載の非接触給電装置。 The non-contact power feeding device according to claim 1, wherein the power feeding core unit is thermally connected to the structure. 前記高周波生成回路部が前記構造物と熱的に接続される請求項1から3までのいずれか1項に記載の非接触給電装置。 The non-contact electric power feeder of any one of Claim 1 to 3 with which the said high frequency generation circuit part is thermally connected with the said structure. 前記高周波生成回路部と前記給電コア部の間に少なくとも断熱材を間に有する2つの放熱材を配置する請求項1に記載の非接触給電装置。 The non-contact electric power feeder of Claim 1 which arrange | positions the two heat radiating materials which have at least a heat insulating material between the said high frequency generation circuit part and the said electric power feeding core part. 前記高周波生成回路部と給電コア部を重ね合わせた給電部の最大断面積がコンセント設置用開口部の面積より小さい請求項1から5までのいずれか1項に記載の非接触給電装置。 The non-contact power feeding device according to any one of claims 1 to 5, wherein a maximum cross-sectional area of a power feeding unit in which the high-frequency generation circuit unit and the power feeding core unit are overlapped is smaller than an area of the outlet installation opening. 前記高周波生成回路部と前記給電コア部の間に配置する放熱材がコンセント設置用開口部より広い面積の構造を持つことを特徴とする請求項1から6までのいずれか1項に記載の非接触給電装置。 The non-radioactive material according to any one of claims 1 to 6, wherein the heat dissipating material disposed between the high-frequency generating circuit section and the power feeding core section has a structure with a larger area than the outlet installation opening. Contact power supply device. 前記放熱材がコンセント設置用開口部より挿入可能な形状である請求項1から7までのいずれか1項に記載の非接触給電装置。 The contactless power supply device according to any one of claims 1 to 7, wherein the heat dissipating material has a shape that can be inserted from an opening for outlet installation.
JP2009138248A 2009-06-09 2009-06-09 Noncontact power supply apparatus Pending JP2010284995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009138248A JP2010284995A (en) 2009-06-09 2009-06-09 Noncontact power supply apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009138248A JP2010284995A (en) 2009-06-09 2009-06-09 Noncontact power supply apparatus

Publications (1)

Publication Number Publication Date
JP2010284995A true JP2010284995A (en) 2010-12-24

Family

ID=43541058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009138248A Pending JP2010284995A (en) 2009-06-09 2009-06-09 Noncontact power supply apparatus

Country Status (1)

Country Link
JP (1) JP2010284995A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276603A (en) * 1990-03-26 1991-12-06 Mitsubishi Electric Corp Transformer
JPH08126108A (en) * 1994-10-18 1996-05-17 Sumitomo Electric Ind Ltd Superconducting inductive feeder device
JP2002010535A (en) * 2000-06-27 2002-01-11 Matsushita Electric Works Ltd Non-contact power transmission device
JP2003272938A (en) * 2002-03-12 2003-09-26 Sony Corp Non-contact charging device
JP2006102055A (en) * 2004-10-04 2006-04-20 Cleanup Corp Cordless power source apparatus
JP2006314181A (en) * 2005-05-09 2006-11-16 Sony Corp Non-contact charger, non-contact charging system, and non-contact charging method
JP2007128977A (en) * 2005-11-01 2007-05-24 Dainippon Printing Co Ltd Noncontact feeder system
JP2009005469A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power supply device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03276603A (en) * 1990-03-26 1991-12-06 Mitsubishi Electric Corp Transformer
JPH08126108A (en) * 1994-10-18 1996-05-17 Sumitomo Electric Ind Ltd Superconducting inductive feeder device
JP2002010535A (en) * 2000-06-27 2002-01-11 Matsushita Electric Works Ltd Non-contact power transmission device
JP2003272938A (en) * 2002-03-12 2003-09-26 Sony Corp Non-contact charging device
JP2006102055A (en) * 2004-10-04 2006-04-20 Cleanup Corp Cordless power source apparatus
JP2006314181A (en) * 2005-05-09 2006-11-16 Sony Corp Non-contact charger, non-contact charging system, and non-contact charging method
JP2007128977A (en) * 2005-11-01 2007-05-24 Dainippon Printing Co Ltd Noncontact feeder system
JP2009005469A (en) * 2007-06-20 2009-01-08 Panasonic Electric Works Co Ltd Non-contact power supply device

Similar Documents

Publication Publication Date Title
JP6369493B2 (en) Power supply coil unit, wireless power supply device, and wireless power transmission device
EP2884504B1 (en) Wireless power transmission device with power feeding coil unit
US10574091B2 (en) Enclosures for high power wireless power transfer systems
US20120147565A1 (en) Heat dissipation and temperature-homogenizing structure and electronic device having the same
JP6035952B2 (en) Power supply
JP6558001B2 (en) Heat dissipation device
US10660243B2 (en) Power conversion apparatus including a heat-dissipation module
JP5376071B2 (en) Power transmission device and power transmission system
US20190035547A1 (en) Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit
CN109308970B (en) Coil unit, and power supply device, power receiving device, and wireless power transmission system using same
JP6410972B2 (en) Power converter
US20190035543A1 (en) Coil unit, and power transmitting device, power receiving device and wireless power transmission system using the coil unit
WO2019208184A1 (en) Electric power converter
CN104348353B (en) It can make the power-supply device of the cramped construction of electromagnetic noise minimum
JP2015153891A (en) Coil unit and power supply system
JP2012228052A (en) Switching power supply device
EP3684142B1 (en) Induction heating device having improved cooling structure
WO2017187478A1 (en) Power conversion device
JP2010284995A (en) Noncontact power supply apparatus
JP2014039437A (en) Charge and discharge device
JP2011155808A (en) Power supply portion of noncontact power supply and noncontact power supply
JP6379353B2 (en) DC-DC converter
JP2013062998A (en) Switching power supply device
JP5771725B2 (en) DC-DC converter
CN105165128B (en) Electric component for being installed on apical cap type guide rail

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A131 Notification of reasons for refusal

Effective date: 20130122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130521