JP2010283125A - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP2010283125A
JP2010283125A JP2009134994A JP2009134994A JP2010283125A JP 2010283125 A JP2010283125 A JP 2010283125A JP 2009134994 A JP2009134994 A JP 2009134994A JP 2009134994 A JP2009134994 A JP 2009134994A JP 2010283125 A JP2010283125 A JP 2010283125A
Authority
JP
Japan
Prior art keywords
semiconductor layer
nitride semiconductor
type nitride
electrode
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009134994A
Other languages
Japanese (ja)
Inventor
Kazuma Sekiya
一馬 関家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2009134994A priority Critical patent/JP2010283125A/en
Publication of JP2010283125A publication Critical patent/JP2010283125A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting diode capable of sufficiently exhibiting the light emitting capability of an element. <P>SOLUTION: The light emitting diode includes an n-type nitride semiconductor layer laminated on an upper surface of a sapphire substrate via a buffer layer, a p-type nitride semiconductor layer laminated on the n-type nitride semiconductor layer, an n electrode connected to the n-type nitride semiconductor layer, and a p electrode connected to the p-type nitride semiconductor layer, wherein the n-type nitride semiconductor layer is laminated on the buffer layer so as to cover a part of a side wall of the sapphire substrate, the n electrode is arranged on the n-type nitride semiconductor layer laminated on the side wall of the sapphire substrate, the p-type nitride semiconductor layer is laminated on the n-type nitride semiconductor layer so as to cover a side wall portion of the n-type nitride semiconductor layer, and the p electrode is arranged on the p-type nitride semiconductor layer laminated on the side wall portion of the n-type nitride semiconductor layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は一般的に発光ダイオード(LED)に関し、特に発光ダイオードの電極配置に関する。   The present invention relates generally to light emitting diodes (LEDs), and more particularly to electrode arrangements for light emitting diodes.

発光ダイオードは順方向に電圧を加えた際に発光する半導体素子であり、発光原理はエレクトロルミネッセンス(EL)効果を利用している。発光ダイオードは、半導体のPN接合構造を有しており、発光はこの中で電子の持つエネルギーを直接光エネルギーに変換することで行われる。   A light emitting diode is a semiconductor element that emits light when a voltage is applied in the forward direction, and the principle of light emission utilizes an electroluminescence (EL) effect. The light emitting diode has a semiconductor PN junction structure, and light emission is performed by directly converting the energy of electrons into light energy.

p電極及びn電極から半導体に注入された正孔と電子が異なったエネルギー帯(荷電子帯と伝導帯)を流れ、PN接合部付近にて禁制帯を越えて再結合する。再結合の際にほぼ禁制帯幅(バンドギャップ)に相当するエネルギーが光として放出される。   Holes and electrons injected into the semiconductor from the p-electrode and n-electrode flow through different energy bands (a valence band and a conduction band) and recombine beyond the forbidden band near the PN junction. During recombination, energy corresponding to the forbidden bandwidth (band gap) is emitted as light.

放出される光の波長は、材料のバンドギャップによって決められ、基本的に単一色で自由度が低いが、青色発光ダイオードから出射される青色光を蛍光体に当てることにより、白色光を取り出すことができ、最近では液晶表示装置のバックライト光源として利用されている。   The wavelength of the emitted light is determined by the band gap of the material and is basically a single color with a low degree of freedom, but the white light is extracted by applying the blue light emitted from the blue light emitting diode to the phosphor. Recently, it has been used as a backlight light source for liquid crystal display devices.

更に、電球、蛍光灯等の発光体に比べて著しく消費電力が低く、割つ長寿命であるため、信号機、又は家庭用の照明として盛んに利用されている。最近では、自動車のヘッドライトにも採用されている。   Furthermore, since it consumes significantly less power than light emitters such as light bulbs and fluorescent lamps and has a long service life, it is actively used as a traffic light or household lighting. Recently, it is also used in automobile headlights.

特開2004−111909号公報JP 2004-111909 A

従来の発光ダイオードの電極配置は、n型窒化物半導体層上にn電極を配置し、p型窒化物半導体層上にp電極を配置するのが一般的である。しかし、このような電極配置では、電極により光が遮断され発光能力が十分発揮されないという問題がある。   The electrode arrangement of a conventional light emitting diode is generally such that an n electrode is arranged on the n type nitride semiconductor layer and a p electrode is arranged on the p type nitride semiconductor layer. However, in such an electrode arrangement, there is a problem that light is blocked by the electrode and the light emission ability is not sufficiently exhibited.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、発光能力を十分発揮可能な発光ダイオードを提供することである。   This invention is made | formed in view of such a point, The place made into the objective is providing the light emitting diode which can fully exhibit the light emission capability.

本発明によると、サファイア基板の上面に緩衝層を介して積層されたn型窒化物半導体層と、該n型窒化物半導体層上に積層されたp型窒化物半導体層と、該n型窒化物半導体層に接続されたn電極と、該p型窒化物半導体層に接続されたp電極とを備えた発光ダイオードであって、該n型窒化物半導体層は該サファイア基板の側壁の一部を覆うように該緩衝層上に積層されていて、該n電極は該サファイア基板の側壁に積層された該n型窒化物半導体層に配設され、該p型窒化物半導体層は該n型窒化物半導体層の側壁部を覆うように該n型窒化物半導体層上に積層されていて、該p電極は該n型窒化物半導体層の該側壁部に積層された該p型窒化物半導体層上に配設されていることを特徴とする発光ダイオードが提供される。   According to the present invention, an n-type nitride semiconductor layer stacked on a top surface of a sapphire substrate via a buffer layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and the n-type nitride And a p-electrode connected to the p-type nitride semiconductor layer, wherein the n-type nitride semiconductor layer is a part of a side wall of the sapphire substrate. The n-electrode is disposed on the n-type nitride semiconductor layer stacked on the sidewall of the sapphire substrate, and the p-type nitride semiconductor layer is the n-type The p-type nitride semiconductor is stacked on the n-type nitride semiconductor layer so as to cover the side wall of the nitride semiconductor layer, and the p-electrode is stacked on the side wall of the n-type nitride semiconductor layer. There is provided a light emitting diode characterized in that it is disposed on a layer.

本発明によると、n電極及びp電極は、サファイア基板の側壁に積層されたn型窒化物半導体層の側壁部及びp型窒化物半導体層の側壁部にそれぞれ配設されているので、電極が発光の妨げとならず、発光ダイオードの発光能力を十分発揮することができる。   According to the present invention, the n electrode and the p electrode are respectively disposed on the side wall portion of the n-type nitride semiconductor layer and the side wall portion of the p-type nitride semiconductor layer stacked on the side wall of the sapphire substrate. The light emission ability of the light emitting diode can be sufficiently exhibited without hindering light emission.

本発明実施形態にかかるLEDの斜視図である。It is a perspective view of LED concerning this invention embodiment. 本発明実施形態にかかるLEDの駆動回路図である。It is a drive circuit diagram of LED concerning this invention embodiment. LEDの製造方法を説明するための説明図である。It is explanatory drawing for demonstrating the manufacturing method of LED.

以下、図面を参照して本発明の実施形態について詳細に説明する。図1を参照すると、本発明実施形態にかかる発光ダイオード(LED)2の斜視図が示されている。発光ダイオード(LED)2はサファイア基板4上に窒化物半導体層を積層して形成される。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1, a perspective view of a light emitting diode (LED) 2 according to an embodiment of the present invention is shown. The light emitting diode (LED) 2 is formed by laminating a nitride semiconductor layer on a sapphire substrate 4.

図3を参照して、LED2の製造方法について説明する。まずサファイア基板4に、矩形状の溝4aを形成する。この矩形状の溝4aの形成は、例えばサファイア基板4に対して吸収性を有する波長のレーザビームをサファイア基板4に照射するレーザ加工により行うことができる。   With reference to FIG. 3, the manufacturing method of LED2 is demonstrated. First, a rectangular groove 4 a is formed in the sapphire substrate 4. The rectangular groove 4a can be formed, for example, by laser processing that irradiates the sapphire substrate 4 with a laser beam having a wavelength that is absorptive with respect to the sapphire substrate 4.

次いで、サファイア基板4上には、低温緩衝層6が積層される。この低温緩衝層6としては窒化ガリウム(GaN)又は窒化アルミニウム(AlN)が適しており、本実施形態ではGaNを約500℃程度の低温でサファイア基板4上に成長させた。   Next, a low-temperature buffer layer 6 is laminated on the sapphire substrate 4. As the low-temperature buffer layer 6, gallium nitride (GaN) or aluminum nitride (AlN) is suitable. In this embodiment, GaN is grown on the sapphire substrate 4 at a low temperature of about 500 ° C.

低温緩衝層6上にはn型窒化ガリウム層(GaN層)8が積層されており、n型窒化ガリウム層8上にはp型窒化ガリウム層10が積層されている。本実施形態では、MOCVD法でn型窒化ガリウム層8及びp型窒化ガリウム層10を成長させた。   An n-type gallium nitride layer (GaN layer) 8 is stacked on the low-temperature buffer layer 6, and a p-type gallium nitride layer 10 is stacked on the n-type gallium nitride layer 8. In the present embodiment, the n-type gallium nitride layer 8 and the p-type gallium nitride layer 10 are grown by MOCVD.

p型窒化ガリウム層10の形成方法としては、窒化ガリウムの原料ガス中にマグネシウム(Mg)をドープしてn型窒化ガリウム層を形成した後、窒素雰囲気中で約500℃に加熱することによりp型窒化ガリウム層10を得ることができる。   The p-type gallium nitride layer 10 is formed by doping magnesium (Mg) into a gallium nitride source gas to form an n-type gallium nitride layer, and then heating to about 500 ° C. in a nitrogen atmosphere. The type gallium nitride layer 10 can be obtained.

このようにサファイア基板4上に各層6,8,10を積層した後、図3に示すA線でサファイア基板4を切断する。この切断には、切削ブレードによる切断、又はサファイア基板4に対して吸収性を有する波長のレーザビームによるレーザ加工を利用することができる。矩形状の溝4aに直交する方向の切断は、切削ブレード又はレーザビームを利用して所定間隔(LED2の奥行き長さ)で切断するようにすればよい。   Thus, after each layer 6, 8, 10 is laminated | stacked on the sapphire substrate 4, the sapphire substrate 4 is cut | disconnected by the A line shown in FIG. For this cutting, it is possible to use cutting with a cutting blade or laser processing with a laser beam having a wavelength that is absorptive with respect to the sapphire substrate 4. The cutting in the direction orthogonal to the rectangular groove 4a may be performed at a predetermined interval (depth length of the LED 2) using a cutting blade or a laser beam.

図3でA線に沿って積層体を切断した後、一方の側のサファイア基板4及びp型窒化ガリウム層10を所定深さまで研削し、次いで研磨することによりp型窒化ガリウム層10の側壁部を除去してn型窒化ガリウム層8の側壁部を表出させる。   After the laminate is cut along the line A in FIG. 3, the side wall portion of the p-type gallium nitride layer 10 is obtained by grinding the sapphire substrate 4 and the p-type gallium nitride layer 10 on one side to a predetermined depth and then polishing. And the side wall of the n-type gallium nitride layer 8 is exposed.

次いで、図2に示すように、研削・研磨してないp型窒化ガリウム層10の側壁部にp電極12を配設し、研削・研磨により表出したn型窒化ガリウム層8の側壁部にn電極14を配設する。   Next, as shown in FIG. 2, a p-electrode 12 is disposed on the side wall of the p-type gallium nitride layer 10 that has not been ground / polished, and the n-type gallium nitride layer 8 exposed by grinding / polishing is formed on the side wall. An n-electrode 14 is provided.

本実施形態の発光ダイオード(LED)2の駆動方法は、図2に示すようにp電極12を抵抗Rを介して直流電源16の正極側に接続し、n電極14を直流電源16の負極側に接続して、LED2に所定電圧を印加して駆動する。   As shown in FIG. 2, the driving method of the light emitting diode (LED) 2 of the present embodiment is such that the p-electrode 12 is connected to the positive side of the DC power source 16 via the resistor R, and the n-electrode 14 is connected to the negative side of the DC power source 16. The LED 2 is driven by applying a predetermined voltage.

これにより、n電極14から注入された電子が、n型GaN層8の伝導帯を流れ、p電極12から注入された正孔はp型GaN層10の荷電子帯を流れて、pn接合部付近にて禁制帯を越えて再結合する。   As a result, electrons injected from the n-electrode 14 flow through the conduction band of the n-type GaN layer 8, and holes injected from the p-electrode 12 flow through the valence band of the p-type GaN layer 10 to form a pn junction. Recombine across the forbidden band in the vicinity.

再結合の際に、ほぼ禁制帯幅(バンドギャップ)に相当するエネルギーが光子、即ち光として放出される。窒化ガリウムのバンドギャップは約3.4電子ボルト(eV)であるので、本実施形態のLED2からは中心波長約360nmの紫外光が発光される。   Upon recombination, energy substantially corresponding to the forbidden bandwidth (band gap) is emitted as photons, that is, light. Since the band gap of gallium nitride is about 3.4 electron volts (eV), the LED 2 of this embodiment emits ultraviolet light having a center wavelength of about 360 nm.

本実施形態では、図2に示されるように、LED2からは矢印A方向に光が放出されるが、p電極12及びn電極14はサファイア基板4の側壁上に積層されたp型GaN層10の側壁部及びn型GaN層8の側壁部にそれぞれ配設されているので、電極12,14が発光の妨げとなることはなく、LED2の発光能力を十分発揮することができる。   In the present embodiment, as shown in FIG. 2, light is emitted from the LED 2 in the direction of arrow A, but the p-electrode 12 and the n-electrode 14 are p-type GaN layers 10 stacked on the side wall of the sapphire substrate 4. Therefore, the electrodes 12 and 14 do not hinder light emission, and the light emission capability of the LED 2 can be fully exhibited.

2 発光ダイオード(LED)
4 サファイア基板
6 低温緩衝層
8 n型GaN層
10 p型GaN層
12 p電極
14 n電極
2 Light emitting diode (LED)
4 Sapphire substrate 6 Low-temperature buffer layer 8 n-type GaN layer 10 p-type GaN layer 12 p-electrode 14 n-electrode

Claims (1)

サファイア基板の上面に緩衝層を介して積層されたn型窒化物半導体層と、該n型窒化物半導体層上に積層されたp型窒化物半導体層と、該n型窒化物半導体層に接続されたn電極と、該p型窒化物半導体層に接続されたp電極とを備えた発光ダイオードであって、
該n型窒化物半導体層は該サファイア基板の側壁の一部を覆うように該緩衝層上に積層されていて、該n電極は該サファイア基板の側壁に積層された該n型窒化物半導体層に配設され、
該p型窒化物半導体層は該n型窒化物半導体層の側壁部を覆うように該n型窒化物半導体層上に積層されていて、該p電極は該n型窒化物半導体層の該側壁部に積層された該p型窒化物半導体層上に配設されていることを特徴とする発光ダイオード。
An n-type nitride semiconductor layer stacked on the upper surface of the sapphire substrate via a buffer layer, a p-type nitride semiconductor layer stacked on the n-type nitride semiconductor layer, and connected to the n-type nitride semiconductor layer A light emitting diode comprising an n electrode formed and a p electrode connected to the p-type nitride semiconductor layer,
The n-type nitride semiconductor layer is laminated on the buffer layer so as to cover a part of the side wall of the sapphire substrate, and the n-type nitride semiconductor layer is laminated on the side wall of the sapphire substrate. Arranged in
The p-type nitride semiconductor layer is stacked on the n-type nitride semiconductor layer so as to cover the sidewall portion of the n-type nitride semiconductor layer, and the p-electrode is formed on the sidewall of the n-type nitride semiconductor layer. A light emitting diode, wherein the light emitting diode is disposed on the p-type nitride semiconductor layer stacked on the portion.
JP2009134994A 2009-06-04 2009-06-04 Light emitting diode Pending JP2010283125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134994A JP2010283125A (en) 2009-06-04 2009-06-04 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134994A JP2010283125A (en) 2009-06-04 2009-06-04 Light emitting diode

Publications (1)

Publication Number Publication Date
JP2010283125A true JP2010283125A (en) 2010-12-16

Family

ID=43539624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134994A Pending JP2010283125A (en) 2009-06-04 2009-06-04 Light emitting diode

Country Status (1)

Country Link
JP (1) JP2010283125A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102552A (en) * 1994-09-30 1996-04-16 Rohm Co Ltd Semiconductor light emitting device and its manufacture
JPH1117221A (en) * 1997-06-23 1999-01-22 Sharp Corp Semiconductor light-emitting device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102552A (en) * 1994-09-30 1996-04-16 Rohm Co Ltd Semiconductor light emitting device and its manufacture
JPH1117221A (en) * 1997-06-23 1999-01-22 Sharp Corp Semiconductor light-emitting device and manufacture thereof

Similar Documents

Publication Publication Date Title
JP4663513B2 (en) White light emitting device and manufacturing method thereof
US8410495B2 (en) Array-type light-emitting device and apparatus thereof
JP5284273B2 (en) Light emitting device including a filter
US8399876B2 (en) Semiconductor dies, light-emitting devices, methods of manufacturing and methods of generating multi-wavelength light
JP2005268770A (en) White light emitting element and white light source
US8120011B2 (en) Opto-electronic device
JP4728788B2 (en) Semiconductor light emitting device
JP2011249411A (en) Semiconductor light-emitting element, light-emitting device, illumination device, display device, signal light unit and road information device
JP2017112166A (en) Semiconductor light-emitting element array and vehicle lighting fixture
TW201717428A (en) Light emitting module
JP3108273U (en) Vertical electrode structure of white light emitting diode
US8253889B2 (en) Display apparatus having an array-type light-emitting device
KR101733225B1 (en) Method for integrating different kind of light emitting structure
JP5403832B2 (en) Light emitting device
KR20200087881A (en) Method of forming a p-type layer for a light emitting device
JP2013012709A (en) Nitride-based light-emitting diode element and light-emitting method
TWI595629B (en) Light emitting device
JP2015056652A (en) Nitride semiconductor light-emitting device
US11876154B2 (en) Light emitting diode device and method for manufacturing the same
JP2010283125A (en) Light emitting diode
KR100891826B1 (en) Semiconductor light emitting device
JP2010283124A (en) Light emitting diode
JP2001291900A (en) Semiconductor light-emitting device and manufacturing method thereof
JP2010283123A (en) Light emitting diode
KR101723540B1 (en) Light emitting device and light emitting device package having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709