JP2010281603A - Ultrasonic sensor - Google Patents

Ultrasonic sensor Download PDF

Info

Publication number
JP2010281603A
JP2010281603A JP2009133237A JP2009133237A JP2010281603A JP 2010281603 A JP2010281603 A JP 2010281603A JP 2009133237 A JP2009133237 A JP 2009133237A JP 2009133237 A JP2009133237 A JP 2009133237A JP 2010281603 A JP2010281603 A JP 2010281603A
Authority
JP
Japan
Prior art keywords
signal
reception
phase
detection
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009133237A
Other languages
Japanese (ja)
Inventor
Takao Tsuruhara
貴男 鶴原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009133237A priority Critical patent/JP2010281603A/en
Publication of JP2010281603A publication Critical patent/JP2010281603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic sensor which can perform high-accuracy azimuth detection, without being affected by variations in the characteristics of a receiving element. <P>SOLUTION: When A/D conversion with respect to a received signal Ra from one of sensing elements is performed, and four pieces of conversion data corresponding to data for one period Tc of an ultrasonic wave are obtained, an in-phase component Ip and a quadrature component Qp are calculated by adding and subtracting the obtained conversion data(S110-S130). When an amplitude Ap calculated from the in-phase component Ip and the quadrature component Qp is larger than a reception detection threshold TH, a reflected wave is considered to have been received, and a phase ϕp(=ϕa) is calculated from the in-phase component Ip and the quadrature component Qp calculated earlier (S140-S160). After that, similarly to the case, obtaining of conversion data, calculation of an in-phase component Ip and a quadrature component Qp, and calculation of a phase ϕp(=ϕb) are performed with respect to a received signal Rb from the other sensing element, and moreover the direction of arrival of the ultrasonic wave is calculated from the difference between the phases ϕa and ϕb(S170-S210). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、超音波を用いて物体の位置を検出する超音波センサに関する。   The present invention relates to an ultrasonic sensor that detects the position of an object using ultrasonic waves.

従来より、超音波を送信し、超音波を反射した物体Mからの反射波を、図7に示すように、位置の異なる複数の受信素子E1,E2にて受信し、各受信素子E1,E2での受信タイミングの差、即ち、物体までの距離を超音波が往復するのに要した往復伝搬時間差ΔT(距離差ΔL=C・ΔT;但しCは音速)から、各受信素子E1,E2での受信信号の位相差を求め、周知の位相モノパルス方式の手法により、反射波の到来方向、即ち物体Mが存在する方位角度θを求めることが行われている(例えば、特許文献1参照)。   Conventionally, as shown in FIG. 7, the reflected waves from the object M that transmits ultrasonic waves and reflects the ultrasonic waves are received by a plurality of receiving elements E1, E2 at different positions, and each receiving element E1, E2 is received. From the difference in the reception timing at, that is, the round-trip propagation time difference ΔT (distance difference ΔL = C · ΔT; where C is the speed of sound) required for the ultrasonic wave to reciprocate the distance to the object, each receiving element E1, E2 The phase difference of the received signals is obtained, and the arrival direction of the reflected wave, that is, the azimuth angle θ at which the object M exists is obtained by a known phase monopulse method (see, for example, Patent Document 1).

なお、図7は、図面を見やすくするために受信素子E1,E2における往復伝搬時間差ΔTを、超音波周波数の複数周期分に相当するように記載されているが、実際に方位の測定が可能な往復伝搬時間差ΔTは、一周期以内に相当する長さである。   In FIG. 7, for ease of viewing the drawing, the round-trip propagation time difference ΔT in the receiving elements E1 and E2 is shown to correspond to a plurality of periods of the ultrasonic frequency. The round-trip propagation time difference ΔT is a length corresponding to one cycle.

特許第4013864号公報Japanese Patent No. 4013864

ところで、センサ素子での反射波の受信タイミングを検出する際に、真の受信タイミングである反射波の立ち上がりタイミング(以下「実タイミング」という)を検出することは困難であるため、実際には、図8に示すように、コンパレータを用いて、反射波の振幅が予め設定された閾値電圧に達するタイミング(以下「検出タイミング」という)を受信タイミングとして検出している。従って、距離や方位の検出精度を向上させるためには、いずれの受信素子においても、真タイミングと検出タイミングとの関係を一定にする必要がある。   By the way, when detecting the reception timing of the reflected wave at the sensor element, it is difficult to detect the rising timing of the reflected wave that is the true reception timing (hereinafter referred to as “actual timing”). As shown in FIG. 8, a comparator is used to detect the timing at which the amplitude of the reflected wave reaches a preset threshold voltage (hereinafter referred to as “detection timing”) as the reception timing. Therefore, in order to improve the detection accuracy of distance and direction, it is necessary to make the relationship between the true timing and the detection timing constant in any receiving element.

しかし、受信素子には、素子毎に感度のバラツキがあり、そのバラツキによって受信信号の振幅がばらつくと、実タイミングと検出タイミングとの関係が変化してしまう。この感度のバラツキ分を相殺するためには、受信信号の増幅などを行う受信回路、及び受信回路の感度やオフセットを調整する調整回路を、受信素子毎に設ける必要があった。   However, the sensitivity of each receiving element varies from element to element. If the amplitude of the received signal varies due to the variation, the relationship between the actual timing and the detection timing changes. In order to cancel this sensitivity variation, it is necessary to provide a receiving circuit for amplifying the received signal and an adjusting circuit for adjusting the sensitivity and offset of the receiving circuit for each receiving element.

つまり、受信素子の数だけ受信回路及び調整回路が必要となるため、回路規模が大きくなってしまうという問題や、調整回路の設定に手間を要するという問題があった。
また、反射波を受信した受信信号の振幅は、図9に示すように、物体の位置が遠いほど超音波の伝搬距離も長くなることにより小さくなるため、上記関係を一定に保つには、受信信号の振幅、ひいては反射波を受信するタイミングに応じて閾値電圧を変化させる必要もある。
In other words, the number of receiving circuits and adjustment circuits required is the same as the number of receiving elements, so that there are problems that the circuit scale becomes large and that adjustment circuits need to be set.
Also, as shown in FIG. 9, the amplitude of the received signal that received the reflected wave becomes smaller as the distance of the object becomes longer as the propagation distance of the ultrasonic wave becomes longer. It is also necessary to change the threshold voltage in accordance with the amplitude of the signal and consequently the timing of receiving the reflected wave.

しかし、受信信号の振幅は、反射波を受信するタイミング(即ち往復伝搬時間)だけでなく、超音波を反射する物体の材質や形状、周囲の環境条件等によっても変化するため、これを正確に閾値電圧に反映させることは不可能であるという問題があった。   However, the amplitude of the received signal varies not only with the timing of receiving the reflected wave (ie, the round-trip propagation time) but also with the material and shape of the object that reflects the ultrasonic wave, the surrounding environmental conditions, etc. There is a problem that it is impossible to reflect the threshold voltage.

本発明は、上記問題点を解決するために、受信素子の特性のばらつきによらず、精度の高い方位検出が可能な超音波センサを提供することを目的とする。   In order to solve the above problems, an object of the present invention is to provide an ultrasonic sensor capable of highly accurate azimuth detection regardless of variations in characteristics of receiving elements.

上記目的を達成するためになされた本発明の超音波センサでは、送受信手段が、一定周波数で一定期間継続する超音波を送信すると共に、超音波を反射した物体からの反射波を互いに位置の異なる複数の受信素子により受信し、検波手段が、送受信手段から供給される受信信号を直交検波することで、該受信信号の同相成分及び直交成分を検出する。   In the ultrasonic sensor of the present invention made to achieve the above object, the transmitting / receiving means transmits ultrasonic waves that continue at a constant frequency for a certain period of time, and the reflected waves from the object that reflected the ultrasonic waves have different positions. Received by a plurality of receiving elements, and the detection means detects the in-phase component and the quadrature component of the reception signal by performing quadrature detection on the reception signal supplied from the transmission / reception means.

すると、振幅算出手段が、受信素子の一つについての検波手段での検出結果から受信信号の振幅を求め、この振幅算出手段での算出結果が予め設定された受信検出閾値以上である場合、位相算出手段が、受信素子それぞれについての検波手段での検出結果から受信素子毎に受信信号の位相を求める。   Then, the amplitude calculation means obtains the amplitude of the received signal from the detection result of the detection means for one of the receiving elements, and when the calculation result of the amplitude calculation means is equal to or greater than a preset reception detection threshold, The calculating means obtains the phase of the received signal for each receiving element from the detection result of the detecting means for each receiving element.

そして、方位検出手段が、位相算出手段での算出結果から受信素子間での受信信号の位相差を求め、該位相差から反射波の到来方向を求める。
このように構成された本発明の超音波センサによれば、受信信号の位相差を、超音波の伝搬時間から求めるのではなく、直交検波によって得られる情報から求めているため、受信信号の信号レベルや受信検出閾値の影響を受けることなく、正確に求めることができる。その結果、受信素子の感度のばらつきや検出すべき物体までの距離等によらず、精度の高い方位検出を行うことができる。
Then, the azimuth detecting means obtains the phase difference of the received signals between the receiving elements from the calculation result of the phase calculating means, and obtains the arrival direction of the reflected wave from the phase difference.
According to the ultrasonic sensor of the present invention configured as described above, the phase difference of the received signal is not obtained from the propagation time of the ultrasonic wave but is obtained from information obtained by quadrature detection. It can be obtained accurately without being affected by the level or reception detection threshold. As a result, highly accurate azimuth detection can be performed regardless of variations in sensitivity of the receiving elements, distance to the object to be detected, and the like.

また、本発明の超音波センサによれば、受信素子の感度のばらつきを調整する必要がないため、各受信素子からの受信信号を単一の回路で処理することが可能であり、装置規模を小型化することができる。   Further, according to the ultrasonic sensor of the present invention, since it is not necessary to adjust the variation in sensitivity of the receiving elements, it is possible to process the received signal from each receiving element with a single circuit, and to reduce the device scale. It can be downsized.

この場合、例えば、送受信手段は、受信素子のいずれかを択一的に選択して、選択された受信素子からの受信信号を検波手段に供給する選択手段を備え、位相算出手段は、一定期間(超音波の送信が継続されている期間)内に選択手段での選択を切り替えることにより、複数の受信素子についての検波手段での検出結果を取得するように構成すればよい。   In this case, for example, the transmission / reception unit includes a selection unit that selectively selects one of the reception elements and supplies a reception signal from the selected reception element to the detection unit, and the phase calculation unit includes the predetermined period of time. What is necessary is just to comprise so that the detection result in the detection means about a some receiving element may be acquired by switching the selection in a selection means within (period in which transmission of an ultrasonic wave is continued).

また、本発明の超音波センサにおいて、検波手段は、例えば、信号処理手段、加減算手段により構成してもよい。即ち、信号処理手段が、超音波の4分の1周期に相当するタイミング毎に、受信信号を順次積分又は平均化した信号を生成し、加減算手段が、信号処理手段にて生成された信号D1,D2,D3,D4,…を、次式に従って加減算することにより、同相成分Ip,直交成分Qpを算出する。   In the ultrasonic sensor of the present invention, the detection means may be constituted by, for example, a signal processing means and an addition / subtraction means. That is, the signal processing means generates a signal obtained by sequentially integrating or averaging the received signals at every timing corresponding to a quarter cycle of the ultrasonic wave, and the addition / subtraction means generates the signal D1 generated by the signal processing means. , D2, D3, D4,... Are added and subtracted according to the following equations to calculate the in-phase component Ip and the quadrature component Qp.

Ip=D4p-3+D4p-2−D4p-1−D4p
Qp=D4p-3−D4p-2−D4p-1+D4p
(但し、p=1,2,3,…)
つまり、超音波の4分の1周期毎に検出信号を積分又は平均化して、超音波の一周期に等しい時間間隔の間に得られた4個の積分値又は平均値を加減算することにより、連続波の1周期に等しい時間間隔毎に同相成分Ipと直交成分Qpとを抽出している。
Ip = D 4p-3 + D 4p-2 −D 4p−1 −D 4p
Qp = D4p-3 -D4p-2 -D4p-1 + D4p
(However, p = 1, 2, 3, ...)
That is, by integrating or averaging the detection signal every quarter period of the ultrasonic wave, and adding or subtracting four integral values or average values obtained during a time interval equal to one ultrasonic period, The in-phase component Ip and the quadrature component Qp are extracted every time interval equal to one period of the continuous wave.

従って、本発明の超音波センサによれば、直交検波を、各種ゲート回路を用いたデジタル回路、又は演算回路が実行する簡易な処理(加減算)によって実現できるため、装置を小型化できると共に、直交検波をアナログ回路で行う場合と比較して、耐環境性(ノイズや温度変化への耐性)ひいては動作の信頼性を向上させることができる。   Therefore, according to the ultrasonic sensor of the present invention, since quadrature detection can be realized by a simple process (addition / subtraction) executed by a digital circuit using various gate circuits or an arithmetic circuit, the apparatus can be reduced in size and orthogonally crossed. Compared with the case where the detection is performed by an analog circuit, it is possible to improve the environment resistance (resistance to noise and temperature change) and thus the operation reliability.

ところで、本発明の超音波センサにおいて、信号処理手段は、超音波の4分の1周期に相当するタイミング毎に、受信信号の信号レベルを積分又は平均化することのできる回路であればどのような回路を用いてもよいが、デジタル回路にて実現することが望ましい。   By the way, in the ultrasonic sensor of the present invention, the signal processing means may be any circuit that can integrate or average the signal level of the received signal at every timing corresponding to a quarter cycle of the ultrasonic wave. Although a simple circuit may be used, it is desirable to realize it with a digital circuit.

具体的には、信号処理手段は、例えば、受信信号の信号レベルに応じた遅延時間でパルス信号を遅延させて出力する遅延ユニットが複数段縦続接続され、前記パルス信号を各遅延ユニットの遅延時間にて順次遅延しながら伝送させるパルス遅延回路を用い、カウント手段が、超音波の4分の1周期に相当するタイミング毎に、パルス遅延回路内での前記パルス信号が通過した遅延ユニットの段数をカウントし、そのカウント手段によるカウント値を積分値又は平均値として求めるように構成されていることが望ましい。   Specifically, the signal processing means includes, for example, a delay unit that delays and outputs a pulse signal with a delay time corresponding to the signal level of the received signal, and is cascade-connected, and the pulse signal is output from the delay time of each delay unit. The count means uses the pulse delay circuit that transmits the signal while sequentially delaying at the timing corresponding to one quarter of the ultrasonic wave, and determines the number of stages of the delay unit through which the pulse signal has passed in the pulse delay circuit. It is desirable to be configured to count and obtain the count value by the counting means as an integral value or an average value.

つまり、パルス遅延回路を上記のように動作させた場合、パルス信号がパルス遅延回路内の各遅延ユニットを通過する際の遅延時間は、受信信号の信号レベルに応じて変化するが、その遅延時間の変動量は、パルス信号が複数の遅延ユニットを通過するのに伴い平均化されることになる。   That is, when the pulse delay circuit is operated as described above, the delay time when the pulse signal passes through each delay unit in the pulse delay circuit changes according to the signal level of the received signal. The fluctuation amount is averaged as the pulse signal passes through a plurality of delay units.

このように構成された本発明の超音波センサによれば、信号処理手段を、デジタル回路のみで構成することができるため、他の部分のデジタル回路ともに1つのICチップとして集積化することができ、装置を小型化することができる。   According to the ultrasonic sensor of the present invention configured as described above, since the signal processing means can be configured by only a digital circuit, the other digital circuits can be integrated as one IC chip. The apparatus can be reduced in size.

また、超音波は伝搬距離(ひいては送信からの経過時間)に応じて減衰するため、本発明の超音波センサにおいて、位相算出手段は、受信検出閾値を、超音波の送信からの経過時間に従って低下させるように構成されていてもよい。   In addition, since the ultrasonic wave attenuates according to the propagation distance (and thus the elapsed time from transmission), in the ultrasonic sensor of the present invention, the phase calculation means lowers the reception detection threshold according to the elapsed time from the ultrasonic transmission. You may be comprised so that it may make.

つまり、経過時間が長いほど、受信信号の信号レベルは低下するため、その受信信号の信号レベルに合わせて受信検出閾値を最適な値に適宜変更する。この場合、低下のさせ方は、図10に示すように、段階的であってもよいし連続的であってもよい。   That is, the longer the elapsed time, the lower the signal level of the received signal, so that the reception detection threshold value is appropriately changed to an optimal value according to the signal level of the received signal. In this case, as shown in FIG. 10, the method of decreasing may be stepwise or continuous.

このように構成された本発明の超音波センサによれば、ノイズ等による反射波の誤検出を抑制することができる。   According to the ultrasonic sensor of the present invention configured as described above, erroneous detection of a reflected wave due to noise or the like can be suppressed.

超音波センサの全体構成を示すブロック図。The block diagram which shows the whole structure of an ultrasonic sensor. A/D変換器の構成を示す一部回路図を含んだブロック図。The block diagram including the partial circuit diagram which shows the structure of an A / D converter. 方位検出処理の内容を示すフローチャート。The flowchart which shows the content of the direction detection process. 直交検波についての説明図。Explanatory drawing about a quadrature detection. 受信信号、及びその振幅,位相の波形を示す説明図。Explanatory drawing which shows the waveform of a received signal and its amplitude and phase. セレクタの動作タイミング及び受信信号の波形を示す説明図。Explanatory drawing which shows the operation timing of a selector, and the waveform of a received signal. 超音波による方位検出の原理を示す説明図。Explanatory drawing which shows the principle of the azimuth | direction detection by an ultrasonic wave. 受信信号の有無を検出する閾値に関する説明図。Explanatory drawing regarding the threshold value which detects the presence or absence of a received signal. 超音波が伝搬距離に応じて減衰する様子を示す説明図。Explanatory drawing which shows a mode that an ultrasonic wave attenuate | damps according to propagation distance. 受信検出閾値の設定方法を例示する説明図。Explanatory drawing which illustrates the setting method of a reception detection threshold value.

以下に本発明の実施形態を図面と共に説明する。
[全体構成]
図1は、超音波センサ1の全体構成を示すブロック図である。
Embodiments of the present invention will be described below with reference to the drawings.
[overall structure]
FIG. 1 is a block diagram showing the overall configuration of the ultrasonic sensor 1.

図1に示すように、超音波センサ1は、電気信号から音波への変換及び音波から電気信号への変換をする一対の変換素子21,22を備えた送受信部2と、起動指令C1が入力されると超音波の周波数帯に属する一定周波数の送信信号Sを、一定期間(例えば30波長分程度)だけ発生させる送信回路3と、送受信部2から供給される二つの受信信号Ra,Rbのうちの一方を選択指令C2に従って選択して出力するセレクタ4と、送受信部2から供給される一方の受信信号Raの供給経路に設けられ、受信信号Raをセレクタ4側に通過させると共に、送信回路3が発生させた送信信号Sを送受信部2側に通過させる方向性結合器5とを備えている。   As shown in FIG. 1, the ultrasonic sensor 1 includes a transmission / reception unit 2 including a pair of conversion elements 21 and 22 that convert an electric signal into a sound wave and a sound wave into an electric signal, and an activation command C1 is input. Then, a transmission circuit 3 that generates a transmission signal S having a certain frequency belonging to the ultrasonic frequency band for a certain period (for example, about 30 wavelengths) and two reception signals Ra and Rb supplied from the transmission / reception unit 2 A selector 4 that selects and outputs one of them according to the selection command C2 and a supply path for one reception signal Ra supplied from the transmission / reception unit 2 and passes the reception signal Ra to the selector 4 side, and a transmission circuit And a directional coupler 5 that passes the transmission signal S generated by the transmission / reception unit 2 to the transmission / reception unit 2 side.

つまり、送受信部2を構成する変換素子21,22のうち、一方の変換素子21は送受信兼用となり、他方の変換素子22は受信専用となるように構成されている。なお、変換素子21,22は圧電素子を用いるのが一般的であるが、これに限るものではなく、電気信号−音波間の変換が可能であればどのような素子を用いてもよい。   That is, of the conversion elements 21 and 22 constituting the transmission / reception unit 2, one conversion element 21 is configured to be used for both transmission and reception, and the other conversion element 22 is configured to be used exclusively for reception. In addition, although it is common to use a piezoelectric element for the conversion elements 21 and 22, it is not restricted to this, What kind of element may be used if the conversion between an electrical signal and a sound wave is possible.

また、超音波センサ1は、セレクタ4の出力Rを増幅する増幅器61,増幅器61の出力から送信信号Sと同じ周波数帯の信号を抽出するバンドパスフィルタ(BPF)62,BPF62の出力をA/D変換して出力するA/D変換器63からなる受信回路6と、CPU,ROM,RAMを中心に構成された周知のマイクロコンピュータからなり、起動指令C1,選択指令C2を生成して送信回路3,セレクタ4の動作を制御すると共に、受信回路6の出力(変換データ)Dq(q=1,2,3,…)に基づいて、超音波を反射した物体が存在する方位を求める方位検出処理を少なくとも実行するデータ処理部7とを備えている。   The ultrasonic sensor 1 also outputs the output of the amplifier 61 that amplifies the output R of the selector 4, the output of the band pass filter (BPF) 62 that extracts the signal in the same frequency band as the transmission signal S from the output of the amplifier 61, and the output of the BPF 62. A receiving circuit 6 comprising an A / D converter 63 for D-converting and outputting, and a known microcomputer mainly composed of a CPU, ROM and RAM, generating a start command C1 and a selection command C2, and transmitting circuit 3. Direction detection for controlling the operation of the selector 4 and obtaining the direction in which the object reflecting the ultrasonic wave exists based on the output (conversion data) Dq (q = 1, 2, 3,...) Of the receiving circuit 6 And a data processing unit 7 that executes at least processing.

なお、セレクタ4において受信信号の通過,遮断を制御するスイッチは、アナログスイッチからなり、送信回路3,セレクタ4,受信回路6は、1チップのICにより構成される。   Note that the switch for controlling the passage and blocking of the reception signal in the selector 4 is an analog switch, and the transmission circuit 3, the selector 4, and the reception circuit 6 are configured by a one-chip IC.

また、増幅器61としては、周知のチャージアンプを用いることが一般的であるが、電流アンプや反転増幅器等を用いてもよい。更に、後述する直交検波の処理がフィルタ機能も果たすためBPF62は省略してもよい。   The amplifier 61 is generally a known charge amplifier, but may be a current amplifier, an inverting amplifier, or the like. Further, the BPF 62 may be omitted because the quadrature detection process described later also serves as a filter function.

[A/D変換器の詳細]
A/D変換器63は、図2に示すように、遅延ユニット71をリング状に連結し、初段の遅延ユニット71aに起動信号Pinを入力すると、初段の遅延ユニット71aから次段の遅延ユニット71へとパルス信号が順次伝達され、そのパルス信号が最終段の遅延ユニット71bから初段の遅延ユニット71aに戻されることにより、パルス信号が周回するよう構成されたパルス遅延回路72(所謂リングディレイライン(RDL))を備えている。
[Details of A / D converter]
As shown in FIG. 2, the A / D converter 63 connects the delay units 71 in a ring shape, and when the activation signal Pin is input to the first-stage delay unit 71a, the first-stage delay unit 71a to the next-stage delay unit 71. The pulse signal is sequentially transmitted to the pulse signal, and the pulse signal is returned from the last delay unit 71b to the first delay unit 71a, so that the pulse signal circulates (referred to as a ring delay line). RDL)).

また、A/D変換器63は、パルス遅延回路72内でのパルス信号の周回回数をカウントするカウンタ73と、サンプリング信号SCKの立上がり(又は立下がり)タイミングで、パルス遅延回路72内でのパルス信号の到達位置を検出(ラッチ)し、その検出結果をパルス信号が通過した遅延ユニット71が先頭から何段目にあるかを表す所定ビットのデジタルデータに変換して出力するラッチ&エンコーダ74と、カウンタ73によるカウント値をサンプリング信号SCKの立上がり(又は立下がり)タイミングでラッチするラッチ回路75と、ラッチ回路75からの出力が上位ビットデータb、ラッチ&エンコーダ74からの出力が下位ビットデータaとして入力され、その入力データDTをサンプリング信号SCKの立上がり(又は立下がり)タイミングでラッチして、サンプリング信号SCKの一周期前にラッチした前回値との差を求め、その求めた結果を変換データDqとして出力する減算部76と、起動指令C1によって起動され、起動信号Pin,サンプリング信号SCKを発生させる制御部78とを備えている。つまり、A/D変換器63は、周知の時間A/D変換(TAD)回路によって構成されている。   The A / D converter 63 also includes a counter 73 that counts the number of laps of the pulse signal in the pulse delay circuit 72, and a pulse in the pulse delay circuit 72 at the rising (or falling) timing of the sampling signal SCK. A latch & encoder 74 that detects (latches) the arrival position of the signal, converts the detection result into digital data of a predetermined bit representing the number of stages from the head of the delay unit 71 through which the pulse signal has passed, and outputs The latch circuit 75 latches the count value of the counter 73 at the rising (or falling) timing of the sampling signal SCK, the output from the latch circuit 75 is the upper bit data b, and the output from the latch & encoder 74 is the lower bit data a. And the input data DT is input to the rising edge of the sampling signal SCK (or The signal is latched at the timing of (falling), finds the difference from the previous value latched one cycle before the sampling signal SCK, and is activated by the activation command C1 and the subtraction unit 76 that outputs the obtained result as conversion data Dq. And a control unit 78 that generates the signal Pin and the sampling signal SCK. That is, the A / D converter 63 is configured by a known time A / D conversion (TAD) circuit.

なお、制御部78は、起動指令C1による起動後、当該センサ1の最大計測距離を超音波が往復するのに要する時間に、パルスの継続時間を加えた期間(以下「受信期間」という)の間、サンプリング信号SCKを出力し続け、また、起動信号Pinは、受信期間の間だけHレベルとなるように制御する。   The controller 78 is a period obtained by adding the pulse duration to the time required for the ultrasonic wave to reciprocate the maximum measurement distance of the sensor 1 after activation by the activation command C1 (hereinafter referred to as “reception period”). During this time, the sampling signal SCK is continuously output, and the activation signal Pin is controlled to be at the H level only during the reception period.

そして、パルス遅延回路72を構成する各遅延ユニット71は、インバータ等からなるゲート回路にて構成されており、各遅延ユニット71には、バッファ77を介して、BPF62の出力である受信信号Rが電源電圧として印加される。   Each delay unit 71 constituting the pulse delay circuit 72 is configured by a gate circuit including an inverter or the like, and each delay unit 71 receives a reception signal R that is an output of the BPF 62 via a buffer 77. Applied as power supply voltage.

このため、各遅延ユニット72の遅延時間は、受信信号Rの電圧レベルに対応した時間となり、サンプリング周期Ts内にパルス遅延回路72内でパルス信号が通過した遅延ユニット71の個数を表す変換データDqは、その周期Ts内に受信信号Rの電圧レベルを平均化(又は積分)したものとなる。   For this reason, the delay time of each delay unit 72 is a time corresponding to the voltage level of the received signal R, and converted data Dq representing the number of delay units 71 that have passed through the pulse delay circuit 72 within the sampling period Ts. Is obtained by averaging (or integrating) the voltage level of the received signal R within the period Ts.

なお、サンプリング周期Tsは、超音波(送信信号S)の周期Tcの4分の1に設定されている(図4参照)。
[方位検出処理]
ここで、データ処理部7のCPUが実行する方位検出処理を、図3に示すフローチャートに沿って説明する。なお、本処理は、周期的に起動される。
The sampling period Ts is set to a quarter of the period Tc of the ultrasonic wave (transmission signal S) (see FIG. 4).
[Direction detection processing]
Here, the azimuth | direction detection process which CPU of the data processing part 7 performs is demonstrated along the flowchart shown in FIG. This process is started periodically.

本処理が起動すると、まず、S110では、セレクタ4を初期設定する。具体的には、セレクタ4に対して変換素子21(即ち、受信信号Ra)を選択させる選択指令C2を出力する。これにより、変換素子21からの受信信号Raがセレクタ4を介して受信回路6に供給される。   When this process is started, first, in S110, the selector 4 is initialized. Specifically, the selector 4 outputs a selection command C2 for selecting the conversion element 21 (that is, the reception signal Ra). As a result, the reception signal Ra from the conversion element 21 is supplied to the reception circuit 6 via the selector 4.

S120では、送信回路3に対して起動指令C1を出力することにより計測を開始する。
なお、起動指令C1を受けた送信回路3は、一定周波数の送信信号を一定期間(30波長程度)だけ送信する。また、データ処理部7では、受信回路6から供給される変換データSqの取り込みも開始する。
In S120, the measurement is started by outputting a start command C1 to the transmission circuit 3.
The transmission circuit 3 that has received the start command C1 transmits a transmission signal having a constant frequency for a certain period (about 30 wavelengths). Further, the data processing unit 7 also starts taking in the conversion data Sq supplied from the receiving circuit 6.

S130では、超音波の一周期Tc分(即ち4個)の変換データD4p-3,D4p-2,D4p-1,D4p (但し、p=1,2,3,…)を受信回路6から取得するまで待機し、取得が完了すると、その取得した4個の変換データD4p-3,D4p-2,D4p-1,D4pを(1)(2)式に従って加減算することにより同相成分Ip,直交成分Qpを算出する直交検波処理を実行する。 In S130, ultrasonic conversion data D4p-3 , D4p-2 , D4p-1 , D4p (where p = 1, 2, 3,...) For one period Tc of the ultrasonic wave are received. Wait until acquisition from the circuit 6 and when the acquisition is completed, the four converted data D 4p-3 , D 4p-2 , D 4p-1 , D 4p are added or subtracted according to the equations (1) and (2). Thus, quadrature detection processing for calculating the in-phase component Ip and the quadrature component Qp is executed.

Ip=D4p-3+D4p-2−D4p-1−D4p (1)
Qp=D4p-3−D4p-2−D4p-1+D4p (2)
なお、図4に示すように、(1)式は、前半周期が「1」,後半周期が「−1」で表された近似的なsin波を受信信号に乗じることに相当し、(2)式は、1周期を4分割した最初の1/4周期が「1」、2及び3番目の1/4周期が「−1」、最後の1/4周期が「1」で表された近似的なcos波を、受信信号に乗じることに相当する。
Ip = D4p-3 + D4p-2 -D4p-1 -D4p (1)
Qp = D4p-3 -D4p-2 -D4p-1 + D4p (2)
As shown in FIG. 4, equation (1) corresponds to multiplying the received signal by an approximate sine wave represented by “1” in the first half period and “−1” in the second half period. The first quarter period obtained by dividing one period into “1” is represented by “1”, the second and third quarter periods are represented by “−1”, and the last quarter period is represented by “1”. This corresponds to multiplying the received signal by an approximate cos wave.

S140では、S130にて算出した同相成分Ip,直交成分Qpに基づき(3)式に従って振幅Apを算出する。   In S140, the amplitude Ap is calculated according to the equation (3) based on the in-phase component Ip and the quadrature component Qp calculated in S130.

Figure 2010281603
Figure 2010281603

S150では、S140で算出した振幅Apは、予め設定された受信検出閾値THより大きいか否かを判断する。なお、受信検出閾値THは、超音波が伝搬距離に応じて減衰することを考慮し、送信タイミングからの時間が経過するほど小さな値となるように設定されている。   In S150, it is determined whether or not the amplitude Ap calculated in S140 is larger than a preset reception detection threshold TH. Note that the reception detection threshold TH is set so as to decrease as time elapses from the transmission timing in consideration of the attenuation of the ultrasonic wave according to the propagation distance.

そして、S150にて肯定判断した場合は、反射波を受信したものとして、S160に移行し、先のS130にて算出した同相成分Ip,直交成分Qpに基づき(4)式に従って位相φp(=φa)を算出する。   If an affirmative determination is made in S150, it is determined that a reflected wave has been received, and the process proceeds to S160, where the phase φp (= φa) is obtained according to the equation (4) based on the in-phase component Ip and the quadrature component Qp calculated in S130. ) Is calculated.

Figure 2010281603
Figure 2010281603

S170では、セレクタ4に対して変換素子22(即ち、受信信号Rb)を選択させる選択指令C2を出力することで、セレクタ4の設定を切り替える。
S180では、先のS130と同様に、超音波の一周期Tc分(即ち4個)の変換データD4p-3,D4p-2,D4p-1,D4pを受信回路6から取得するまで待機し、取得が完了すると、その取得した4個の変換データD4p-3,D4p-2,D4p-1,D4pを(1)(2)式に従って加減算することにより同相成分Ip,直交成分Qpを算出する。
In S170, the selector 4 is switched by outputting a selection command C2 that causes the selector 4 to select the conversion element 22 (that is, the reception signal Rb).
In S180, as in the previous S130, conversion data D4p-3 , D4p-2 , D4p-1 , and D4p for one ultrasonic cycle Tc (that is, four) are acquired from the receiving circuit 6. When the acquisition is completed, the four converted data D 4p-3 , D 4p-2 , D 4p-1 , D 4p are added and subtracted according to the equations (1) and (2) to obtain the in-phase component Ip, An orthogonal component Qp is calculated.

S190では、先のS160と同様に、S180にて算出した同相成分Ip,直交成分Qpに基づき(4)式に従って位相φp(=φb)を算出する。
S200では、先のS160及びS190で算出した位相φa,φbの位相差Δφ(=φa−φb)に基づき、周知の位相モノパルスの手法を用いて、超音波を反射した物体が存在する方位角度θを算出する。
In S190, similarly to the previous S160, the phase φp (= φb) is calculated according to the equation (4) based on the in-phase component Ip and the quadrature component Qp calculated in S180.
In S200, based on the phase difference Δφ (= φa−φb) between the phases φa and φb calculated in the previous S160 and S190, an azimuth angle θ where an object reflecting ultrasonic waves exists using a known phase monopulse technique. Is calculated.

S210では、障害物が存在する旨の測定結果を、それが存在する方位角度θと共に出力して本処理を終了する。
先のS150にて否定判定した場合は、S220に移行し、計測時間が経過したか否かを判断し、経過していなければ反射波を受信していないものとしてS130に戻る。
In S210, the measurement result indicating that an obstacle is present is output together with the azimuth angle θ where the obstacle is present, and the present process is terminated.
If a negative determination is made in the previous S150, the process proceeds to S220, where it is determined whether the measurement time has elapsed, and if not, the process returns to S130 assuming that no reflected wave has been received.

一方、S220にて、計測時間が経過したと判断した場合は、S230に移行し、障害物が存在しない旨の測定結果を出力して本処理を終了する。
[動作例]
図5は、受信信号Ra,Rbの波形等を模式的に示した説明図である。
On the other hand, if it is determined in S220 that the measurement time has elapsed, the process proceeds to S230, a measurement result indicating that no obstacle is present is output, and the process ends.
[Operation example]
FIG. 5 is an explanatory diagram schematically showing the waveforms of the received signals Ra and Rb.

変換素子21,22からの受信信号Ra,Rb(但し、送信した超音波の周波数帯)の波形の包絡線は、立ち上がり、立ち下がり部分を有する。
同相成分Ip,直交成分Qpから算出される振幅Apは、この包絡線の値をデジタル値で表したものとなる。
The envelope of the waveform of the reception signals Ra and Rb (however, the transmitted ultrasonic frequency band) from the conversion elements 21 and 22 has rising and falling portions.
The amplitude Ap calculated from the in-phase component Ip and the quadrature component Qp is a digital value representing the envelope value.

また、位相φp(φa,φb)は、信号が無いときには不安定な値となり、信号が有るときには一定値に固定される。つまり、信号の立ち上がりタイミングを検出しなくても、信号が存在する間であれば、位相を正確に特定可能であることがわかる。   The phase φp (φa, φb) is an unstable value when there is no signal, and is fixed to a constant value when there is a signal. That is, it can be seen that the phase can be accurately specified as long as the signal exists without detecting the rising timing of the signal.

なお、図5では、振幅Ap,位相φpを連続的に示しているが、直交検波出力は、超音波の一周期Tcに相当するタイミング毎に算出されるため、実際には時間軸に対して離散的な値をとる。   In FIG. 5, the amplitude Ap and the phase φp are shown continuously. However, since the quadrature detection output is calculated at every timing corresponding to one period Tc of the ultrasonic wave, in actuality, Takes discrete values.

図5では、時刻Aのタイミングで、振幅Apが受信判定閾値THに達している。
位相φpは、振幅Apの算出に使用したものと同じ同相成分Ip,直交成分Qp(ひいては、同じ変換データD4p-3,D4p-2,D4p-1,D4p)に基づいて算出可能であるため、時刻Aのタイミングで位相φp(=φa)も求められる(図中の矢印参照)。
In FIG. 5, at the timing of time A, the amplitude Ap reaches the reception determination threshold value TH.
The phase φp can be calculated on the basis of the same in-phase component Ip and quadrature component Qp used for calculating the amplitude Ap (and the same conversion data D 4p-3 , D 4p-2 , D 4p-1 , D 4p ). Therefore, the phase φp (= φa) is also obtained at the timing of time A (see the arrow in the figure).

その後、セレクタ4を切り替えて時刻Bのタイミングで位相φp(=φb)を求める(図中の矢印参照)。
なお、時刻Bの時点で位相φbが得られるようにするためには、時刻Bより少なくとも超音波の一周期Tc以上早いタイミングでセレクタ4を切り替えればよい。更に言えば、時刻B以降の変換データDqは本処理には必要がないため、その時点で変換データDqの取得を停止してもよい。
Thereafter, the selector 4 is switched to obtain the phase φp (= φb) at the timing of time B (see the arrow in the figure).
In order to obtain the phase φb at the time B, the selector 4 may be switched at a timing earlier than the time B by at least one ultrasonic cycle Tc. Furthermore, since conversion data Dq after time B is not necessary for this processing, acquisition of conversion data Dq may be stopped at that time.

そして、振幅Apの算出,振幅Apと受信判定閾値THとの比較,位相φpの算出を超音波の一周期Tc以内で実行可能であれば、時刻Aと時刻Bとの時間差は二周期分あれば十分である。但し、振幅Apや位相φp(ひいては物体の方位角度θ)の算出精度を向上させるために、複数周期分の同相成分Ip,直交成分Qpを用いてこれらを算出するように構成してもく、その場合、時刻Aと時刻Bとの時間差は二周期分より長くなる。   If the calculation of the amplitude Ap, the comparison between the amplitude Ap and the reception determination threshold TH, and the calculation of the phase φp can be performed within one ultrasonic cycle Tc, the time difference between the time A and the time B is two cycles. It is enough. However, in order to improve the calculation accuracy of the amplitude Ap and the phase φp (and hence the azimuth angle θ of the object), it may be configured to calculate these using the in-phase component Ip and the quadrature component Qp for a plurality of periods. In that case, the time difference between time A and time B is longer than two periods.

つまり、送信信号Sの継続時間は、これらの条件を考慮して、必要な変換データDqが確実に得られるような長さに設定すればよい。
なお、図6は、時刻Cにてセレクタ4を切り替えた場合に、セレクタ4から出力される受信信号Rの波形を、受信信号Ra,Rbの波形と共に示した説明図である。
That is, the duration of the transmission signal S may be set to such a length that the necessary conversion data Dq can be reliably obtained in consideration of these conditions.
FIG. 6 is an explanatory diagram showing the waveform of the reception signal R output from the selector 4 together with the waveforms of the reception signals Ra and Rb when the selector 4 is switched at time C.

[効果]
以上説明したように、超音波センサ1では、反射波(受信信号R)の検出を、振幅Apと受信判定閾値THとの比較によって行い、受信信号Ra,Rb間の位相差は、直交検波により得られる同相成分Ip及び直交成分Qpから算出している。
[effect]
As described above, in the ultrasonic sensor 1, the reflected wave (reception signal R) is detected by comparing the amplitude Ap with the reception determination threshold value TH, and the phase difference between the reception signals Ra and Rb is determined by orthogonal detection. It is calculated from the obtained in-phase component Ip and quadrature component Qp.

つまり、超音波センサによれば、受信信号Ra,Rbの位相差を、超音波の伝搬時間から求めるのではなく、直交検波によって得られる情報から求めているため、受信信号Rの信号レベルや受信検出閾値THの影響を受けることなく、正確に求めることができる。その結果、変換素子21,22の感度のばらつきや検出すべき物体までの距離等によらず、精度の高い方位検出を行うことができる。   That is, according to the ultrasonic sensor, the phase difference between the reception signals Ra and Rb is not obtained from the propagation time of the ultrasonic wave but from information obtained by quadrature detection. It can be obtained accurately without being affected by the detection threshold TH. As a result, highly accurate azimuth detection can be performed regardless of variations in the sensitivity of the conversion elements 21 and 22 and the distance to the object to be detected.

また、超音波センサ1によれば、変換素子21,22の感度のばらつきを調整する必要がないため、各変換素子21,22からの受信信号Ra,Rbを単一の受信回路6で処理することができる。これと共に、超音波センサ1によれば、A/D変換器63をTAD方式のものを用いて実現しているため、これをデジタル回路にて構成することができ、装置規模を小型化することができる。   In addition, according to the ultrasonic sensor 1, it is not necessary to adjust variations in sensitivity of the conversion elements 21 and 22, so that the reception signals Ra and Rb from the conversion elements 21 and 22 are processed by a single reception circuit 6. be able to. At the same time, according to the ultrasonic sensor 1, since the A / D converter 63 is realized by using a TAD system, it can be configured by a digital circuit, and the apparatus scale can be reduced. Can do.

更に、超音波センサ1によれば、受信判定閾値THを、受信タイミングに応じて変化させているため、ノイズ等による誤検出を最小限に抑制することができる。
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において様々な態様にて実施可能である。
Furthermore, according to the ultrasonic sensor 1, since the reception determination threshold value TH is changed according to the reception timing, erroneous detection due to noise or the like can be minimized.
[Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, In the range which does not deviate from the summary of this invention, it can implement in various aspects.

例えば、上記実施形態では、変換素子を2個用いて一次元的な方位検出を行うように構成したが、3個以上用いて二次元的な方位検出を行うように構成してもよい。
上記実施形態では、方位のみ検出するように構成したが、振幅Apが受信判定閾値THを超えたタイミングから、物体までの距離を求めるように構成してもよい。
For example, in the above-described embodiment, the two-dimensional conversion detection is performed using two conversion elements. However, two or more conversion elements may be used to perform two-dimensional direction detection.
In the embodiment described above, only the azimuth is detected. However, the distance to the object may be obtained from the timing when the amplitude Ap exceeds the reception determination threshold TH.

上記実施形態では、二つある変換素子のうち、一方を送受兼用として構成したが、送信専用の変換素子を別途設けてもよい。
上記実施形態では、データ処理部7は、S130にて実行する直交検波や、S140にて実行する振幅の算出、S160,S180にて実行する位相の算出等を、CPUが実行する処理として実現しているが、これらの処理を、DSPを含むデジタル回路によって実現してもよい。
In the above embodiment, one of the two conversion elements is configured to be used for both transmission and reception, but a conversion element dedicated for transmission may be provided separately.
In the above embodiment, the data processing unit 7 realizes the quadrature detection executed in S130, the amplitude calculation executed in S140, the phase calculation executed in S160 and S180, and the like as processes executed by the CPU. However, these processes may be realized by a digital circuit including a DSP.

1…超音波センサ 2…送受信部 3…送信回路 4…セレクタ 5…方向性結合器 6…受信回路 7…データ処理部 21,22…変換素子 61…増幅器 62…バンドパスフィルタ(BPF) 63…A/D変換器 71…遅延ユニット 72…パルス遅延回路 73…カウンタ 74…エンコーダ 75…ラッチ回路 76…減算部 77…バッファ 78…制御部   DESCRIPTION OF SYMBOLS 1 ... Ultrasonic sensor 2 ... Transmission / reception part 3 ... Transmission circuit 4 ... Selector 5 ... Directional coupler 6 ... Reception circuit 7 ... Data processing part 21,22 ... Conversion element 61 ... Amplifier 62 ... Band pass filter (BPF) 63 ... A / D converter 71 ... delay unit 72 ... pulse delay circuit 73 ... counter 74 ... encoder 75 ... latch circuit 76 ... subtraction unit 77 ... buffer 78 ... control unit

Claims (5)

一定周波数で一定期間継続する超音波を送信すると共に、前記超音波を反射した物体からの反射波を互いに位置の異なる複数の受信素子により受信する送受信手段と、
前記送受信手段から供給される受信信号を直交検波することで、該受信信号の同相成分及び直交成分を検出する検波手段と、
前記受信素子の一つについての前記検波手段での検出結果から前記受信信号の振幅を求める振幅算出手段と、
前記振幅算出手段での算出結果が予め設定された受信検出閾値以上である場合、前記受信素子それぞれについての前記検波手段での検出結果から前記受信素子毎に前記受信信号の位相を求める位相算出手段と、
前記位相算出手段での算出結果から前記受信素子間での前記受信信号の位相差を求め、該位相差から前記反射波の到来方向を求める方位検出手段と、
を備えることを特徴とする超音波センサ。
Transmitting and receiving means for transmitting ultrasonic waves that continue for a fixed period at a fixed frequency, and receiving reflected waves from an object that has reflected the ultrasonic waves by a plurality of receiving elements having different positions; and
Detecting means for detecting an in-phase component and a quadrature component of the received signal by performing quadrature detection on the received signal supplied from the transmitting / receiving means;
Amplitude calculating means for obtaining the amplitude of the received signal from the detection result of the detecting means for one of the receiving elements;
When the calculation result in the amplitude calculation means is equal to or greater than a preset reception detection threshold, the phase calculation means for obtaining the phase of the reception signal for each reception element from the detection result in the detection means for each reception element When,
Obtaining the phase difference of the received signal between the receiving elements from the calculation result in the phase calculating means, and azimuth detecting means for obtaining the arrival direction of the reflected wave from the phase difference;
An ultrasonic sensor comprising:
前記送受信手段は、前記受信素子のいずれかを択一的に選択して、選択された受信素子からの受信信号を前記検波手段に供給する選択手段を備え、
前記位相算出手段は、前記一定期間内に前記選択手段での選択を切り替えることにより、複数の前記受信素子についての前記検波手段での検出結果を取得することを特徴とする請求項1に記載の超音波センサ。
The transmission / reception means includes selection means for selectively selecting one of the reception elements and supplying a reception signal from the selected reception element to the detection means,
2. The phase calculating unit according to claim 1, wherein the phase calculating unit acquires detection results of the detecting unit for a plurality of the receiving elements by switching selection by the selecting unit within the predetermined period. Ultrasonic sensor.
前記検波手段は、
前記超音波の4分の1周期に相当するタイミング毎に、前記受信信号を順次積分又は平均化した信号を生成する信号処理手段と、
前記信号処理手段によって生成された信号D1,D2,D3,D4,…を、次式に従って加減算することにより、同相成分Ip、直交成分Qpを算出する加減算手段と、
Ip=D4p-3+D4p-2−D4p-1−D4p
Qp=D4p-3−D4p-2−D4p-1+D4p
(但し、p=1,2,3,…)
を備えることを特徴とする請求項1又は請求項2に記載の超音波センサ。
The detection means includes
Signal processing means for generating a signal obtained by sequentially integrating or averaging the received signals for each timing corresponding to a quarter cycle of the ultrasonic wave;
Addition / subtraction means for calculating the in-phase component Ip and the quadrature component Qp by adding / subtracting the signals D1, D2, D3, D4,... Generated by the signal processing means according to the following equation:
Ip = D 4p-3 + D 4p-2 -D 4p-1 -D 4p
Qp = D4p-3 -D4p-2 -D4p-1 + D4p
(However, p = 1, 2, 3, ...)
The ultrasonic sensor according to claim 1, further comprising:
前記信号処理手段は、
前記受信信号の信号レベルに応じた遅延時間でパルス信号を遅延させて出力する遅延ユニットが複数段縦続接続され、前記パルス信号を各遅延ユニットの遅延時間にて順次遅延しながら伝送させるパルス遅延回路と、
前記超音波の4分の1周期に相当するタイミング毎に、前記パルス遅延回路内での前記パルス信号が通過した遅延ユニットの段数をカウントするカウント手段と、
を備え、前記カウント手段によるカウント値を前記積分値又は平均値として求めることを特徴とする請求項3に記載の超音波センサ。
The signal processing means includes
A delay unit that delays and outputs a pulse signal with a delay time corresponding to the signal level of the received signal is cascade-connected, and the pulse signal is transmitted while being sequentially delayed by the delay time of each delay unit. When,
Counting means for counting the number of stages of delay units through which the pulse signal has passed in the pulse delay circuit at every timing corresponding to a quarter cycle of the ultrasonic wave,
The ultrasonic sensor according to claim 3, wherein a count value obtained by the counting means is obtained as the integral value or the average value.
前記位相算出手段は、前記受信検出閾値を、前記超音波の送信からの経過時間に従って低下させることを特徴とする請求項1乃至請求項4のいずれかに記載の超音波センサ。   5. The ultrasonic sensor according to claim 1, wherein the phase calculation unit decreases the reception detection threshold according to an elapsed time from the transmission of the ultrasonic wave.
JP2009133237A 2009-06-02 2009-06-02 Ultrasonic sensor Pending JP2010281603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009133237A JP2010281603A (en) 2009-06-02 2009-06-02 Ultrasonic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009133237A JP2010281603A (en) 2009-06-02 2009-06-02 Ultrasonic sensor

Publications (1)

Publication Number Publication Date
JP2010281603A true JP2010281603A (en) 2010-12-16

Family

ID=43538482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009133237A Pending JP2010281603A (en) 2009-06-02 2009-06-02 Ultrasonic sensor

Country Status (1)

Country Link
JP (1) JP2010281603A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180547A (en) * 1998-12-18 2000-06-30 Hitachi Ltd Obstacle detecting device
JP2006242619A (en) * 2005-03-01 2006-09-14 Proassist:Kk Ultrasonic sensor signal processing system
JP2007127503A (en) * 2005-11-02 2007-05-24 Nippon Soken Inc Object location detection apparatus
JP2007225500A (en) * 2006-02-24 2007-09-06 Denso Corp Distance measuring method and device
JP2008076095A (en) * 2006-09-19 2008-04-03 Denso Corp Azimuth detecting method, azimuth detection device, and program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180547A (en) * 1998-12-18 2000-06-30 Hitachi Ltd Obstacle detecting device
JP2006242619A (en) * 2005-03-01 2006-09-14 Proassist:Kk Ultrasonic sensor signal processing system
JP2007127503A (en) * 2005-11-02 2007-05-24 Nippon Soken Inc Object location detection apparatus
JP2007225500A (en) * 2006-02-24 2007-09-06 Denso Corp Distance measuring method and device
JP2008076095A (en) * 2006-09-19 2008-04-03 Denso Corp Azimuth detecting method, azimuth detection device, and program

Similar Documents

Publication Publication Date Title
US20210333390A1 (en) Method and system for ultrasound time-of-flight measurement
JP5634404B2 (en) Ultrasonic detector
US6255984B1 (en) Sensor system
JP2007225500A (en) Distance measuring method and device
JP2002365362A (en) Pulse radar device
KR101454827B1 (en) High resolution distance measuring method by phase shifted value of ultrasonic signal
US20120309324A1 (en) Measurement method and apparatus
TWI746342B (en) Circuit for detecting a timing difference
JP2015010888A (en) Ultrasonic sensor device
JP4760115B2 (en) Fluid flow measuring device
JP2010281603A (en) Ultrasonic sensor
JP5690049B2 (en) Distance measuring device
JP4904099B2 (en) Pulse signal propagation time measurement device and ultrasonic flow measurement device
JP6383237B2 (en) User detection method, user detection apparatus, and image forming apparatus
JP2002296085A (en) Ultrasonic flowmeter
JP4278171B1 (en) Ultrasonic flow meter and flow measurement method
JP2007033122A (en) Position measuring apparatus
JP2003028956A (en) Distance-measuring apparatus and position-measuring apparatus using ultrasonic waves, and program for them
JP2014115203A (en) Distance measurement device
JP2004264195A (en) Ultrasonic flowmeter
JP2007232659A (en) Ultrasonic flowmeter
JP2009210382A (en) Pulse radar and method for equivalent time sampling
JP2006162328A (en) Ultrasonic range finder and ultrasonic clinometer
JPH053527B2 (en)
JP2008002811A (en) Pulse radar system for measuring short distance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023