JP2010281587A - Electrochemical reaction measuring method and electrochemical reaction measuring instrument - Google Patents

Electrochemical reaction measuring method and electrochemical reaction measuring instrument Download PDF

Info

Publication number
JP2010281587A
JP2010281587A JP2009132947A JP2009132947A JP2010281587A JP 2010281587 A JP2010281587 A JP 2010281587A JP 2009132947 A JP2009132947 A JP 2009132947A JP 2009132947 A JP2009132947 A JP 2009132947A JP 2010281587 A JP2010281587 A JP 2010281587A
Authority
JP
Japan
Prior art keywords
electrochemical reaction
response signal
signal
impedance
perturbation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132947A
Other languages
Japanese (ja)
Other versions
JP5444857B2 (en
Inventor
Nobuhiro Tomosada
伸浩 友定
Daisuke Yamazaki
大輔 山崎
Atsushi Kimura
篤史 木村
Tomomi Akutsu
智美 阿久津
Makoto Kawano
誠 川野
Soichiro Torai
総一朗 虎井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2009132947A priority Critical patent/JP5444857B2/en
Publication of JP2010281587A publication Critical patent/JP2010281587A/en
Application granted granted Critical
Publication of JP5444857B2 publication Critical patent/JP5444857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical reaction measuring method enabling measurement considering an effect of a polarization state, and an electrochemical reaction measuring instrument. <P>SOLUTION: A response signal is acquired by being associated with a phase of a perturbation signal. Impedance is calculated using the response signal where the phase of the perturbation signal is within a predetermined range in the acquired response signal. For example, the impedance is calculated using the response signal during a period when the perturbation signal shows a positive or negative value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被計測物に摂動信号を与え、前記摂動信号により生ずる応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測方法および電気化学反応計測装置に関する。   The present invention relates to an electrochemical reaction measurement method and an electrochemical reaction measurement device that give a perturbation signal to an object to be measured and perform measurement related to an electrochemical reaction of the object to be measured based on a response signal generated by the perturbation signal.

燃料電池、その他の電池のインピーダンスを計測する方法として、電池に摂動信号を与え、そのときの応答信号に基づいてインピーダンスを算出する方法が知られている。この方法では、ある動作点(出力電流Idc、出力電圧Vdc)での発電を行い、さらに周波数fの交流電流摂動Iacを重畳させ、その電圧応答信号Vacを取得し、周波数fにおけるインピーダンスを算出する。あるいは上記動作点で周波数fの交流電圧摂動Vacを重畳させ、その電流応答信号Iacを取得し、周波数fにおけるインピーダンスを算出する。   As a method for measuring the impedance of a fuel cell or other cell, a method is known in which a perturbation signal is given to the cell and the impedance is calculated based on the response signal at that time. In this method, power is generated at a certain operating point (output current Idc, output voltage Vdc), and an alternating current perturbation Iac of frequency f is superimposed to obtain the voltage response signal Vac, and impedance at frequency f is calculated. . Alternatively, the AC voltage perturbation Vac of the frequency f is superimposed at the operating point, the current response signal Iac is acquired, and the impedance at the frequency f is calculated.

特開2007−250365号公報JP 2007-250365 A

一方、下記の化学反応式((1)式)は、インピーダンス計測時の動作点(出力電流Idc、出力電圧Vdc)における反応のバランス(分極状態)を示している。   On the other hand, the following chemical reaction formula (formula (1)) shows the balance of the reaction (polarization state) at the operating point (output current Idc, output voltage Vdc) at the time of impedance measurement.

Figure 2010281587
Figure 2010281587

ここでは、簡単な例として物質Aの酸化還元反応を示しているが、分極状態とは、この化学反応式において右向きの反応が左向きの反応よりも盛んであり、外部からは右向きの反応が起こっているように観察される状態のことである。   Here, the oxidation-reduction reaction of substance A is shown as a simple example, but in the state of polarization, the rightward reaction is more popular than the leftward reaction in this chemical reaction formula, and a rightward reaction occurs from the outside. It is the state that is observed.

このように、電池のインピーダンス計測では、ある動作点(分極状態)で安定した(平衡状態に達した)系に、さらに摂動信号を与えた状態でインピーダンス計測を行っている。このため、分極方向の摂動に対する応答と、分極と反対方向の摂動に対する応答は異なる可能性がある。しかしながら、従来のインピーダンス計測では、両方の応答をまとめてインピーダンスを算出しており、分極状態の影響を考慮したうえで電池の応答を詳細に分析することができない。   As described above, in the impedance measurement of the battery, the impedance measurement is performed in a state where a perturbation signal is further given to a system that is stable (reached to an equilibrium state) at a certain operating point (polarization state). For this reason, the response to the perturbation in the polarization direction may be different from the response to the perturbation in the direction opposite to the polarization. However, in the conventional impedance measurement, the impedance is calculated by combining both responses, and the battery response cannot be analyzed in detail in consideration of the influence of the polarization state.

本発明の目的は、分極状態の影響を考慮した計測が可能となる電気化学反応計測方法および電気化学反応計測装置を提供することにある。   An object of the present invention is to provide an electrochemical reaction measurement method and an electrochemical reaction measurement apparatus that enable measurement in consideration of the influence of the polarization state.

本発明の電気化学反応計測方法は、被計測物に摂動信号を与え、前記摂動信号により生ずる応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測方法において、前記応答信号を前記摂動信号の位相と対応付けて取得するステップと、前記取得するステップにより取得された応答信号のうち、前記位相が所定の範囲にある応答信号を用いてインピーダンスを算出するステップと、を備えることを特徴とする。
この電気化学反応計測方法によれば、取得された応答信号のうち、位相が所定の範囲にある応答信号を用いてインピーダンスを算出するので、分極状態の影響を考慮した計測が可能となる。
The electrochemical reaction measuring method of the present invention is the electrochemical reaction measuring method in which a perturbation signal is given to an object to be measured, and the electrochemical reaction measurement method for measuring an electrochemical reaction of the object to be measured based on a response signal generated by the perturbation signal. Obtaining a signal in association with the phase of the perturbation signal, and calculating an impedance using a response signal having the phase within a predetermined range among the response signals obtained by the obtaining step. It is characterized by providing.
According to this electrochemical reaction measurement method, the impedance is calculated using a response signal whose phase is in a predetermined range among the acquired response signals, so that measurement in consideration of the influence of the polarization state is possible.

前記算出するステップでは、前記摂動信号が正または負の値を示す期間の応答信号を用いてインピーダンスを算出してもよい。   In the calculating step, the impedance may be calculated using a response signal in a period in which the perturbation signal shows a positive or negative value.

前記算出するステップでは、前記摂動信号の時間微分が正または負の値を示す期間の応答信号を用いてインピーダンスを算出してもよい。
本発明の電気化学反応計測装置は、被計測物に摂動信号を与え、前記摂動信号により生ずる応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測装置において、前記応答信号を前記摂動信号の位相と対応付けて取得する応答信号取得手段と、前記応答信号取得手段により取得された応答信号のうち、前記位相が所定の範囲にある応答信号を用いてインピーダンスを算出するインピーダンス算出手段と、を備えることを特徴とする。
この電気化学反応計測装置によれば、取得された応答信号のうち、位相が所定の範囲にある応答信号を用いてインピーダンスを算出するので、分極状態の影響を考慮した計測が可能となる。
In the calculating step, the impedance may be calculated using a response signal in a period in which the time derivative of the perturbation signal shows a positive or negative value.
The electrochemical reaction measurement device of the present invention is the electrochemical reaction measurement device that gives a perturbation signal to the object to be measured and performs measurement related to the electrochemical reaction of the object to be measured based on a response signal generated by the perturbation signal. Response signal acquisition means for acquiring a signal in association with the phase of the perturbation signal, and among the response signals acquired by the response signal acquisition means, the impedance is calculated using a response signal whose phase is in a predetermined range And an impedance calculating means.
According to this electrochemical reaction measuring device, since impedance is calculated using a response signal having a phase in a predetermined range among the acquired response signals, measurement considering the influence of the polarization state is possible.

前記インピーダンス算出手段は、前記摂動信号が正または負の値を示す期間の応答信号を用いてインピーダンスを算出してもよい。   The impedance calculation means may calculate the impedance using a response signal during a period in which the perturbation signal shows a positive or negative value.

前記インピーダンス算出手段は、前記摂動信号の時間微分が正または負の値を示す期間の応答信号を用いてインピーダンスを算出してもよい。   The impedance calculation means may calculate the impedance using a response signal in a period in which the time derivative of the perturbation signal shows a positive or negative value.

本発明の電気化学反応計測方法によれば、取得された応答信号のうち、位相が所定の範囲にある応答信号を用いてインピーダンスを算出するので、分極状態の影響を考慮した計測が可能となる。   According to the electrochemical reaction measurement method of the present invention, the impedance is calculated using a response signal having a phase in a predetermined range among the acquired response signals, so that measurement in consideration of the influence of the polarization state is possible. .

本発明の電気化学反応計測装置によれば、取得された応答信号のうち、位相が所定の範囲にある応答信号を用いてインピーダンスを算出するので、分極状態の影響を考慮した計測が可能となる。   According to the electrochemical reaction measuring device of the present invention, the impedance is calculated using a response signal whose phase is in a predetermined range among the acquired response signals, so that measurement in consideration of the influence of the polarization state is possible. .

本発明による電気化学反応計測方法を行うための計測装置の構成を示すブロック図。The block diagram which shows the structure of the measuring device for performing the electrochemical reaction measuring method by this invention. 本発明による電気化学反応計測方法における手順を示すフローチャート。The flowchart which shows the procedure in the electrochemical reaction measuring method by this invention. 動作点(Idc,Vdc)において、周波数f、振幅Iacの電流摂動信号を電流(Idc)に重畳した例を示す図。The figure which shows the example which superimposed the current perturbation signal of the frequency f and the amplitude Iac on the electric current (Idc) in the operating point (Idc, Vdc). 摂動信号の位相による分割方法を示す図であり、(a)は摂動信号および応答信号の波形を例示する図、(b)は摂動信号の極性に応じてその周期を2つの期間に分割する例を示す図、(c)は摂動信号の極性に加えて摂動信号のピークの前後によってフェイズを4つに分離した例を示す図。It is a figure which shows the division | segmentation method by the phase of a perturbation signal, (a) is a figure which illustrates the waveform of a perturbation signal and a response signal, (b) is an example which divides | segments the period into two periods according to the polarity of a perturbation signal. (C) is a figure which shows the example which isolate | separated the phase into four according to before and after the peak of a perturbation signal in addition to the polarity of a perturbation signal.

以下、本発明による電気化学反応計測方法の実施形態について説明する。   Hereinafter, embodiments of the electrochemical reaction measurement method according to the present invention will be described.

図1は、本発明による電気化学反応計測方法を行うための計測装置の構成を示すブロック図である。   FIG. 1 is a block diagram showing a configuration of a measuring apparatus for performing an electrochemical reaction measuring method according to the present invention.

図1に示すように、被計測物である燃料電池1には電子負荷2が接続され、電子負荷2を介して電池1に所定の動作点が与えられるとともに、その動作点における動作電圧または動作電流に摂動信号(電圧摂動信号または電流摂動信号)が重畳される。   As shown in FIG. 1, an electronic load 2 is connected to a fuel cell 1 as an object to be measured, and a predetermined operating point is given to the battery 1 via the electronic load 2, and an operating voltage or operation at the operating point is given. A perturbation signal (voltage perturbation signal or current perturbation signal) is superimposed on the current.

図1に示すように、計測装置3は、応答信号を摂動信号の位相と対応付けて取得する応答信号取得手段31と、応答信号取得手段31により取得された応答信号のうち、位相が所定の範囲にある応答信号を用いてインピーダンスを算出するインピーダンス算出手段32と、を備える。また、計測装置3には電子負荷2を制御する負荷制御部33と、インピーダンス算出手段32におけるインピーダンスの算出結果等を表示する表示部34と、が設けられる。   As illustrated in FIG. 1, the measurement device 3 includes a response signal acquisition unit 31 that acquires a response signal in association with a phase of a perturbation signal, and a phase of a response signal acquired by the response signal acquisition unit 31 has a predetermined phase. Impedance calculation means 32 for calculating impedance using a response signal in the range. In addition, the measuring device 3 is provided with a load control unit 33 that controls the electronic load 2 and a display unit 34 that displays an impedance calculation result and the like in the impedance calculation means 32.

図2のステップS1〜ステップS9は、インピーダンス計測の手順を示すフローチャートである。   Steps S1 to S9 in FIG. 2 are flowcharts showing the procedure of impedance measurement.

図2のステップS1では、ユーザの指示に基づいて計測条件が設定される。ここでは、測定を行う動作点(IdcあるいはVdc)、摂動信号の周波数、および摂動信号の振幅が設定される。   In step S1 of FIG. 2, measurement conditions are set based on a user instruction. Here, the operating point (Idc or Vdc) for measurement, the frequency of the perturbation signal, and the amplitude of the perturbation signal are set.

次に、ステップS2では、負荷制御部33により電子負荷2を制御することで、ステップS1で設定された動作点において、燃料電池1の発電を開始する。   Next, in step S2, the electronic load 2 is controlled by the load control unit 33, so that power generation of the fuel cell 1 is started at the operating point set in step S1.

次に、ステップS3では、燃料電池1の発電状態が安定するのを待って、ステップS4へ進む。   Next, in step S3, the process waits for the power generation state of the fuel cell 1 to stabilize, and then proceeds to step S4.

ステップS4では、負荷制御部33により電子負荷2を制御することで、ステップS1で設定された計測条件に応じた摂動信号(電圧摂動信号または電流摂動信号)を上記動作点の電圧(Vdc)または電流(Idc)に重畳する。   In step S4, the load control unit 33 controls the electronic load 2 so that the perturbation signal (voltage perturbation signal or current perturbation signal) corresponding to the measurement condition set in step S1 is changed to the voltage (Vdc) at the operating point. Superimpose on the current (Idc).

図3は、動作点(Idc,Vdc)において、周波数f、振幅Iacの電流摂動信号を電流(Idc)に重畳した例を示している。この場合、電流摂動信号に対する電圧応答信号(Vac)が取得される。   FIG. 3 shows an example in which the current perturbation signal having the frequency f and the amplitude Iac is superimposed on the current (Idc) at the operating point (Idc, Vdc). In this case, a voltage response signal (Vac) for the current perturbation signal is acquired.

次に、ステップS5では、応答信号取得手段31により所定のタイミングで現在の応答信号の値を取得するとともに、負荷制御部33から現在の摂動信号の極性を取得する。   Next, in step S5, the response signal acquisition unit 31 acquires the value of the current response signal at a predetermined timing, and acquires the polarity of the current perturbation signal from the load control unit 33.

次に、ステップS6では、ステップS5で取得された摂動信号の極性が正か否か判断し、判断が肯定されればステップS7へ進み、判断が否定されればステップS8へ進む。   Next, in step S6, it is determined whether or not the polarity of the perturbation signal acquired in step S5 is positive. If the determination is affirmative, the process proceeds to step S7, and if the determination is negative, the process proceeds to step S8.

ステップS7では、ステップS5で取得された応答信号の値に正のマークを付して当該値を保存し、ステップS9へ進む。一方、ステップS8では、ステップS5で取得された応答信号の値に負のマークを付して当該値を保存し、ステップS9へ進む。   In step S7, a positive mark is attached to the value of the response signal acquired in step S5, the value is stored, and the process proceeds to step S9. On the other hand, in step S8, a negative mark is attached to the value of the response signal acquired in step S5, the value is stored, and the process proceeds to step S9.

ステップS9では、すべての応答信号値の取得が終了したか否か判断し、判断が肯定されれば処理を終了し、判断が否定されればステップS5へ戻る。   In step S9, it is determined whether or not acquisition of all response signal values has been completed. If the determination is affirmative, the process ends. If the determination is negative, the process returns to step S5.

このように、図2に示す手順では、取得された応答信号に対し、現在の摂動信号の極性に応じたマークを付して保存している。   As described above, in the procedure shown in FIG. 2, the acquired response signal is stored with a mark corresponding to the polarity of the current perturbation signal.

なお、応答信号値の計測精度を向上させたい場合には、ステップS5〜ステップS9の繰り返し回数を増加させればよい。また、摂動信号の周波数を切り替える場合には、各周波数についてステップS4〜ステップS9の処理を実行すればよい。   In addition, what is necessary is just to increase the frequency | count of repetition of step S5-step S9, when improving the measurement precision of a response signal value. Moreover, what is necessary is just to perform the process of step S4-step S9 about each frequency, when switching the frequency of a perturbation signal.

図2のステップS11〜ステップS12は、インピーダンス算出手段32における処理手順を示すフローチャートである。この処理は、応答信号値の取得処理(ステップS1〜ステップS9)により保存された応答信号値を用いて実行される。   Steps S <b> 11 to S <b> 12 in FIG. 2 are flowcharts illustrating a processing procedure in the impedance calculation unit 32. This process is executed using the response signal values stored by the response signal value acquisition process (steps S1 to S9).

図2のステップS11では、応答信号値の取得処理(ステップS1〜ステップS9)により保存された応答信号値から正のマークを付したものを抽出し、抽出された応答信号値に基づいてインピーダンスを算出する。   In step S11 of FIG. 2, the response signal value stored with the response signal value acquisition process (steps S1 to S9) is extracted with a positive mark, and the impedance is calculated based on the extracted response signal value. calculate.

次に、ステップS12では、応答信号値の取得処理(ステップS1〜ステップS9)により保存された応答信号値から負のマークを付したものを抽出し、抽出された応答信号値に基づいてインピーダンスを算出して、処理を終了する。   Next, in step S12, the response signal value stored by the response signal value acquisition process (steps S1 to S9) is extracted with a negative mark, and the impedance is calculated based on the extracted response signal value. Calculate and finish the process.

図4(a)は、摂動信号および応答信号の波形を例示する図である。   FIG. 4A is a diagram illustrating waveforms of the perturbation signal and the response signal.

図4(a)に示すように、摂動信号として正弦波を与えた場合でも、燃料電池1における分極状態の影響を受け、応答信号は正負の対称性がくずれて歪みをもった波形をとる。   As shown in FIG. 4A, even when a sine wave is given as a perturbation signal, the response signal takes a waveform with distortion due to a loss of symmetry between positive and negative due to the influence of the polarization state in the fuel cell 1.

図4(b)に示すように、上記実施形態では、摂動信号の極性に応じてその周期を2つの期間に分割するとともに、それぞれの期間におけるインピーダンスを算出しているため、インピーダンスを摂動信号の正負、それぞれに対応する値として算出できる。   As shown in FIG. 4B, in the above embodiment, the period is divided into two periods according to the polarity of the perturbation signal, and the impedance in each period is calculated. Positive and negative values can be calculated as corresponding values.

また、図4(c)では、摂動信号の極性に加えて、摂動信号のピークの前後によってフェイズ(I〜IV)を分離した例を示している。この場合には、摂動信号の値の正負および摂動信号の時間微分の値の正負の組み合わせにより、摂動信号の周期を4つのフェイズに分離しており、各フェイズでのインピーダンスを独立して算出することが可能となる。   FIG. 4C shows an example in which the phases (I to IV) are separated before and after the peak of the perturbation signal in addition to the polarity of the perturbation signal. In this case, the period of the perturbation signal is separated into four phases by the combination of the positive and negative values of the perturbation signal and the positive and negative values of the time derivative of the perturbation signal, and the impedance in each phase is calculated independently. It becomes possible.

以上説明したように、本発明の電気化学反応計測方法によれば、取得された応答信号のうち、位相が所定の範囲にある応答信号を用いてインピーダンスを算出するので、分極状態の影響を考慮した計測が可能となる。これにより、被計測物における電気化学的挙動等をより詳細に分析することが可能となる。   As described above, according to the electrochemical reaction measurement method of the present invention, the impedance is calculated using a response signal whose phase is in a predetermined range among the acquired response signals, so that the influence of the polarization state is considered. Measurement is possible. Thereby, it becomes possible to analyze the electrochemical behavior or the like in the object to be measured in more detail.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、被計測物に摂動信号を与え、前記摂動信号により生ずる応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測方法および電気化学反応計測装置に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention is widely applied to an electrochemical reaction measuring method and an electrochemical reaction measuring device for applying a perturbation signal to an object to be measured and performing measurement related to an electrochemical reaction of the object to be measured based on a response signal generated by the perturbation signal. Can be applied.

31 応答信号取得手段
32 インピーダンス算出手段
31 Response signal acquisition means 32 Impedance calculation means

Claims (6)

被計測物に摂動信号を与え、前記摂動信号により生ずる応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測方法において、
前記応答信号を前記摂動信号の位相と対応付けて取得するステップと、
前記取得するステップにより取得された応答信号のうち、前記位相が所定の範囲にある応答信号を用いてインピーダンスを算出するステップと、
を備えることを特徴とする電気化学反応計測方法。
In an electrochemical reaction measurement method for giving a perturbation signal to an object to be measured, and performing measurement related to an electrochemical reaction of the object to be measured based on a response signal generated by the perturbation signal,
Obtaining the response signal in association with the phase of the perturbation signal;
Of the response signals acquired by the acquiring step, calculating the impedance using a response signal whose phase is in a predetermined range;
An electrochemical reaction measuring method comprising:
前記算出するステップでは、前記摂動信号が正または負の値を示す期間の応答信号を用いてインピーダンスを算出することを特徴とする請求項1に記載の電気化学反応計測方法。 2. The electrochemical reaction measuring method according to claim 1, wherein, in the calculating step, impedance is calculated using a response signal in a period in which the perturbation signal shows a positive or negative value. 前記算出するステップでは、前記摂動信号の時間微分が正または負の値を示す期間の応答信号を用いてインピーダンスを算出することを特徴とする請求項1または2に記載の電気化学反応計測方法。 The electrochemical reaction measurement method according to claim 1 or 2, wherein, in the calculating step, the impedance is calculated using a response signal in a period in which a time derivative of the perturbation signal shows a positive or negative value. 被計測物に摂動信号を与え、前記摂動信号により生ずる応答信号に基づいて前記被計測物の電気化学反応に関する計測を行う電気化学反応計測装置において、
前記応答信号を前記摂動信号の位相と対応付けて取得する応答信号取得手段と、
前記応答信号取得手段により取得された応答信号のうち、前記位相が所定の範囲にある応答信号を用いてインピーダンスを算出するインピーダンス算出手段と、
を備えることを特徴とする電気化学反応計測装置。
In an electrochemical reaction measuring device that gives a perturbation signal to an object to be measured and performs measurement related to an electrochemical reaction of the object to be measured based on a response signal generated by the perturbation signal.
Response signal acquisition means for acquiring the response signal in association with the phase of the perturbation signal;
Among the response signals acquired by the response signal acquisition means, impedance calculation means for calculating impedance using a response signal whose phase is in a predetermined range;
An electrochemical reaction measuring device comprising:
前記インピーダンス算出手段は、前記摂動信号が正または負の値を示す期間の応答信号を用いてインピーダンスを算出することを特徴とする請求項4に記載の電気化学反応計測装置。 5. The electrochemical reaction measuring device according to claim 4, wherein the impedance calculating means calculates the impedance using a response signal during a period in which the perturbation signal shows a positive or negative value. 前記インピーダンス算出手段は、前記摂動信号の時間微分が正または負の値を示す期間の応答信号を用いてインピーダンスを算出することを特徴とする請求項4または5に記載の電気化学反応計測装置。 6. The electrochemical reaction measuring device according to claim 4 or 5, wherein the impedance calculating means calculates the impedance using a response signal in a period in which a time derivative of the perturbation signal shows a positive or negative value.
JP2009132947A 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device Expired - Fee Related JP5444857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132947A JP5444857B2 (en) 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132947A JP5444857B2 (en) 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device

Publications (2)

Publication Number Publication Date
JP2010281587A true JP2010281587A (en) 2010-12-16
JP5444857B2 JP5444857B2 (en) 2014-03-19

Family

ID=43538469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132947A Expired - Fee Related JP5444857B2 (en) 2009-06-02 2009-06-02 Electrochemical reaction measuring method and electrochemical reaction measuring device

Country Status (1)

Country Link
JP (1) JP5444857B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680901A (en) * 2012-05-09 2012-09-19 北京宏达天恒科技有限公司 Electronic energy detection system and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243767A (en) * 1987-03-30 1988-10-11 Yokogawa Electric Corp Method and apparatus for measuring conductivity from which effect of polarization is removed
JPH01169374A (en) * 1987-12-25 1989-07-04 Hioki Ee Corp Measuring apparatus
JP2002055132A (en) * 2000-08-10 2002-02-20 Dkk Toa Corp Contamination detecting method for electric conductivity cell and electric conductivity measuring device
JP2002525586A (en) * 1998-09-11 2002-08-13 チャンプリン,キース,エス. Method and apparatus for measuring complex impedance of cell and battery
JP2002372509A (en) * 2001-06-15 2002-12-26 Rikkaaman Nippon Kk Method and device for inspecting leakage of sealed vessel
JP2004219172A (en) * 2003-01-10 2004-08-05 Matsushita Electric Ind Co Ltd Method and instrument for measuring electrochemical impedance
JP2007250365A (en) * 2006-03-16 2007-09-27 Yokogawa Electric Corp Electrochemical spectral characteristic measurement method of fuel cell
WO2008025775A1 (en) * 2006-08-30 2008-03-06 Mettler-Toledo Ag A method for measuring the electrical conductivity of solutions
JP2008107168A (en) * 2006-10-24 2008-05-08 Toyota Central R&D Labs Inc Method and device for detecting battery property

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63243767A (en) * 1987-03-30 1988-10-11 Yokogawa Electric Corp Method and apparatus for measuring conductivity from which effect of polarization is removed
JPH01169374A (en) * 1987-12-25 1989-07-04 Hioki Ee Corp Measuring apparatus
JP2002525586A (en) * 1998-09-11 2002-08-13 チャンプリン,キース,エス. Method and apparatus for measuring complex impedance of cell and battery
JP2002055132A (en) * 2000-08-10 2002-02-20 Dkk Toa Corp Contamination detecting method for electric conductivity cell and electric conductivity measuring device
JP2002372509A (en) * 2001-06-15 2002-12-26 Rikkaaman Nippon Kk Method and device for inspecting leakage of sealed vessel
JP2004219172A (en) * 2003-01-10 2004-08-05 Matsushita Electric Ind Co Ltd Method and instrument for measuring electrochemical impedance
JP2007250365A (en) * 2006-03-16 2007-09-27 Yokogawa Electric Corp Electrochemical spectral characteristic measurement method of fuel cell
WO2008025775A1 (en) * 2006-08-30 2008-03-06 Mettler-Toledo Ag A method for measuring the electrical conductivity of solutions
JP2008107168A (en) * 2006-10-24 2008-05-08 Toyota Central R&D Labs Inc Method and device for detecting battery property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102680901A (en) * 2012-05-09 2012-09-19 北京宏达天恒科技有限公司 Electronic energy detection system and method

Also Published As

Publication number Publication date
JP5444857B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5631444B1 (en) Leakage current calculation device and leakage current calculation method
KR101688824B1 (en) Ac impedance measuring device
WO2012077153A1 (en) Inductance measurement device and measurement method for synchronous electric motor
JP2015190918A5 (en)
JP5940389B2 (en) AC resistance measuring device and AC resistance measuring method
JP2018146441A (en) Method of calculating internal resistance of secondary battery
Irmak et al. Design and application of a novel zero-crossing detector circuit
CN104199307B (en) Hardware-in-loop simulation method and system
CN103155400B (en) The motor constant computational methods of PM motor and motor constant calculation element
JP2011047666A (en) Alternating current impedance measuring system
CN103718454B (en) The motor constant computational methods of permanent magnet synchronous motor and motor constant calculation element
JP5444857B2 (en) Electrochemical reaction measuring method and electrochemical reaction measuring device
JP5483155B2 (en) Electrochemical reaction measuring method and electrochemical reaction measuring device
JP2011080986A (en) Phasor measuring device
JP2014119277A (en) Ground resistance meter, ground resistance measurement method and program
CN210015215U (en) Testing device for dynamic electrochemical impedance spectrum of battery
JP4275178B2 (en) Method and apparatus for generating excitation inrush current waveform of three-phase AC transformer
JP5376405B2 (en) Impedance measuring method and impedance measuring apparatus
JP5402622B2 (en) Inverter test apparatus and inverter test method
RU2585930C1 (en) Method of measurement of insulation resistance in electric networks
JP2010183691A (en) Control device of induction motor
JP2011158266A (en) Alternating current impedance measuring system
TWI794764B (en) Eddy current sensing system and method thereof
JP5660474B2 (en) Impedance characteristic evaluation method and impedance characteristic evaluation apparatus
JP2009283173A (en) Impedance characteristics evaluation method and impedance characteristics evaluation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees