JP2010281581A - Pressure sensor and method of manufacturing the same - Google Patents

Pressure sensor and method of manufacturing the same Download PDF

Info

Publication number
JP2010281581A
JP2010281581A JP2009132836A JP2009132836A JP2010281581A JP 2010281581 A JP2010281581 A JP 2010281581A JP 2009132836 A JP2009132836 A JP 2009132836A JP 2009132836 A JP2009132836 A JP 2009132836A JP 2010281581 A JP2010281581 A JP 2010281581A
Authority
JP
Japan
Prior art keywords
pressure
temperature
frequency
pressure sensor
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009132836A
Other languages
Japanese (ja)
Other versions
JP2010281581A5 (en
JP5293413B2 (en
Inventor
Toshinobu Sakurai
俊信 櫻井
Kenta Sato
健太 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009132836A priority Critical patent/JP5293413B2/en
Publication of JP2010281581A publication Critical patent/JP2010281581A/en
Publication of JP2010281581A5 publication Critical patent/JP2010281581A5/ja
Application granted granted Critical
Publication of JP5293413B2 publication Critical patent/JP5293413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure sensor greatly improved in pressure detection precision. <P>SOLUTION: The pressure sensor 1 has: a pressure sensitive element 25 including base sections 27a, 27b across vibration sections 26a, 26b; a diaphragm 20 including a pair of support sections 23, 24 for fixing the pressure sensitive element 25 to one surface of a flexible section; a temperature sensor 12; a storage section 16; and an arithmetic processing section 17. The storage section 16 stores coefficients of a first approximation polynomial for relating temperature to frequencies in the pressure sensor 1 under environment of fixed pressure, coefficients of a second approximation polynomial for relating pressure to frequencies in the pressure sensor under a plurality of mutually different temperature environments, and coefficients of a third approximation polynomial for composing primary coefficients of the second approximation polynomial. The pressure sensor 1 outputs signals for compensating for frequency temperature characteristics that depend on pressure. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、圧力センサー及びその製造方法に関し、特に感圧ユニットの周波数温度特性
、圧力周波数特性を多項式で近似し、これらの多項式の係数を実測して記憶部に格納し、
圧力測定の都度前記係数を呼び出して演算処理することにより、精度を改善した圧力セン
サー及びその製造方法に関するものである。
The present invention relates to a pressure sensor and a method for manufacturing the same, and in particular, approximates a frequency temperature characteristic of a pressure-sensitive unit and a pressure frequency characteristic by a polynomial, measures the coefficients of these polynomials, stores them in a storage unit,
The present invention relates to a pressure sensor whose accuracy has been improved by calling up the coefficient every time the pressure is measured and processing it, and a method for manufacturing the same.

圧電振動子に加わる応力と共振周波数変化との関係を利用した圧力センサーが実用化さ
れている。圧電振動子に双音叉型圧電振動子を用いることにより、応力に対する感度が良
好となり、僅かな圧力差から高度差、深度差を検知することができる。
特許文献1には、感圧素子として圧電振動片を用いた圧力検出ユニットが開示されてい
る。
図14(a)は、圧力検出ユニットの側断面図、同図(b)は、(a)のQ−Qにおけ
る断面図である。
圧力検出ユニット60は、一方の主面(外側の主面)に受圧面を有するダイヤフラム6
1と、該ダイヤフラム61の他方の主面(内側の主面)と対向して設けられる基台75と
、感圧素子としての圧電振動片70と、を備えた絶対圧センサーである。
前記感圧素子は、感圧部と感圧部の両端に接続された一対の基部とを有し、力の検出方
向を検出軸として設定し、感圧素子の前記一対の基部の並ぶ方向は前記検出軸と平行関係
にある。双音叉型圧電振動子の場合は、梁(ビーム)の延びる方向と検出軸とが平行関係
になっている。
図14(a)に示すように、ダイヤフラム61は、受圧面に対して垂直な方向からの圧
力を前記受圧面で受圧すると前記受圧面が撓み変形する薄肉部63と、該薄肉部63の周
縁に形成される枠部69と、を備えている。ダイヤフラム61の他方の面であって前記薄
肉部63の一方の主面には、圧電振動片70を固定するための一対の支持部65を有し、
圧電振動片70はその一対の基部71を支持部65により支持されている。また、薄肉部
63の他方の主面には、圧電振動片70の感圧部である振動部72に対向する部位を含む
領域に、突出部67が設けられている。薄肉部63の一部を厚肉化して突出部67とする
ことにより、当該部分の変形を防ぐことができ、圧力が印加された時に、薄肉部63の中
心が圧電振動片70に接触するとことを防止することができる。
A pressure sensor using a relationship between a stress applied to a piezoelectric vibrator and a change in resonance frequency has been put into practical use. By using a double tuning fork type piezoelectric vibrator as the piezoelectric vibrator, sensitivity to stress is improved, and an altitude difference and a depth difference can be detected from a slight pressure difference.
Patent Document 1 discloses a pressure detection unit using a piezoelectric vibrating piece as a pressure sensitive element.
FIG. 14A is a side sectional view of the pressure detection unit, and FIG. 14B is a sectional view taken along line QQ in FIG.
The pressure detection unit 60 includes a diaphragm 6 having a pressure receiving surface on one main surface (outer main surface).
1, a base 75 provided to face the other main surface (inner main surface) of the diaphragm 61, and a piezoelectric vibrating piece 70 as a pressure sensitive element.
The pressure-sensitive element has a pressure-sensitive part and a pair of base parts connected to both ends of the pressure-sensitive part, sets the detection direction of force as a detection axis, and the direction in which the pair of base parts of the pressure-sensitive element are arranged is A parallel relationship with the detection axis. In the case of a double tuning fork type piezoelectric vibrator, the beam extending direction and the detection axis are in parallel relation.
As shown in FIG. 14A, the diaphragm 61 includes a thin portion 63 that deforms when the pressure receiving surface receives pressure from a direction perpendicular to the pressure receiving surface, and a peripheral edge of the thin portion 63. The frame part 69 is formed. On the other surface of the diaphragm 61 and on one main surface of the thin portion 63, there is a pair of support portions 65 for fixing the piezoelectric vibrating piece 70,
The piezoelectric vibrating piece 70 has a pair of base portions 71 supported by a support portion 65. Further, on the other main surface of the thin-walled portion 63, a protruding portion 67 is provided in a region including a portion facing the vibrating portion 72 that is a pressure-sensitive portion of the piezoelectric vibrating piece 70. By making a part of the thin part 63 thick and forming the protruding part 67, the deformation of the part can be prevented, and the center of the thin part 63 comes into contact with the piezoelectric vibrating piece 70 when pressure is applied. Can be prevented.

圧電振動片70には、いわゆる双音叉型振動素子を用いている。双音叉型振動素子は、
両端部に固定端(基部)71を有し、この2つの固定端71の間に2つの振動ビーム(振
動部)が形成されている。双音叉型振動素子は、その感圧部(振動部72)である前記2
つの振動ビームに引張り応力(伸長応力)あるいは圧縮応力が印加されると、その共振周
波数が印加される応力にほぼ比例して変化するという特性がある。
図14に示す圧力検出ユニット60では、ダイヤフラム61の薄肉部63に形成された
一対の支持部65の載置面66に、双音叉型振動素子70の両固定端(基部)71が固定
されている。ダイヤフラム61の上部に圧力が加わると、薄肉部63に撓みが生じ、薄肉
部63は図14(a)の下方へ変形する。支持部65の載置面66は薄肉部63の変形状
態に伴って傾き、載置面66は夫々ダイヤフラム61の重心に対し外側へ傾く。このため
、2つの載置面66間の間隔は広がり、該載置面66に固定された双音叉型振動素子70
の振動部72には伸長応力が加わる。振動部72に伸長応力が加わると双音叉型振動素子
70は、その共振周波数が増加する。
A so-called double tuning fork type vibration element is used for the piezoelectric vibrating piece 70. The double tuning fork type vibration element
Both ends have fixed ends (base portions) 71, and two vibration beams (vibration portions) are formed between the two fixed ends 71. The double tuning fork type vibration element is the pressure sensitive part (vibration part 72).
When a tensile stress (elongation stress) or a compressive stress is applied to two vibrating beams, there is a characteristic that the resonance frequency changes almost in proportion to the applied stress.
In the pressure detection unit 60 shown in FIG. 14, both fixed ends (base portions) 71 of the double tuning fork type vibration element 70 are fixed to the mounting surfaces 66 of the pair of support portions 65 formed in the thin portion 63 of the diaphragm 61. Yes. When pressure is applied to the upper portion of the diaphragm 61, the thin portion 63 is bent, and the thin portion 63 is deformed downward in FIG. The placement surface 66 of the support portion 65 is inclined with the deformation state of the thin portion 63, and the placement surface 66 is inclined outward with respect to the center of gravity of the diaphragm 61. For this reason, the interval between the two mounting surfaces 66 is widened, and the double tuning fork type vibration element 70 fixed to the mounting surface 66 is provided.
An extensional stress is applied to the vibrating portion 72 of the above. When an extension stress is applied to the vibration part 72, the resonance frequency of the double tuning fork type vibration element 70 increases.

しかし、双音叉型振動素子70の周波数温度特性は、上に凸の二次特性を有するので、
温度変化が大きな環境下で使用する場合には圧力検出精度に誤差が生じるという問題があ
った。
そこで、温度を検出する温度センサーを付加することにより、双音叉型振動素子70の
周波数温度特性を補償し、圧力検出精度を改善する方法が検討された。
図15は圧力センサー80のブロック図であり、圧力検出ユニット60の共振周波数の
変化と、温度センサー82が検出する温度とを処理装置に取り入れ、これらを演算処理し
て周波数変化を温度補償して、ダイヤフラム61に加わる圧力を検出する。
温度センサーとしては、特許文献2、3、4、5に開示された音叉型水晶振動子が、精
度、形状、コスト等を考慮して適している。音叉型水晶振動子の周波数温度特性は、一般
的に上に凸の二次特性であり、上記の特許文献には、図16に示すように水晶Zカット板
をX軸(水晶結晶の電気軸)の回りにθ回転した音叉型水晶振動子と、その2次温度特性
の頂点温度との関係等が開示されている。
特許文献5によると、X軸の回りの回転角θと周波数温度特性の1次係数α1との関係
は、図17に示すような関係がある。
また図18は、温度検出用の音叉型水晶振動子の周波数温度特性を示しており、温度T
に対し周波数変化Δf/fがほぼ直線的に変化し、温度変化がデジタル量として得られの
で、温度センサーとして適している。
However, since the frequency-temperature characteristic of the double tuning fork type vibration element 70 has an upward convex secondary characteristic,
When used in an environment with a large temperature change, there is a problem that an error occurs in pressure detection accuracy.
Therefore, a method for improving the pressure detection accuracy by compensating the frequency temperature characteristic of the double tuning fork type vibration element 70 by adding a temperature sensor for detecting temperature has been studied.
FIG. 15 is a block diagram of the pressure sensor 80. The change in the resonance frequency of the pressure detection unit 60 and the temperature detected by the temperature sensor 82 are taken into the processing device, and these are arithmetically processed to compensate for the frequency change in temperature. The pressure applied to the diaphragm 61 is detected.
As the temperature sensor, the tuning fork type crystal resonator disclosed in Patent Documents 2, 3, 4, and 5 is suitable in consideration of accuracy, shape, cost, and the like. The frequency-temperature characteristic of a tuning fork type crystal resonator is generally an upwardly convex secondary characteristic. In the above-mentioned patent document, as shown in FIG. The relationship between the tuning fork type quartz crystal rotated by θ around) and the apex temperature of the secondary temperature characteristic is disclosed.
According to Patent Document 5, the relationship between the primary factor alpha 1 about the rotation angle θ and the frequency temperature characteristics of the X-axis is related as shown in FIG. 17.
FIG. 18 shows the frequency-temperature characteristics of a tuning-fork type crystal resonator for temperature detection.
On the other hand, the frequency change Δf / f changes almost linearly and the temperature change is obtained as a digital quantity, which is suitable as a temperature sensor.

特開2007−327922公報JP 2007-327922 A 特開昭53−2097号公報Japanese Patent Laid-Open No. 53-2097 特開昭54−158150号公報JP-A-54-158150 特公昭61−29652号公報Japanese Examined Patent Publication No. 61-29652 特許第3010922号Patent No. 3010922

図15に示す従来の圧力センサー80では、温度センサー82として音叉型水晶振動子
を用いて、圧力検出ユニット60の双音叉型振動素子の周波数温度特性を補正するように
構成した。
温度変化のない環境下で圧力センサー80を使用する場合、記憶部85に格納されてい
る圧力検出ユニット60の圧力(応力)P−周波数f特性を表す多項式の係数を読みだし
て、処理装置で圧力P−周波数fの多項式を生成し、変化した周波数を前記多項式に適用
することにより、圧力センサー80に加わる圧力Pを求める。
また、温度変化のある環境下で圧力センサー80を使用する場合、まず、温度センサー
82から温度信号を受けて温度を算出する。
次に、記憶部85に格納されている圧力検出ユニット60の周波数温度特性(温度T−
周波数Δf/f特性)を表す多項式の係数を読みだして、処理装置で周波数温度特性(温
度T−周波数Δf/f)の多項式を生成し、これに前記温度を適用し、温度変化による圧
力検出ユニット60の周波数変動を計算する。この周波数変動を用いて圧力検出ユニット
60の周波数を補償し、この補償した周波数変化を処理装置で生成した圧力(応力)P−
周波数fの多項式に適用することにより、圧力センサーに加わる圧力Pを求める。
The conventional pressure sensor 80 shown in FIG. 15 is configured to correct the frequency temperature characteristics of the double tuning fork type vibration element of the pressure detection unit 60 by using a tuning fork type crystal resonator as the temperature sensor 82.
When the pressure sensor 80 is used in an environment where there is no temperature change, the coefficient of the polynomial representing the pressure (stress) P-frequency f characteristic of the pressure detection unit 60 stored in the storage unit 85 is read out and processed by the processing device. The pressure P applied to the pressure sensor 80 is obtained by generating a polynomial of pressure P-frequency f and applying the changed frequency to the polynomial.
When the pressure sensor 80 is used in an environment with a temperature change, first, the temperature is calculated by receiving a temperature signal from the temperature sensor 82.
Next, the frequency temperature characteristic (temperature T−) of the pressure detection unit 60 stored in the storage unit 85.
The coefficient of the polynomial representing the frequency Δf / f characteristic) is read out, and the polynomial of the frequency temperature characteristic (temperature T−frequency Δf / f) is generated by the processing device, and the temperature is applied to this to detect the pressure due to the temperature change. The frequency variation of unit 60 is calculated. The frequency fluctuation is used to compensate the frequency of the pressure detection unit 60, and the compensated frequency change is generated by the processing device by the pressure (stress) P−.
By applying to the polynomial of frequency f, the pressure P applied to the pressure sensor is obtained.

ところで、近年、圧力センサーが様々な形態で使用されるようになり、それらに応じて
高精度な仕様が要求され、検出値の誤差、バラツキ、精度等に係る仕様に関し厳格なもの
が求められるようになってきた。
しかしながら、上記のように構成した圧力センサー80では、このような厳格な仕様を
十分に満たすことができなくなってきているという新たな問題に直面した。
本発明は上記問題を解決するためになされたもので、高精度、高分解能、高安定度を有
する圧力センサーとその製造方法を提供することにある。
By the way, in recent years, pressure sensors are used in various forms, and high-accuracy specifications are required according to them, and strict ones regarding specifications relating to detection error, variation, accuracy, etc. are required. It has become.
However, the pressure sensor 80 configured as described above has faced a new problem that it has become impossible to sufficiently satisfy such strict specifications.
The present invention has been made to solve the above problems, and it is an object of the present invention to provide a pressure sensor having high accuracy, high resolution, and high stability, and a method for manufacturing the same.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の
形態又は適用例として実現することが可能である。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本発明に係る圧力センサーは、圧力に応じて周波数が変化する感圧ユニッ
トと、記憶部と、備え、前記記憶部は、一定圧力の環境下おいて前記感圧ユニットの周波
数温度特性を表す第1の近似多項式の係数と、互いに異なる複数の温度環境下において前
記感圧ユニットの圧力周波数特性を表す第2の近似多項式の係数と、前記第2の近似多項
式の1次の係数を構成する第3の近似多項式の係数と、を記憶したことを特徴とする。
Application Example 1 A pressure sensor according to the present invention includes a pressure-sensitive unit whose frequency changes according to pressure, and a storage unit, and the storage unit has a frequency of the pressure-sensitive unit under a constant pressure environment. A coefficient of a first approximate polynomial representing a temperature characteristic, a coefficient of a second approximate polynomial representing a pressure frequency characteristic of the pressure-sensitive unit under a plurality of different temperature environments, and a first order of the second approximate polynomial The coefficient of the third approximate polynomial constituting the coefficient is stored.

圧力センサーの周波数温度特性を第1の近似多項式で関係づけ、圧力対周波数特性を第
2の近似多項式で関係づけ、第2の近似多項式の1次の係数を第3の近似多項式で関係づ
け、これらの多項式の全ての係数を記憶部に格納するようにした。そして、圧力センサー
使用する際に全ての係数を呼び出して、圧力センサーの周波数を補償するので、測定で得
られる圧力の検出精度が大幅に改善され、再現性、高安定性とも改善でき、使用温度範囲
、使用圧力範囲が広がるという効果がある。
The frequency temperature characteristic of the pressure sensor is related by a first approximate polynomial, the pressure vs. frequency characteristic is related by a second approximate polynomial, the first order coefficient of the second approximate polynomial is related by a third approximate polynomial, All the coefficients of these polynomials are stored in the storage unit. And, when using the pressure sensor, all the coefficients are called up to compensate the frequency of the pressure sensor, so the pressure detection accuracy obtained by the measurement is greatly improved, both reproducibility and high stability can be improved, and the operating temperature There is an effect that the range and the working pressure range are expanded.

[適用例2]本発明の圧力センサーは、前記第1の近似多項式を3次多項式としたこと
を特徴とする適用例1に記載の圧力センサーである。
Application Example 2 The pressure sensor according to Application Example 1 is characterized in that the first approximate polynomial is a cubic polynomial.

圧力センサーの周波数温度特性を3次多項式で近似することにより2次多項式で近似し
た場合に比べ圧力センサーの検出精度が向上するという効果がある。
By approximating the frequency temperature characteristic of the pressure sensor with a cubic polynomial, there is an effect that the detection accuracy of the pressure sensor is improved as compared with the case of approximating with a quadratic polynomial.

[適用例3]本発明の圧力センサーは、前記第2の近似多項式を3次多項式としたこと
を特徴とする適用例1に記載の圧力センサーである。
Application Example 3 The pressure sensor according to Application Example 1 is characterized in that the second approximate polynomial is a cubic polynomial.

圧力センサーの圧力対周波数特性を3次多項式で近似することにより、従来の1次式の
近似に比べ圧力センサーの検出精度が向上するという効果がある。
By approximating the pressure vs. frequency characteristic of the pressure sensor with a cubic polynomial, there is an effect that the detection accuracy of the pressure sensor is improved as compared with the approximation of the conventional linear expression.

[適用例4]本発明の圧力センサーは、前記第3の近似多項式を2次多項式としたこと
を特徴とする適用例1に記載の圧力センサーである。
Application Example 4 The pressure sensor according to Application Example 1 is characterized in that the third approximate polynomial is a quadratic polynomial.

第2の近似多項式の1次の係数に温度依存性を持たして2次多項式とすることにより、
従来は考慮してない温度依存性を取り入れて周波数を補正したので圧力センサーの検出精
度が向上するという効果がある。
By making the first order coefficient of the second approximate polynomial temperature dependent and making it a second order polynomial,
Since the frequency is corrected by taking into account the temperature dependence that has not been considered in the past, the detection accuracy of the pressure sensor is improved.

[適用例5]本発明の圧力センサーは、前記感圧ユニットの温度を検知する温度センサ
ーと、前記感圧ユニットから出力される周波数信号と前記記憶部に記憶されている係数と
に基づいて演算処理を行う演算処理部と、を備えたことを特徴とする適用例1乃至4の何
れか一項に記載の圧力センサーである。
Application Example 5 The pressure sensor of the present invention is operated based on a temperature sensor that detects the temperature of the pressure-sensitive unit, a frequency signal output from the pressure-sensitive unit, and a coefficient stored in the storage unit. The pressure sensor according to any one of Application Examples 1 to 4, further comprising: an arithmetic processing unit that performs processing.

温度センサーと、演算処理部を設けたことで、圧力に依存する周波数温度特性を補償し
た信号を出力することができる。
By providing the temperature sensor and the arithmetic processing unit, it is possible to output a signal in which the frequency temperature characteristic depending on the pressure is compensated.

[適用例6]また、圧力センサーは、前記感圧ユニットが感圧部と当該感圧部の両端と
接続される一対の基部とを有する感圧素子と、一方の主面に受圧面を有し、当該受圧面の
裏側が前記感圧素子の一方の主面側を覆うと共に、前記感圧素子の一対の基部を夫々支持
する一対の支持部が設けられたダイヤフラムと、前記ダイアフラムの前記受圧面の裏側に
対向すると共に、前記感圧素子の他方の主面側を覆う基台と、を有することを特徴とする
適用例1乃至5の何れか一項に記載の圧力センサーである。
Application Example 6 In the pressure sensor, the pressure sensing unit includes a pressure sensing element having a pressure sensing part and a pair of bases connected to both ends of the pressure sensing part, and a pressure receiving surface on one main surface. And a back side of the pressure receiving surface covers one main surface side of the pressure sensitive element, and a diaphragm provided with a pair of support portions for supporting a pair of base portions of the pressure sensitive element, respectively, and the pressure receiving of the diaphragm The pressure sensor according to any one of Application Examples 1 to 5, further comprising a base that opposes the back side of the surface and covers the other main surface side of the pressure-sensitive element.

前記ダイヤフラムの一方の面に前記感圧素子を搭載する支持部を設けることにより、感
圧素子の保持が簡易になると共に、前記感圧ユニットを密閉構造とすることが容易となる
。また、ダイヤフラムの受圧面の変形量が感圧素子により精度よく変換されるという特徴
がある。
By providing a support portion for mounting the pressure sensitive element on one surface of the diaphragm, the pressure sensitive element can be easily held and the pressure sensitive unit can be easily sealed. Further, there is a feature that the deformation amount of the pressure receiving surface of the diaphragm is accurately converted by the pressure sensitive element.

[適用例7]また、圧力センサーは、前記感圧部が、少なくとも一以上の柱状ビームか
ら構成されていることを特徴とする適用例6に記載の圧力センサーである。
Application Example 7 In the pressure sensor according to Application Example 6, the pressure sensor includes at least one columnar beam.

前記感圧部に柱状ビームを用いることにより、他の形状の感圧素子より感圧感度を大幅
に向上させることが可能となるという効果がある。
By using a columnar beam for the pressure-sensitive portion, there is an effect that the pressure-sensitive sensitivity can be greatly improved as compared with pressure-sensitive elements having other shapes.

[適用例8]また、圧力センサーは、前記感圧素子、前記ダイヤフラム、及び前記基台
が全て水晶材料で構成されていることを特徴とする適用例6又は7に記載の圧力センサー
である。
Application Example 8 In the pressure sensor according to Application Example 6 or 7, the pressure sensor, the diaphragm, and the base are all made of a quartz material.

感圧ユニットを構成する感圧素子とダイヤフラムと基台とを全て水晶で構成することに
より、各部の線膨張係数を同一にできるので、温度変化に起因する歪による検出精度の劣
化を少なくできるという効果がある。
By making all of the pressure-sensitive elements, diaphragms, and bases that make up the pressure-sensitive unit from quartz, the linear expansion coefficient of each part can be made the same, so the degradation of detection accuracy due to strain caused by temperature changes can be reduced. effective.

[適用例9]本発明の圧力センサーの製造方法は、圧力に応じて周波数が変化する感圧
ユニットと、記憶部と、備えた圧力センサーの製造方法であって、一定圧力の環境下おい
て前記圧力センサーの周波数温度特性を表す第1の近似多項式の係数を求める工程と、互
いに異なる複数の温度環境下において前記圧力センサーの圧力周波数特性を表す第2の近
似多項式の係数を求める工程と、前記第2の近似多項式の1次の係数を構成する第3の近
似多項式の係数を求める工程と、前記記憶部に前記全ての係数を記憶させる工程と、を含
むことを特徴とする圧力センサーの製造方法である。
Application Example 9 A pressure sensor manufacturing method according to the present invention is a pressure sensor manufacturing method including a pressure-sensitive unit whose frequency changes according to pressure, a storage unit, and a pressure sensor. Obtaining a coefficient of a first approximate polynomial representing a frequency temperature characteristic of the pressure sensor; obtaining a coefficient of a second approximate polynomial representing a pressure frequency characteristic of the pressure sensor under a plurality of different temperature environments; A pressure sensor comprising: a step of obtaining a coefficient of a third approximation polynomial constituting a first order coefficient of the second approximation polynomial; and a step of storing all the coefficients in the storage unit. It is a manufacturing method.

以上のように周波数温度特性を表す係数と、圧力対周波数特性を表す係数と、圧力対周
波数特性の1次の係数の温度依存性を表す係数を実測により求める工程と、これら全ての
係数を記憶部に記憶させる工程を有することにより、圧力センサーの圧力検出精度を大幅
に改善し、再現性、高安定性を改善でき、使用温度範囲、使用圧力範囲を広げることがで
きる圧力センサーを製造することが可能になるという効果がある。
As described above, the coefficient that represents the frequency temperature characteristic, the coefficient that represents the pressure-frequency characteristic, the coefficient that represents the temperature dependence of the first-order coefficient of the pressure-frequency characteristic, and the coefficient that represents the temperature dependence are memorized. Manufacturing a pressure sensor that can greatly improve the pressure detection accuracy of the pressure sensor, improve reproducibility and high stability, and widen the operating temperature range and operating pressure range. Has the effect of becoming possible.

本発明に係る圧力センサーの構成を示すブロック図。The block diagram which shows the structure of the pressure sensor which concerns on this invention. 感圧ユニットの、(a)は垂直断面図、(b)は水平断面図。(A) is a vertical sectional view and (b) is a horizontal sectional view of a pressure sensitive unit. ダイヤフラムの、(a)は平面図、(b)は断面図。(A) is a top view of a diaphragm, (b) is sectional drawing. 基台の(a)は平面図、(b)は断面図。(A) of a base is a top view, (b) is sectional drawing. 双音叉型水晶振動素子を説明する図で、(a)は振動モード、(b)は電極構成、(c)は電極の結線を示す図。It is a figure explaining a double tuning fork type crystal vibration element, (a) is a vibration mode, (b) is an electrode composition, (c) is a figure showing wiring of an electrode. 双音叉型水晶振動素子に印加する応力(圧力)をパラメータとしたときの周波数温度特性。Frequency-temperature characteristics when the stress (pressure) applied to the double tuning fork crystal resonator is used as a parameter. 温度をパラメータとしたときの、感圧ユニットの圧力Pと周波数fとの関係を示す図。The figure which shows the relationship between the pressure P and the frequency f of a pressure-sensitive unit when temperature is used as a parameter. 感圧ユニットにおいて周波数温度特性の頂点温度が加圧する圧力によりシフトする様子を定性的に説明する図。The figure explaining qualitatively how a peak temperature of a frequency temperature characteristic shifts with pressure which pressurizes in a pressure sensing unit. (a)は水晶の弾性定数、(b)は各弾性定数の温度係数。(A) is the elastic constant of quartz, (b) is the temperature coefficient of each elastic constant. 温度と感度変化率と関係を示す図で、菱型マーク◆の曲線は計算で、正方形マーク■の曲線は実測で求めた曲線。A graph showing the relationship between temperature and the rate of change in sensitivity. The diamond mark ◆ curve is calculated, and the square mark ■ curve is actually measured. 感圧ユニットに0気圧、1気圧を負荷したときの周波数温度特性を有限要素法を用いて求めた図。The figure which calculated | required the frequency temperature characteristic when 0 atmosphere and 1 atmosphere were loaded to the pressure-sensitive unit using the finite element method. 感圧ユニットに0気圧、1気圧を負荷したときの周波数温度特性を測定で求めた図。The figure which calculated | required the frequency temperature characteristic when 0 atmosphere and 1 atmosphere were loaded to the pressure-sensitive unit by measurement. 感圧ユニットの圧力Pと共振周波数fとの関係を示す図。The figure which shows the relationship between the pressure P of a pressure-sensitive unit, and the resonant frequency f. 従来の応力検出ユニットの、(a)は断面図、(b)はQ−Qにおける断面図。(A) is sectional drawing of the conventional stress detection unit, (b) is sectional drawing in QQ. 圧力センサーの構成を示すブロック図。The block diagram which shows the structure of a pressure sensor. 音叉型圧電振動子と結晶軸との関係を示す図。The figure which shows the relationship between a tuning fork type piezoelectric vibrator and a crystal axis. 音叉型圧電振動子の切断角度θと1次温度係数α1との関係を示す図。The figure which shows the relationship between the cutting angle (theta) of a tuning fork type piezoelectric vibrator, and primary temperature coefficient (alpha) 1 . 温度計測用音叉型圧電振動子の周波数温度特性。Frequency-temperature characteristics of a tuning-fork type piezoelectric vibrator for temperature measurement.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。
図1は、本発明の一実施形態に係る圧力センサー1の構成を示すブロック図である。
圧力センサー1は、圧力(気圧)に応じて周波数が変化する感圧ユニット11と、感圧
ユニット11の温度を感知し温度信号を出力する温度センサー(Ts)12と、感圧ユニ
ット11の感圧素子を励振する発振回路(OSC)13と、発振回路13の出力信号を計
数するカウンター(Counter)14と、を備えている。更に、カウンター14に基準信号
を供給する温度補償型基準発振器(TCXO)15と、感圧ユニット11が有する諸特性
を、多項式で近似した場合の各係数を記憶させておく記憶部(EEPROM)16と、温
度センサー12の温度信号とカウンター14の周波数信号と記憶部16からの係数信号と
を演算する演算処理部(CPU)17と、演算処理部17と外部機器とを電気的に接続す
るインターフェイス部(I/F)18と、を備えている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a pressure sensor 1 according to an embodiment of the present invention.
The pressure sensor 1 includes a pressure-sensitive unit 11 that changes in frequency according to pressure (atmospheric pressure), a temperature sensor (Ts) 12 that senses the temperature of the pressure-sensitive unit 11 and outputs a temperature signal, and a sensitivity of the pressure-sensitive unit 11. An oscillation circuit (OSC) 13 that excites the pressure element and a counter 14 that counts the output signal of the oscillation circuit 13 are provided. Further, a temperature compensated reference oscillator (TCXO) 15 that supplies a reference signal to the counter 14 and a storage unit (EEPROM) 16 that stores coefficients obtained by approximating various characteristics of the pressure-sensitive unit 11 with polynomials. An arithmetic processing unit (CPU) 17 that calculates a temperature signal of the temperature sensor 12, a frequency signal of the counter 14, and a coefficient signal from the storage unit 16, and an interface that electrically connects the arithmetic processing unit 17 and an external device. Part (I / F) 18.

図2(a)は感圧ユニット11の垂直方向の断面図であり、同図(b)はQ1−Q1に
おける水平方向の断面図でQ1−Q1から上方を見た図である。
感圧ユニット11は、圧力を加えると可撓するダイヤフラム20と、応力を加えると周
波数が変化する感圧素子25と、ダイヤフラム20と接合して密閉空間を形成する基台3
0と、を備えている。
図3(a)は、感圧ユニット11のダイヤフラム20の平面図であり、同図(b)はQ
2−Q2における断面図である。
ダイヤフラム20の外形は、矩形状であり周縁の額縁状の厚肉部(枠部)21と、該厚
肉部21に連結する薄板状の薄肉部22と、該薄肉部22上でその中央部より外寄りにそ
の重心に対し対称な一対の支持部23、24と、を備える。つまり、薄肉部22には、感
圧素子25の一対の基部27a、27bに対応する部位に、一対の支持部23、24が設
けられている。
図2、図3にはダイヤフラム20の一例を挙げたが、本発明の圧力センサー1は、他の
形状の、例えば同心円状のダイヤフラム等を用いてもよい。
FIG. 2A is a vertical cross-sectional view of the pressure-sensitive unit 11, and FIG. 2B is a horizontal cross-sectional view of Q1-Q1 as viewed from above Q1-Q1.
The pressure-sensitive unit 11 includes a diaphragm 20 that is flexible when pressure is applied thereto, a pressure-sensitive element 25 that changes in frequency when stress is applied thereto, and a base 3 that joins the diaphragm 20 to form a sealed space.
0.
FIG. 3A is a plan view of the diaphragm 20 of the pressure-sensitive unit 11, and FIG.
It is sectional drawing in 2-Q2.
The outer shape of the diaphragm 20 is rectangular and has a frame-shaped thick portion (frame portion) 21 at the periphery, a thin plate-like thin portion 22 connected to the thick portion 21, and a central portion on the thin portion 22. And a pair of support portions 23 and 24 that are symmetrical with respect to the center of gravity. That is, the thin portion 22 is provided with a pair of support portions 23 and 24 at portions corresponding to the pair of base portions 27 a and 27 b of the pressure sensitive element 25.
2 and 3 show an example of the diaphragm 20, but the pressure sensor 1 of the present invention may use another shape, for example, a concentric diaphragm.

図4(a)は、感圧ユニット11の基台30の平面図であり、同図(b)はQ3−Q3
における断面図である。
基台30は、矩形状であり周縁の枠部31と、枠部31に連結する平板部32と、該平
板部32の中央部に貫通した孔33と、を有する。孔33の端部は広口に加工されており
、メタライズ化されている。枠部31と平板部32とは一方の平面側は同一平面上にあり
、他方の平面側においては平板部32の厚さは枠部31の厚さより薄く板部32の平面と
同一平面上になく、基台30の中央部に凹部が形成される。
図3(a)に示すダイヤフラム20の外形寸法と、図4(a)に示す基台30の外形寸
法とは略同一であり、ダイヤフラム20の周縁の厚肉部21と、基台30の周縁の枠部3
1とが互いに対応して密着するように形成されている。
ダイヤフラム20は、例えば平板状の水晶板にフォトリソグラフィ技法とエッチング手
法を適用し、水晶板の両面から所定の部位(薄肉部22)をエッチングすることにより、
容易に構成することができる。また、基台30は、例えば平板状の水晶板に片側から所定
の部位をエッチング加工して平板部32を形成し、更に、平板部32の中央にエッチング
により孔33を加工して構成することができる。
4A is a plan view of the base 30 of the pressure-sensitive unit 11, and FIG. 4B is Q3-Q3.
FIG.
The base 30 is rectangular and has a peripheral frame portion 31, a flat plate portion 32 connected to the frame portion 31, and a hole 33 penetrating through the central portion of the flat plate portion 32. The end of the hole 33 is processed into a wide opening and is metallized. The frame portion 31 and the flat plate portion 32 have one plane side on the same plane, and on the other plane side, the thickness of the flat plate portion 32 is smaller than the thickness of the frame portion 31 and is flush with the plane of the plate portion 32. Instead, a recess is formed at the center of the base 30.
The outer dimensions of the diaphragm 20 shown in FIG. 3A and the outer dimensions of the base 30 shown in FIG. 4A are substantially the same, and the thick portion 21 at the periphery of the diaphragm 20 and the periphery of the base 30 Frame part 3
1 are formed in close contact with each other.
The diaphragm 20 applies, for example, a photolithographic technique and an etching technique to a flat crystal plate, and etches a predetermined portion (thin wall portion 22) from both sides of the crystal plate.
It can be easily configured. The base 30 is formed by etching a predetermined portion from one side of a flat crystal plate, for example, to form a flat plate portion 32, and further processing a hole 33 by etching in the center of the flat plate portion 32. Can do.

感圧素子25は、例えば図2(b)に示す双音叉型振動素子を用いる。双音叉型振動素
子25は、互いに平行に延在する一対の振動部(振動ビーム)26a、26bと、該一対
の振動部26a、26bの両端部に夫々連結され一体化された一対の基部27a、27b
と、を備えている。
感圧ユニット11の構成は、図2(a)に示すようにダイヤフラム20の一方の面の支
持部23、24に感圧素子(双音叉型振動素子)25の基部27a、27bを接着剤、例
えば低融点ガラスを塗布し、加熱して接着、固定する。ダイヤフラム20の感圧素子(双
音叉型振動素子)25が搭載された側の厚肉部面21aと、基台30の枠部面31aとを
接着剤、例えば低融点ガラスを塗布し、加熱して接着、固定する。
そして、基台30の平板部32に形成した貫通孔33を介して、ダイヤフラム20と基
台30とで形成された密閉空間を真空とし、貫通孔33に充填物34、例えば金錫AuS
n、金ゲルマAuGeを充填して密閉空間を真空状態とする。
接着剤として低融点ガラスの例を示したが、他の接着剤、例えばエポキシ系の接着剤で
もよいし、直接接合、アルコキシド、オルガノシロキシ基などを含む接合部材を用い、紫
外線やプラズマ照射により接合する接合方法、金錫合金被膜などの金属被膜を接合部材に
用いた共晶接合方法など、感圧ユニット11の応力緩和が図られることが望ましい。
温度センサー12は、例えば図16に示した音叉型振動素子を用いる。発振回路13は
、例えば増幅用のICと容量とにより構成することができる。カウンター14は、一般的
なカウンター用ICを用いる。基準信号用の基準発振器15は、ATカット水晶振動素子
と温度補償用ICとで構成された温度補償水晶発振器を用いる。記憶部16は、例えば書
き込み、消去が可能なEEPROMを、演算処理部17は、一般的なマイクロプロセッサ
ーを用いる。インターフェイス(I/F)18は、外部回路に合わせて適切に回路を選ぶ
As the pressure sensitive element 25, for example, a double tuning fork type vibration element shown in FIG. The double tuning fork type vibration element 25 includes a pair of vibration parts (vibration beams) 26a and 26b extending in parallel with each other and a pair of base parts 27a connected and integrated to both ends of the pair of vibration parts 26a and 26b. 27b
And.
As shown in FIG. 2A, the pressure-sensitive unit 11 has a structure in which the base portions 27a and 27b of the pressure-sensitive element (double tuning fork type vibration element) 25 are bonded to the support portions 23 and 24 on one surface of the diaphragm 20, For example, low melting point glass is applied, heated and bonded and fixed. A thick part surface 21a on the side of the diaphragm 20 on which the pressure sensitive element (double tuning fork type vibration element) 25 is mounted and a frame part surface 31a of the base 30 are coated with an adhesive, for example, a low melting point glass, and heated. Glue and fix.
Then, the sealed space formed by the diaphragm 20 and the base 30 is evacuated through the through hole 33 formed in the flat plate portion 32 of the base 30, and a filling 34, for example, gold tin AuS, is formed in the through hole 33.
n, filled with gold germanium AuGe, and the sealed space is evacuated.
An example of low-melting glass has been shown as an adhesive, but other adhesives such as epoxy adhesives may be used, and direct bonding, bonding members containing alkoxides, organosiloxy groups, etc. may be used and bonded by ultraviolet or plasma irradiation. It is desirable that stress relaxation of the pressure-sensitive unit 11 is achieved, such as a bonding method to be performed and a eutectic bonding method using a metal film such as a gold-tin alloy film as a bonding member.
As the temperature sensor 12, for example, a tuning fork type vibration element shown in FIG. 16 is used. The oscillation circuit 13 can be composed of, for example, an amplification IC and a capacitor. The counter 14 uses a general counter IC. The reference signal reference oscillator 15 uses a temperature compensated crystal oscillator composed of an AT-cut crystal resonator element and a temperature compensation IC. The storage unit 16 uses, for example, an rewritable EEPROM, and the arithmetic processing unit 17 uses a general microprocessor. The interface (I / F) 18 selects a circuit appropriately according to an external circuit.

双音叉型水晶振動素子25について図5を用いて簡単に説明する。
双音叉型水晶振動素子25は、図5(a)に示すような一対の基部27a、27b及び
該基部27a、27b間を連設する一対の柱状ビームからなる振動部(感圧部)26a、
26bを備えた圧電基板からなる応力感応部と、該圧電基板の振動領域上に形成した励振
電極と、を備えている。
図5(a)の破線は双音叉型水晶振動素子25の振動姿態を示す平面図である。双音叉
型水晶振動素子25の振動モードが、一対の振動部26a、26bの長手方向の中心軸に
対して、互いに対称な振動モードで振動するように励振電極を配置する。図5(b)は双
音叉型水晶振動素子25に形成する励振電極の一例と、ある瞬間に励起される励振電極上
の電荷の符号を示した平面図である。また、図4(c)は励振電極の結線を示す模式断面
図である。
双音叉型水晶振動素子25は、例えばフォトリソグラフィ技法とエッチング手法を用い
て、Zカット水晶基板、又はZ’ カット水晶基板(X軸の回りに回転した基板)を所望
の形状に加工し、真空蒸着法等を用いて励振電極、リード電極等を形成して構成される。
The double tuning fork type crystal vibrating element 25 will be briefly described with reference to FIG.
The double tuning fork type crystal vibrating element 25 includes a pair of base portions 27a and 27b as shown in FIG. 5A and a vibrating portion (pressure-sensitive portion) 26a composed of a pair of columnar beams connecting the base portions 27a and 27b.
A stress sensitive part made of a piezoelectric substrate provided with a piezoelectric element 26b, and an excitation electrode formed on the vibration region of the piezoelectric substrate.
A broken line in FIG. 5A is a plan view showing a vibration state of the double tuning fork type crystal vibrating element 25. The excitation electrodes are arranged so that the vibration mode of the double tuning fork type crystal resonator element 25 vibrates in a vibration mode symmetrical to each other with respect to the central axis in the longitudinal direction of the pair of vibration portions 26a and 26b. FIG. 5B is a plan view showing an example of the excitation electrode formed on the double tuning fork type crystal vibrating element 25 and the sign of the charge on the excitation electrode excited at a certain moment. FIG. 4C is a schematic cross-sectional view showing connection of excitation electrodes.
The double tuning fork type crystal vibrating element 25 is formed by processing a Z-cut quartz substrate or a Z′-cut quartz substrate (a substrate rotated around the X axis) into a desired shape by using, for example, a photolithography technique and an etching technique, and applying a vacuum An excitation electrode, a lead electrode, and the like are formed using a vapor deposition method or the like.

双音叉型水晶振動素子は伸張(引張り)・圧縮応力に対する感度が良好であり、高度計
用、或いは深度計用の感圧素子(応力感応素子)として使用した場合には、分解能力が優
れているために僅かな気圧差から高度差、深度差を検知することができる。
双音叉型水晶振動素子の周波数温度特性は、上に凸の二次曲線であり、その頂点温度は
、水晶結晶のX軸(電気軸)の回りの回転角度に依存する。一般的には頂点温度が常温(
25℃)になるように各パラメータを設定する。
双音叉水晶振動素子の一対の振動部に外力Fを加えたときの共振周波数fFは以下の如
くである。
F=f0×(1−(K×L2×F)/(2×E×I))1/2・・・(1)
ここで、f0は外力がないときの双音叉型水晶振動素子の共振周波数、Kは基本波モー
ドによる定数(=0.0458)、Lは振動ビームの長さ、Eは縦弾性定数、Iは断面2
次モーメントである。断面2次モーメントIはI=d×w3/12より、式(1)は次式の
ように変形することができる。ここで、dは振動ビームの厚さ、wは幅である。
F=f0×(1−SF×σ)1/2・・・(2)
但し、応力感度SFと、応力σとはそれぞれ次式で表される。
F=12×(K/E)×(L/w)2・・・(3)
σ=F/(2×A)・・・(4)
ここで、Aは振動ビームの断面積(=w×d)である。
The double tuning fork type quartz vibrating element has good sensitivity to stretching (tensile) and compressive stress, and has excellent decomposing ability when used as a pressure sensitive element (stress sensitive element) for altimeter or depth gauge. Therefore, altitude difference and depth difference can be detected from a slight pressure difference.
The frequency-temperature characteristic of the double tuning fork type quartz resonator element is an upward convex quadratic curve, and the apex temperature depends on the rotation angle around the X axis (electric axis) of the quartz crystal. Generally, the peak temperature is room temperature (
Each parameter is set to be 25 ° C.
The resonance frequency f F when an external force F is applied to the pair of vibrating parts of the double tuning fork crystal resonator element is as follows.
f F = f 0 × (1− (K × L 2 × F) / (2 × E × I)) 1/2 (1)
Here, f 0 is the resonance frequency of the double tuning fork type quartz vibrating element when there is no external force, K is a constant according to the fundamental mode (= 0.0458), L is the length of the vibrating beam, E is the longitudinal elastic constant, I Is cross section 2
Next moment. Second moment I are from I = d × w 3/12 , the equation (1) can be modified as follows. Here, d is the thickness of the vibration beam, and w is the width.
f F = f 0 × (1−S F × σ) 1/2 (2)
However, the stress sensitivity SF and the stress σ are respectively expressed by the following equations.
S F = 12 × (K / E) × (L / w) 2 (3)
σ = F / (2 × A) (4)
Here, A is the cross-sectional area (= w × d) of the vibration beam.

以上から双音叉型水晶振動子に作用する力Fを圧縮方向のとき負、伸張方向(引張り方
向)を正としたとき、力Fと共振周波数fFの関係は、力Fが圧縮力で共振周波数fFが減
少し、伸張(引張り)力では増加する。また応力感度SFは振動ビームのL/wの2乗に
比例する。
また、感圧素子としては、双音叉型水晶振動子に限らず、伸張・圧縮応力によって周波
数が変化する圧電振動素子であればどのようなものも用いることが可能である。
また、感圧部を構成する柱状ビームの本数は、2本に限定されるものではなく、少なく
とも1以上の柱状ビームから構成されていればよい。振動漏れ等を抑制しやすい点で、2
本であることが好ましい。柱状ビームの本数が2本である場合は、音叉型振動片を向かい
合わせに接合したような前述の如き双音叉型の振動子の態様となる。
感圧ユニット11は、ダイヤフラム20と基台30とで構成する密閉空間を真空状態と
して用いるため、ダイヤフラム20の受圧面には当該受圧面の垂直方向から圧力、例えば
1気圧がかかる。ダイヤフラム20の受圧面に圧力が加わると、薄肉部22に撓みが生じ
、薄肉部22はダイヤフラム20の受圧面の裏面側へ撓み変形する。支持部23、24の
載置面23a、24aは薄肉部22の変形に伴って傾き、載置面23a、24aは夫々薄
肉部22の重心から外側へ向けて傾く。このため、載置面23a、24a間の間隔は広が
り、該載置面23a、24aに固定された双音叉型水晶振動素子25の振動部26a、2
6bには伸長(引張り)応力が加わる。振動部26a、26bに伸長応力が加わると、双
音叉型水晶振動素子25の共振周波数は増加する。
From the above, when the force F acting on the double tuning fork type crystal resonator is negative in the compression direction and positive in the extension direction (tensile direction), the relationship between the force F and the resonance frequency f F is that the force F resonates with the compression force. The frequency f F decreases and increases with the stretching (tensile) force. The stress sensitivity S F is proportional to the square of the vibration beam L / w.
Further, the pressure sensitive element is not limited to a double tuning fork type crystal resonator, and any piezoelectric vibration element whose frequency is changed by extension / compression stress can be used.
Further, the number of columnar beams constituting the pressure-sensitive portion is not limited to two, and it is only necessary that the number of columnar beams is composed of at least one columnar beam. It is easy to suppress vibration leakage etc. 2
A book is preferred. When the number of columnar beams is two, the above-described double tuning fork type vibrator is formed in which tuning fork type vibrating pieces are joined face to face.
Since the pressure-sensitive unit 11 uses the sealed space formed by the diaphragm 20 and the base 30 as a vacuum state, pressure, for example, 1 atm, is applied to the pressure receiving surface of the diaphragm 20 from the direction perpendicular to the pressure receiving surface. When pressure is applied to the pressure receiving surface of the diaphragm 20, the thin portion 22 is bent, and the thin portion 22 is bent and deformed toward the back side of the pressure receiving surface of the diaphragm 20. The placement surfaces 23a and 24a of the support portions 23 and 24 are inclined as the thin portion 22 is deformed, and the placement surfaces 23a and 24a are inclined outward from the center of gravity of the thin portion 22, respectively. For this reason, the space | interval between mounting surface 23a, 24a spreads, and the vibration parts 26a, 2 of the double tuning fork type crystal vibrating element 25 fixed to this mounting surface 23a, 24a.
An elongation (tensile) stress is applied to 6b. When an elongation stress is applied to the vibrating portions 26a and 26b, the resonance frequency of the double tuning fork type quartz vibrating element 25 increases.

双音叉型水晶振動素子に伸長(引張り)応力又は、圧縮応力が印加された状態では、双
音叉型水晶振動素子の周波数温度特性は、応力が印加されていない状態の周波数温度特性
と異なる。図6の実線で示す曲線S0は、双音叉型水晶振動素子25に応力が加わらない
状態の周波数温度特性であり、その頂点温度Tm0が常温となるように双音叉型水晶振動
素子の諸定数、例えば切断角度θを設定する。破線で示す曲線S1は双音叉型水晶振動素
子に伸長(引張り)応力を加えた状態の周波数温度特性であり、その頂点温度Tm1はT
m0より高温側へシフトする。また、一点鎖線で示す曲線S2は、双音叉型水晶振動素子
に圧縮応力を加えた状態の周波数温度特性であり、その頂点温度Tm2はTm0より低温
側へシフトする。
感圧ユニット11の圧力(応力)P−周波数f特性は、図7に示すように感圧ユニット
11が曝されている環境下の温度Tにより、圧力対周波数感度(df/dP)が異なる。
常温(25℃)の圧力対周波数感度に対し、低温(−35℃)では圧力対周波数感度(d
f/dP)は小さくなり、高温(85℃)では圧力対周波数感度(df/dP)は大きく
なる。この現象に、双音叉型水晶振動素子に伸長(引張り)応力が加わることによって、
周波数が増加する現象が同時に誘起されるのではないかと考えた結果、図6に示すように
2次曲線の頂点温度が応力の印加によりシフトする現象を説明することができるのではな
いかと考え至った。
In a state where an extension (tensile) stress or a compressive stress is applied to the double tuning fork type quartz vibrating element, the frequency temperature characteristic of the double tuning fork type quartz vibrating element is different from the frequency temperature characteristic in a state where no stress is applied. A curve S0 shown by a solid line in FIG. 6 is a frequency-temperature characteristic in a state where no stress is applied to the double tuning fork type quartz vibrating element 25, and various constants of the double tuning fork type quartz vibrating element so that the vertex temperature Tm0 becomes room temperature. For example, the cutting angle θ is set. A curved line S1 indicated by a broken line is a frequency temperature characteristic in a state where an extension (tensile) stress is applied to the double tuning fork type crystal vibrating element, and the apex temperature Tm1 is T
Shift to higher temperature than m0. A curve S2 indicated by a one-dot chain line is a frequency-temperature characteristic in a state where compressive stress is applied to the double tuning fork type crystal vibrating element, and the vertex temperature Tm2 shifts to a lower temperature side than Tm0.
The pressure (stress) P-frequency f characteristic of the pressure-sensitive unit 11 differs in pressure-frequency sensitivity (df / dP) depending on the temperature T in the environment where the pressure-sensitive unit 11 is exposed as shown in FIG.
Pressure vs. frequency sensitivity at room temperature (25 ° C) vs. pressure vs. frequency sensitivity (d
f / dP) decreases, and pressure vs. frequency sensitivity (df / dP) increases at high temperatures (85 ° C.). To this phenomenon, an extension (tensile) stress is applied to the double tuning fork type crystal resonator element.
As a result of thinking that the phenomenon that the frequency increases may be induced at the same time, it is thought that the phenomenon that the vertex temperature of the quadratic curve is shifted by the application of stress as shown in FIG. 6 can be explained. It was.

図8は、感圧ユニット11に加わる圧力が0気圧から1気圧に変化する場合、感圧ユニ
ット11の周波数温度特性(温度T−周波数f特性)の頂点温度が高温側にシフトする現
象を説明する図である。感圧ユニット11に加わる圧力が0気圧の場合、密閉空間内部を
真空にした感圧ユニット11の双音叉型水晶振動素子25には応力が加わらない。
感圧ユニット11に加える圧力を1気圧にすると、双音叉型水晶振動素子25には伸長
(引張り)応力が加わることになり、双音叉型水晶振動素子25の周波数は上昇する。こ
のとき低温では圧力対周波数感度(df/dP)が小さく、高温では圧力対周波数感度(
df/dP)が大きくなる。この2つの現象が加算されるとJ0で示す0気圧のときの周
波数温度特性(温度T−周波数f特性)が、J1で示す1気圧のときの周波数温度特性(
温度T−周波数f特性)にシフトする。つまり、感圧ユニット11に加わる圧力により周
波数温度特性の頂点温度が高温側にシフトする現象を定性的に説明することができる。
FIG. 8 illustrates a phenomenon in which the peak temperature of the frequency temperature characteristic (temperature T-frequency f characteristic) of the pressure sensitive unit 11 shifts to the high temperature side when the pressure applied to the pressure sensitive unit 11 changes from 0 atm to 1 atm. It is a figure to do. When the pressure applied to the pressure sensitive unit 11 is 0 atm, no stress is applied to the double tuning fork type crystal vibrating element 25 of the pressure sensitive unit 11 in which the inside of the sealed space is evacuated.
When the pressure applied to the pressure-sensitive unit 11 is 1 atm, an extension (tensile) stress is applied to the double tuning fork type crystal vibrating element 25, and the frequency of the double tuning fork type crystal vibrating element 25 increases. At this time, pressure vs. frequency sensitivity (df / dP) is small at low temperature, and pressure vs. frequency sensitivity (df / dP) at high temperature.
df / dP) increases. When these two phenomena are added, the frequency temperature characteristic (temperature T-frequency f characteristic) at 0 atm indicated by J 0 becomes the frequency temperature characteristic at 1 atm indicated by J 1 (temperature T-frequency f characteristic).
Temperature T-frequency f characteristic). That is, the phenomenon that the peak temperature of the frequency temperature characteristic is shifted to the high temperature side due to the pressure applied to the pressure-sensitive unit 11 can be qualitatively explained.

そこで、本願発明者らは、圧力により感圧ユニット11が呈する周波数温度特性の頂点
温度のシフトを補償し、圧力センサー1の精度を改善すべく、有限要素法を用いて感圧ユ
ニット11の解析を試みた。感圧ユニット11を構成するダイヤフラム20、感圧素子(
双音叉型水晶振動素子)25、基台30は、全て水晶材料を用いることにした。水晶の定
数として、密度ρは2.65×103(kg/m3)、ポアソン比は0.135を用いた。
また、感圧ユニット11の解析に用いる運動方程式の歪と応力との関係を結びつける弾性
定数(ヤング率)Cijは、図9(a)に示す行列の定数を用いた。水晶の弾性定数(ヤ
ング率)Cijは異方性を有すると共に温度依存性を有している。
そこで、次の近似式を用いて、任意の温度Tにおける弾性定数を求めた。式(5)にお
ける弾性定数Cijの1次係数α、2次係数β、3次係数γは、夫々図9(b)の定数を
用いた。
Cij(T)=Cij×(1+α×T+β×T2+γ×T3)・・・(5)
Therefore, the inventors of the present application analyze the pressure-sensitive unit 11 using a finite element method in order to compensate the shift of the apex temperature of the frequency temperature characteristic exhibited by the pressure-sensitive unit 11 due to the pressure and to improve the accuracy of the pressure sensor 1. Tried. Diaphragm 20 and pressure sensitive element (
The double tuning fork type quartz vibrating element) 25 and the base 30 are all made of quartz materials. As the quartz constant, a density ρ of 2.65 × 10 3 (kg / m 3 ) and a Poisson's ratio of 0.135 were used.
The elastic constant (Young's modulus) Cij that links the relationship between the strain and stress of the equation of motion used for the analysis of the pressure-sensitive unit 11 is a matrix constant shown in FIG. The elastic constant (Young's modulus) Cij of quartz has anisotropy and temperature dependence.
Therefore, the elastic constant at an arbitrary temperature T was obtained using the following approximate expression. The constants shown in FIG. 9B are used for the first order coefficient α, the second order coefficient β, and the third order coefficient γ of the elastic constant Cij in the equation (5).
Cij (T) = Cij × (1 + α × T + β × T 2 + γ × T 3 ) (5)

次に、図7に示す如き圧力対周波数感度(df/dP)が温度により変化する原因につ
いて鋭意分析を試みた。弾性定数Cijを式(5)のように温度Tの関数とし、感圧ユニ
ット11の共振周波数を、有限要素法を用いて解析を行った。
図10は、温度Tと感度変化率との関係を示す図である。
0気圧のときの感圧ユニット11の周波数をf0、1気圧の周波数をf1とし、|f0
1|/f1を感度変化率と定義し、25℃のときを0とする。温度Tを変化させ感度変化
率を解析により求めた温度T−感度変化率曲線を菱型マーク◆で示す。正方形マーク■で
示す曲線は、実際に感圧ユニット11測定して求めた温度T−感度変化率曲線である。
感圧ユニット11の周波数温度特性の頂点温度が加わる圧力により変化する理由は、周
波数温度特性を表す多項式の1次係数が変化するからである。即ち、温度が上昇すると、
水晶の弾性係数Cijが小さくなり、図10の感度変化率が増加する。感度変化率は温度
Tの増加に対し、ほぼ直線的に増加するため、感圧ユニット11の周波数温度特性を表す
多項式の1次係数が変化する。その結果として、頂点温度がシフトするように見えていた
ことが判明した。
Next, intensive analysis was conducted on the cause of pressure-frequency sensitivity (df / dP) changing with temperature as shown in FIG. The elastic constant Cij is a function of the temperature T as shown in the equation (5), and the resonance frequency of the pressure-sensitive unit 11 is analyzed using the finite element method.
FIG. 10 is a diagram showing the relationship between the temperature T and the sensitivity change rate.
The frequency of the pressure sensitive unit 11 when the 0 atm frequency of f 0, 1 atm and f 1, | f 0 -
f 1 | / f 1 is defined as the rate of change in sensitivity, and 0 at 25 ° C. A temperature T-sensitivity change rate curve obtained by changing the temperature T and analyzing the sensitivity change rate is indicated by a diamond mark ◆. A curve indicated by a square mark ■ is a temperature T-sensitivity change rate curve obtained by actually measuring the pressure-sensitive unit 11.
The reason why the apex temperature of the frequency temperature characteristic of the pressure-sensitive unit 11 changes due to the applied pressure is that the first-order coefficient of the polynomial representing the frequency temperature characteristic changes. That is, when the temperature rises,
The elastic coefficient Cij of the crystal is reduced, and the sensitivity change rate in FIG. 10 is increased. Since the sensitivity change rate increases almost linearly as the temperature T increases, the first-order coefficient of the polynomial representing the frequency temperature characteristic of the pressure-sensitive unit 11 changes. As a result, it was found that the apex temperature seemed to shift.

図11は、ダイヤフラム20に加える圧力を0気圧、1気圧としたとき、シミュレーシ
ョン解析で求めた感圧ユニット11の周波数温度特性を示した図である。各気圧において
温度Tを変化させて感圧ユニット11の周波数変化Δf/fを計算した。0気圧の場合を
菱型マーク◆でしめし、1気圧の場合を正方形マーク■で示す。0気圧及び1気圧の各々
において、周波数変化Δf/fを求めた。細線は、各温度Tにおいて有限要素法により算
出された周波数変化Δf/fをプロットして滑らかな線で結んだ曲線である。太線は、前
記各温度Tにおいて算出された周波数変化Δf/fを最小二乗法を用いて近似して得られ
た多項式による曲線である。0気圧の場合の周波数温度特性の頂点温度は−6℃であるが
、1気圧の場合では頂点温度は高温側にシフトし、20℃となることが解析結果により求
められた。0気圧、1気圧の場合に感圧ユニット11の周波数温度特性を表す多項式yを
図面下部に示した。
0気圧のとき:y=−0.0476x2−0.595x+41.498 ・・・(a)
1気圧のとき:y=−0.0464x2+1.7737x−15.342・・・(b)
FIG. 11 is a diagram showing the frequency-temperature characteristics of the pressure-sensitive unit 11 obtained by simulation analysis when the pressure applied to the diaphragm 20 is 0 atm and 1 atm. The frequency change Δf / f of the pressure-sensitive unit 11 was calculated by changing the temperature T at each atmospheric pressure. The case of 0 atm is indicated by a diamond mark ◆, and the case of 1 atm is indicated by a square mark ■. The frequency change Δf / f was determined at 0 atm and 1 atm. The thin line is a curve obtained by plotting the frequency change Δf / f calculated by the finite element method at each temperature T and connecting with a smooth line. The thick line is a curve by a polynomial obtained by approximating the frequency change Δf / f calculated at each temperature T using the least square method. The apex temperature of the frequency temperature characteristic at 0 atm is −6 ° C., but the apex temperature is shifted to the high temperature side at 1 atm, and it is determined from the analysis result that it becomes 20 ° C. A polynomial y representing the frequency temperature characteristic of the pressure-sensitive unit 11 at 0 atmosphere and 1 atmosphere is shown in the lower part of the drawing.
At 0 atm: y = −0.0476x 2 −0.595x + 41.498 (a)
At one atmosphere: y = −0.0464x 2 + 1.737x-15.342 (b)

図12は、実験により感圧ユニット11に0気圧、1気圧の負荷をかけて、感圧ユニッ
ト11の周波数温度特性を測定したときの曲線で、0気圧の場合を菱型マーク◆で示し、
1気圧の場合を正方形マーク■で示す。0気圧の場合、周波数温度特性の頂点温度が−7
℃であったが、1気圧の場合では頂点温度は20℃にシフトしている。0気圧、1気圧の
場合に感圧ユニット11の周波数温度特性を表す多項式yを図面下部に示した。
0気圧のとき:y=−0.0383x2−0.5123x+32.126・・・(c)
1気圧のとき:y=−0.0308x2+1.2514x−11.312・・・(d)
図11に示したシミュレーション解析結果と、図12に示した実験による測定結果とを
比べ、感圧ユニット11に圧力(1気圧)を加えた場合に、頂点温度の高温側へのシフト
量は、シミュレーション解析でも数パーセントの誤差範囲で算出できることが判明した。
この解析結果と実測結果からも、周波数温度特性の頂点温度が変化する理由は、周波数温
度特性を表す多項式の1次係数の変化に起因することが実証できた。
本願発明者らは、前述の如き研究成果により本願に係る発明に想到したのである。


本実施形態では、感圧ユニット11の周波数温度特性を表す多項式を第1の近似式fとし
、次の3次多項式を用いた。
f=a13+a22+a3T+a4・・・(6)
FIG. 12 is a curve when the pressure-sensitive unit 11 is subjected to a load of 0 atm and 1 atm by experiment and the frequency temperature characteristic of the pressure-sensitive unit 11 is measured.
The case of 1 atm is indicated by a square mark ■. In the case of 0 atm, the peak temperature of the frequency temperature characteristic is -7
Although it was ° C., in the case of 1 atm, the peak temperature is shifted to 20 ° C. A polynomial y representing the frequency temperature characteristic of the pressure-sensitive unit 11 at 0 atmosphere and 1 atmosphere is shown in the lower part of the drawing.
At 0 atm: y = −0.0383x 2 −0.5123x + 32.126 (c)
At 1 atm: y = −0.0308x 2 + 1.2514x-11.212 (d)
When the simulation analysis result shown in FIG. 11 is compared with the measurement result by the experiment shown in FIG. 12, when pressure (1 atm) is applied to the pressure-sensitive unit 11, the shift amount of the peak temperature to the high temperature side is: Simulation analysis also showed that it could be calculated with an error range of several percent.
From the analysis results and the actual measurement results, it has been proved that the reason why the peak temperature of the frequency temperature characteristic changes is due to the change of the first order coefficient of the polynomial representing the frequency temperature characteristic.
The inventors of the present application have arrived at the invention according to the present application based on the above-described research results.


In the present embodiment, the polynomial representing the frequency temperature characteristic of the pressure-sensitive unit 11 is the first approximate expression f, and the following third-order polynomial is used.
f = a 1 T 3 + a 2 T 2 + a 3 T + a 4 (6)

図13は、感圧ユニット11に圧力(応力)Pを加えたときの共振周波数fの変化を示
す圧力P−周波数f特性を表す曲線である。この圧力周波数特性を表す多項式を第2の近
似式Pとし、次の3次多項式を用いた。
P=b13+b22+b3f+fc・・・(7)
ここでfcは、例えば1気圧の圧力を感圧ユニット11に負荷したときの周波数温度特
性を表している。式(7)の1次の係数b3は、温度依存性を表す係数で、第3の近似式
3とし、次の2次多項式を用いた。
3=c12+c2T+c3・・・(8)
FIG. 13 is a curve showing a pressure P-frequency f characteristic indicating a change in the resonance frequency f when pressure (stress) P is applied to the pressure-sensitive unit 11. A polynomial representing this pressure frequency characteristic is defined as a second approximate expression P, and the following cubic polynomial is used.
P = b 1 f 3 + b 2 f 2 + b 3 f + f c ··· (7)
Here, fc represents a frequency temperature characteristic when, for example, a pressure of 1 atm is applied to the pressure sensitive unit 11. The first-order coefficient b 3 in Expression (7) is a coefficient representing temperature dependence, and is set as a third approximate expression b 3 , and the following second-order polynomial is used.
b 3 = c 1 T 2 + c 2 T + c 3 (8)

製造した感圧ユニット11は、電気的特性が個々に微小にばらつくので、式(6)、(
7)、(8)の全ての係数を実測し、圧力センサー1の記憶部16に格納することにした
。始めに、使用気圧範囲内の一定気圧Poの環境下において、周波数温度特性(T−f特
性)を測定し、式(6)の係数a1、a2、a3、a4を求める。次に、使用温度範囲内の
温度Tをパラメータ(3点以上、例えば−35℃、25℃、85°)として、圧力周波数
特性(P−f特性)を測定し、式(7)の係数b1、b2、b3を求める。
そして、温度Tiをパラメータとし、圧力Pを変化させて感圧ユニット11の共振周波
数を求め、圧力対周波数感度(df/dP)iを求める。温度Tiと圧力対周波数感度(
df/dP)iをプロットし、この曲線から式(8)の係数c1、c2、c3を求める。
測定によって求められた全ての係数a1〜a4、b1〜b3、c1〜c3を圧力センサー1の
記憶部16に格納する。
Since the manufactured pressure-sensitive unit 11 varies slightly in electrical characteristics, the equations (6), (
7) All the coefficients of (8) were measured and stored in the storage unit 16 of the pressure sensor 1. First, the frequency temperature characteristic (Tf characteristic) is measured in an environment of a constant atmospheric pressure Po within the operating atmospheric pressure range, and the coefficients a 1 , a 2 , a 3, and a 4 of Equation (6) are obtained. Next, the pressure frequency characteristic (Pf characteristic) is measured using the temperature T within the operating temperature range as a parameter (three or more points, for example, −35 ° C., 25 ° C., 85 °), and the coefficient b of the equation (7) Find 1 , b 2 , b 3 .
Then, the temperature Ti is used as a parameter, the pressure P is changed, the resonance frequency of the pressure-sensitive unit 11 is obtained, and the pressure-to-frequency sensitivity (df / dP) i is obtained. Temperature Ti and pressure vs. frequency sensitivity (
df / dP) i is plotted, and the coefficients c 1 , c 2 , and c 3 of Equation (8) are obtained from this curve.
All the coefficients a 1 to a 4 , b 1 to b 3 , and c 1 to c 3 obtained by the measurement are stored in the storage unit 16 of the pressure sensor 1.

このように感圧ユニット11の周波数温度特性(T−f特性)、圧力周波数特性(P−
f特性)を多項式で近似し、且つ圧力周波数特性(P−f特性)の1次項の係数を多項式
で近似し、これらの多項式の係数を測定し、記憶部16に格納して圧力センサー1を構成
した。本発明の圧力センサー1の動作は、温度センサー12からの温度信号と、カウンタ
ー14を介して感圧ユニット11の周波数信号とを演算処理部17に取り込み、予め格納
してある周波数温度特性(T−f特性)、圧力周波数特性(P−f特性)、温度依存特性
項b3の各係数を呼びだして、上記信号に補正を加えることにより、圧力センサー1に加
わる圧力を求めることができる。このように圧力センサー1を構成すると、圧力検出精度
が大幅に改善されることが判明した。
例えば、使用圧力範囲は0.5気圧から1.5気圧程度とする。図11において温度が
15℃では0気圧と1気圧の周波数差(Δf/f)は略80ppmであり、略200Pa
に相当する。0.5気圧幅では略100Paとなる。本発明に係る圧力センサー1では精
度は5Pa程度であり、圧力検出精度は略1/20と大幅に改善された。
Thus, the frequency temperature characteristic (Tf characteristic) and pressure frequency characteristic (P-) of the pressure sensitive unit 11 are as follows.
f characteristic) is approximated by a polynomial, and the coefficient of the first-order term of the pressure frequency characteristic (Pf characteristic) is approximated by a polynomial, and the coefficient of these polynomials is measured and stored in the storage unit 16 to store the pressure sensor 1. Configured. The operation of the pressure sensor 1 of the present invention is performed by fetching the temperature signal from the temperature sensor 12 and the frequency signal of the pressure sensitive unit 11 through the counter 14 into the arithmetic processing unit 17 and storing the frequency temperature characteristic (T -f characteristic), pressure frequency characteristic (P-f characteristic), by calling the coefficients of temperature dependence term b 3, by adding a correction to the signal, it is possible to determine the pressure applied to the pressure sensor 1. It has been found that when the pressure sensor 1 is configured in this way, the pressure detection accuracy is greatly improved.
For example, the working pressure range is about 0.5 to 1.5 atmospheres. In FIG. 11, when the temperature is 15 ° C., the frequency difference (Δf / f) between 0 atm and 1 atm is about 80 ppm, which is about 200 Pa.
It corresponds to. At 0.5 atm, the pressure is about 100 Pa. In the pressure sensor 1 according to the present invention, the accuracy is about 5 Pa, and the pressure detection accuracy is greatly improved to about 1/20.

上記の説明では、周波数温度特性(T−f特性)を表す式(6)を3次多項式、圧力周
波数特性を表す式(7)を3次多項式、温度依存特性式を表す式(8)を2次多項式で近
似したが、圧力センサーの精度を上げるには更に次数の高い多項式を用いればよい。しか
し、次数を高くするとこれらの係数を格納する記憶部が大きくなり、ICが大型になると
いう問題もあり、要求精度との兼ね合いで各多項式の次数を決めることになる。
圧力センサーの周波数温度特性を第1の近似多項式で関係づけ、圧力対周波数特性を第
2の近似多項式で関係づけ、第2の近似多項式の1次の係数を第3の近似多項式で関係づ
け、これらの多項式の全ての係数を実測して求めた後、記憶部に格納し、圧力センサーを
使用する際に前記全ての係数を呼び出して、圧力センサーの周波数を補償するので、測定
で得られる圧力の検出精度が大幅に改善され、再現性、高安定性とも改善でき、使用温度
範囲、使用圧力範囲が広がるという効果がある。
In the above description, the expression (6) representing the frequency temperature characteristic (Tf characteristic) is a cubic polynomial, the expression (7) representing the pressure frequency characteristic is a cubic polynomial, and the expression (8) representing the temperature dependence characteristic expression is Although approximated by a quadratic polynomial, a higher order polynomial may be used to increase the accuracy of the pressure sensor. However, when the degree is increased, the storage unit for storing these coefficients becomes larger and the IC becomes larger, and the degree of each polynomial is determined in consideration of the required accuracy.
The frequency temperature characteristic of the pressure sensor is related by a first approximate polynomial, the pressure vs. frequency characteristic is related by a second approximate polynomial, the first order coefficient of the second approximate polynomial is related by a third approximate polynomial, After measuring and calculating all the coefficients of these polynomials, store them in the storage unit and call up all the coefficients when using the pressure sensor to compensate the frequency of the pressure sensor, so the pressure obtained by measurement Detection accuracy is greatly improved, both reproducibility and high stability can be improved, and the operating temperature range and operating pressure range are widened.

なお、本実施形態では、図1に示すように圧力センサー1を構成したが、これはあくま
でも一例であり、圧力センサー1の低消費電力化を図るために、電流を多く消費する演算
処理部17とインターフェイス部(I/F)18との機能を、電気的に接続する外部機器
に持たせ、演算処理部17とインターフェイス部(I/F)18を除いて圧力センサーを
構成するとよい。圧力センサーの中で最も消費電力の大きな演算処理部17の機能を、外
部機器の有するCPUに移すことにより、圧力センサーの小型化が可能であると共に、低
諸費電力化が図られるという効果がある。また、その際は演算処理部17に接続される温
度センサー11は感圧ユニット11の近傍に配置すれば外部機器に設けることが可能にな
る。
従って、本実施形態の圧力センサー1は、感圧ユニット11と、記憶部16とにより構
成することが可能になり、圧力センサー1の小型化、低消費電力化を図ることが可能にな
る。
In the present embodiment, the pressure sensor 1 is configured as shown in FIG. 1, but this is merely an example, and in order to reduce the power consumption of the pressure sensor 1, the arithmetic processing unit 17 that consumes a large amount of current. The interface unit (I / F) 18 may have a function in an external device to be electrically connected, and the pressure sensor may be configured except for the arithmetic processing unit 17 and the interface unit (I / F) 18. By transferring the function of the arithmetic processing unit 17 having the largest power consumption among the pressure sensors to the CPU of the external device, it is possible to reduce the size of the pressure sensor and reduce power consumption. . In this case, if the temperature sensor 11 connected to the arithmetic processing unit 17 is disposed in the vicinity of the pressure-sensitive unit 11, it can be provided in an external device.
Therefore, the pressure sensor 1 of the present embodiment can be configured by the pressure-sensitive unit 11 and the storage unit 16, and the pressure sensor 1 can be reduced in size and power consumption can be reduced.

本実施形態の圧力センサー1のように、感圧ユニット11を構成する感圧素子25とダ
イヤフラム20と基台30とを全て水晶で構成することにより、各部の線膨張係数を同一
にできるので、温度変化に起因する歪による検出精度の劣化を少なくできるという効果が
ある。
また、本実施形態の圧力センサー1の周波数温度特性を3次多項式で近似することによ
り2次多項式で近似した場合に比べ圧力センサーの検出精度が向上するという効果がある
。また、圧力センサー1の圧力対周波数特性を3次多項式で近似することにより、従来の
1次式の近似に比べ圧力センサーの検出精度が向上するという効果がある。また、第2の
近似多項式の1次の係数に温度依存性を持たして2次多項式とすることにより、従来は考
慮してない温度依存性を取り入れて周波数を補正したので圧力センサーの検出精度が向上
するという効果がある。
Like the pressure sensor 1 of the present embodiment, since the pressure-sensitive element 25, the diaphragm 20, and the base 30 constituting the pressure-sensitive unit 11 are all made of quartz, the linear expansion coefficients of the respective parts can be made the same. There is an effect that deterioration in detection accuracy due to distortion caused by temperature change can be reduced.
Further, by approximating the frequency temperature characteristic of the pressure sensor 1 of the present embodiment with a cubic polynomial, there is an effect that the detection accuracy of the pressure sensor is improved as compared with the case of approximation with a quadratic polynomial. Further, by approximating the pressure-frequency characteristic of the pressure sensor 1 with a cubic polynomial, there is an effect that the detection accuracy of the pressure sensor is improved as compared with the approximation of the conventional linear expression. In addition, since the first order coefficient of the second approximate polynomial has a temperature dependency and is a second order polynomial, the temperature is corrected by taking into account the temperature dependency that has not been considered in the past. Has the effect of improving.

本実施形態は、圧力に応じて周波数が変化する感圧ユニット11と、感圧ユニット11
が有する諸特性を記憶する記憶部と、備えた圧力センサー1の製造方法であって、一定圧
力の環境下おいて前記圧力センサー1の温度と周波数とを関係づける周波数温度特性を表
す第1の近似多項式の係数を求める工程と、互いに異なる複数の温度環境下において前記
圧力センサー1の圧力と周波数とを関係づける圧力対周波数特性を表す第2の近似多項式
の係数を求める工程と、前記第2の近似多項式の1次の係数を構成する第3の近似多項式
の係数を求める工程と、前記記憶部に求めた前記全ての係数を記憶させる工程と、を含む
圧力センサーの製造方法である。
以上のように周波数温度特性を表す係数と、圧力対周波数特性を表す係数と、圧力対周
波数特性の1次の係数の温度依存性を表す係数を実測により求める工程と、これら全ての
係数を記憶部に記憶させる工程を有することにより、圧力センサーの圧力検出精度を大幅
に改善し、再現性、高安定性を改善でき、使用温度範囲、使用圧力範囲を広げることがで
きる圧力センサー1を製造することが可能になるという効果がある。
In the present embodiment, a pressure-sensitive unit 11 whose frequency changes according to pressure, and a pressure-sensitive unit 11
1 is a method for manufacturing a pressure sensor 1 comprising a storage unit that stores various characteristics of the first and second frequency temperature characteristics that relate the temperature and the frequency of the pressure sensor 1 under a constant pressure environment. A step of obtaining a coefficient of an approximate polynomial, a step of obtaining a coefficient of a second approximate polynomial representing a pressure-frequency characteristic relating the pressure and frequency of the pressure sensor 1 under a plurality of different temperature environments, and the second A method for manufacturing a pressure sensor, comprising: a step of obtaining a coefficient of a third approximation polynomial constituting a first order coefficient of the approximation polynomial; and a step of storing all the obtained coefficients in the storage unit.
As described above, the coefficient that represents the frequency temperature characteristic, the coefficient that represents the pressure-frequency characteristic, the coefficient that represents the temperature dependence of the first-order coefficient of the pressure-frequency characteristic, and the coefficient that represents the temperature dependence are memorized. Pressure sensor 1 that can greatly improve the pressure detection accuracy of the pressure sensor, improve reproducibility and high stability, and can widen the operating temperature range and the operating pressure range. There is an effect that it becomes possible.

1…圧力センサー、11…感圧ユニット、12…温度センサー(Ts)、13…発振回路
(OSC)、14…カウンター、15…基準発振器(TCXO)、16…記憶部、17…
演算処理部(CPU)、18…インターフェイス部(I/F)、20…ダイヤフラム、2
1…厚肉部、22…薄肉部、23、24…支持部、25…感圧素子(双音叉振動素子)、
26a、26b…振動部、27a、27b…基部、30…基台、31…枠部、32…平板
部、33…孔
DESCRIPTION OF SYMBOLS 1 ... Pressure sensor, 11 ... Pressure-sensitive unit, 12 ... Temperature sensor (Ts), 13 ... Oscillation circuit (OSC), 14 ... Counter, 15 ... Reference oscillator (TCXO), 16 ... Memory | storage part, 17 ...
Arithmetic processing unit (CPU), 18 ... interface unit (I / F), 20 ... diaphragm, 2
DESCRIPTION OF SYMBOLS 1 ... Thick part, 22 ... Thin part, 23, 24 ... Support part, 25 ... Pressure-sensitive element (double tuning fork vibration element),
26a, 26b ... vibrating portion, 27a, 27b ... base, 30 ... base, 31 ... frame portion, 32 ... flat plate portion, 33 ... hole

Claims (9)

圧力に応じて周波数が変化する感圧ユニットと、
記憶部と、備え、
前記記憶部は、
一定圧力の環境下おいて前記感圧ユニットの周波数温度特性を表す第1の近似多項式の
係数と、
互いに異なる複数の温度環境下において前記感圧ユニットの圧力周波数特性を表す第2
の近似多項式の係数と、
前記第2の近似多項式の1次の係数を構成する第3の近似多項式の係数と
を記憶したことを特徴とする圧力センサー。
A pressure-sensitive unit whose frequency changes according to pressure,
A storage unit,
The storage unit
A coefficient of a first approximate polynomial representing a frequency temperature characteristic of the pressure-sensitive unit under a constant pressure environment;
A second frequency characteristic of the pressure sensitive unit in a plurality of different temperature environments.
The coefficients of the approximate polynomial of
A pressure sensor storing a coefficient of a third approximate polynomial constituting a first-order coefficient of the second approximate polynomial.
前記第1の近似多項式を3次多項式としたことを特徴とする請求項1に記載の圧力セン
サー。
The pressure sensor according to claim 1, wherein the first approximate polynomial is a cubic polynomial.
前記第2の近似多項式を3次多項式としたことを特徴とする請求項1に記載の圧力セン
サー。
The pressure sensor according to claim 1, wherein the second approximate polynomial is a cubic polynomial.
前記第3の近似多項式を2次多項式としたことを特徴とする請求項1に記載の圧力セン
サー。
The pressure sensor according to claim 1, wherein the third approximate polynomial is a quadratic polynomial.
前記感圧ユニットの温度を検知する温度センサーと、
前記感圧ユニットから出力される周波数信号と前記記憶部に記憶されている係数とに基
づいて演算処理を行う演算処理部と、
を備えたことを特徴とする請求項1乃至4の何れか一項に記載の圧力センサー。
A temperature sensor for detecting the temperature of the pressure sensitive unit;
An arithmetic processing unit that performs arithmetic processing based on a frequency signal output from the pressure-sensitive unit and a coefficient stored in the storage unit;
The pressure sensor according to any one of claims 1 to 4, further comprising:
前記感圧ユニットは、
感圧部と当該感圧部の両端と接続される一対の基部とを有する感圧素子と、
一方の主面に受圧面を有し、当該受圧面の裏側が前記感圧素子の一方の主面側を覆うと
共に、前記感圧素子の一対の基部を夫々支持する一対の支持部が設けられたダイヤフラム
と、
前記ダイアフラムの前記受圧面の裏側に対向すると共に、前記感圧素子の他方の主面側
を覆う基台とを有することを特徴とする請求項1乃至5の何れか一項に記載の圧力センサ
ー。
The pressure sensitive unit is:
A pressure sensitive element having a pressure sensitive part and a pair of bases connected to both ends of the pressure sensitive part;
There is a pressure receiving surface on one main surface, a back side of the pressure receiving surface covers one main surface side of the pressure sensitive element, and a pair of support portions that respectively support a pair of base portions of the pressure sensitive element are provided. With a diaphragm
6. The pressure sensor according to claim 1, further comprising a base that opposes the back side of the pressure-receiving surface of the diaphragm and covers the other main surface side of the pressure-sensitive element. .
前記感圧部が、少なくとも一以上の柱状ビームから構成されていることを特徴とする請
求項6に記載の圧力センサー。
The pressure sensor according to claim 6, wherein the pressure-sensitive portion includes at least one columnar beam.
前記感圧素子、前記ダイヤフラム、及び前記基台が全て水晶材料で構成されていること
を特徴とする請求項6又は7に記載の圧力センサー。
The pressure sensor according to claim 6 or 7, wherein the pressure-sensitive element, the diaphragm, and the base are all made of a quartz material.
圧力に応じて周波数が変化する感圧ユニットと、記憶部と、備えた圧力センサーの製造
方法であって、
一定圧力の環境下おいて前記圧力センサーの周波数温度特性を表す第1の近似多項式の
係数を求める工程と、
互いに異なる複数の温度環境下において前記圧力センサーの圧力周波数特性を表す第2
の近似多項式の係数を求める工程と、
前記第2の近似多項式の1次の係数を構成する第3の近似多項式の係数を求める工程と

前記記憶部に前記全ての係数を記憶させる工程と、
を含むことを特徴とする圧力センサーの製造方法。
A pressure-sensitive unit whose frequency changes according to pressure, a storage unit, and a method of manufacturing a pressure sensor,
Obtaining a coefficient of a first approximate polynomial representing a frequency temperature characteristic of the pressure sensor under a constant pressure environment;
Second pressure representing the pressure frequency characteristics of the pressure sensor in a plurality of different temperature environments.
Obtaining a coefficient of an approximate polynomial of
Obtaining a coefficient of a third approximate polynomial constituting a first-order coefficient of the second approximate polynomial;
Storing all the coefficients in the storage unit;
A method for manufacturing a pressure sensor, comprising:
JP2009132836A 2009-06-02 2009-06-02 Pressure sensor and manufacturing method thereof Expired - Fee Related JP5293413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132836A JP5293413B2 (en) 2009-06-02 2009-06-02 Pressure sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132836A JP5293413B2 (en) 2009-06-02 2009-06-02 Pressure sensor and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2010281581A true JP2010281581A (en) 2010-12-16
JP2010281581A5 JP2010281581A5 (en) 2012-05-31
JP5293413B2 JP5293413B2 (en) 2013-09-18

Family

ID=43538463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132836A Expired - Fee Related JP5293413B2 (en) 2009-06-02 2009-06-02 Pressure sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5293413B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100156A1 (en) * 2011-12-28 2013-07-04 富士電機株式会社 Method for correcting output value of physical quantity sensor apparatus, method for correcting output value of physical quantity sensor, physical quantity sensor apparatus, and apparatus for correcting output value of physical quantity sensor
US10989729B2 (en) 2018-03-09 2021-04-27 Seiko Epson Corporation Physical quantity sensor device, and inclinometer, inertia measurement device, structure monitoring device, and moving object using physical quantity sensor device
CN116754107A (en) * 2023-08-23 2023-09-15 清华四川能源互联网研究院 High-sensitivity resonant pressure sensor with amplifying structure and signal conditioning method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532097A (en) * 1976-06-29 1978-01-10 Seiko Instr & Electronics Ltd Quartz crystal oscillator
JPS54158150A (en) * 1978-06-05 1979-12-13 Seiko Instr & Electronics Ltd Crystal oscillation circuit
JPS6129652B2 (en) * 1980-07-25 1986-07-08 Suwa Seikosha Kk
JPS63281033A (en) * 1987-05-13 1988-11-17 Daiwa Shinku Kogyosho:Kk Pressure detector
JP3010922B2 (en) * 1992-08-28 2000-02-21 セイコーエプソン株式会社 Crystal resonator for temperature detection and method of manufacturing the same
JP2007327922A (en) * 2006-06-09 2007-12-20 Epson Toyocom Corp Pressure sensor and diaphragm for same
JP2008076075A (en) * 2006-09-19 2008-04-03 Epson Toyocom Corp Absolute pressure sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532097A (en) * 1976-06-29 1978-01-10 Seiko Instr & Electronics Ltd Quartz crystal oscillator
JPS54158150A (en) * 1978-06-05 1979-12-13 Seiko Instr & Electronics Ltd Crystal oscillation circuit
JPS6129652B2 (en) * 1980-07-25 1986-07-08 Suwa Seikosha Kk
JPS63281033A (en) * 1987-05-13 1988-11-17 Daiwa Shinku Kogyosho:Kk Pressure detector
JP3010922B2 (en) * 1992-08-28 2000-02-21 セイコーエプソン株式会社 Crystal resonator for temperature detection and method of manufacturing the same
JP2007327922A (en) * 2006-06-09 2007-12-20 Epson Toyocom Corp Pressure sensor and diaphragm for same
JP2008076075A (en) * 2006-09-19 2008-04-03 Epson Toyocom Corp Absolute pressure sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013100156A1 (en) * 2011-12-28 2013-07-04 富士電機株式会社 Method for correcting output value of physical quantity sensor apparatus, method for correcting output value of physical quantity sensor, physical quantity sensor apparatus, and apparatus for correcting output value of physical quantity sensor
CN103946672A (en) * 2011-12-28 2014-07-23 富士电机株式会社 Method for correcting output value of physical quantity sensor apparatus, method for correcting output value of physical quantity sensor, physical quantity sensor apparatus, and apparatus for correcting output value of physical quantity sensor
US9857782B2 (en) 2011-12-28 2018-01-02 Fuji Electric Co., Ltd. Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
US10989729B2 (en) 2018-03-09 2021-04-27 Seiko Epson Corporation Physical quantity sensor device, and inclinometer, inertia measurement device, structure monitoring device, and moving object using physical quantity sensor device
CN116754107A (en) * 2023-08-23 2023-09-15 清华四川能源互联网研究院 High-sensitivity resonant pressure sensor with amplifying structure and signal conditioning method
CN116754107B (en) * 2023-08-23 2023-10-20 清华四川能源互联网研究院 High-sensitivity resonant pressure sensor with amplifying structure and signal conditioning method

Also Published As

Publication number Publication date
JP5293413B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4973718B2 (en) Pressure detection unit and pressure sensor
US7954215B2 (en) Method for manufacturing acceleration sensing unit
US8381595B2 (en) Pressure detecting device
US8427035B2 (en) Vibration device and electronic device
US8939027B2 (en) Acceleration sensor
US20110100125A1 (en) Acceleration sensor
JP5915103B2 (en) Physical quantity detector
JP5293413B2 (en) Pressure sensor and manufacturing method thereof
JP2011232264A (en) Piezoelectric sensor, piezoelectric sensor element and piezoelectric vibration chip
US11262265B2 (en) Temperature correction device, sensor module, and temperature correction method
JP2010243276A (en) Relative pressure sensor, relative pressure measuring device, and relative pressure measuring method
JP2010181210A (en) Acceleration sensor
JP2011232263A (en) Piezoelectric sensor, piezoelectric sensor element and piezoelectric vibration chip
JP2008039662A (en) Acceleration sensor
JP2010197379A (en) Pressure detection unit and pressure sensor
JP5208466B2 (en) Tuning fork type vibration gyro
JP2008017261A (en) Tuning fork type piezoelectric vibrating chip, and sensor oscillation circuit and manufacturing method thereof
JP5939037B2 (en) Pressure sensor element and electronic device
JP4784436B2 (en) Acceleration sensor
JP5321812B2 (en) Physical quantity sensor and physical quantity measuring device
JP2011133391A (en) Pressure-sensing unit and pressure sensor
JP2009075037A (en) Force detection unit and pressure detection unit
JPH04337430A (en) Force converter
JP2010175263A (en) Pressure detection unit and pressure sensor
JP2013217719A (en) Pressure sensor and electronic apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130416

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees