JP2010280820A - Lubricant composition - Google Patents

Lubricant composition Download PDF

Info

Publication number
JP2010280820A
JP2010280820A JP2009135377A JP2009135377A JP2010280820A JP 2010280820 A JP2010280820 A JP 2010280820A JP 2009135377 A JP2009135377 A JP 2009135377A JP 2009135377 A JP2009135377 A JP 2009135377A JP 2010280820 A JP2010280820 A JP 2010280820A
Authority
JP
Japan
Prior art keywords
viscosity
less
hths
base oil
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009135377A
Other languages
Japanese (ja)
Other versions
JP5808517B2 (en
JP2010280820A5 (en
Inventor
Shigeki Matsui
茂樹 松井
Akira Yaguchi
彰 矢口
Reiko Kudo
麗子 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009135377A priority Critical patent/JP5808517B2/en
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to PCT/JP2010/059196 priority patent/WO2010140562A1/en
Priority to CN201610089709.2A priority patent/CN105695045A/en
Priority to EP10783345.1A priority patent/EP2439259A4/en
Priority to US13/322,975 priority patent/US9029303B2/en
Priority to EP13005590.8A priority patent/EP2712911A3/en
Priority to CN201310311548.3A priority patent/CN103396866B/en
Priority to CN2010800248327A priority patent/CN102459547A/en
Publication of JP2010280820A publication Critical patent/JP2010280820A/en
Publication of JP2010280820A5 publication Critical patent/JP2010280820A5/ja
Application granted granted Critical
Publication of JP5808517B2 publication Critical patent/JP5808517B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lubricants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lubricant composition for imparting satisfactorily fuel-saving properties while keeping other practical performances such as durability. <P>SOLUTION: The lubricant composition contains a lubricant base oil having 1-5 mm<SP>2</SP>/s kinetic viscosity at 100°C and a viscosity index improver having ≥0.50 ratio M1/M2 (wherein M1 is the total area of peaks between 51-52.5 ppm chemical shift relative to the total area of all peaks; M2 is the total area of peaks between 64-66 ppm chemical shift relative to the total area of all peaks) in a spectrum obtained by<SP>13</SP>C-NMR and satisfies inequality (A): HTHS(100°C)/HTHS(150°C)≥0.50 (wherein HTHS(100°C) is the HTHS viscosity at 100°C; HTHS(150°C) is the HTHS viscosity at 150°C). <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、潤滑油組成物に関する。   The present invention relates to a lubricating oil composition.

従来、内燃機関や変速機、その他機械装置には、その作用を円滑にするために潤滑油が用いられる。特に内燃機関用潤滑油(エンジン油)は内燃機関の高性能化、高出力化、運転条件の苛酷化などに伴い、高度な性能が要求される。したがって、従来のエンジン油にはこうした要求性能を満たすため、摩耗防止剤、金属系清浄剤、無灰分散剤、酸化防止剤などの種々の添加剤が配合されている(例えば、特許文献1〜3)。また近時、潤滑油に求められる省燃費性能は益々高くなっており、高粘度指数基油の適用や各種摩擦調整剤の適用などが検討されている(例えば、特許文献4)。   Conventionally, lubricating oil is used in an internal combustion engine, a transmission, and other mechanical devices in order to make the operation smooth. In particular, lubricating oil for internal combustion engines (engine oil) is required to have high performance as the internal combustion engine has higher performance, higher output, and severe operating conditions. Therefore, in order to satisfy such required performance, conventional engine oils are blended with various additives such as antiwear agents, metal detergents, ashless dispersants, antioxidants (for example, Patent Documents 1 to 3). ). In recent years, the fuel-saving performance required for lubricating oils has been increasing, and the application of high viscosity index base oils and various friction modifiers has been studied (for example, Patent Document 4).

特開2001−279287号公報JP 2001-279287 A 特開2002−129182号公報JP 2002-129182 A 特開平08−302378号公報Japanese Patent Laid-Open No. 08-302378 特開平06−306384号公報Japanese Patent Laid-Open No. 06-306384

しかしながら、従来の潤滑油は省燃費性の点で必ずしも十分とは言えない。   However, conventional lubricating oils are not always sufficient in terms of fuel economy.

例えば、一般的な省燃費化の手法として、潤滑油の動粘度の低減および粘度指数の向上(低粘度基油と粘度指数向上剤の組合せによるマルチグレード化)が知られている。しかしながら、かかる手法の場合、潤滑油またはそれを構成する基油の粘度の低減に起因して、厳しい潤滑条件下(高温高せん断条件下)での潤滑性能が低下し、摩耗や焼付き、疲労破壊等の不具合の発生が懸念される。つまり、従来の潤滑油においては、耐久性等の他の実用性能を維持しつつ、十分な省燃費性を付与することが困難である。   For example, as a general technique for reducing fuel consumption, reduction of kinematic viscosity of lubricant and improvement of viscosity index (multigrade using a combination of a low viscosity base oil and a viscosity index improver) are known. However, in the case of such a method, due to a decrease in the viscosity of the lubricating oil or the base oil constituting the lubricating oil, the lubricating performance under severe lubricating conditions (high temperature and high shear conditions) is reduced, and wear, seizure, fatigue There is concern about the occurrence of defects such as destruction. That is, in the conventional lubricating oil, it is difficult to provide sufficient fuel saving while maintaining other practical performance such as durability.

そして、上記の不具合を防止して耐久性を維持しつつ、省燃費性を付与するためには、150℃におけるHTHS粘度(「HTHS粘度」は「高温高せん断粘度」とも呼ばれる。)を高く、その一方で40℃における動粘度、100℃における動粘度および100℃におけるHTHS粘度を低くし、さらには低温粘度特性を向上させることが有効であるが、従来の潤滑油ではこれらの要件全てを満たすことが非常に困難である。   In order to prevent the above-described problems and maintain fuel durability while providing fuel economy, the HTHS viscosity at 150 ° C. (“HTHS viscosity” is also referred to as “high temperature high shear viscosity”) is high. On the other hand, it is effective to lower the kinematic viscosity at 40 ° C., the kinematic viscosity at 100 ° C. and the HTHS viscosity at 100 ° C., and further improve the low-temperature viscosity characteristics, but conventional lubricants satisfy all these requirements. It is very difficult.

本発明は、このような実情に鑑みてなされたものであり、150℃におけるHTHS粘度が十分に高く、40℃における動粘度、100℃における動粘度および100℃におけるHTHS粘度が十分に低く、さらには低温粘度特性に優れる潤滑油組成物を提供することを目的とする。   The present invention has been made in view of such circumstances, and the HTHS viscosity at 150 ° C. is sufficiently high, the kinematic viscosity at 40 ° C., the kinematic viscosity at 100 ° C., and the HTHS viscosity at 100 ° C. are sufficiently low, Is intended to provide a lubricating oil composition having excellent low-temperature viscosity characteristics.

上記課題を解決するために、本発明は、100℃における動粘度が1〜5mm/sである潤滑油基油と、13C−NMRにより得られるスペクトルにおいて、全ピークの合計面積に対する化学シフト51−52.5ppmの間のピークの合計面積M1と化学シフト64−66ppmの間のピークの合計面積M2の比、M1/M2が0.50以上である粘度指数向上剤と、を含有し、かつ、150℃におけるHTHS粘度と100℃におけるHTHS粘度の比が下記式(A)で表される条件を満たすことを特徴とする潤滑油組成物を提供する。
HTHS(100℃)/HTHS(150℃)≧0.50 (A)
[式中、HTHS(100℃)は100℃におけるHTHS粘度を示し、HTHS(150℃)は150℃におけるHTHS粘度を示す。]
In order to solve the above problems, the present invention comprises a lubricating base oil kinematic viscosity of 1 to 5 mm 2 / s at 100 ° C., in a spectrum obtained by 13 C-NMR, chemical shifts relative to the total area of all peaks A ratio of the total area M1 of the peak between 51-52.5 ppm and the total area M2 of the peak between the chemical shifts 64-66 ppm, a viscosity index improver having M1 / M2 of 0.50 or more, And the lubricating oil composition characterized by the ratio of the HTHS viscosity in 150 degreeC and the HTHS viscosity in 100 degreeC satisfy | filling the conditions represented by a following formula (A) is provided.
HTHS (100 ° C.) / HTHS (150 ° C.) ≧ 0.50 (A)
[Wherein, HTHS (100 ° C.) represents the HTHS viscosity at 100 ° C., and HTHS (150 ° C.) represents the HTHS viscosity at 150 ° C. ]

本発明でいう「150℃におけるHTHS粘度」および「100℃におけるHTHS粘度」とは、それぞれASTM D4683に規定される150℃または100℃での高温高せん断粘度を意味する。   In the present invention, “HTHS viscosity at 150 ° C.” and “HTHS viscosity at 100 ° C.” mean high-temperature high-shear viscosity at 150 ° C. or 100 ° C. as defined in ASTM D4683, respectively.

上記粘度指数向上剤は、ポリ(メタ)アクリレート系粘度指数向上剤であることが好ましい。   The viscosity index improver is preferably a poly (meth) acrylate viscosity index improver.

さらに、上記粘度指数向上剤は、PSSIが40以下、重量平均分子量とPSSIの比が0.8×10以上のものであることが好ましい。 Further, the viscosity index improver preferably has a PSSI of 40 or less and a weight average molecular weight to PSSI ratio of 0.8 × 10 4 or more.

ここで、本発明でいう「PSSI」とは、ASTM D 6022−01(Standard Practice for Calculation of Permanent Shear Stability Index)に準拠し、ASTM D 6278−02(Test Metohd for Shear Stability of Polymer Containing Fluids Using a European Diesel Injector Apparatus)により測定されたデータに基づき計算された、ポリマーの永久せん断安定性指数(Permanent Shear Stability Index)を意味する。   Here, “PSSI” in the present invention conforms to ASTM D 6022-01 (Standard Practicing for Calming of Permanent Shear Stability Index), and ASTM D 6278-02 (Test Method for Stood for Sto Permanent Shear Stability Index calculated based on data measured by European Diesel Injector Apparatus.

また、本発明の潤滑油組成物は、その150℃におけるHTHS粘度が2.6以上であり、100℃におけるHTHS粘度が5.3以下であることが好ましい。   The lubricating oil composition of the present invention preferably has an HTHS viscosity at 150 ° C. of 2.6 or more and an HTHS viscosity at 100 ° C. of 5.3 or less.

本発明の潤滑油組成物は、150℃におけるHTHS粘度が十分に高く、40℃における動粘度、100℃における動粘度および100℃におけるHTHS粘度が十分に低く、さらには低温粘度特性に優れるものである。したがって、本発明の潤滑油組成物によれば、ポリ−α−オレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いずとも、150℃のHTHS粘度を維持しながら、省燃費性を大幅に向上させることができ、特に潤滑油の100℃におけるHTHS粘度や40℃、100℃の動粘度を大幅に低減し省燃費性を著しく改善することができる。   The lubricating oil composition of the present invention has a sufficiently high HTHS viscosity at 150 ° C., a kinematic viscosity at 40 ° C., a kinematic viscosity at 100 ° C. and a HTHS viscosity at 100 ° C., and is excellent in low-temperature viscosity characteristics. is there. Therefore, according to the lubricating oil composition of the present invention, the HTHS viscosity at 150 ° C. is maintained without using a synthetic oil such as a poly-α-olefin base oil or an ester base oil or a low viscosity mineral oil base oil. However, the fuel economy can be greatly improved, and particularly the HTHS viscosity at 100 ° C. and the kinematic viscosities at 40 ° C. and 100 ° C. of the lubricating oil can be greatly reduced to significantly improve the fuel economy.

また、本発明の潤滑油組成物は、二輪車用、四輪車用、発電用、コジェネレーション用等のガソリンエンジン、ディーゼルエンジン、ガスエンジン、にも好適に使用でき、さらには、硫黄分が50質量ppm以下の燃料を使用するこれらの各種エンジンに対しても好適に使用することができるだけでなく、船舶用、船外機用の各種エンジンに対しても有用である。   The lubricating oil composition of the present invention can also be suitably used for gasoline engines, diesel engines, gas engines, etc. for motorcycles, automobiles, power generation, cogeneration, etc. Not only can it be suitably used for these various engines using fuel of mass ppm or less, but it is also useful for various engines for ships and outboard motors.

本発明の潤滑油組成物においては、100℃における動粘度が1〜5mm/sである潤滑油基油(以下、「本発明に係る潤滑油基油」という。)が用いられる。 In the lubricating oil composition of the present invention, a lubricating base oil (hereinafter referred to as “the lubricating base oil according to the present invention”) having a kinematic viscosity at 100 ° C. of 1 to 5 mm 2 / s is used.

本発明に係る潤滑油基油は、100℃における動粘度が上記条件を満たしていれば特に制限されない。具体的には、原油を常圧蒸留および/または減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、硫酸洗浄、白土処理等の精製処理のうちの1種を単独でまたは2種以上を組み合わせて精製したパラフィン系鉱油、あるいはノルマルパラフィン系基油、イソパラフィン系基油などのうち、100℃における動粘度が上記条件を満たす基油が使用できる。   The lubricating base oil according to the present invention is not particularly limited as long as the kinematic viscosity at 100 ° C. satisfies the above conditions. Specifically, a lubricating oil fraction obtained by subjecting crude oil to atmospheric distillation and / or vacuum distillation is subjected to solvent removal, solvent extraction, hydrocracking, solvent dewaxing, catalytic dewaxing, hydrorefining, sulfuric acid Among paraffinic mineral oils, normal paraffinic base oils, isoparaffinic base oils, etc. purified by combining one or more of purification processes such as washing and clay treatment alone or in combination, have a kinematic viscosity at 100 ° C. A base oil that satisfies the above conditions can be used.

本発明に係る潤滑油基油の好ましい例としては、以下に示す基油(1)〜(8)を原料とし、この原料油および/またはこの原料油から回収された潤滑油留分を、所定の精製方法によって精製し、潤滑油留分を回収することによって得られる基油を挙げることができる。
(1)パラフィン基系原油および/または混合基系原油の常圧蒸留による留出油
(2)パラフィン基系原油および/または混合基系原油の常圧蒸留残渣油の減圧蒸留による留出油(WVGO)
(3)潤滑油脱ろう工程により得られるワックス(スラックワックス等)および/またはガストゥリキッド(GTL)プロセス等により得られる合成ワックス(フィッシャートロプシュワックス、GTLワックス等)
(4)基油(1)〜(3)から選ばれる1種または2種以上の混合油および/または当該混合油のマイルドハイドロクラッキング処理油
(5)基油(1)〜(4)から選ばれる2種以上の混合油
(6)基油(1)、(2)、(3)、(4)または(5)の脱れき油(DAO)
(7)基油(6)のマイルドハイドロクラッキング処理油(MHC)
(8)基油(1)〜(7)から選ばれる2種以上の混合油。
As a preferable example of the lubricating base oil according to the present invention, the following base oils (1) to (8) are used as raw materials, and the raw oil and / or a lubricating oil fraction recovered from the raw oil is determined in a predetermined manner. The base oil obtained by refine | purifying by the refining method of this, and collect | recovering lubricating oil fractions can be mentioned.
(1) Distilled oil by atmospheric distillation of paraffinic crude oil and / or mixed base crude oil (2) Distilled oil by vacuum distillation of atmospheric distillation residue of paraffinic crude oil and / or mixed base crude oil ( WVGO)
(3) Wax (slack wax, etc.) obtained by the lubricant dewaxing process and / or synthetic wax (Fischer-Tropsch wax, GTL wax, etc.) obtained by the gas-to-liquid (GTL) process, etc.
(4) One or two or more mixed oils selected from base oils (1) to (3) and / or mild hydrocracked oils of the mixed oils (5) selected from base oils (1) to (4) 2 or more kinds of mixed oils (6) Base oil (1), (2), (3), (4) or (5) debris oil (DAO)
(7) Mild hydrocracking treatment oil (MHC) of base oil (6)
(8) Two or more mixed oils selected from base oils (1) to (7).

なお、上記所定の精製方法としては、水素化分解、水素化仕上げなどの水素化精製;フルフラール溶剤抽出などの溶剤精製;溶剤脱ろうや接触脱ろうなどの脱ろう;酸性白土や活性白土などによる白土精製;硫酸洗浄、苛性ソーダ洗浄などの薬品(酸またはアルカリ)洗浄などが好ましい。本発明では、これらの精製方法のうちの1種を単独で行ってもよく、2種以上を組み合わせて行ってもよい。また、2種以上の精製方法を組み合わせる場合、その順序は特に制限されず、適宜選定することができる。   The above-mentioned predetermined purification methods include hydrorefining such as hydrocracking and hydrofinishing; solvent refining such as furfural solvent extraction; dewaxing such as solvent dewaxing and catalytic dewaxing; acid clay and activated clay White clay refining; chemical (acid or alkali) cleaning such as sulfuric acid cleaning and caustic soda cleaning are preferred. In the present invention, one of these purification methods may be performed alone, or two or more may be combined. Moreover, when combining 2 or more types of purification methods, the order in particular is not restrict | limited, It can select suitably.

更に、本発明に係る潤滑油基油としては、上記基油(1)〜(8)から選ばれる基油または当該基油から回収された潤滑油留分について所定の処理を行うことにより得られる下記基油(9)または(10)が特に好ましい。
(9)上記基油(1)〜(8)から選ばれる基油または当該基油から回収された潤滑油留分を水素化分解し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または当該脱ろう処理をした後に蒸留することによって得られる水素化分解鉱油
(10)上記基油(1)〜(8)から選ばれる基油または当該基油から回収された潤滑油留分を水素化異性化し、その生成物またはその生成物から蒸留等により回収される潤滑油留分について溶剤脱ろうや接触脱ろうなどの脱ろう処理を行い、または、当該脱ろう処理をしたあとに蒸留することによって得られる水素化異性化鉱油。
Furthermore, the lubricating base oil according to the present invention is obtained by subjecting a base oil selected from the base oils (1) to (8) or a lubricating oil fraction recovered from the base oil to a predetermined treatment. The following base oil (9) or (10) is particularly preferred.
(9) The base oil selected from the base oils (1) to (8) or the lubricating oil fraction recovered from the base oil is hydrocracked and recovered from the product or the product by distillation or the like. Hydrocracked mineral oil obtained by performing dewaxing treatment such as solvent dewaxing or catalytic dewaxing on the lubricating oil fraction, or distillation after the dewaxing treatment (10) The above base oils (1) to (8) ) Or a lubricating oil fraction recovered from the base oil is hydroisomerized, and the product or the lubricating oil fraction recovered from the product by distillation or the like is subjected to solvent dewaxing or catalytic dewaxing. Hydroisomerized mineral oil obtained by performing a dewaxing process such as or by distillation after the dewaxing process.

また、上記(9)または(10)の潤滑油基油を得るに際して、好都合なステップで、必要に応じて溶剤精製処理および/または水素化仕上げ処理工程を更に設けてもよい。   Moreover, when obtaining the lubricating base oil of (9) or (10) above, a solvent refining treatment and / or a hydrofinishing treatment step may be further provided as necessary at an advantageous step.

また、上記水素化分解・水素化異性化に使用される触媒は特に制限されないが、分解活性を有する複合酸化物(例えば、シリカアルミナ、アルミナボリア、シリカジルコニアなど)または当該複合酸化物の1種類以上を組み合わせてバインダーで結着させたものを担体とし、水素化能を有する金属(例えば周期律表第VIa族の金属や第VIII族の金属などの1種類以上)を担持させた水素化分解触媒、あるいはゼオライト(例えばZSM−5、ゼオライトベータ、SAPO−11など)を含む担体に第VIII族の金属のうち少なくとも1種類以上を含む水素化能を有する金属を担持させた水素化異性化触媒が好ましく使用される。水素化分解触媒および水素化異性化触媒は、積層または混合などにより組み合わせて用いてもよい。   The catalyst used for the hydrocracking / hydroisomerization is not particularly limited, but a composite oxide having cracking activity (for example, silica alumina, alumina boria, silica zirconia, etc.) or one kind of the composite oxide. Hydrogenolysis with a combination of the above combined with a binder and supporting a metal having hydrogenation ability (for example, one or more metals such as Group VIa metal or Group VIII metal in the periodic table) Hydroisomerization catalyst in which a catalyst or a support containing zeolite (for example, ZSM-5, zeolite beta, SAPO-11, etc.) is loaded with a metal having a hydrogenation ability containing at least one of Group VIII metals Are preferably used. The hydrocracking catalyst and the hydroisomerization catalyst may be used in combination by stacking or mixing.

水素化分解・水素化異性化の際の反応条件は特に制限されないが、水素分圧0.1〜20MPa、平均反応温度150〜450℃、LHSV0.1〜3.0hr−1、水素/油比50〜20000scf/bとすることが好ましい。   The reaction conditions in the hydrocracking / hydroisomerization are not particularly limited, but the hydrogen partial pressure is 0.1 to 20 MPa, the average reaction temperature is 150 to 450 ° C., the LHSV is 0.1 to 3.0 hr-1, and the hydrogen / oil ratio. It is preferable to set it as 50-20000 scf / b.

本発明に係る潤滑油基油の100℃動粘度は、5mm/s以下であることが必要であり、好ましくは4.9mm/s以下、より好ましくは4.8mm/s以下、さらに好ましくは4.7mm/s以下、特に好ましくは4.6mm/s以下、最も好ましくは4.5mm/s以下である。一方、当該100℃動粘度は、1mm/s以上であることが必要であり、1.5mm/s以上であることが好ましく、より好ましくは2mm/s以上、さらに好ましくは2.5mm/s以上、特に好ましくは3mm/s以上である。ここでいう100℃における動粘度とは、ASTM D−445に規定される100℃での動粘度を示す。潤滑油基油成分の100℃動粘度が20mm/sを超える場合には、低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、1mm/s未満の場合は潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油組成物の蒸発損失が大きくなるおそれがある。 100 ° C. The kinematic viscosity of the lubricating base oil of the invention must be less than or equal 5 mm 2 / s, preferably 4.9 mm 2 / s or less, more preferably 4.8 mm 2 / s or less, further preferably 4.7 mm 2 / s or less, particularly preferably 4.6 mm 2 / s or less, and most preferably not more than 4.5 mm 2 / s. On the other hand, the 100 ° C. kinematic viscosity needs to be 1 mm 2 / s or more, preferably 1.5 mm 2 / s or more, more preferably 2 mm 2 / s or more, and further preferably 2.5 mm. 2 / s or more, particularly preferably 3 mm 2 / s or more. The kinematic viscosity at 100 ° C. here refers to the kinematic viscosity at 100 ° C. as defined in ASTM D-445. If the 100 ° C. kinematic viscosity of the lubricating base oil component exceeds 20 mm 2 / s, the low temperature viscosity characteristics are deteriorated, and there may not be obtained sufficient fuel economy, in the case of less than 1 mm 2 / s Since the formation of an oil film at the lubrication site is insufficient, the lubricity is inferior, and the evaporation loss of the lubricating oil composition may increase.

本発明においては、100℃における動粘度が下記の範囲にある潤滑油基油を蒸留等により分取し、使用することが好ましい。
(I)100℃における動粘度が1.5mm/s以上3.5mm/s未満、より好ましくは2.0〜3.0mm/sの潤滑油基油
(II)100℃における動粘度が3.5mm/s以上4.5mm/s未満、より好ましくは3.5〜4.1mm/sの潤滑油基油
(III)100℃における動粘度が4.5〜10mm/s、より好ましくは4.8〜9mm/s、特に好ましくは5.5〜8.0mm/sの潤滑油基油。
In the present invention, it is preferable to use a lubricating base oil having a kinematic viscosity at 100 ° C. in the following range by distillation or the like.
(I) less than the kinematic viscosity at 100 ° C. is 1.5 mm 2 / s or more 3.5 mm 2 / s, more preferably kinematic viscosity at 2.0 to 3.0 mm 2 / s lubricating base oils (II) 100 ° C. There 3.5 mm 2 / s or more 4.5mm less than 2 / s, more preferably a kinematic viscosity in the lubricating base oil of 3.5~4.1mm 2 / s (III) 100 ℃ 4.5~10mm 2 / s, more preferably from 4.8 to 9 mm 2 / s, particularly preferably from 5.5 to 8.0 mm 2 / s.

また、本発明に係る潤滑油基油の40℃における動粘度は、好ましくは80mm/s以下、より好ましくは50mm/s以下、さらに好ましくは20mm/s以下、特に好ましくは18mm/s以下、最も好ましくは16mm/s以下である。一方、当該40℃動粘度は、好ましくは6.0mm/s以上、より好ましくは8.0mm/s以上、さらに好ましくは12mm/s以上、特に好ましくは14mm/s以上、最も好ましくは15mm/s以上である。潤滑油基油成分の40℃動粘度が80mm/sを超える場合には、低温粘度特性が悪化し、また十分な省燃費性が得られないおそれがあり、6.0mm/s以下の場合は潤滑箇所での油膜形成が不十分であるため潤滑性に劣り、また潤滑油組成物の蒸発損失が大きくなるおそれがある。また、本発明においては、40℃における動粘度が下記の範囲にある潤滑油留分を蒸留等により分取し、使用することが好ましい。
(IV)40℃における動粘度が6.0mm/s以上12mm/s未満、より好ましくは8.0〜12mm/sの潤滑油基油
(V)40℃における動粘度が12mm/s以上28mm/s未満、より好ましくは13〜19mm/sの潤滑油基油
(VI)40℃における動粘度が28〜50mm/s、より好ましくは29〜45mm/s、特に好ましくは30〜40mm/sの潤滑油基油。
Further, the kinematic viscosity at 40 ° C. of the lubricating base oil according to the present invention is preferably 80 mm 2 / s or less, more preferably 50 mm 2 / s or less, still more preferably 20 mm 2 / s or less, and particularly preferably 18 mm 2 / s. s or less, most preferably 16 mm 2 / s or less. On the other hand, the 40 ° C. kinematic viscosity is preferably 6.0 mm 2 / s or more, more preferably 8.0 mm 2 / s or more, further preferably 12 mm 2 / s or more, particularly preferably 14 mm 2 / s or more, and most preferably. Is 15 mm 2 / s or more. When the 40 ° C. kinematic viscosity of the lubricating base oil component exceeds 80 mm 2 / s, the low-temperature viscosity characteristics may be deteriorated, and sufficient fuel economy may not be obtained, which is 6.0 mm 2 / s or less. In such a case, the oil film formation at the lubrication site is insufficient, so that the lubricity is poor, and the evaporation loss of the lubricating oil composition may be increased. Moreover, in this invention, it is preferable to fractionate and use the lubricating oil fraction whose kinematic viscosity in 40 degreeC is in the following range by distillation etc.
(IV) less than the kinematic viscosity at 40 ° C. is 6.0 mm 2 / s or more 12 mm 2 / s, more preferably 8.0~12mm 2 / s lubricating base oil (V) kinematic viscosity at 40 ° C. is 12 mm 2 / More than s and less than 28 mm < 2 > / s, more preferably 13-19 mm < 2 > / s lubricating base oil (VI) The kinematic viscosity at 40 [deg.] C. is 28-50 mm < 2 > / s, more preferably 29-45 mm < 2 > / s, particularly preferred. Is a lubricating base oil of 30 to 40 mm 2 / s.

本発明に係る潤滑油基油の粘度指数は、120以上であることが好ましい。また、上記潤滑油基油(I)および(IV)の粘度指数は、好ましくは120〜135、より好ましくは120〜130である。また、上記潤滑油基油(II)および(V)の粘度指数は、好ましくは120〜160、より好ましくは125〜150、更に好ましくは135〜145である。また、上記潤滑油基油(III)および(VI)の粘度指数は、好ましくは120〜180、より好ましくは125〜160である。粘度指数が前記下限値未満であると、粘度−温度特性および熱・酸化安定性、揮発防止性が悪化するだけでなく、摩擦係数が上昇する傾向にあり、また、摩耗防止性が低下する傾向にある。また、粘度指数が前記上限値を超えると、低温粘度特性が低下する傾向にある。   The viscosity index of the lubricating base oil according to the present invention is preferably 120 or more. Moreover, the viscosity index of the lubricating base oils (I) and (IV) is preferably 120 to 135, more preferably 120 to 130. The viscosity index of the lubricating base oils (II) and (V) is preferably 120 to 160, more preferably 125 to 150, and still more preferably 135 to 145. Further, the viscosity index of the lubricating base oils (III) and (VI) is preferably 120 to 180, more preferably 125 to 160. If the viscosity index is less than the lower limit, not only the viscosity-temperature characteristics, thermal / oxidative stability and volatilization prevention properties deteriorate, but also the friction coefficient tends to increase and the wear prevention properties tend to decrease. It is in. On the other hand, when the viscosity index exceeds the upper limit, the low-temperature viscosity characteristics tend to decrease.

なお、本発明でいう粘度指数とは、JIS K 2283−1993に準拠して測定された粘度指数を意味する。   In addition, the viscosity index as used in the field of this invention means the viscosity index measured based on JISK2283-1993.

また、本発明に係る潤滑油基油の15℃における密度(ρ15)は、潤滑油基油成分の粘度グレードによるが、下記式(B)で表されるρの値以下であること、すなわちρ15≦ρであることが好ましい。
ρ=0.0025×kv100+0.816 (B)
[式中、kv100は潤滑油基油成分の100℃における動粘度(mm/s)を示す。]
Further, the density (ρ 15 ) at 15 ° C. of the lubricating base oil according to the present invention depends on the viscosity grade of the lubricating base oil component, but is not more than the value of ρ represented by the following formula (B), that is, It is preferable that ρ 15 ≦ ρ.
ρ = 0.0025 × kv100 + 0.816 (B)
[Wherein, kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil component at 100 ° C. ]

なお、ρ15>ρとなる場合、粘度−温度特性および熱・酸化安定性、更には揮発防止性および低温粘度特性が低下する傾向にあり、省燃費性を悪化させるおそれがある。また、潤滑油基油成分に添加剤が配合された場合に当該添加剤の効き目が低下するおそれがある。 When ρ 15 > ρ, the viscosity-temperature characteristics and thermal / oxidation stability, as well as volatilization prevention and low-temperature viscosity characteristics tend to decrease, which may deteriorate fuel economy. Moreover, when an additive is mix | blended with a lubricating base oil component, there exists a possibility that the effectiveness of the said additive may fall.

具体的には、本発明に係る潤滑油基油の15℃における密度(ρ15)は、好ましくは0.860以下、より好ましくは0.850以下、さらに好ましくは0.840以下、特に好ましくは0.822以下である。 Specifically, the density (ρ 15 ) at 15 ° C. of the lubricating base oil according to the present invention is preferably 0.860 or less, more preferably 0.850 or less, still more preferably 0.840 or less, particularly preferably. 0.822 or less.

なお、本発明でいう15℃における密度とは、JIS K 2249−1995に準拠して15℃において測定された密度を意味する。   In addition, the density in 15 degreeC said by this invention means the density measured in 15 degreeC based on JISK2249-1995.

また、本発明に係る潤滑油基油の流動点は、潤滑油基油の粘度グレードにもよるが、例えば、上記潤滑油基油(I)および(IV)の流動点は、好ましくは−10℃以下、より好ましくは−12.5℃以下、更に好ましくは−15℃以下である。また、上記潤滑油基油(II)および(V)の流動点は、好ましくは−10℃以下、より好ましくは−15℃以下、更に好ましくは−17.5℃以下である。また、上記潤滑油基油(III)および(VI)の流動点は、好ましくは−10℃以下、より好ましくは−12.5℃以下、更に好ましくは−15℃以下である。流動点が前記上限値を超えると、その潤滑油基油を用いた潤滑油全体の低温流動性が低下する傾向にある。なお、本発明でいう流動点とは、JIS K 2269−1987に準拠して測定された流動点を意味する。   Further, the pour point of the lubricating base oil according to the present invention depends on the viscosity grade of the lubricating base oil. For example, the pour point of the lubricating base oils (I) and (IV) is preferably −10. ° C or lower, more preferably -12.5 ° C or lower, still more preferably -15 ° C or lower. The pour points of the lubricating base oils (II) and (V) are preferably −10 ° C. or lower, more preferably −15 ° C. or lower, and still more preferably −17.5 ° C. or lower. The pour point of the lubricating base oils (III) and (VI) is preferably −10 ° C. or lower, more preferably −12.5 ° C. or lower, and further preferably −15 ° C. or lower. When the pour point exceeds the upper limit, the low temperature fluidity of the entire lubricating oil using the lubricating base oil tends to decrease. In addition, the pour point as used in the field of this invention means the pour point measured based on JISK2269-1987.

また、本発明の潤滑油基油のアニリン点(AP(℃))は、潤滑油基油の粘度グレードによるが、下記式(C)で表されるAの値以上であること、すなわちAP≧Aであることが好ましい。
A=4.3×kv100+100 (C)
[式中、kv100は潤滑油基油の100℃における動粘度(mm/s)を示す。]
Further, the aniline point (AP (° C.)) of the lubricating base oil of the present invention depends on the viscosity grade of the lubricating base oil, but is not less than the value of A represented by the following formula (C), that is, AP ≧ A is preferred.
A = 4.3 × kv100 + 100 (C)
[Wherein, kv100 represents the kinematic viscosity (mm 2 / s) of the lubricating base oil at 100 ° C. ]

なお、AP<Aとなる場合、粘度−温度特性および熱・酸化安定性、更には揮発防止性および低温粘度特性が低下する傾向にあり、また、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。   When AP <A, viscosity-temperature characteristics and thermal / oxidative stability, volatilization prevention properties and low-temperature viscosity characteristics tend to decrease, and when additives are added to the lubricating base oil In addition, the effectiveness of the additive tends to decrease.

例えば、上記潤滑油基油(I)および(IV)のAPは、好ましくは108℃以上、より好ましくは110℃以上である。また、上記潤滑油基油(II)および(V)のAPは、好ましくは113℃以上、より好ましくは119℃以上である。また、上記潤滑油基油(III)および(VI)のAPは、好ましくは125℃以上、より好ましくは128℃以上である。なお、本発明でいうアニリン点とは、JIS K 2256−1985に準拠して測定されたアニリン点を意味する。   For example, the AP of the lubricating base oils (I) and (IV) is preferably 108 ° C. or higher, more preferably 110 ° C. or higher. The AP of the lubricating base oils (II) and (V) is preferably 113 ° C. or higher, more preferably 119 ° C. or higher. The AP of the lubricating base oils (III) and (VI) is preferably 125 ° C. or higher, more preferably 128 ° C. or higher. In addition, the aniline point as used in the field of this invention means the aniline point measured based on JISK2256-1985.

本発明に係る潤滑油基油のヨウ素価は、好ましくは3以下であり、より好ましくは2以下であり、さらに好ましくは1以下、特に好ましくは0.9以下であり、最も好ましくは0.8以下である。また、0.01未満であってもよいが、それに見合うだけの効果が小さい点および経済性との関係から、好ましくは0.001以上、より好ましくは0.01以上、さらに好ましくは0.03以上、特に好ましくは0.05以上である。潤滑油基油成分のヨウ素価を3以下とすることで、熱・酸化安定性を飛躍的に向上させることができる。なお、本発明でいうヨウ素価とは、JIS K 0070「化学製品の酸価、ケン化価、ヨウ素価、水酸基価および不ケン化価」の指示薬滴定法により測定したヨウ素価を意味する。   The iodine value of the lubricating base oil according to the present invention is preferably 3 or less, more preferably 2 or less, still more preferably 1 or less, particularly preferably 0.9 or less, and most preferably 0.8. It is as follows. Further, it may be less than 0.01, but from the viewpoint of small effect corresponding to it and economic efficiency, it is preferably 0.001 or more, more preferably 0.01 or more, and further preferably 0.03. Above, especially preferably 0.05 or more. By setting the iodine value of the lubricating base oil component to 3 or less, the thermal and oxidation stability can be dramatically improved. In addition, the iodine value as used in the field of this invention means the iodine value measured by the indicator titration method of JISK0070 "the acid value of a chemical product, the saponification value, the iodine value, the hydroxyl value, and the unsaponification value."

また、本発明に係る潤滑油基油における硫黄分の含有量は、その原料の硫黄分の含有量に依存する。例えば、フィッシャートロプシュ反応等により得られる合成ワックス成分のように実質的に硫黄を含まない原料を用いる場合には、実質的に硫黄を含まない潤滑油基油を得ることができる。また、潤滑油基油の精製過程で得られるスラックワックスや精ろう過程で得られるマイクロワックス等の硫黄を含む原料を用いる場合には、得られる潤滑油基油中の硫黄分は通常100質量ppm以上となる。本発明に係る潤滑油基油においては、熱・酸化安定性の更なる向上および低硫黄化の点から、硫黄分の含有量が100質量ppm以下であることが好ましく、50質量ppm以下であることがより好ましく、10質量ppm以下であることが更に好ましく、5質量ppm以下であることが特に好ましい。   Further, the sulfur content in the lubricating base oil according to the present invention depends on the sulfur content of the raw material. For example, when a raw material that does not substantially contain sulfur such as a synthetic wax component obtained by a Fischer-Tropsch reaction or the like is used, a lubricating base oil that does not substantially contain sulfur can be obtained. In addition, when using a raw material containing sulfur such as slack wax obtained in the refining process of the lubricating base oil or microwax obtained in the refining process, the sulfur content in the obtained lubricating base oil is usually 100 mass ppm. That's it. In the lubricating base oil according to the present invention, the sulfur content is preferably 100 mass ppm or less, more preferably 50 mass ppm or less, from the viewpoint of further improvement in thermal and oxidation stability and low sulfur content. More preferably, it is more preferably 10 ppm by mass or less, and particularly preferably 5 ppm by mass or less.

また、本発明に係る潤滑油基油における窒素分の含有量は、特に制限されないが、好ましくは7質量ppm以下、より好ましくは5質量ppm以下、更に好ましくは3質量ppm以下である。窒素分の含有量が5質量ppmを超えると、熱・酸化安定性が低下する傾向にある。なお、本発明でいう窒素分とは、JIS K 2609−1990に準拠して測定される窒素分を意味する。   Further, the nitrogen content in the lubricating base oil according to the present invention is not particularly limited, but is preferably 7 ppm by mass or less, more preferably 5 ppm by mass or less, and further preferably 3 ppm by mass or less. If the nitrogen content exceeds 5 ppm by mass, the thermal and oxidation stability tends to decrease. In addition, the nitrogen content as used in the field of this invention means the nitrogen content measured based on JISK2609-1990.

また、本発明に係る潤滑油基油におけるNOACK蒸発量は特に制限はないが、20質量%以下であることが好ましく、より好ましくは15質量%以下、さらに好ましくは10質量%以下、特に好ましくは9質量%以下、最も好ましくは8質量%以下である。NOACK蒸発量が上記上限値以下であると、低蒸発性とすることが可能であると共に、清浄性を向上することが可能となる。また、NOACK蒸発量は1質量%以上であることが好ましく、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。NOACK蒸発量が上記下限値以下であると、必要とする省燃費性が得られないばかりでなく、低温粘度特性が悪化するおそれがある。なお、本発明でいうNOACK蒸発量とは、ASTMD 5800−95に準拠して測定された蒸発損失量(測定条件:250℃、1時間)を意味する。   Further, the amount of NOACK evaporation in the lubricating base oil according to the present invention is not particularly limited, but is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, and particularly preferably. It is 9 mass% or less, Most preferably, it is 8 mass% or less. When the NOACK evaporation amount is equal to or less than the above upper limit value, it is possible to achieve low evaporation and improve cleanliness. Moreover, it is preferable that NOACK evaporation is 1 mass% or more, More preferably, it is 3 mass% or more, More preferably, it is 5 mass% or more. If the NOACK evaporation amount is less than or equal to the above lower limit value, not only the required fuel economy can be obtained but also the low temperature viscosity characteristics may be deteriorated. In addition, the NOACK evaporation amount as used in the field of this invention means the evaporation loss amount (measuring conditions: 250 degreeC, 1 hour) measured based on ASTMD 5800-95.

また、本発明に係る潤滑油基油の%Cは、70以上であることが好ましく、より好ましくは80〜99、さらに好ましくは85〜95、特に好ましくは87〜94、最も好ましくは90〜94である。潤滑油基油の%Cが上記下限値未満の場合、粘度−温度特性、熱・酸化安定性および摩擦特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、潤滑油基油の%Cが上記上限値を超えると、添加剤の溶解性が低下する傾向にある。 Further, the% C p of the lubricating base oil according to the present invention is preferably 70 or more, more preferably 80 to 99, still more preferably 85 to 95, particularly preferably 87 to 94, and most preferably 90 to 90. 94. When% C p of the lubricating base oil is less than the above lower limit, viscosity-temperature characteristics, thermal / oxidative stability, and friction characteristics tend to decrease, and further, when additives are blended in the lubricating base oil In addition, the effectiveness of the additive tends to decrease. Further, when the% C p value of the lubricating base oil exceeds the upper limit value, the additive solubility will tend to be lower.

また、本発明に係る潤滑油基油の%Cは、2以下であることが好ましく、より好ましくは1以下、さらに好ましくは0.8以下、特に好ましくは0.5以下である。潤滑油基油の%Cが上記上限値を超えると、粘度−温度特性、熱・酸化安定性および省燃費性が低下する傾向にある。 Moreover,% C A of the lubricating base oil of the present invention is preferably 2 or less, more preferably 1 or less, more preferably 0.8 or less, particularly preferably 0.5 or less. When% C A of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and fuel efficiency tends to decrease.

また、本発明に係る潤滑油基油の%Cは、好ましくは30以下、より好ましくは4〜25、更に好ましくは5〜13、特に好ましくは5〜8である。潤滑油基油の%Cが上記上限値を超えると、粘度−温度特性、熱・酸化安定性および摩擦特性が低下する傾向にある。また、%Cが上記下限値未満であると、添加剤の溶解性が低下する傾向にある。 Moreover,% C N of the lubricating base oil of the present invention is preferably 30 or less, more preferably 4 to 25, more preferably 5 to 13, particularly preferably from 5 to 8. If the% C N value of the lubricating base oil exceeds the upper limit value, the viscosity - temperature characteristic, thermal and oxidation stability and frictional properties will tend to be reduced. Moreover, when% CN is less than the said lower limit, it exists in the tendency for the solubility of an additive to fall.

なお、本発明でいう%C、%Cおよび%Cとは、それぞれASTM D 3238−85に準拠した方法(n−d−M環分析)により求められる、パラフィン炭素数の全炭素数に対する百分率、ナフテン炭素数の全炭素数に対する百分率、および芳香族炭素数の全炭素数に対する百分率を意味する。つまり、上述した%C、%Cおよび%Cの好ましい範囲は上記方法により求められる値に基づくものであり、例えばナフテン分を含まない潤滑油基油であっても、上記方法により求められる%Cが0を超える値を示すことがある。 Incidentally, say% C P in the present invention,% C A N and% C A, obtained by a method in accordance with ASTM D 3238-85, respectively (n-d-M ring analysis), the total carbon number of the paraffin carbon number The percentage of the total number of naphthene carbons to the total number of carbons, and the percentage of aromatic carbons to the total number of carbons. In other words, the preferred ranges of% C P ,% C N and% C A described above are based on the values obtained by the above method. For example, even for a lubricating base oil containing no naphthene, it can be obtained by the above method. is% C N may indicate a value greater than zero.

また、本発明に係る潤滑油基油における飽和分の含有量は、100℃における動粘度ならびに%Cおよび%Cが上記条件を満たしていれば特に制限されないが、潤滑油基油全量を基準として、好ましくは90質量%以上であり、好ましくは95質量%以上、より好ましくは99質量%以上であり、また、当該飽和分に占める環状飽和分の割合は、好ましくは40質量%以下であり、好ましくは35質量%以下であり、好ましくは30質量%以下であり、より好ましくは25質量%以下であり、更に好ましくは21質量%以下である。また、当該飽和分に占める環状飽和分の割合は、好ましくは5質量%以上であり、より好ましくは10質量%以上である。飽和分の含有量および当該飽和分に占める環状飽和分の割合がそれぞれ上記条件を満たすことにより、粘度−温度特性および熱・酸化安定性を向上することができ、また、当該潤滑油基油に添加剤が配合された場合には、当該添加剤を潤滑油基油中に十分に安定的に溶解保持しつつ、当該添加剤の機能をより高水準で発現させることができる。更に、本発明によれば、潤滑油基油自体の摩擦特性を改善することができ、その結果、摩擦低減効果の向上、ひいては省エネルギー性の向上を達成することができる。 In addition, the content of the saturated component in the lubricating base oil according to the present invention is not particularly limited as long as the kinematic viscosity at 100 ° C. and% C p and% C A satisfy the above conditions. As a standard, it is preferably 90% by mass or more, preferably 95% by mass or more, more preferably 99% by mass or more, and the ratio of the cyclic saturated component in the saturated component is preferably 40% by mass or less. Yes, preferably 35% by mass or less, preferably 30% by mass or less, more preferably 25% by mass or less, and still more preferably 21% by mass or less. Moreover, the ratio of the cyclic | annular saturated part which occupies for the said saturated part becomes like this. Preferably it is 5 mass% or more, More preferably, it is 10 mass% or more. When the content of the saturated component and the ratio of the cyclic saturated component in the saturated component satisfy the above conditions, the viscosity-temperature characteristics and the thermal / oxidative stability can be improved. When the additive is blended, the function of the additive can be expressed at a higher level while the additive is sufficiently stably dissolved and held in the lubricating base oil. Furthermore, according to the present invention, it is possible to improve the friction characteristics of the lubricating base oil itself, and as a result, it is possible to achieve an improvement in the friction reduction effect and an improvement in energy saving.

なお、本発明でいう飽和分とは、前記ASTM D 2007−93に記載された方法により測定される。   The saturated content in the present invention is measured by the method described in the ASTM D 2007-93.

また、飽和分の分離方法、あるいは環状飽和分、非環状飽和分等の組成分析の際には、同様の結果が得られる類似の方法を使用することができる。例えば、上記の他、ASTM
D 2425−93に記載の方法、ASTM D 2549−91に記載の方法、高速液体クロマトグラフィ(HPLC)による方法、あるいはこれらの方法を改良した方法等を挙げることができる。
In addition, a similar method that can obtain the same result can be used in the separation method of the saturated component or the composition analysis of the cyclic saturated component and the non-cyclic saturated component. For example, in addition to the above, ASTM
Examples thereof include a method described in D 2425-93, a method described in ASTM D 2549-91, a method by high performance liquid chromatography (HPLC), a method obtained by improving these methods, and the like.

また、本発明に係る潤滑油基油における芳香族分は、100℃における動粘度、%Cおよび%Cが上記条件を満たしていれば特に制限されないが、潤滑油基油全量を基準として、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下、特に好ましくは2質量%以下であり、また、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上、特に好ましくは1.5質量%以上である。芳香族分の含有量が上記上限値を超えると、粘度−温度特性、熱・酸化安定性および摩擦特性、更には揮発防止性および低温粘度特性が低下する傾向にあり、更に、潤滑油基油に添加剤が配合された場合に当該添加剤の効き目が低下する傾向にある。また、本発明に係る潤滑油基油は芳香族分を含有しないものであってもよいが、芳香族分の含有量を上記下限値以上とすることにより、添加剤の溶解性を更に高めることができる。 Also, the aromatic content in the lubricating base oil of the invention has a kinematic viscosity at 100 ° C.,% but C p and% C A is not particularly limited so far as it meets the above conditions, based on the lubricating base oils the total amount , Preferably 5% by mass or less, more preferably 4% by mass or less, still more preferably 3% by mass or less, particularly preferably 2% by mass or less, and preferably 0.1% by mass or more, more preferably 0. It is 5% by mass or more, more preferably 1% by mass or more, and particularly preferably 1.5% by mass or more. If the aromatic content exceeds the above upper limit, the viscosity-temperature characteristics, thermal / oxidative stability, friction characteristics, volatilization prevention properties, and low-temperature viscosity characteristics tend to decrease. When an additive is blended with the additive, the effectiveness of the additive tends to decrease. Further, the lubricating base oil according to the present invention may not contain an aromatic component, but by further increasing the solubility of the additive by setting the aromatic content to be the above lower limit or more. Can do.

なお、本発明でいう芳香族分とは、ASTM D 2007−93に準拠して測定された値を意味する。芳香族分には、通常、アルキルベンゼン、アルキルナフタレンの他、アントラセン、フェナントレンおよびこれらのアルキル化物、更にはベンゼン環が四環以上縮合した化合物、ピリジン類、キノリン類、フェノール類、ナフトール類等のヘテロ原子を有する芳香族化合物などが含まれる。   In addition, the aromatic component as used in the field of this invention means the value measured based on ASTM D 2007-93. In general, the aromatic component includes alkylbenzene, alkylnaphthalene, anthracene, phenanthrene and alkylated products thereof, as well as compounds in which four or more benzene rings are condensed, pyridines, quinolines, phenols and naphthols. Aromatic compounds having atoms are included.

また、本発明に係る潤滑油基油における尿素アダクト値は、粘度−温度特性を損なわずに低温粘度特性を改善し、かつ高い熱伝導性を得る観点から、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2.5質量%以下、特に好ましくは2質量%以下である。また、尿素アダクト値は、0質量%でも良いが、十分な低温粘度特性と、より粘度指数の高い潤滑油基油を得ることができ、また脱ろう条件を緩和して経済性にも優れる点で、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、特に好ましくは0.8質量%以上である。   Further, the urea adduct value in the lubricating base oil according to the present invention is preferably 5% by mass or less, more preferably from the viewpoint of improving the low temperature viscosity characteristics without impairing the viscosity-temperature characteristics and obtaining high thermal conductivity. Is 3% by mass or less, more preferably 2.5% by mass or less, and particularly preferably 2% by mass or less. The urea adduct value may be 0% by mass, but a sufficient low temperature viscosity characteristic and a lubricating base oil having a higher viscosity index can be obtained, and the dewaxing conditions are eased and the economy is excellent. And preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and particularly preferably 0.8% by mass or more.

ここで、尿素アダクト値とは、以下の方法により測定される値を意味する。
秤量した試料油100gを丸底フラスコに入れ、尿素200mg、トルエン360ml及びメタノール40mlを加えて室温で6時間攪拌する。これにより、反応液中に尿素アダクト物として白色の粒状結晶が生成する。反応液を1ミクロンフィルターでろ過することにより、生成した白色粒状結晶を採取し、得られた結晶をトルエン50mlで6回洗浄する。回収した白色結晶をフラスコに入れ、純水300ml及びトルエン300mlを加えて80℃で1時間攪拌する。分液ロートで水相を分離除去し、トルエン相を純水300mlで3回洗浄する。トルエン相に乾燥剤(硫酸ナトリウム)を加えて脱水処理を行った後、トルエンを留去する。このようにして得られた尿素アダクト物の試料油に対する割合(質量百分率)を尿素アダクト値と定義する。
Here, the urea adduct value means a value measured by the following method.
100 g of weighed sample oil is put into a round bottom flask, 200 mg of urea, 360 ml of toluene and 40 ml of methanol are added and stirred at room temperature for 6 hours. As a result, white granular crystals are produced as urea adducts in the reaction solution. The reaction solution is filtered through a 1 micron filter to collect the produced white granular crystals, and the obtained crystals are washed 6 times with 50 ml of toluene. The recovered white crystals are put in a flask, 300 ml of pure water and 300 ml of toluene are added, and the mixture is stirred at 80 ° C. for 1 hour. The aqueous phase is separated and removed with a separatory funnel, and the toluene phase is washed three times with 300 ml of pure water. A desiccant (sodium sulfate) is added to the toluene phase for dehydration, and then toluene is distilled off. The ratio (mass percentage) of the urea adduct obtained in this way to the sample oil is defined as the urea adduct value.

尿素アダクト値の測定においては、尿素アダクト物として、イソパラフィンのうち低温粘度特性に悪影響を及ぼす成分、あるいは熱伝導性を悪化させる成分、さらには潤滑油基油中にノルマルパラフィンが残存している場合の当該ノルマルパラフィンを、精度よく且つ確実に捕集することができるため、潤滑油基油の低温粘度特性および熱伝導性の評価指標として優れている。なお、本発明者らは、GC及びNMRを用いた分析により、尿素アダクト物の主成分が、ノルマルパラフィン及び主鎖の末端から分岐位置までの炭素数が6以上であるイソパラフィンの尿素アダクト物であることを確認している。   In measurement of urea adduct value, when urea adduct is used, isoparaffin which adversely affects low-temperature viscosity characteristics, component which deteriorates thermal conductivity, or normal paraffin remains in lubricating base oil This normal paraffin can be collected accurately and reliably, so that it is excellent as a low-temperature viscosity characteristic and thermal conductivity evaluation index of a lubricating base oil. The inventors of the present invention have analyzed by using GC and NMR that the main component of the urea adduct is a normal paraffin and an isoparaffin urea adduct having 6 or more carbon atoms from the end of the main chain to the branch position. Confirm that there is.

本発明の潤滑油組成物においては、上記本発明に係る潤滑油基油を単独で用いてもよく、また、本発明に係る潤滑油基油を他の基油の1種または2種以上と併用してもよい。なお、本発明に係る潤滑油基油と他の基油とを併用する場合、それらの混合基油中に占める本発明に係る潤滑油基油の割合は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。   In the lubricating oil composition of the present invention, the lubricating base oil according to the present invention may be used alone, and the lubricating base oil according to the present invention may be one or more of other base oils. You may use together. When the lubricating base oil according to the present invention is used in combination with another base oil, the ratio of the lubricating base oil according to the present invention in the mixed base oil is preferably 30% by mass or more. 50% by mass or more is more preferable, and 70% by mass or more is still more preferable.

本発明に係る潤滑油基油と併用される他の基油としては、特に制限されないが、例えば100℃における動粘度が5〜500mm/sであって、%Cおよび%Cが上記条件を満たしていない、溶剤精製鉱油、水素化分解鉱油、水素化精製鉱油、溶剤脱ろう基油等の鉱油系基油、あるいは合成系基油などが挙げられる。本発明に係る潤滑油基油に、他の基油を配合することにより、潤滑油組成物の高温清浄性が向上する。 The other base oil used in combination with the lubricating base oil according to the present invention is not particularly limited. For example, the kinematic viscosity at 100 ° C. is 5 to 500 mm 2 / s, and% C p and% C A are the above. Examples thereof include mineral base oils such as solvent refined mineral oil, hydrocracked mineral oil, hydrorefined mineral oil, solvent dewaxed base oil, and synthetic base oils that do not satisfy the conditions. By blending another base oil with the lubricating base oil according to the present invention, the high temperature cleanability of the lubricating oil composition is improved.

本発明の潤滑油組成物において他の基油として鉱油系基油を用いる場合、100℃における動粘度は5〜500mm2/sであることが好ましく、好ましくは5.3mm2/s以上、より好ましくは5.5mm2/s以上、更に好ましくは5.7mm2/s以上、最も好ましくは5.9mm2/s以上である。また、上限値としてより好ましくは100mm2/s以下、さらに好ましくは50mm2/s以下、特に好ましくは30mm2/s以下、最も好ましくは20mm2/s以下、さらに最も好ましくは10mm2/s以下である。他の基油の100℃における動粘度が5mm2/s未満である場合には、高温清浄性が低下するおそれがあり、100℃における動粘度が500mm2/sを超える場合には粘度温度特性が悪化し、必要とする省燃費性が得られないばかりでなく、低温粘度特性が悪化するおそれがある。 If the lubricating oil compositions of the present invention using a mineral base oil as another base oil preferably has a kinematic viscosity at 100 ° C. is 5 to 500 mm 2 / s, preferably 5.3 mm 2 / s or more, more Preferably it is 5.5 mm < 2 > / s or more, More preferably, it is 5.7 mm < 2 > / s or more, Most preferably, it is 5.9 mm < 2 > / s or more. The upper limit is more preferably 100 mm 2 / s or less, further preferably 50 mm 2 / s or less, particularly preferably 30 mm 2 / s or less, most preferably 20 mm 2 / s or less, and most preferably 10 mm 2 / s or less. It is. When the kinematic viscosity at 100 ° C. of other base oils is less than 5 mm 2 / s, the high temperature cleanability may be lowered. When the kinematic viscosity at 100 ° C. exceeds 500 mm 2 / s, the viscosity-temperature characteristics As a result, the required fuel economy cannot be obtained, and the low-temperature viscosity characteristics may be deteriorated.

他の基油の粘度指数は特に制限はないが、好ましくは80以上、より好ましくは100以上、更に好ましくは120以上、特に好ましくは130以上、最も好ましくは135以上である。また好ましくは180以下、より好ましくは170以下、更に好ましくは160以下、特に好ましくは150以下である。粘度指数が前記下限値未満であると、省燃費性や低温粘度特性が悪化するだけでなく熱・酸化安定性、揮発防止性が悪化する傾向にある。また、粘度指数が前記上限値を超えると、低温粘度特性が大幅に悪化する傾向にある。   The viscosity index of other base oils is not particularly limited, but is preferably 80 or more, more preferably 100 or more, still more preferably 120 or more, particularly preferably 130 or more, and most preferably 135 or more. Further, it is preferably 180 or less, more preferably 170 or less, still more preferably 160 or less, and particularly preferably 150 or less. When the viscosity index is less than the lower limit, not only fuel economy and low-temperature viscosity characteristics are deteriorated, but heat / oxidation stability and volatilization prevention properties tend to be deteriorated. On the other hand, when the viscosity index exceeds the upper limit, the low-temperature viscosity characteristics tend to deteriorate significantly.

他の基油のNOACK蒸発量は特に制限はないが、20質量%以下であることが好ましく、より好ましくは15質量%以下、さらに好ましくは10質量%以下、特に好ましくは8質量%以下、最も好ましくは7質量%以下である。NOACK蒸発量が上記上限値以下であると、低蒸発性とすることが可能であると共に、清浄性を向上することが可能となる。また、NOACK蒸発量は1質量%以上であることが好ましく、より好ましくは3質量%以上、さらに好ましくは5質量%以上である。NOACK蒸発量が上記下限値以下であると、必要とする省燃費性が得られないばかりでなく、低温粘度特性が悪化するおそれがある。   The NOACK evaporation amount of other base oils is not particularly limited, but is preferably 20% by mass or less, more preferably 15% by mass or less, still more preferably 10% by mass or less, and particularly preferably 8% by mass or less. Preferably it is 7 mass% or less. When the NOACK evaporation amount is equal to or less than the above upper limit value, it is possible to achieve low evaporation and improve cleanliness. Moreover, it is preferable that NOACK evaporation is 1 mass% or more, More preferably, it is 3 mass% or more, More preferably, it is 5 mass% or more. If the NOACK evaporation amount is less than or equal to the above lower limit value, not only the required fuel economy can be obtained but also the low temperature viscosity characteristics may be deteriorated.

合成系基油としては、例えば、ポリ−α−オレフィンまたはその水素化物、イソブテンオリゴマーまたはその水素化物、イソパラフィン、アルキルベンゼン、アルキルナフタレン;ジトリデシルグルタレート、ジ−2−エチルヘキシルアジペート、ジイソデシルアジペート、ジトリデシルアジペート、ジ−2−エチルヘキシルセバケート等のジエステル;トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2−エチルヘキサノエート、ペンタエリスリトールペラルゴネート等のポリオールエステル;ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、ポリフェニルエーテルが挙げられ、中でも、ポリα−オレフィンが好ましい。ポリα−オレフィンとしては、典型的には、炭素数2〜32、好ましくは6〜16のα−オレフィンのオリゴマーまたはコオリゴマー、例えば、1−オクテンオリゴマー、デセンオリゴマー、エチレン−プロピレンコオリゴマーおよびそれらの水素化物が挙げられる。   Synthetic base oils include, for example, poly-α-olefin or hydride thereof, isobutene oligomer or hydride thereof, isoparaffin, alkylbenzene, alkylnaphthalene; ditridecyl glutarate, di-2-ethylhexyl adipate, diisodecyl adipate, ditridecyl Diesters such as adipate and di-2-ethylhexyl sebacate; polyol esters such as trimethylolpropane caprylate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate; polyoxyalkylene glycol, dialkyldiphenyl ether And polyphenyl ether. Among them, poly α-olefin is preferable. The poly α-olefin is typically an oligomer or co-oligomer of α-olefin having 2 to 32 carbon atoms, preferably 6 to 16 carbon atoms, such as 1-octene oligomer, decene oligomer, ethylene-propylene co-oligomer, and the like. Of the hydrides.

ポリ−α−オレフィンの製法は特に制限されないが、例えば、三塩化アルミニウムまたは三フッ化ホウ素と、水、アルコール(エタノール、プロパノール、ブタノール等)、カルボン酸またはエステルとの錯体を含むフリーデル・クラフツ触媒のような重合触媒の存在下、α−オレフィンを重合する方法が挙げられる。   The production method of the poly-α-olefin is not particularly limited. For example, Friedel Crafts containing a complex of aluminum trichloride or boron trifluoride with water, alcohol (ethanol, propanol, butanol, etc.), carboxylic acid or ester. The method of superposing | polymerizing an alpha olefin in presence of a polymerization catalyst like a catalyst is mentioned.

本発明において用いることのできる粘度指数向上剤は、核磁気共鳴分析(13C−NMR)により得られるスペクトルにおいて、全ピークの合計面積に対する化学シフト51−52.5ppmの間のピークの合計面積M1と化学シフト64−66ppmの間のピークの合計面積M2の比M1/M2が0.50以上となるものである。 The viscosity index improver that can be used in the present invention is a total peak area M1 between 51 and 52.5 ppm in chemical shift with respect to the total area of all peaks in the spectrum obtained by nuclear magnetic resonance analysis ( 13C -NMR). And the ratio M1 / M2 of the total area M2 of the peak between the chemical shift and 64-66 ppm is 0.50 or more.

M1/M2は好ましくは1.0以上であり、さらに好ましくは2.0以上であり、特に好ましくは3.0以上であり、最も好ましくは4.0以上である。また、M1/M2は好ましくは10以下であり、さらに好ましくは9.0以下であり、特に好ましくは8.0以下であり、最も好ましくは7.0以下である。M1/M2が0.50未満の場合は、必要とする省燃費性が得られないばかりでなく、低温粘度特性が悪化するおそれがある。また、M1/M2が10を超える場合は、必要とする省燃費性が得られないばかりでなく、溶解性や貯蔵安定性が悪化する恐れがある。   M1 / M2 is preferably 1.0 or more, more preferably 2.0 or more, particularly preferably 3.0 or more, and most preferably 4.0 or more. M1 / M2 is preferably 10 or less, more preferably 9.0 or less, particularly preferably 8.0 or less, and most preferably 7.0 or less. When M1 / M2 is less than 0.50, not only the required fuel saving performance is not obtained, but also the low temperature viscosity characteristics may be deteriorated. Moreover, when M1 / M2 exceeds 10, not only the required fuel-saving property cannot be obtained but also the solubility and storage stability may be deteriorated.

なお、核磁気共鳴分析(13C−NMR)スペクトルは、粘度指数向上剤に希釈油が含まれる場合は、希釈油をゴム膜透析等により分離したポリマーについて得られるものである。 In addition, a nuclear magnetic resonance analysis ( 13C -NMR) spectrum is obtained about the polymer which isolate | separated dilution oil by rubber membrane dialysis etc., when a dilution oil is contained in a viscosity index improver.

全ピークの合計面積に対する化学シフト51−52.5ppmの間のピークの合計面積(M1)は、13C−NMRにより測定される、全炭素の積分強度の合計に対するポリメタアクリレート側鎖の特定のメチル構造に由来する積分強度の割合を意味し、全ピークの合計面積に対する化学シフト64−66ppmの間のピークの合計面積(M2)は、13C−NMRにより測定される、全炭素の積分強度の合計に対するポリメタアクリレート側鎖の特定の直鎖構造に由来する積分強度の割合を意味する。 The total area of the peak (M1) between the chemical shift 51-52.5 ppm relative to the total area of all peaks is the specific of the polymethacrylate side chain relative to the total integrated intensity of all carbons as measured by 13 C-NMR. The ratio of the integrated intensity derived from the methyl structure, the total area of the peak (M2) between the chemical shifts 64-66 ppm relative to the total area of all peaks is the integrated intensity of all carbons measured by 13 C-NMR. The ratio of the integrated intensity derived from the specific linear structure of the polymethacrylate side chain to the total of

M1/M2はポリメタクリレート側鎖の特定のメチル構造と特定の直鎖構造の割合を意味するが、同等の結果が得られるのであればその他の方法を用いてもよい。なお、13C−NMR測定にあたっては、サンプルとして試料0.5gに3gの重クロロホルムを加えて希釈したものを使用し、測定温度は室温、共鳴周波数は125MHzとし、測定法はゲート付デカップリング法を使用した。 M1 / M2 means the ratio of a specific methyl structure and a specific straight chain structure of the polymethacrylate side chain, but other methods may be used as long as equivalent results are obtained. In the 13 C-NMR measurement, 0.5 g of a sample diluted with 3 g of deuterated chloroform was used as a sample, the measurement temperature was room temperature, the resonance frequency was 125 MHz, and the measurement method was a gated decoupling method. It was used.

上記分析により、
(a)化学シフト約10−70ppmの積分強度の合計(炭化水素の全炭素に起因する積分強度の合計)、及び
(b)化学シフト51−52.5ppmの積分強度の合計(特定のメチル構造に起因する積分強度の合計)、及び
(c)化学シフト64−66ppmの積分強度の合計(特定の直鎖構造に起因する積分強度の合計)
をそれぞれ測定し、(a)100%とした時の(b)の割合(%)を算出しM1とした。また、(a)100%とした時の(c)の割合(%)を算出しM2とした。
From the above analysis,
(A) Sum of integral intensities with a chemical shift of about 10-70 ppm (sum of integral intensities due to total carbon of the hydrocarbon), and (b) Sum of integral intensities with a chemical shift of 51-52.5 ppm (specific methyl structure) And (c) total integrated intensity with a chemical shift of 64-66 ppm (total integrated intensity due to a specific linear structure)
Were measured, and the ratio (%) of (b) when (a) was set to 100% was calculated as M1. Further, the ratio (%) of (c) when (a) was set to 100% was calculated as M2.

本発明において用いられる粘度指数向上剤は、ポリ(メタ)アクリレートであることが好ましく、かつ、下記式(1)で表される構造単位の割合が0.5〜70モル%の重合体であることが好ましい。粘度指数向上剤は、非分散型あるいは分散型のいずれであっても良い。

Figure 2010280820
[式(1)中、Rは水素またはメチル基を示し、Rは炭素数16以上の直鎖または分枝状の炭化水素基、あるいは、酸素および/または窒素を含有する炭素数16以上の直鎖または分枝状の有機基を示す。] The viscosity index improver used in the present invention is preferably a poly (meth) acrylate, and is a polymer in which the proportion of structural units represented by the following formula (1) is 0.5 to 70 mol%. It is preferable. The viscosity index improver may be either non-dispersed or dispersed.
Figure 2010280820
[In the formula (1), R 1 represents hydrogen or a methyl group, and R 2 represents a straight chain or branched hydrocarbon group having 16 or more carbon atoms, or 16 or more carbon atoms containing oxygen and / or nitrogen. A linear or branched organic group. ]

式(1)中のRは、炭素数16以上の直鎖状または分枝状の炭化水素基であることが好ましく、より好ましくは炭素数18以上の直鎖状または分枝状の炭化水素であり、さらに好ましくは炭素数20以上の直鎖状または分枝状の炭化水素であり、特に好ましくは炭素数20以上の分枝状炭化水素基である。また、Rで表される炭化水素基の上限は特に制限されないが、炭素数100以下の直鎖状または分枝状の炭化水素基であることが好ましい。より好ましくは50以下の直鎖状または分枝状の炭化水素であり、さらに好ましくは30以下の直鎖状または分枝状の炭化水素であり、特に好ましくは30以下の分枝状の炭化水素であり、最も好ましくは25以下の分枝状の炭化水素である。 R 2 in formula (1) is preferably a linear or branched hydrocarbon group having 16 or more carbon atoms, more preferably a linear or branched hydrocarbon group having 18 or more carbon atoms. More preferably, it is a linear or branched hydrocarbon having 20 or more carbon atoms, particularly preferably a branched hydrocarbon group having 20 or more carbon atoms. The upper limit of the hydrocarbon group represented by R 2 is not particularly limited, but is preferably a linear or branched hydrocarbon group having 100 or less carbon atoms. More preferably, it is a linear or branched hydrocarbon of 50 or less, more preferably a linear or branched hydrocarbon of 30 or less, particularly preferably 30 or less, a branched hydrocarbon. And most preferably 25 or less branched hydrocarbons.

また、上記粘度指数向上剤において、ポリマー中の一般式(1)で表される(メタ)アクリレート構造単位の割合は、上述の通り0.5〜70モル%であることが好ましく、好ましくは60モル%以下であり、より好ましくは50モル%以下であり、さらに好ましくは40モル%以下であり、特に好ましくは30モル%以下である。また、好ましくは1モル%以上であり、より好ましくは3モル%以上であり、さらに好ましくは5モル%以上であり、特に好ましくは10モル%以上である。70モル%を超える場合は粘度温度特性の向上効果や低温粘度特性に劣るおそれがあり、0.5モル%を下回る場合は粘度温度特性の向上効果に劣るおそれがある。   In the viscosity index improver, the proportion of the (meth) acrylate structural unit represented by the general formula (1) in the polymer is preferably 0.5 to 70 mol% as described above, and preferably 60 It is not more than mol%, more preferably not more than 50 mol%, still more preferably not more than 40 mol%, particularly preferably not more than 30 mol%. Further, it is preferably 1 mol% or more, more preferably 3 mol% or more, further preferably 5 mol% or more, and particularly preferably 10 mol% or more. If it exceeds 70 mol%, the effect of improving viscosity temperature characteristics and low temperature viscosity characteristics may be inferior, and if it is less than 0.5 mol%, the effect of improving viscosity temperature characteristics may be inferior.

上記粘度指数向上剤は、一般式(1)で表される(メタ)アクリレート構造単位以外に任意の(メタ)アクリレート構造単位もしくは任意のオレフィン等に由来する構造単位を含むことができる。   The viscosity index improver may contain a structural unit derived from an arbitrary (meth) acrylate structural unit or an arbitrary olefin in addition to the (meth) acrylate structural unit represented by the general formula (1).

上記粘度指数向上剤の製造法は任意であるが、例えば、ベンゾイルパーオキシド等の重合開始剤の存在下で、モノマー(M−1)とモノマー(M−2)〜(M−4)の混合物をラジカル溶液重合させることにより容易に得ることができる。   The method for producing the viscosity index improver is arbitrary, but for example, in the presence of a polymerization initiator such as benzoyl peroxide, a mixture of the monomer (M-1) and the monomers (M-2) to (M-4) Can be easily obtained by radical solution polymerization.

上記粘度指数向上剤のPSSI(パーマネントシアスタビリティインデックス)は50以下であることが好ましく、より好ましくは40以下であり、さらに好ましくは35以下であり、特に好ましくは30以下である。また、5以上であることが好ましく、より好ましくは10以上であり、さらに好ましくは15以上であり、特に好ましくは20以上である。PSSIが5未満の場合には粘度指数向上効果が小さくコストが上昇するおそれがあり、PSSIが50を超える場合にはせん断安定性や貯蔵安定性が悪くなるおそれがある。   The viscosity index improver preferably has a PSSI (Permanent Cystability Index) of 50 or less, more preferably 40 or less, still more preferably 35 or less, and particularly preferably 30 or less. Moreover, it is preferable that it is 5 or more, More preferably, it is 10 or more, More preferably, it is 15 or more, Most preferably, it is 20 or more. When PSSI is less than 5, the viscosity index improving effect is small and the cost may be increased. When PSSI is more than 50, shear stability and storage stability may be deteriorated.

上記粘度指数向上剤の重量平均分子量(M)は100,000以上であることが好ましく、より好ましくは200,000以上であり、さらに好ましくは250,000以上であり、特に好ましくは300,000以上である。また、好ましくは1,000,000以下であり、より好ましくは700,000以下であり、さらに好ましくは600,000以下であり、特に好ましくは500,000以下である。重量平均分子量が100,000未満の場合には粘度温度特性の向上効果や粘度指数向上効果が小さくコストが上昇するおそれがあり、重量平均分子量が1,000,000を超える場合にはせん断安定性や基油への溶解性、貯蔵安定性が悪くなるおそれがある。 The weight average molecular weight ( Mw ) of the viscosity index improver is preferably 100,000 or more, more preferably 200,000 or more, still more preferably 250,000 or more, and particularly preferably 300,000. That's it. Moreover, it is preferably 1,000,000 or less, more preferably 700,000 or less, further preferably 600,000 or less, and particularly preferably 500,000 or less. When the weight average molecular weight is less than 100,000, the effect of improving the viscosity temperature characteristics and the effect of improving the viscosity index may be small and the cost may increase. When the weight average molecular weight exceeds 1,000,000, the shear stability There is a risk that the solubility in water and base oil and the storage stability may deteriorate.

上記粘度指数向上剤の数平均分子量(M)は50,000以上であることが好ましく、より好ましくは800,000以上であり、さらに好ましくは100,000以上であり、特に好ましくは120,000以上である。また、好ましくは500,000以下であり、より好ましくは300,000以下であり、さらに好ましくは250,000以下であり、特に好ましくは200,000以下である。数平均分子量が50,000未満の場合には粘度温度特性の向上効果や粘度指数向上効果が小さくコストが上昇するおそれがあり、重量平均分子量が500,000を超える場合にはせん断安定性や基油への溶解性、貯蔵安定性が悪くなるおそれがある。 The number average molecular weight (M N ) of the viscosity index improver is preferably 50,000 or more, more preferably 800,000 or more, still more preferably 100,000 or more, and particularly preferably 120,000. That's it. Further, it is preferably 500,000 or less, more preferably 300,000 or less, further preferably 250,000 or less, and particularly preferably 200,000 or less. If the number average molecular weight is less than 50,000, the effect of improving the viscosity temperature characteristics and the effect of improving the viscosity index may be small and the cost may increase. If the weight average molecular weight exceeds 500,000, shear stability and There is a possibility that solubility in oil and storage stability may deteriorate.

上記粘度指数向上剤の重量平均分子量とPSSIの比(M/PSSI)は、0.8×10以上であることが好ましく、好ましくは1.0×10以上、より好ましくは1.5×10以上、さらに好ましくは1.8×10以上、特に好ましくは2.0×10以上である。M/PSSIが0.8×10未満の場合には、粘度温度特性が悪化すなわち省燃費性が悪化するおそれがある。 The weight average molecular weight and PSSI ratio of the viscosity index improver (M W / PSSI) is preferably 0.8 × 10 4 or more, preferably 1.0 × 10 4 or more, more preferably 1.5 × 10 4 or more, more preferably 1.8 × 10 4 or more, and particularly preferably 2.0 × 10 4 or more. If M W / PSSI is below 0.8 × 10 4, there is a possibility that the viscosity-temperature characteristic is deteriorated i.e. deteriorates fuel efficiency.

上記粘度指数向上剤の重量平均分子量と数平均分子量の比(M/M)は、0.5以上であることが好ましく、好ましくは1.0以上、より好ましくは1.5以上、さらに好ましくは2.0以上、特に好ましくは2.1以上である。また、M/Mは6.0以下であることが好ましく、より好ましくは4.0以下、さらに好ましくは3.5以下、特に好ましくは3.0以下である。M/Mが0.5未満や6.0を超える場合には、基油への溶解性、貯蔵安定性が悪くなるだけでなく、粘度温度特性が悪化すなわち省燃費性が悪化するおそれがある。 The ratio of the weight average molecular weight to the number average molecular weight (M W / M N ) of the viscosity index improver is preferably 0.5 or more, preferably 1.0 or more, more preferably 1.5 or more, and further Preferably it is 2.0 or more, Most preferably, it is 2.1 or more. Further, it is preferred that the M W / M N is 6.0 or less, more preferably 4.0 or less, more preferably 3.5 or less, particularly preferably 3.0 or less. When MW / MN is less than 0.5 or more than 6.0, not only the solubility in the base oil and the storage stability are deteriorated, but also the viscosity-temperature characteristics are deteriorated, that is, the fuel economy may be deteriorated. There is.

上記粘度指数向上剤の40℃と100℃における動粘度の増粘比ΔKV40/ΔKV100は、4.0以下であることが好ましく、より好ましくは3.5以下、さらに好ましくは3.0以下、特に好ましくは2.5以下、もっとも好ましくは2.3以下である。また、ΔKV40/ΔKV100は、0.5以上であることが好ましく、より好ましくは1.0 以上であり、さらに好ましくは1.5以上であり、特に好ましくは2.0以上である。
ΔKV40/ΔKV100が0.5未満の場合には、粘度の増加効果や溶解性が小さくコストが上昇するおそれがあり、4.0を超える場合には、粘度温度特性の向上効果や低温粘度特性に劣るおそれがある。なお、ΔKV40はSK社製YUBASE4に粘度指数向上剤を3.0%添加したときの、40℃における動粘度の増加分を意味し、ΔKV100はSK社製YUBASE4に粘度指数向上剤を3.0%添加したときの、100℃における動粘度の増加分を意味する。
The kinematic viscosity thickening ratio ΔKV40 / ΔKV100 at 40 ° C. and 100 ° C. of the viscosity index improver is preferably 4.0 or less, more preferably 3.5 or less, still more preferably 3.0 or less, particularly Preferably it is 2.5 or less, Most preferably, it is 2.3 or less. Further, ΔKV40 / ΔKV100 is preferably 0.5 or more, more preferably 1.0 or more, still more preferably 1.5 or more, and particularly preferably 2.0 or more.
If ΔKV40 / ΔKV100 is less than 0.5, the effect of increasing viscosity and solubility may be small and the cost may increase. If it exceeds 4.0, the effect of improving viscosity temperature characteristics and low temperature viscosity characteristics may be obtained. May be inferior. ΔKV40 means an increase in kinematic viscosity at 40 ° C. when 3.0% of a viscosity index improver is added to SK YUBASE4, and ΔKV100 is 3.0% of SKBASE YUBASE4. It means an increase in kinematic viscosity at 100 ° C. when added in%.

上記粘度指数向上剤の100℃と150℃におけるHTHS粘度の増粘比ΔHTHS100/ΔHTHS150は、2.0以下であることが好ましく、より好ましくは1.7以下、さらに好ましくは1.6以下、特に好ましくは1.55以下である。また、ΔHTHS100/ΔHTHS150は、0.5以上であることが好ましく、より好ましくは1.0 以上であり、さらに好ましくは1.2以上であり、特に好ましくは1.4以上である。
0.5未満の場合には、粘度の増加効果や溶解性が小さくコストが上昇するおそれがあり、2.0を超える場合には、粘度温度特性の向上効果や低温粘度特性に劣るおそれがある。
なお、ΔHTHS100はSK社製YUBASE4に粘度指数向上剤を3.0%添加したときの、100℃におけるHTHS粘度の増加分を意味し、ΔHTHS150はSK社製YUBASE4に粘度指数向上剤を3.0%添加したときの、150℃におけるHTHS粘度の増加分を意味する。また、ΔHTHS100/ΔHTHS150は100℃におけるHTHS粘度の増加分と150℃におけるHTHS粘度の増加分の比を意味する。ここでいう100℃におけるHTHS粘度とは、ASTM D4683に規定される100℃での高温高せん断粘度を示す。また、150℃におけるHTHS粘度とは、ASTM D4683に規定される150℃での高温高せん断粘度を示す。
The viscosity increase ratio ΔHTHS100 / ΔHTHS150 of the viscosity index improver at 100 ° C. and 150 ° C. is preferably 2.0 or less, more preferably 1.7 or less, still more preferably 1.6 or less, particularly Preferably it is 1.55 or less. ΔHTHS100 / ΔHTHS150 is preferably 0.5 or more, more preferably 1.0 or more, still more preferably 1.2 or more, and particularly preferably 1.4 or more.
If it is less than 0.5, the viscosity increasing effect and solubility may be small and the cost may increase, and if it exceeds 2.0, the viscosity temperature characteristic improving effect and the low temperature viscosity characteristic may be inferior. .
ΔHTHS100 means an increase in HTHS viscosity at 100 ° C. when 3.0% of a viscosity index improver is added to SK YUBASE4, and ΔHTHS150 is SKBASE YUBASE4 with a viscosity index improver of 3.0%. It means an increase in HTHS viscosity at 150 ° C. when added in%. ΔHTHS100 / ΔHTHS150 means the ratio of the increase in HTHS viscosity at 100 ° C. to the increase in HTHS viscosity at 150 ° C. The HTHS viscosity at 100 ° C. here refers to the high temperature and high shear viscosity at 100 ° C. defined in ASTM D4683. Moreover, the HTHS viscosity at 150 ° C. indicates the high temperature and high shear viscosity at 150 ° C. defined in ASTM D4683.

本発明の潤滑油組成物における上記の粘度指数向上剤の含有量は、組成物全量基準で、0.01〜50質量%であることが必要であり、好ましくは0.5質量%以上、更に好ましくは1質量%以上、特に好ましくは2質量%以上、最も好ましくは5質量%以上である。また、好ましくは40質量%以下、更に好ましくは30質量%以下、特に好ましくは20質量%以下である。上記粘度指数向上剤の含有量が0.1質量%より少なくなると、粘度指数向上効果や製品粘度の低減効果が小さくなることから、省燃費性の向上が図れなくなるおそれがある。また、50質量%よりも多くなると、製品コストが大幅に上昇すると共に、基油粘度を低下させる必要が出てくることから、厳しい潤滑条件(高温高せん断条件)における潤滑性能を低下させ、摩耗や焼き付き、疲労破壊等の不具合が発生原因となることが懸念される。   The content of the viscosity index improver in the lubricating oil composition of the present invention is required to be 0.01 to 50% by mass, preferably 0.5% by mass or more, based on the total amount of the composition. Preferably it is 1 mass% or more, Especially preferably, it is 2 mass% or more, Most preferably, it is 5 mass% or more. Further, it is preferably 40% by mass or less, more preferably 30% by mass or less, and particularly preferably 20% by mass or less. When the content of the viscosity index improver is less than 0.1% by mass, the effect of improving the viscosity index and the effect of reducing the product viscosity are reduced, and thus there is a possibility that the fuel economy cannot be improved. Also, if it exceeds 50% by mass, the product cost will increase significantly and the viscosity of the base oil will need to be reduced. There is a concern that defects such as burn-in, seizure and fatigue failure may be the cause.

本発明の潤滑油組成物は、粘度指数向上剤としては、前記した粘度指数向上剤に加えて、通常の一般的な非分散型または分散型ポリ(メタ)アクリレート、非分散型または分散型エチレン−α−オレフィン共重合体またはその水素化物、ポリイソブチレンまたはその水素化物、スチレン−ジエン水素化共重合体を、スチレン−無水マレイン酸エステル共重合体およびポリアルキルスチレン等を更に含有することができる。   In the lubricating oil composition of the present invention, as a viscosity index improver, in addition to the above-described viscosity index improver, an ordinary general non-dispersed or dispersed poly (meth) acrylate, non-dispersed or dispersed ethylene -Α-olefin copolymer or hydrogenated product thereof, polyisobutylene or hydrogenated product thereof, styrene-diene hydrogenated copolymer, styrene-maleic anhydride ester copolymer, polyalkylstyrene and the like can further be contained. .

本発明の潤滑油組成物においては、省燃費性能を更に高めるために、有機モリブデン化合物および無灰摩擦調整剤から選ばれる摩擦調整剤を含有させることができる。
有機モリブデン化合物としては、モリブデンジチオホスフェート、モリブデンジチオカーバメート等の硫黄を含有する有機モリブデン化合物が挙げられる。
In the lubricating oil composition of the present invention, a friction modifier selected from an organic molybdenum compound and an ashless friction modifier can be contained in order to further improve fuel economy performance.
Examples of the organic molybdenum compound include organic molybdenum compounds containing sulfur such as molybdenum dithiophosphate and molybdenum dithiocarbamate.

これら以外の硫黄を含有する有機モリブデン化合物としては、モリブデン化合物と、硫黄含有有機化合物あるいはその他の有機化合物との錯体等、あるいは、上記硫化モリブデン、硫化モリブデン酸等の硫黄含有モリブデン化合物とアルケニルコハク酸イミドとの錯体等を挙げることができる。   Other sulfur-containing organic molybdenum compounds include complexes of molybdenum compounds with sulfur-containing organic compounds or other organic compounds, or sulfur-containing molybdenum compounds such as molybdenum sulfide and sulfurized molybdenum acid, and alkenyl succinic acid. Examples include complexes with imides.

モリブデン化合物としては、例えば、二酸化モリブデン、三酸化モリブデン等の酸化モリブデン;オルトモリブデン酸、パラモリブデン酸、(ポリ)硫化モリブデン酸等のモリブデン酸、これらモリブデン酸の金属塩、アンモニウム塩等のモリブデン酸塩、二硫化モリブデン、三硫化モリブデン、五硫化モリブデン、ポリ硫化モリブデン等の硫化モリブデン、硫化モリブデン酸、硫化モリブデン酸の金属塩またはアミン塩、塩化モリブデン等のハロゲン化モリブデンが挙げられる。   Examples of the molybdenum compound include molybdenum oxide such as molybdenum dioxide and molybdenum trioxide; molybdic acid such as orthomolybdic acid, paramolybdic acid and (poly) sulfurized molybdic acid, and molybdic acid such as metal salts and ammonium salts of these molybdic acids. Examples thereof include molybdenum sulfides such as salts, molybdenum disulfide, molybdenum trisulfide, molybdenum pentasulfide, and polysulfide molybdenum, molybdenum sulfides, metal salts of molybdenum sulfides, amine salts, and molybdenum halides such as molybdenum chloride.

硫黄含有有機化合物としては、例えば、アルキル(チオ)キサンテート、チアジアゾール、メルカプトチアジアゾール、チオカーボネート、テトラハイドロカルビルチウラムジスルフィド、ビス(ジ(チオ)ハイドロカルビルジチオホスホネート)ジスルフィド、有機(ポリ)サルファイド、硫化エステルが挙げられる。   Examples of the sulfur-containing organic compound include alkyl (thio) xanthate, thiadiazole, mercaptothiadiazole, thiocarbonate, tetrahydrocarbyl thiuram disulfide, bis (di (thio) hydrocarbyl dithiophosphonate) disulfide, organic (poly) sulfide, Examples include sulfurized esters.

有機モリブデン化合物としては、構成元素として硫黄を含まない有機モリブデン化合物も用いることができる。
硫黄を含まない有機モリブデン化合物としては、例えば、モリブデン−アミン錯体、モリブデン−コハク酸イミド錯体、有機酸のモリブデン塩、アルコールのモリブデン塩などが挙げられ、中でも、モリブデン−アミン錯体、有機酸のモリブデン塩およびアルコールのモリブデン塩が好ましい。
As the organomolybdenum compound, an organomolybdenum compound containing no sulfur as a constituent element can also be used.
Examples of organic molybdenum compounds not containing sulfur include molybdenum-amine complexes, molybdenum-succinimide complexes, molybdenum salts of organic acids, molybdenum salts of alcohols, among others, molybdenum-amine complexes, molybdenum of organic acids. Salts and molybdenum salts of alcohols are preferred.

本発明の潤滑油組成物において、有機モリブデン化合物を用いる場合、その含有量は特に制限されないが、組成物全量を基準として、モリブデン元素換算で、好ましくは0.001質量%以上、より好ましくは0.005質量%以上、更に好ましくは0.01質量%以上であり、また、好ましくは0.2質量%以下、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下、特に好ましくは0.03質量%以下である。その含有量が0.001質量%未満の場合、潤滑油組成物の熱・酸化安定性が不十分となり、特に、長期間に渡って優れた清浄性を維持させることができなくなる傾向にある。一方、含有量が0.2質量%を超える場合、含有量に見合う効果が得られず、また、潤滑油組成物の貯蔵安定性が低下する傾向にある。   In the lubricating oil composition of the present invention, when an organic molybdenum compound is used, its content is not particularly limited, but is preferably 0.001% by mass or more, more preferably 0, in terms of molybdenum element, based on the total amount of the composition. 0.005% by mass or more, more preferably 0.01% by mass or more, preferably 0.2% by mass or less, more preferably 0.1% by mass or less, still more preferably 0.05% by mass or less, particularly Preferably it is 0.03 mass% or less. When the content is less than 0.001% by mass, the thermal and oxidation stability of the lubricating oil composition becomes insufficient, and in particular, it tends to be impossible to maintain excellent cleanliness over a long period of time. On the other hand, when the content exceeds 0.2% by mass, an effect commensurate with the content cannot be obtained, and the storage stability of the lubricating oil composition tends to decrease.

前記無灰摩擦調整剤としては、潤滑油用の摩擦調整剤として通常用いられる任意の化合物が使用可能であり、例えば、炭素数6〜50のアルキル基またはアルケニル基、特に炭素数6〜50の直鎖アルキル基または直鎖アルケニル基を分子中に少なくとも1個有する、アミン化合物、アミド化合物、イミド化合物、エステル化合物が挙げられる。更には脂肪酸エステル、脂肪酸アミド、脂肪酸、脂肪族アルコール、脂肪族エーテル、ウレア系摩擦調整剤等の無灰摩擦調整剤が挙げられる。   As the ashless friction modifier, any compound usually used as a friction modifier for lubricating oils can be used, for example, an alkyl group or alkenyl group having 6 to 50 carbon atoms, particularly 6 to 50 carbon atoms. Examples include amine compounds, amide compounds, imide compounds, and ester compounds having at least one linear alkyl group or linear alkenyl group in the molecule. Further examples include ashless friction modifiers such as fatty acid esters, fatty acid amides, fatty acids, aliphatic alcohols, aliphatic ethers, urea friction modifiers, and the like.

本発明の潤滑油組成物において無灰摩擦調整剤を用いる場合、無灰摩擦調整剤の含有量は、組成物全量を基準として、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下、更に好ましくは1質量%以下である。無灰摩擦調整剤の含有量が0.01質量%未満であると、その添加による摩擦低減効果が不十分となる傾向にあり、また3質量%を超えると、耐摩耗性添加剤などの効果が阻害されやすく、あるいは添加剤の溶解性が悪化する傾向にある。   When the ashless friction modifier is used in the lubricating oil composition of the present invention, the content of the ashless friction modifier is preferably 0.01% by mass or more, more preferably 0.1% by mass, based on the total amount of the composition. % Or more, more preferably 0.3% by mass or more, preferably 3% by mass or less, more preferably 2% by mass or less, and still more preferably 1% by mass or less. When the content of the ashless friction modifier is less than 0.01% by mass, the effect of reducing friction due to the addition tends to be insufficient, and when the content exceeds 3% by mass, the effect of an antiwear additive or the like. Tends to be inhibited, or the solubility of the additive tends to deteriorate.

本発明においては、有機モリブデン化合物または無灰摩擦調整剤のいずれか一方のみを用いてもよく、両者を併用してもよいが、より長期間にわたって摩擦低減効果を維持できることから無灰摩擦調整剤を用いることがより好ましい。   In the present invention, either one of the organic molybdenum compound or the ashless friction modifier may be used, or both may be used together, but the ashless friction modifier can be maintained for a longer period of time. It is more preferable to use

本発明の潤滑油組成物には、さらにその性能を向上させるために、その目的に応じて潤滑油に一般的に使用されている任意の添加剤を含有させることができる。このような添加剤としては、例えば、金属系清浄剤、無灰分散剤、酸化防止剤、摩耗防止剤(または極圧剤)、腐食防止剤、防錆剤、流動点降下剤、抗乳化剤、金属不活性化剤、消泡剤等の添加剤を挙げることができる。   In order to further improve the performance, the lubricating oil composition of the present invention may contain any additive generally used in lubricating oils depending on the purpose. Examples of such additives include metal detergents, ashless dispersants, antioxidants, antiwear agents (or extreme pressure agents), corrosion inhibitors, rust inhibitors, pour point depressants, demulsifiers, metals Examples thereof include additives such as an inactivating agent and an antifoaming agent.

金属系清浄剤としては、例えば、アルカリ金属スルホネートまたはアルカリ土類金属スルホネート、アルカリ金属フェネートまたはアルカリ土類金属フェネート、アルカリ金属サリシレートまたはアルカリ土類金属サリシレート等の正塩、塩基正塩または過塩基性塩が挙げられる。本発明では、これらからなる群より選ばれる1種または2種以上のアルカリ金属またはアルカリ土類金属系清浄剤、特にアルカリ土類金属系清浄剤を好ましく使用することができる。特にマグネシウム塩および/またはカルシウム塩が好ましく、カルシウム塩がより好ましく用いられる。   Examples of metal detergents include normal salts such as alkali metal sulfonates or alkaline earth metal sulfonates, alkali metal phenates or alkaline earth metal phenates, alkali metal salicylates or alkaline earth metal salicylates, basic normal salts or overbased Salt. In the present invention, one or more alkali metal or alkaline earth metal detergents selected from the group consisting of these, particularly alkaline earth metal detergents can be preferably used. In particular, a magnesium salt and / or a calcium salt is preferable, and a calcium salt is more preferably used.

無灰分散剤としては、潤滑油に用いられる任意の無灰分散剤が使用でき、例えば、炭素数40〜400の直鎖もしくは分枝状のアルキル基またはアルケニル基を分子中に少なくとも1個有するモノまたはビスコハク酸イミド、炭素数40〜400のアルキル基またはアルケニル基を分子中に少なくとも1個有するベンジルアミン、あるいは炭素数40〜400のアルキル基またはアルケニル基を分子中に少なくとも1個有するポリアミン、あるいはこれらのホウ素化合物、カルボン酸、リン酸等による変成品が挙げられる。使用に際してはこれらの中から任意に選ばれる1種類あるいは2種類以上を配合することができる。   As the ashless dispersant, any ashless dispersant used in lubricating oils can be used. For example, a mono- or mono-chain having at least one linear or branched alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule. Bisuccinimide, benzylamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, polyamine having at least one alkyl group or alkenyl group having 40 to 400 carbon atoms in the molecule, or these These are modified products of boron compounds, carboxylic acids, phosphoric acids and the like. In use, one kind or two or more kinds arbitrarily selected from these can be blended.

酸化防止剤としては、例えば、フェノール系、アミン系等の無灰酸化防止剤、銅系、モリブデン系等の金属系酸化防止剤が挙げられる。具体的には、フェノール系無灰酸化防止剤としては、例えば、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、4,4’−ビス(2,6−ジ−tert−ブチルフェノール)が、アミン系無灰酸化防止剤としては、例えば、フェニル−α−ナフチルアミン、アルキルフェニル−α−ナフチルアミン、ジアルキルジフェニルアミンが挙げられる。   Examples of the antioxidant include ashless antioxidants such as phenols and amines, and metal antioxidants such as copper and molybdenum. Specifically, as the phenol-based ashless antioxidant, for example, 4,4′-methylenebis (2,6-di-tert-butylphenol), 4,4′-bis (2,6-di-tert- Examples of amine-based ashless antioxidants include phenyl-α-naphthylamine, alkylphenyl-α-naphthylamine, and dialkyldiphenylamine.

摩耗防止剤(または極圧剤)としては、潤滑油に用いられる任意の摩耗防止剤・極圧剤が使用できる。例えば、硫黄系、リン系、硫黄−リン系の極圧剤が使用できる。具体的には、例えば、亜リン酸エステル類、チオ亜リン酸エステル類、ジチオ亜リン酸エステル類、トリチオ亜リン酸エステル類、リン酸エステル類、チオリン酸エステル類、ジチオリン酸エステル類、トリチオリン酸エステル類、これらのアミン塩、これらの金属塩、これらの誘導体、ジチオカーバメート、亜鉛ジチオカーバメート、モリブデンジチオカーバメート、ジサルファイド類、ポリサルファイド類、硫化オレフィン類、硫化油脂類が挙げられる。これらの中では硫黄系極圧剤の添加が好ましく、特に硫化油脂が好ましい。   As the antiwear agent (or extreme pressure agent), any antiwear agent / extreme pressure agent used in lubricating oils can be used. For example, sulfur-based, phosphorus-based, and sulfur-phosphorus extreme pressure agents can be used. Specifically, for example, phosphites, thiophosphites, dithiophosphites, trithiophosphites, phosphate esters, thiophosphates, dithiophosphates, trithiophosphorus Examples include acid esters, amine salts thereof, metal salts thereof, derivatives thereof, dithiocarbamate, zinc dithiocarbamate, molybdenum dithiocarbamate, disulfides, polysulfides, sulfurized olefins, and sulfurized fats and oils. Among these, addition of a sulfur-based extreme pressure agent is preferable, and sulfurized fats and oils are particularly preferable.

腐食防止剤としては、例えば、ベンゾトリアゾール系、トリルトリアゾール系、チアジアゾール系、またはイミダゾール系化合物が挙げられる。   Examples of the corrosion inhibitor include benzotriazole, tolyltriazole, thiadiazole, and imidazole compounds.

防錆剤としては、例えば、石油スルホネート、アルキルベンゼンスルホネート、ジノニルナフタレンスルホネート、アルケニルコハク酸エステル、または多価アルコールエステルが挙げられる。   Examples of the rust inhibitor include petroleum sulfonate, alkylbenzene sulfonate, dinonylnaphthalene sulfonate, alkenyl succinic acid ester, and polyhydric alcohol ester.

流動点降下剤としては、例えば、使用する潤滑油基油に適合するポリメタクリレート系のポリマーが使用できる。   As the pour point depressant, for example, a polymethacrylate-based polymer compatible with the lubricating base oil to be used can be used.

抗乳化剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、またはポリオキシエチレンアルキルナフチルエーテル等のポリアルキレングリコール系非イオン系界面活性剤が挙げられる。   Examples of the demulsifier include polyalkylene glycol nonionic surfactants such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, and polyoxyethylene alkyl naphthyl ether.

金属不活性化剤としては、例えば、イミダゾリン、ピリミジン誘導体、アルキルチアジアゾール、メルカプトベンゾチアゾール、ベンゾトリアゾールまたはその誘導体、1,3,4−チアジアゾールポリスルフィド、1,3,4−チアジアゾリル−2,5−ビスジアルキルジチオカーバメート、2−(アルキルジチオ)ベンゾイミダゾール、またはβ−(o−カルボキシベンジルチオ)プロピオンニトリルが挙げられる。
消泡剤としては、例えば、25℃における動粘度が0.1〜100mm2/s未満のシリコーンオイル、アルケニルコハク酸誘導体、ポリヒドロキシ脂肪族アルコールと長鎖脂肪酸のエステル、メチルサリチレートとo−ヒドロキシベンジルアルコールが挙げられる。
Examples of metal deactivators include imidazoline, pyrimidine derivatives, alkylthiadiazoles, mercaptobenzothiazoles, benzotriazoles or derivatives thereof, 1,3,4-thiadiazole polysulfide, 1,3,4-thiadiazolyl-2,5-bis. Dialkyldithiocarbamate, 2- (alkyldithio) benzimidazole, or β- (o-carboxybenzylthio) propiononitrile.
Examples of antifoaming agents include silicone oils having a kinematic viscosity at 25 ° C. of less than 0.1 to 100 mm 2 / s, alkenyl succinic acid derivatives, esters of polyhydroxy aliphatic alcohols and long chain fatty acids, methyl salicylates and o -Hydroxybenzyl alcohol.

これらの添加剤を本発明の潤滑油組成物に含有させる場合には、それぞれその含有量は組成物全量基準で、好ましくは0.01〜10質量%である。   When these additives are contained in the lubricating oil composition of the present invention, the content thereof is preferably 0.01 to 10% by mass based on the total amount of the composition.

本発明の潤滑油組成物の150℃におけるHTHS粘度と100℃におけるHTHS粘度の比が下記式(A)で表される条件を満たすことが必要である。当該比が0.50未満であると、必要な低温粘度および十分な省燃費性能が得られないおそれがある。
HTHS(100℃)/HTHS(150℃)≧0.50 (A)
[式中、HTHS(100℃)は100℃におけるHTHS粘度を示し、HTHS(150℃)は150℃におけるHTHS粘度を示す。]
また、同様の理由から、HTHS(100℃)/HTHS(150℃)は、より好ましくは0.51以上、さらに好ましくは0.52以上、特に好ましくは0.53以上、最も好ましくは0.54以上である。
The ratio of the HTHS viscosity at 150 ° C. and the HTHS viscosity at 100 ° C. of the lubricating oil composition of the present invention must satisfy the condition represented by the following formula (A). If the ratio is less than 0.50, the necessary low temperature viscosity and sufficient fuel saving performance may not be obtained.
HTHS (100 ° C.) / HTHS (150 ° C.) ≧ 0.50 (A)
[Wherein, HTHS (100 ° C.) represents the HTHS viscosity at 100 ° C., and HTHS (150 ° C.) represents the HTHS viscosity at 150 ° C. ]
For the same reason, HTHS (100 ° C.) / HTHS (150 ° C.) is more preferably 0.51 or more, further preferably 0.52 or more, particularly preferably 0.53 or more, and most preferably 0.54. That's it.

本発明の潤滑油組成物の150℃におけるHTHS粘度は特に制限はないが、好ましくは3.5mPa・s以下、より好ましくは3.0mPa・s以下、さらに好ましくは2.8mPa・s以下、特に好ましくは2.7mPa・s以下である。また、好ましくは2.0mPa・s以上、より好ましくは2.1mPa・s以上、さらに好ましくは2.2mPa・s以上、特に好ましくは2.3mPa・s以上、最も好ましくは2.4mPa・s以上である。150℃におけるHTHS粘度が2.0mPa・s未満の場合には、潤滑性不足を来たすおそれがあり、3.5mPa・sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。   The HTHS viscosity at 150 ° C. of the lubricating oil composition of the present invention is not particularly limited, but is preferably 3.5 mPa · s or less, more preferably 3.0 mPa · s or less, even more preferably 2.8 mPa · s or less, particularly The pressure is preferably 2.7 mPa · s or less. Further, it is preferably 2.0 mPa · s or more, more preferably 2.1 mPa · s or more, further preferably 2.2 mPa · s or more, particularly preferably 2.3 mPa · s or more, and most preferably 2.4 mPa · s or more. It is. When the HTHS viscosity at 150 ° C. is less than 2.0 mPa · s, there is a risk of insufficient lubricity, and when it exceeds 3.5 mPa · s, the necessary low temperature viscosity and sufficient fuel saving performance cannot be obtained. There is a fear.

本発明の潤滑油組成物の100℃におけるHTHS粘度は特に制限はないが、好ましくは5.3mPa・s以下、より好ましくは5.2mPa・s以下、さらに好ましくは5.1mPa・s以下、特に好ましくは5.0mPa・s以下である。また、好ましくは3.5mPa・s以上、更に好ましくは3.8mPa・s以上、特に好ましくは4.0mPa・s以上、最も好ましくは4.2mPa・s以上である。100℃におけるHTHS粘度が3.5mPa・s未満の場合には、潤滑性不足を来たすおそれがあり、5.3mPa・sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。   The HTHS viscosity at 100 ° C. of the lubricating oil composition of the present invention is not particularly limited, but is preferably 5.3 mPa · s or less, more preferably 5.2 mPa · s or less, even more preferably 5.1 mPa · s or less, particularly Preferably, it is 5.0 mPa · s or less. Further, it is preferably 3.5 mPa · s or more, more preferably 3.8 mPa · s or more, particularly preferably 4.0 mPa · s or more, and most preferably 4.2 mPa · s or more. When the HTHS viscosity at 100 ° C. is less than 3.5 mPa · s, there is a risk of insufficient lubricity, and when it exceeds 5.3 mPa · s, the necessary low temperature viscosity and sufficient fuel saving performance cannot be obtained. There is a fear.

本発明の潤滑油組成物の100℃における動粘度は、3〜15mm2/sであることが好ましく、より好ましくは12mm2/s以下、さらに好ましくは10mm2/s以下、特に好ましくは9mm2/s以下、最も好ましくは8mm2/s以下である。また、本発明の潤滑油組成物の100℃における動粘度は、より好ましくは4mm2/s以上、さらに好ましくは5mm2/s以上、特に好ましくは6mm2/s以上、最も好ましくは7mm2/s以上である。100℃における動粘度が3mm2/s未満の場合には、潤滑性不足を来たすおそれがあり、15mm2/sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。 Kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is preferably from 3 to 15 mm 2 / s, more preferably 12 mm 2 / s or less, more preferably 10 mm 2 / s or less, particularly preferably 9 mm 2 / S or less, and most preferably 8 mm 2 / s or less. The kinematic viscosity at 100 ° C. of the lubricating oil composition of the present invention is more preferably 4 mm 2 / s or more, further preferably 5 mm 2 / s or more, particularly preferably 6 mm 2 / s or more, and most preferably 7 mm 2 / s. s or more. If the kinematic viscosity at 100 ° C. is less than 3 mm 2 / s, there is a risk of insufficient lubricity, and if it exceeds 15 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving performance may not be obtained. is there.

本発明の潤滑油組成物の40℃における動粘度は特に制限はないが、通常4〜80mm2/s、好ましくは50mm2/s以下、より好ましくは45mm2/s以下、更に好ましくは40mm2/s以下、特に好ましくは35mm2/s以下、最も好ましくは33mm2/s以下である。また、好ましくは10mm2/s以上、より好ましくは20mm2/s以上、さらに好ましくは25mm2/s以上、特に好ましくは27mm2/s以上である。40℃における動粘度が4mm2/s未満の場合には、潤滑性不足を来たすおそれがあり、80mm2/sを超える場合には必要な低温粘度および十分な省燃費性能が得られないおそれがある。 Kinematic viscosity at 40 ° C. of the lubricating oil composition of the present invention is not particularly limited, usually 4~80mm 2 / s, preferably not more than 50 mm 2 / s, more preferably 45 mm 2 / s or less, more preferably 40 mm 2 / S or less, particularly preferably 35 mm 2 / s or less, and most preferably 33 mm 2 / s or less. Further, it is preferably 10 mm 2 / s or more, more preferably 20 mm 2 / s or more, further preferably 25 mm 2 / s or more, and particularly preferably 27 mm 2 / s or more. If the kinematic viscosity at 40 ° C. is less than 4 mm 2 / s, the lubricity may be insufficient. If it exceeds 80 mm 2 / s, the necessary low temperature viscosity and sufficient fuel saving performance may not be obtained. is there.

本発明の潤滑油組成物の粘度指数は特に制限はないが、140〜400の範囲であることが好ましく、より好ましくは180以上、さらに好ましくは190以上、一層好ましくは200以上、特に好ましくは210以上である。該粘度指数が140未満の場合には、HTHS粘度を維持しながら、省燃費性を向上させることが困難となるおそれがあり、さらに−35℃における低温粘度を低減させることが困難となるおそれがある。また、該粘度指数が400を超える場合には、低温流動性が悪化し、更に添加剤の溶解性やシール材料との適合性が不足することによる不具合が発生するおそれがある。   The viscosity index of the lubricating oil composition of the present invention is not particularly limited, but is preferably in the range of 140 to 400, more preferably 180 or more, still more preferably 190 or more, still more preferably 200 or more, and particularly preferably 210. That's it. When the viscosity index is less than 140, it may be difficult to improve fuel economy while maintaining the HTHS viscosity, and it may be difficult to reduce the low temperature viscosity at -35 ° C. is there. On the other hand, when the viscosity index exceeds 400, low-temperature fluidity is deteriorated, and there is a possibility that problems due to insufficient solubility of the additive and compatibility with the sealing material may occur.

本発明の潤滑油組成物は、省燃費性、潤滑性および高温清浄性に優れ、ポリ−α−オレフィン系基油やエステル系基油等の合成油や低粘度鉱油系基油を用いない場合であっても、HTHS粘度を一定レベルに維持しながら、燃費向上にとって効果的である、潤滑油の40℃および100℃における動粘度および100℃のHTHS粘度を著しく低減させたものである。このような優れた特性を有する本発明の潤滑油組成物は、省燃費ガソリンエンジン油、省燃費ディーゼルエンジン油等の省燃費エンジン油として好適に使用することができる。   The lubricating oil composition of the present invention is excellent in fuel economy, lubricity and high temperature cleanliness, and does not use a synthetic oil such as a poly-α-olefin base oil or an ester base oil or a low viscosity mineral oil base oil. Even so, the kinematic viscosity at 40 ° C. and 100 ° C. and the HTHS viscosity at 100 ° C. of the lubricating oil, which are effective for improving fuel efficiency while maintaining the HTHS viscosity at a certain level, are significantly reduced. The lubricating oil composition of the present invention having such excellent characteristics can be suitably used as fuel-saving engine oils such as fuel-saving gasoline engine oil and fuel-saving diesel engine oil.

以下、実施例および比較例に基づき本発明を更に具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

[実施例1〜6、比較例1〜3]
実施例1〜6および比較例1〜3においては、以下に示す基油および添加剤を用いて表2に示す組成を有する潤滑油組成物を調製し、以下に示す評価を行った。基油1〜3の性状を表1に示す。
(基油)
基油1:n−パラフィン含有油を水素化分解/水素化異性化した基油
基油2:水素化分解基油
基油3:水素化分解基油
(添加剤)
A−1:非分散型ポリメタアクリレート(M1=5.8、M2=0.95、M1/M2=6.1、ΔKV40/ΔKV100=2.2、ΔHTHS100/ΔHTHS150=1.51、MW=400,000、PSSI=20、Mw/Mn=2.2、Mw/PSSI=20000)
A−2:非分散型ポリメタクリレート(M1=0.19、M2=3.69、M1/M2=0.05、ΔKV40/ΔKV100=4.4、ΔHTHS100/ΔHTHS150=2.15、MW=80,000、Mw/Mn=2.7、PSSI=5、Mw/PSSI=16000)
A−3:分散型ポリメタクリレート(M1=1.5、M2=3.52、M1/M2=0.43、ΔKV40/ΔKV100=3.3、ΔHTHS100/ΔHTHS150=1.79、MW=300,000、PSSI=40、Mw/Mn=4.0、Mw/PSSI=7500)
B−1(摩擦調整剤1):グリセリンモノオレエート
B−2(摩擦調整剤2):オレイルウレア
B−3(摩擦調整剤3):モリブデンジチオカーバメート
C−1(その他添加剤):金属系清浄剤、無灰分散剤、酸化防止剤、リン系摩耗防止剤、流動点降下剤、消泡剤等含有
[Examples 1-6, Comparative Examples 1-3]
In Examples 1 to 6 and Comparative Examples 1 to 3, lubricating oil compositions having the compositions shown in Table 2 were prepared using the base oils and additives shown below, and the evaluations shown below were performed. Table 1 shows the properties of the base oils 1 to 3.
(Base oil)
Base oil 1: Base oil obtained by hydrocracking / hydroisomerizing n-paraffin-containing oil Base oil 2: Hydrocracked base oil Base oil 3: Hydrocracked base oil
(Additive)
A-1: Non-dispersed polymethacrylate (M1 = 5.8, M2 = 0.95, M1 / M2 = 6.1, ΔKV40 / ΔKV100 = 2.2, ΔHTHS100 / ΔHTHS150 = 1.51, MW = 400 , 000, PSSI = 20, Mw / Mn = 2.2, Mw / PSSI = 20000)
A-2: Non-dispersed polymethacrylate (M1 = 0.19, M2 = 3.69, M1 / M2 = 0.05, ΔKV40 / ΔKV100 = 4.4, ΔHTHS100 / ΔHTHS150 = 2.15, MW = 80, 000, Mw / Mn = 2.7, PSSI = 5, Mw / PSSI = 16000)
A-3: Dispersed polymethacrylate (M1 = 1.5, M2 = 3.52, M1 / M2 = 0.43, ΔKV40 / ΔKV100 = 3.3, ΔHTHS100 / ΔHTHS150 = 1.79, MW = 300,000 PSSI = 40, Mw / Mn = 4.0, Mw / PSSI = 7500)
B-1 (friction modifier 1): glycerin monooleate B-2 (friction modifier 2): oleyl urea B-3 (friction modifier 3): molybdenum dithiocarbamate C-1 (additive) Contains ashless dispersant, antioxidant, phosphorus antiwear agent, pour point depressant, defoamer, etc.

Figure 2010280820
Figure 2010280820

<潤滑油組成物の評価>
実施例1〜6および比較例1〜3の各潤滑油組成物について、40℃および100℃における動粘度、粘度指数、100℃および150℃におけるHTHS粘度、−35℃におけるCCS粘度ならびにパネルコーキング試験におけるデポジット量を測定した。各測定は以下の評価方法により行った。結果を表2に示す。
(1)動粘度:ASTM D−445
(2)粘度指数:JIS K 2283−1993
(3)HTHS粘度:ASTM D4683
(4)CCS粘度:ASTM D5293
(5)高温清浄性試験:パネルコーキング試験機を用い、油温100℃、パネル温度280℃、はねかけ時間3時間、ON/OFFサイクル=15s/45s、の条件にて試験した後の、パネルに付着したデポジット量(mg)を測定した。
<Evaluation of lubricating oil composition>
About each lubricating oil composition of Examples 1-6 and Comparative Examples 1-3, kinematic viscosity at 40 ° C. and 100 ° C., viscosity index, HTHS viscosity at 100 ° C. and 150 ° C., CCS viscosity at −35 ° C., and panel coking test The amount of deposit was measured. Each measurement was performed by the following evaluation methods. The results are shown in Table 2.
(1) Kinematic viscosity: ASTM D-445
(2) Viscosity index: JIS K 2283-1993
(3) HTHS viscosity: ASTM D4683
(4) CCS viscosity: ASTM D5293
(5) High temperature cleanliness test: After testing using a panel coking tester under conditions of oil temperature 100 ° C., panel temperature 280 ° C., splash time 3 hours, ON / OFF cycle = 15 s / 45 s. The amount of deposit (mg) adhered to the panel was measured.

Figure 2010280820
Figure 2010280820

表2より、所定の粘度指数向上剤を添加した実施例1〜6の組成物は、粘度温度特性、低温粘度特性に優れている。さらに100℃動粘度5〜500mm2/sの高粘度基油を配合した実施例1〜3の組成物はデポジット量も少なく、高温清浄性にも優れている。それに対し所定以外の粘度指数向上剤を添加した比較例1〜3の組成物は動粘度(40℃)やHTHS粘度(100℃)が高く、粘度温度特性に劣る。 From Table 2, the composition of Examples 1-6 which added the predetermined viscosity index improver is excellent in a viscosity temperature characteristic and a low-temperature viscosity characteristic. Furthermore, the compositions of Examples 1 to 3 blended with a high-viscosity base oil having a 100 ° C. kinematic viscosity of 5 to 500 mm 2 / s have a small deposit amount and excellent high-temperature cleanliness. On the other hand, the compositions of Comparative Examples 1 to 3 to which a viscosity index improver other than the predetermined one is added have high kinematic viscosity (40 ° C.) and HTHS viscosity (100 ° C.) and are inferior in viscosity temperature characteristics.

Claims (4)

100℃における動粘度が1〜5mm/sである潤滑油基油と、
13C−NMRにより得られるスペクトルにおいて、全ピークの合計面積に対する化学シフト51−52.5ppmの間のピークの合計面積M1と化学シフト64−66ppmの間のピークの合計面積M2の比、M1/M2が0.50以上である粘度指数向上剤と、
を含有し、かつ、150℃におけるHTHS粘度と100℃におけるHTHS粘度の比が下記式(A)で表される条件を満たすことを特徴とする潤滑油組成物。
HTHS(100℃)/HTHS(150℃)≧0.50 (A)
[式中、HTHS(100℃)は100℃におけるHTHS粘度を示し、HTHS(150℃)は150℃におけるHTHS粘度を示す。]
A lubricating base oil having a kinematic viscosity at 100 ° C. of 1 to 5 mm 2 / s;
In the spectrum obtained by 13 C-NMR, the ratio of the total area M1 of peaks between chemical shift 51-52.5 ppm to the total area of all peaks and the total area M2 of peaks between chemical shifts 64-66 ppm, M1 / A viscosity index improver having M2 of 0.50 or more;
And the ratio of the HTHS viscosity at 150 ° C. to the HTHS viscosity at 100 ° C. satisfies the condition represented by the following formula (A).
HTHS (100 ° C.) / HTHS (150 ° C.) ≧ 0.50 (A)
[Wherein, HTHS (100 ° C.) represents the HTHS viscosity at 100 ° C., and HTHS (150 ° C.) represents the HTHS viscosity at 150 ° C. ]
前記粘度指数向上剤が、ポリ(メタ)アクリレート系粘度指数向上剤であることを特徴とする請求項1に記載の潤滑油組成物。   The lubricating oil composition according to claim 1, wherein the viscosity index improver is a poly (meth) acrylate viscosity index improver. 前記粘度指数向上剤が、PSSIが40以下、重量平均分子量とPSSIの比が0.8×10以上のものであることを特徴とする請求項1または2に記載の潤滑油組成物。 3. The lubricating oil composition according to claim 1, wherein the viscosity index improver has a PSSI of 40 or less and a weight average molecular weight to PSSI ratio of 0.8 × 10 4 or more. 150℃におけるHTHS粘度が2.6以上であり、100℃におけるHTHS粘度が5.3以下であることを特徴とする請求項1〜3のいずれか1項に記載の潤滑油組成物。   The lubricating oil composition according to any one of claims 1 to 3, wherein the HTHS viscosity at 150 ° C is 2.6 or more and the HTHS viscosity at 100 ° C is 5.3 or less.
JP2009135377A 2009-06-04 2009-06-04 Lubricating oil composition Active JP5808517B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2009135377A JP5808517B2 (en) 2009-06-04 2009-06-04 Lubricating oil composition
CN201610089709.2A CN105695045A (en) 2009-06-04 2010-05-31 Lubricant oil composition
EP10783345.1A EP2439259A4 (en) 2009-06-04 2010-05-31 Lubricant oil composition
US13/322,975 US9029303B2 (en) 2009-06-04 2010-05-31 Lubricant oil composition
PCT/JP2010/059196 WO2010140562A1 (en) 2009-06-04 2010-05-31 Lubricant oil composition
EP13005590.8A EP2712911A3 (en) 2009-06-04 2010-05-31 Lubricant oil composition
CN201310311548.3A CN103396866B (en) 2009-06-04 2010-05-31 Lubricant oil composite
CN2010800248327A CN102459547A (en) 2009-06-04 2010-05-31 Lubricant oil composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135377A JP5808517B2 (en) 2009-06-04 2009-06-04 Lubricating oil composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014046635A Division JP5759582B2 (en) 2014-03-10 2014-03-10 Lubricating oil composition

Publications (3)

Publication Number Publication Date
JP2010280820A true JP2010280820A (en) 2010-12-16
JP2010280820A5 JP2010280820A5 (en) 2012-03-29
JP5808517B2 JP5808517B2 (en) 2015-11-10

Family

ID=43537849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135377A Active JP5808517B2 (en) 2009-06-04 2009-06-04 Lubricating oil composition

Country Status (1)

Country Link
JP (1) JP5808517B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201806A (en) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp Lubricant composition
JP2013209569A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Lubricating oil composition
KR101525036B1 (en) * 2013-12-19 2015-06-03 에스케이이노베이션 주식회사 Lubricant composition having improved low temperature properties
JPWO2014021350A1 (en) * 2012-07-31 2016-07-21 出光興産株式会社 Lubricating oil composition for internal combustion engines
WO2016159006A1 (en) * 2015-03-31 2016-10-06 Jxエネルギー株式会社 Lubricating oil composition
JP2019065093A (en) * 2017-09-28 2019-04-25 シェルルブリカンツジャパン株式会社 Lubricant composition for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104955A1 (en) * 2001-04-06 2003-06-05 Sanyo Chemical Industries, Ltd. Viscosity index improver and lube oil containing the same
JP2007045850A (en) * 2005-08-05 2007-02-22 Tonengeneral Sekiyu Kk Lube oil composition
JP2008031459A (en) * 2006-06-30 2008-02-14 Sanyo Chem Ind Ltd Viscosity index improver and lubricating oil composition
WO2008093446A1 (en) * 2007-01-31 2008-08-07 Nippon Oil Corporation Lubricant oil composition
JP2008274236A (en) * 2007-03-30 2008-11-13 Nippon Oil Corp Lubricating oil composition
WO2009007147A1 (en) * 2007-07-09 2009-01-15 Evonik Rohmax Additives Gmbh Use of comb polymers for reducing fuel consumption

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030104955A1 (en) * 2001-04-06 2003-06-05 Sanyo Chemical Industries, Ltd. Viscosity index improver and lube oil containing the same
JP2007045850A (en) * 2005-08-05 2007-02-22 Tonengeneral Sekiyu Kk Lube oil composition
JP2008031459A (en) * 2006-06-30 2008-02-14 Sanyo Chem Ind Ltd Viscosity index improver and lubricating oil composition
WO2008093446A1 (en) * 2007-01-31 2008-08-07 Nippon Oil Corporation Lubricant oil composition
JP2008274236A (en) * 2007-03-30 2008-11-13 Nippon Oil Corp Lubricating oil composition
WO2009007147A1 (en) * 2007-07-09 2009-01-15 Evonik Rohmax Additives Gmbh Use of comb polymers for reducing fuel consumption

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012201806A (en) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp Lubricant composition
JP2013209569A (en) * 2012-03-30 2013-10-10 Jx Nippon Oil & Energy Corp Lubricating oil composition
JPWO2014021350A1 (en) * 2012-07-31 2016-07-21 出光興産株式会社 Lubricating oil composition for internal combustion engines
KR101525036B1 (en) * 2013-12-19 2015-06-03 에스케이이노베이션 주식회사 Lubricant composition having improved low temperature properties
WO2016159006A1 (en) * 2015-03-31 2016-10-06 Jxエネルギー株式会社 Lubricating oil composition
JP2019065093A (en) * 2017-09-28 2019-04-25 シェルルブリカンツジャパン株式会社 Lubricant composition for internal combustion engine

Also Published As

Publication number Publication date
JP5808517B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5345808B2 (en) Engine oil composition
WO2010140562A1 (en) Lubricant oil composition
WO2010140391A1 (en) A lubricating oil composition and a method for making the same
JP2011140573A (en) Lubricant composition
JP5809582B2 (en) Lubricating oil composition
JP5689592B2 (en) Lubricating oil composition
JP2009167277A (en) Lubricant composition
WO2016159006A1 (en) Lubricating oil composition
JP6043791B2 (en) Lubricating oil composition for internal combustion engines
JP2011140572A (en) Lubricant composition
JP2009167278A (en) Lubricant composition
JP5756337B2 (en) Lubricating oil composition
JP2016020498A (en) Lubricant composition
JP5744771B2 (en) Lubricating oil composition
JP5808517B2 (en) Lubricating oil composition
JP2012233115A (en) Lubricating oil composition
JP2010280821A (en) Lubricant composition
JP5815809B2 (en) Lubricating oil composition
JP5700657B2 (en) Lubricating oil composition
JP5647313B2 (en) Lubricating oil composition and method for producing the same
JP5759582B2 (en) Lubricating oil composition
JP2014101527A (en) Lubricating oil composition
JP5788917B2 (en) Lubricating oil composition
JP5525186B2 (en) Lubricating oil composition
JP5845304B2 (en) Lubricating oil composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150909

R150 Certificate of patent or registration of utility model

Ref document number: 5808517

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250