JP2010280536A - Method for producing glass member for wavelength conversion - Google Patents

Method for producing glass member for wavelength conversion Download PDF

Info

Publication number
JP2010280536A
JP2010280536A JP2009135924A JP2009135924A JP2010280536A JP 2010280536 A JP2010280536 A JP 2010280536A JP 2009135924 A JP2009135924 A JP 2009135924A JP 2009135924 A JP2009135924 A JP 2009135924A JP 2010280536 A JP2010280536 A JP 2010280536A
Authority
JP
Japan
Prior art keywords
phosphor
glass
wavelength conversion
lower mold
glass member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009135924A
Other languages
Japanese (ja)
Inventor
Nobuyuki Ikenaga
修志 池永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2009135924A priority Critical patent/JP2010280536A/en
Publication of JP2010280536A publication Critical patent/JP2010280536A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a glass member for wavelength conversion by which the glass member for wavelength conversion excellent in durability can be produced by a simple method while suppressing the deterioration of a phosphor. <P>SOLUTION: The method for producing the glass member for wavelength conversion having the phosphor for converting at least a part of wavelengths of light rays from a light source comprises: a step where a phosphor is fed at least to either forming face of a lower die and an upper die; and a step where a glass material is press-formed by the lower die and the upper die, and the glass material and the phosphor are integrated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は波長変換用ガラス部材の製造方法に関し、特に、光源からの光の少なくとも一部の波長を変換するための蛍光体を有する波長変換用ガラス部材の製造方法に関する。   The present invention relates to a method for manufacturing a wavelength conversion glass member, and more particularly to a method for manufacturing a wavelength conversion glass member having a phosphor for converting the wavelength of at least part of light from a light source.

白色発光素子の1種である白色発光ダイオード(以下、白色LEDともいう)は、低消費電力、小型軽量、発熱が少ない、水銀フリー、光量の調節が容易などといった優れた特徴を備えていることから、白熱電球、蛍光ランプ、高圧放電ランプなどを代替可能な次世代省エネルギー型照明光源として期待されている。   A white light-emitting diode (hereinafter also referred to as a white LED), which is a type of white light-emitting element, has excellent features such as low power consumption, small size and light weight, little heat generation, mercury-free, and easy adjustment of light quantity. Therefore, it is expected as a next-generation energy-saving illumination light source that can replace incandescent bulbs, fluorescent lamps, and high-pressure discharge lamps.

LEDを用いて白色光を発光させる方法として、(1)3色以上のLEDチップを組み合わせて白色光を得る方法(例えば、特許文献1参照)や、(2)青色LEDチップ又は近紫外LEDチップと、蛍光体とを組み合わせて白色光を得る方法(例えば、特許文献2、3参照)が知られている。このうち、(1)の方法は各色LEDチップの発光強度のバランスを取るのが困難であることから、(2)のようにLEDチップと蛍光体とを組み合わせて白色光を得る方法が注目されている。   As a method of emitting white light using an LED, (1) a method of obtaining white light by combining three or more color LED chips (for example, see Patent Document 1), or (2) a blue LED chip or a near ultraviolet LED chip. And a method of obtaining white light by combining a phosphor (see, for example, Patent Documents 2 and 3). Among these, the method (1) is difficult to balance the emission intensity of each color LED chip, and therefore, a method of obtaining white light by combining the LED chip and the phosphor as shown in (2) is attracting attention. ing.

特許文献2、3には、LEDチップからの光の波長を変換するための蛍光体を、エポキシ樹脂やシリコーン樹脂等の樹脂材料に分散させて固定する構成が記載されている。しかしながら、このような樹脂材料は、LEDチップからの光や、LEDチップ及び蛍光体の発熱などによって劣化が進行し易く、長期使用に耐えうるだけの耐久性を得ることができないという問題があった。特に、車のヘッドライト用LEDのように単位面積当たりの明るさを要求される場合には、蛍光体を分散させた樹脂材料の劣化が顕著であり問題となっていた。   Patent Documents 2 and 3 describe a configuration in which a phosphor for converting the wavelength of light from an LED chip is dispersed and fixed in a resin material such as an epoxy resin or a silicone resin. However, such a resin material is prone to deterioration due to light from the LED chip, heat generation of the LED chip and the phosphor, and there is a problem that durability enough to withstand long-term use cannot be obtained. . In particular, when the brightness per unit area is required, such as an LED for a headlight of a car, the deterioration of the resin material in which the phosphor is dispersed is significant and has become a problem.

そのため、樹脂材料に代えて、より耐久性に優れるガラスを用いて蛍光体を固定する方法の開発が望まれている。しかし、溶融ガラス中に蛍光体を混練する方法では、蛍光体が長時間にわたって高温の溶融ガラス中におかれることになるため、高温による分解や溶融ガラスの成分との反応が進行して蛍光体が著しく劣化してしまう。このような課題に対して、蛍光体の劣化を抑制するため、所定成分のガラス粉末と蛍光体粉末とを混合して焼結させることによりガラス中に蛍光体を分散させる方法が提案されている(特許文献4参照)。   Therefore, it is desired to develop a method for fixing a phosphor using glass having higher durability instead of a resin material. However, in the method of kneading the phosphor in the molten glass, the phosphor is left in the high temperature molten glass for a long time, so that the decomposition by the high temperature and the reaction with the components of the molten glass proceed. Will deteriorate significantly. In order to suppress the deterioration of the phosphor for such a problem, a method of dispersing the phosphor in the glass by mixing and sintering a predetermined component of the glass powder and the phosphor powder has been proposed. (See Patent Document 4).

特開2003−45206号公報JP 2003-45206 A 特開平10−242513号公報Japanese Patent Laid-Open No. 10-242513 特開2002−314142号公報JP 2002-314142 A 特開2003−258308号公報JP 2003-258308 A

しかしながら、特許文献4に記載の方法では、使用できるガラスの種類が限定される上、工程が非常に複雑になるという問題があった。また、焼結の際に蛍光体が少なからず劣化してしまうという問題もあった。   However, the method described in Patent Document 4 has a problem that the types of glass that can be used are limited and the process becomes very complicated. In addition, there has been a problem that the phosphor is deteriorated to some extent during sintering.

本発明は上記のような技術的課題に鑑みてなされたものであり、本発明の目的は、蛍光体の劣化を抑制しながら、耐久性に優れた波長変換用ガラス部材を簡易な方法により製造することができる波長変換用ガラス部材の製造方法を提供することである。   The present invention has been made in view of the above technical problems, and an object of the present invention is to produce a wavelength conversion glass member excellent in durability by a simple method while suppressing deterioration of a phosphor. It is providing the manufacturing method of the glass member for wavelength conversion which can do.

上記の課題を解決するために、本発明は以下の特徴を有するものである。   In order to solve the above problems, the present invention has the following features.

1.光源からの光の少なくとも一部の波長を変換するための蛍光体を有する波長変換用ガラス部材の製造方法であって、
下型及び上型の少なくとも一方の成形面に蛍光体を供給する工程と、
前記下型と前記上型とでガラス素材を加圧成形し、前記ガラス素材と前記蛍光体とを一体化する工程と、を有することを特徴とする波長変換用ガラス部材の製造方法。
1. A method for producing a wavelength-converting glass member having a phosphor for converting the wavelength of at least part of light from a light source,
Supplying a phosphor to at least one molding surface of the lower mold and the upper mold;
A method for producing a glass member for wavelength conversion, comprising: pressing a glass material with the lower mold and the upper mold, and integrating the glass material and the phosphor.

2.前記ガラス素材は前記下型に滴下された溶融ガラス滴であることを特徴とする前記1に記載の波長変換用ガラス部材の製造方法。   2. 2. The method for producing a wavelength conversion glass member as described in 1 above, wherein the glass material is a molten glass droplet dropped on the lower mold.

3.前記下型及び前記上型の両方の成形面に蛍光体を供給することを特徴とする前記1又は2に記載の波長変換用ガラス部材の製造方法。   3. 3. The method for producing a wavelength-converting glass member according to 1 or 2, wherein a phosphor is supplied to the molding surfaces of both the lower mold and the upper mold.

4.前記蛍光体は、発光する光の波長が異なる複数種の蛍光体からなることを特徴とする前記3に記載の波長変換用ガラス部材の製造方法。   4). 4. The method for producing a glass member for wavelength conversion according to 3 above, wherein the phosphor comprises a plurality of types of phosphors having different wavelengths of light to be emitted.

5.前記下型の成形面には第1の波長の光を発光する第1の蛍光体を供給し、前記上型の成形面には第2の波長の光を発光する第2の蛍光体を供給することを特徴とする前記4に記載の波長変換用ガラス部材の製造方法。   5. A first phosphor that emits light of a first wavelength is supplied to the molding surface of the lower mold, and a second phosphor that emits light of a second wavelength is supplied to the molding surface of the upper mold. 5. The method for producing a wavelength converting glass member as described in 4 above.

本発明の方法によれば、下型及び上型の少なくとも一方の成形面に蛍光体を供給した後、下型と上型とでガラス素材を加圧成形してガラス素材と蛍光体とを一体化するため、蛍光体が高温のガラスと接触している時間が短く、蛍光体の劣化を十分に抑制することができる。更に、加圧成形によってガラスと蛍光体との境界部に両者が混じり合った領域が形成されるため、蛍光体を強固に固定することができる。従って、蛍光体の劣化を抑制しながら、耐久性に優れた波長変換用ガラス部材を簡易な方法により製造することができる。   According to the method of the present invention, after supplying the phosphor to at least one of the molding surfaces of the lower mold and the upper mold, the glass material and the phosphor are integrated by pressing the glass material with the lower mold and the upper mold. Therefore, the time during which the phosphor is in contact with the high-temperature glass is short, and deterioration of the phosphor can be sufficiently suppressed. Furthermore, since the area | region where both were mixed is formed in the boundary part of glass and fluorescent substance by press molding, fluorescent substance can be fixed firmly. Therefore, it is possible to produce a wavelength conversion glass member having excellent durability while suppressing deterioration of the phosphor by a simple method.

波長変換用ガラス部材を備えた白色LEDを模式的に示す断面図である。It is sectional drawing which shows typically white LED provided with the glass member for wavelength conversion. 波長変換用ガラス部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the glass member for wavelength conversion. 本実施形態の各工程を模式的に示す図(前半)である。It is a figure (first half) which shows each process of this embodiment typically. 本実施形態の各工程を模式的に示す図(後半)である。It is a figure (second half) showing typically each process of this embodiment.

以下、本発明の実施の形態について図1〜図4を参照しつつ詳細に説明するが、本発明は該実施の形態に限られるものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 1 to 4, but the present invention is not limited to the embodiments.

図1は、白色LED10を模式的に示す断面図である。白色LED10は、基板14の上に配置されたLEDチップ12と、本実施形態の方法で製造された波長変換用ガラス部材13とを備えている。   FIG. 1 is a cross-sectional view schematically showing the white LED 10. The white LED 10 includes an LED chip 12 disposed on a substrate 14 and a wavelength conversion glass member 13 manufactured by the method of this embodiment.

LEDチップ12は青色LEDチップでもよいし、紫外又は近紫外LEDチップでもよい。波長変換用ガラス部材13はLEDチップ12を囲むように配置され、ガラス層131と、その表面に形成された蛍光体層132とを有している。ここでは、波長変換用ガラス部材13が半球形状の場合を例に挙げて図示しているが、これに限定されるものではない。例えば、両面とも平面の平板形状でもよいし、いわゆる砲弾形状でもよい。また、波長変換用ガラス部材13の表面は凸面でもよいし、凹面や平面でもよい。凸面や凹面の場合は、球面でもよいし、非球面成分を有する形状でもよい。波長変換用ガラス部材13はガラス素材を加圧成形して製造するため、容易に種々の形状とすることができる。   The LED chip 12 may be a blue LED chip or an ultraviolet or near ultraviolet LED chip. The wavelength converting glass member 13 is disposed so as to surround the LED chip 12, and includes a glass layer 131 and a phosphor layer 132 formed on the surface thereof. Here, the case where the wavelength conversion glass member 13 has a hemispherical shape is illustrated as an example, but is not limited thereto. For example, both sides may have a flat plate shape or a so-called shell shape. The surface of the wavelength converting glass member 13 may be a convex surface, a concave surface or a flat surface. In the case of a convex surface or a concave surface, it may be a spherical surface or a shape having an aspherical component. Since the wavelength conversion glass member 13 is manufactured by pressure-molding a glass material, it can be easily formed into various shapes.

波長変換用ガラス部材13は、後述するように蛍光体を供給された成形面を有する成形型でガラス素材を加圧成形することで製造されるため、ガラス層131と蛍光体層132の境界部には両者が混じり合った領域が存在している。そのため、蛍光体層132はガラス層131に強固に固定されており、優れた耐久性を備えている。蛍光体層132はガラス層131の両面に設けてもよいし、何れか一方の面のみに設けてもよい。蛍光体層132をガラス層131の両面に設ける場合は、下型及び上型の両方の成形面に蛍光体を供給して加圧成形する。また、蛍光体層132をガラス層131の何れか一方の面のみに設ける場合には、下型及び上型の何れか一方の成形面のみに蛍光体を供給して加圧成形する。   Since the wavelength converting glass member 13 is manufactured by press molding a glass material with a molding die having a molding surface supplied with a phosphor as will be described later, the boundary between the glass layer 131 and the phosphor layer 132 is produced. There is an area where both are mixed. Therefore, the phosphor layer 132 is firmly fixed to the glass layer 131 and has excellent durability. The phosphor layer 132 may be provided on both surfaces of the glass layer 131, or may be provided on only one of the surfaces. In the case where the phosphor layer 132 is provided on both surfaces of the glass layer 131, the phosphor is supplied to the molding surfaces of both the lower mold and the upper mold to perform pressure molding. Further, when the phosphor layer 132 is provided only on one surface of the glass layer 131, the phosphor is supplied to only one of the molding surfaces of the lower mold and the upper mold and is pressure-molded.

次に、波長変換用ガラス部材13の製造方法について、図2〜図4を参照しながら説明する。図2は波長変換用ガラス部材13の製造方法の例を示すフローチャートであり、図3及び図4は本実施形態の各工程を模式的に示す図である。   Next, the manufacturing method of the wavelength conversion glass member 13 will be described with reference to FIGS. FIG. 2 is a flowchart showing an example of a method of manufacturing the wavelength conversion glass member 13, and FIGS. 3 and 4 are diagrams schematically showing each step of the present embodiment.

なお、ここでは、ガラス素材として溶融ガラス滴を用いる場合を例に挙げて説明するが、加圧成形のためのガラス素材は溶融ガラス滴に限定されるものではなく、所定の体積の溶融ガラスを固化したものを用いることもできる。また、固化したガラスを、球や平板など所望の形状に加工したものを用いることも好ましい。ガラス素材として固化したガラスを用いる場合は、下型21及び上型22と共に、加圧成形が可能な温度まで加熱して用いればよい。一方、ガラス素材として溶融ガラス滴を用いる場合は、比較的低温の下型21で溶融ガラス滴を受け、そのまま上型22で加圧成形しながら冷却・固化することでガラス成形体が得られるため、非常に短時間で効率よく製造できる利点がある。   In addition, although the case where a molten glass droplet is used as an example is described here as an example, the glass material for pressure molding is not limited to a molten glass droplet, a molten glass having a predetermined volume is used. A solidified product can also be used. Moreover, it is also preferable to use what solidified glass processed into desired shapes, such as a bulb | ball and a flat plate. When solidified glass is used as the glass material, it may be used by heating it to a temperature at which pressure molding is possible together with the lower mold 21 and the upper mold 22. On the other hand, when a molten glass droplet is used as the glass material, a glass molded body is obtained by receiving the molten glass droplet with the lower mold 21 at a relatively low temperature, and cooling and solidifying it while pressing with the upper mold 22 as it is. There is an advantage that it can be manufactured efficiently in a very short time.

以下、本実施形態の波長変換用ガラス部材の製造方法の一例として、ガラス素材として溶融ガラス滴を用いる場合を例に挙げて、図2に示すフローチャートに従い各工程について順を追って説明する。   Hereinafter, as an example of the manufacturing method of the glass member for wavelength conversion of this embodiment, the case where a molten glass droplet is used as a glass material is mentioned as an example, and it demonstrates later for each process according to the flowchart shown in FIG.

先ず、下型21及び上型22をそれぞれ所定の温度に加熱する(工程S110)(図3(a)参照)。下型21及び上型22は、図示しない加熱手段によって所定温度に加熱できるように構成されている。加熱手段としては、公知の加熱手段を適宜選択して用いることができる。例えば、被加熱部材の内部に埋め込んで使用するカートリッジヒータや、被加熱部材の外側に接触させて使用するシート状のヒータ、赤外線加熱装置、高周波誘導加熱装置等を用いることができる。   First, each of the lower mold 21 and the upper mold 22 is heated to a predetermined temperature (step S110) (see FIG. 3A). The lower mold 21 and the upper mold 22 are configured to be heated to a predetermined temperature by a heating unit (not shown). As the heating means, known heating means can be appropriately selected and used. For example, a cartridge heater that is used by being embedded inside the member to be heated, a sheet heater that is used while being in contact with the outside of the member to be heated, an infrared heating device, a high-frequency induction heating device, or the like can be used.

所定の温度とは、ガラスや蛍光体の種類等に応じて適宜選択すればよい。一般的に、下型21や上型22の温度が低すぎるとガラス層131と蛍光体層132の付着力が低下し易くなり、また、高い形状精度を得ることが困難になってくる。逆に、必要以上に温度を高くしすぎることは、蛍光体の劣化が進行し易くなり、また、下型21及び上型22の寿命が短くなり易い。これらの観点から、通常は、使用するガラスのガラス転移温度をTgとしたとき、Tg−100℃からTg+100℃程度の温度に設定することが好ましい。下型21と上型22の加熱温度は同じであってもよいし、異なっていてもよい。   The predetermined temperature may be appropriately selected according to the type of glass or phosphor. In general, if the temperature of the lower mold 21 or the upper mold 22 is too low, the adhesion between the glass layer 131 and the phosphor layer 132 tends to be reduced, and it becomes difficult to obtain high shape accuracy. On the other hand, if the temperature is set higher than necessary, the phosphor is likely to deteriorate, and the lifetimes of the lower mold 21 and the upper mold 22 are likely to be shortened. From these viewpoints, it is usually preferable to set the temperature to about Tg-100 ° C. to Tg + 100 ° C., where Tg is the glass transition temperature of the glass used. The heating temperatures of the lower mold 21 and the upper mold 22 may be the same or different.

下型21及び上型22の加熱温度は工程毎に変化させてもよいが、工程S170でガラス成形体(波長変換用ガラス部材)を回収するまでの間、制御温度を一定に保っておくことで、高い製造効率を確保することができる。また、下型21及び上型22の制御温度を一定に保ったまま、複数のガラス成形体を繰り返し製造することもできる。従って、1つのガラス成形体を製造する毎に下型21及び上型22の昇温と冷却を繰り返す必要はなく、極めて短時間で効率よく光学素子を製造することができる。ここで、下型21及び上型22の制御温度を一定に保つというのは、下型21及び上型22を加熱するための温度制御における目標設定温度を一定に保つという意味であり、各工程実施中において、溶融ガラス滴31との接触等による温度変動を防止しなければならないという意味ではない。   The heating temperature of the lower mold 21 and the upper mold 22 may be changed for each process, but the control temperature should be kept constant until the glass molded body (wavelength conversion glass member) is recovered in the process S170. Thus, high production efficiency can be ensured. In addition, a plurality of glass molded bodies can be repeatedly produced while keeping the control temperature of the lower mold 21 and the upper mold 22 constant. Therefore, it is not necessary to repeat the heating and cooling of the lower mold 21 and the upper mold 22 every time one glass molded body is manufactured, and an optical element can be manufactured efficiently in an extremely short time. Here, keeping the control temperature of the lower die 21 and the upper die 22 constant means that the target set temperature in the temperature control for heating the lower die 21 and the upper die 22 is kept constant. This does not mean that temperature fluctuation due to contact with the molten glass droplet 31 or the like must be prevented during implementation.

下型21の成形面211、及び、上型22の成形面221は、予め製造する波長変換用ガラス部材の形状に対応した所定の形状に精密加工しておく。それにより、高い形状精度を有する波長変換用ガラス部材を容易に製造することができる。また、波長変換用ガラス部材の表面は、溶融ガラス滴31が成形面211、221と接触して急冷されることにより形成されるため、成形面211、221よりも平滑な面を得ることができる。十分に平滑な表面を得るという観点からは、成形面211、221の算術平均粗さRaを0.2μm以下とすることが好ましい。なお、算術平均粗さRaはJIS B 0601:2001において定義される粗さパラメータである。   The molding surface 211 of the lower mold 21 and the molding surface 221 of the upper mold 22 are precisely machined into a predetermined shape corresponding to the shape of the wavelength conversion glass member manufactured in advance. Thereby, the glass member for wavelength conversion which has high shape accuracy can be manufactured easily. Moreover, since the surface of the wavelength conversion glass member is formed by the molten glass droplet 31 coming into contact with the molding surfaces 211 and 221 and rapidly cooled, a surface smoother than the molding surfaces 211 and 221 can be obtained. . From the viewpoint of obtaining a sufficiently smooth surface, the arithmetic mean roughness Ra of the molding surfaces 211 and 221 is preferably 0.2 μm or less. The arithmetic average roughness Ra is a roughness parameter defined in JIS B 0601: 2001.

下型21及び上型22の材質は、耐熱合金(ステンレス等)、炭化タングステンを主成分とする超硬材料、各種セラミックス(炭化珪素、窒化珪素、窒化アルミニウム等)、カーボンを含む複合材料など、ガラス成形体を製造するための成形型として公知の材質の中から適宜選択して用いることができる。下型21及び上型22を同一の材質で構成してもよいし、異なる材質で構成してもよい。   The materials of the lower mold 21 and the upper mold 22 are heat-resistant alloys (stainless steel, etc.), super hard materials mainly composed of tungsten carbide, various ceramics (silicon carbide, silicon nitride, aluminum nitride, etc.), composite materials containing carbon, etc. It can be suitably selected from known materials as a mold for producing a glass molded body. The lower mold 21 and the upper mold 22 may be made of the same material or different materials.

また、下型21や上型22の表面には、蛍光体との離型性を向上させるために被覆層を設けておくことも好ましい。例えば、種々の金属(クロム、アルミニウム、チタン、白金等)、窒化物(窒化クロム、窒化アルミニウム、窒化チタン、窒化硼素等)、酸化物(酸化クロム、酸化アルミニウム、酸化チタン等)等を用いることができる。被覆層の成膜方法に制限はなく、公知の成膜方法の中から適宜選択して用いればよい。例えば、真空蒸着、スパッタ、CVD等が挙げられる。   It is also preferable to provide a coating layer on the surfaces of the lower mold 21 and the upper mold 22 in order to improve the releasability from the phosphor. For example, various metals (chromium, aluminum, titanium, platinum, etc.), nitrides (chromium nitride, aluminum nitride, titanium nitride, boron nitride, etc.), oxides (chromium oxide, aluminum oxide, titanium oxide, etc.), etc. are used. Can do. There is no limitation on the method for forming the coating layer, and it may be appropriately selected from known film forming methods. For example, vacuum deposition, sputtering, CVD, etc. are mentioned.

次に、下型21を滴下位置に移動し(工程S120)、成形面211、221に蛍光体を供給する(工程S130)(図3(b)参照)。   Next, the lower mold | type 21 is moved to a dripping position (process S120), and fluorescent substance is supplied to the molding surfaces 211 and 221 (process S130) (refer FIG.3 (b)).

下型21は図示しない駆動手段により、滴下ノズル23の下方で溶融ガラス滴31を受けるための位置(滴下位置)と、上型22と対向して溶融ガラス滴31を加圧成形するための位置(加圧位置)との間で移動可能に構成されている。滴下位置への移動は、次の工程S140で溶融ガラス滴31を滴下する前であれば、下型21や上型22の加熱の前であっても後であってもよい。   The lower mold 21 has a position (dropping position) for receiving the molten glass droplet 31 below the dropping nozzle 23 by a driving means (not shown), and a position for pressure-molding the molten glass droplet 31 facing the upper mold 22. It is configured to be movable between (pressing position). The movement to the dropping position may be before or after heating the lower mold 21 and the upper mold 22 as long as the molten glass droplet 31 is not dropped in the next step S140.

蛍光体は白色LEDの用途や種類に応じて、適宜選択して用いればよい。LEDチップ12として青色LEDチップを用いる場合は、例えば、青色光を黄色光に波長変換する(青色光で励起され黄色光を発光する)蛍光体を用いて、青色LED+黄色蛍光体という構成にすることで白色光を得ることができる。2種類以上の蛍光体を用いて、例えば、青色LED+黄色蛍光体+赤色蛍光体という構成や、青色LED+緑色蛍光体+赤色蛍光体という構成にすることもできる。また、LEDチップ12として紫外又は近紫外LEDチップを用いる場合は、青色蛍光体+黄色蛍光体という構成や、青色蛍光体+緑色蛍光体+赤色蛍光体という構成にすることで白色光を得ることができる。   The phosphor may be appropriately selected and used according to the use and type of the white LED. When a blue LED chip is used as the LED chip 12, for example, a blue LED + yellow phosphor is configured using a phosphor that converts the wavelength of blue light into yellow light (excited with blue light and emits yellow light). Thus, white light can be obtained. By using two or more kinds of phosphors, for example, a configuration of blue LED + yellow phosphor + red phosphor or a configuration of blue LED + green phosphor + red phosphor can be used. Further, when an ultraviolet or near-ultraviolet LED chip is used as the LED chip 12, white light is obtained by adopting a configuration of blue phosphor + yellow phosphor or a configuration of blue phosphor + green phosphor + red phosphor. Can do.

好適な蛍光体として、YAG系蛍光体、シリケート系蛍光体、ナイトライド系蛍光体、オキシナイトライド系蛍光体、サルファイド系蛍光体、チオガレート系蛍光体、アルミネート系蛍光体などが挙げられる。   Suitable phosphors include YAG phosphors, silicate phosphors, nitride phosphors, oxynitride phosphors, sulfide phosphors, thiogallate phosphors, aluminate phosphors, and the like.

蛍光体の供給方法にも特に制限はない。蛍光体を粉体の状態で供給してもよいが、飛散を防止し、供給量を安定させる観点からは、蛍光体を液体やゲル状のバインダに分散させた状態で供給することが好ましい。この際、使用するバインダの沸点が、蛍光体を供給する成形面211、221の温度よりも低いと、成形面211、221に不要なバインダを残すことなく蛍光体を供給できるという利点がある。例えば、エタノール、アセトンなどの有機溶媒が好適である。   There is no particular limitation on the method of supplying the phosphor. The phosphor may be supplied in a powder state. However, from the viewpoint of preventing scattering and stabilizing the supply amount, it is preferable to supply the phosphor in a state of being dispersed in a liquid or gel binder. At this time, when the boiling point of the binder used is lower than the temperature of the molding surfaces 211 and 221 for supplying the phosphor, there is an advantage that the phosphor can be supplied without leaving an unnecessary binder on the molding surfaces 211 and 221. For example, organic solvents such as ethanol and acetone are suitable.

蛍光体層132をガラス層131の何れか一方の面のみに設ける場合には、下型21及び上型22の何れか一方の成形面211、221のみに蛍光体を供給する。また、蛍光体層132をガラス層131の両面に設ける場合は、下型21及び上型22の両方の成形面211、221に蛍光体を供給する。   When the phosphor layer 132 is provided on only one surface of the glass layer 131, the phosphor is supplied only to one of the molding surfaces 211 and 221 of the lower mold 21 and the upper mold 22. When the phosphor layer 132 is provided on both surfaces of the glass layer 131, the phosphor is supplied to the molding surfaces 211 and 221 of both the lower mold 21 and the upper mold 22.

供給する蛍光体が1種類のみの場合、何れか一方の成形面211、221のみに蛍光体を供給してもよいが、同じ蛍光体を両方の成形面211、221に供給して蛍光体層132をガラス層131の両面に設けることにより、それぞれの蛍光体層132の厚みを薄くできるため、蛍光体をより強固に固定でき耐久性が向上するという利点がある。また、複数の蛍光体を使用する場合、バインダに複数の蛍光体を分散させて供給してもよいし、第1の蛍光体を分散させたバインダを供給した後、更にその上に第2の蛍光体を分散させたバインダを供給してもよい。   When only one type of phosphor is supplied, the phosphor may be supplied to only one of the molding surfaces 211 and 221, but the same phosphor is supplied to both molding surfaces 211 and 221 to obtain a phosphor layer By providing 132 on both surfaces of the glass layer 131, the thickness of each phosphor layer 132 can be reduced, so that there is an advantage that the phosphor can be fixed more firmly and durability is improved. When a plurality of phosphors are used, a plurality of phosphors may be distributed and supplied to the binder, or after the binder in which the first phosphor is dispersed is supplied, the second phosphor is further provided thereon. A binder in which a phosphor is dispersed may be supplied.

また、下型21の成形面211に供給する蛍光体と、上型22の成形面221に供給する蛍光体とを別の種類とし、発光する光の波長を異ならせることも好ましい。一般に、複数種の蛍光体を同時に使用する場合、第1の蛍光体からの発光が別の第2の蛍光体を励起する、いわゆる多段励起による損失が問題となりやすい。しかし、下型の成形面には第1の波長の光を発光する第1の蛍光体を供給し、上型の成形面には第2の波長の光を発光する第2の蛍光体を供給して、ガラス層131の両面にそれぞれの蛍光体層132を設ける構成とすることで、このような多段励起による損失を減少させることができる。多段励起による損失をより効果的に減少させる観点からは、光源となるLEDチップからの光が先に到達する側の面(光が入射する側の面)に発光波長が長い方の蛍光体層132が形成され、後から到達する側の面(光を射出する側の面)に発光波長が短い方の蛍光体層132が形成されるように、それぞれの成形面211、221に蛍光体を供給することがより好ましい。   In addition, it is also preferable that the phosphors supplied to the molding surface 211 of the lower mold 21 and the phosphors supplied to the molding surface 221 of the upper mold 22 are different types and the wavelengths of emitted light are different. In general, when a plurality of types of phosphors are used at the same time, loss due to so-called multistage excitation, in which light emitted from the first phosphor excites another second phosphor, tends to be a problem. However, a first phosphor that emits light of the first wavelength is supplied to the molding surface of the lower mold, and a second phosphor that emits light of the second wavelength is supplied to the molding surface of the upper mold. And the loss by such multistage excitation can be reduced by setting it as the structure which provides each fluorescent substance layer 132 on both surfaces of the glass layer 131, respectively. From the viewpoint of more effectively reducing the loss due to multi-stage excitation, the phosphor layer having the longer emission wavelength on the surface where the light from the LED chip serving as the light source reaches first (the surface on which light enters) 132 is formed, and a phosphor is formed on each of the molding surfaces 211 and 221 so that a phosphor layer 132 having a shorter emission wavelength is formed on the surface that reaches later (the surface that emits light). It is more preferable to supply.

次に、下型21に溶融ガラス滴31を滴下する(工程S140)(図3(c)、図4(a)参照)。溶融ガラス滴31の滴下は、溶融ガラスを収容する溶融槽(不図示)に接続されたパイプ状の滴下ノズル23を所定温度に加熱することによって行う。滴下ノズル23をヒータ24で所定温度に加熱すると、溶融ガラスは自重によって滴下ノズル23の先端部に供給され、表面張力によって液滴状に溜まる。滴下ノズル23の先端部に溜まった溶融ガラスが一定の質量になると、重力によって滴下ノズル23から自然に分離し、溶融ガラス滴31となって下方に落下する。   Next, the molten glass droplet 31 is dropped on the lower mold 21 (step S140) (see FIGS. 3C and 4A). The dripping of the molten glass droplet 31 is performed by heating a pipe-shaped dripping nozzle 23 connected to a melting tank (not shown) containing molten glass to a predetermined temperature. When the dripping nozzle 23 is heated to a predetermined temperature by the heater 24, the molten glass is supplied to the tip of the dripping nozzle 23 by its own weight, and accumulates in droplets by the surface tension. When the molten glass collected at the tip of the dropping nozzle 23 reaches a certain mass, it is naturally separated from the dropping nozzle 23 by gravity and falls downward as a molten glass droplet 31.

滴下ノズル23から滴下する溶融ガラス滴31の質量は、滴下ノズル23の先端部の外径などによって調整可能であり、ガラスの種類等によるが、0.1g〜2g程度の溶融ガラス滴31を滴下させることができる。重力によって滴下ノズル23から分離させる方法の他、溶融ガラスを加圧して押し出す方法や、気流や振動等の外力を加えて分離させる方法でもよい。また、滴下ノズル23から滴下した溶融ガラス滴31を、一旦、貫通細孔を設けた部材に衝突させ、衝突した溶融ガラス滴31の一部を、貫通細孔を通過させることによって、微小化された溶融ガラス滴を下型21に滴下してもよい。このような方法を用いることによって、例えば0.01gといった微小な溶融ガラス滴を得ることができるため、滴下ノズル23から滴下する溶融ガラス滴31をそのまま下型21で受ける場合よりも、微小なガラス成形体の製造が可能となる。   The mass of the molten glass droplet 31 dropped from the dropping nozzle 23 can be adjusted by the outer diameter of the tip of the dropping nozzle 23 and the like, and depending on the type of glass, the molten glass droplet 31 of about 0.1 g to 2 g is dropped. Can be made. In addition to the method of separating from the dropping nozzle 23 by gravity, a method of pressing and extruding molten glass or a method of separating by applying an external force such as airflow or vibration may be used. Further, the molten glass droplet 31 dropped from the dropping nozzle 23 is once made to collide with a member provided with through-holes, and a part of the collided molten glass droplet 31 is passed through the through-holes to be miniaturized. The molten glass droplets may be dropped on the lower mold 21. By using such a method, it is possible to obtain a minute molten glass droplet of, for example, 0.01 g, so that a smaller amount of glass is obtained than when the molten glass droplet 31 dropped from the dropping nozzle 23 is directly received by the lower mold 21. The molded body can be manufactured.

使用できるガラスの種類に特に制限はなく、公知のガラスを用途に応じて選択して用いることができる。例えば、ホウケイ酸塩ガラス、ケイ酸塩ガラス、リン酸塩ガラス、ランタン系ガラス等の光学ガラスが挙げられる。   There is no restriction | limiting in particular in the kind of glass which can be used, A well-known glass can be selected and used according to a use. Examples thereof include optical glasses such as borosilicate glass, silicate glass, phosphate glass, and lanthanum glass.

次に、下型21を加圧位置に移動し(工程S150)、上型22を下方に移動して溶融ガラス滴31を加圧成形する(工程S160)(図4(b)参照)。下型21で受けられた溶融ガラス滴31は、下型21や上型22と接触することによって急速に冷却され、固化してガラス成形体32となる。この際、成形面211、221に供給されていた蛍光体はガラス成形体32の表面に固定される。加圧を開始してからガラスが固化するまでの時間は、ガラスの種類やサイズ等によるが、通常は数秒〜数十秒の範囲である。このように、本実施形態の方法によれば、蛍光体が高温の溶融ガラスと接触する時間を非常に短くすることができるため、蛍光体の劣化を十分に抑制することができる。また、加圧成形によってガラスと蛍光体との境界部に両者が混じり合った領域が形成されるため、蛍光体を強固に固定することができる。   Next, the lower mold 21 is moved to the pressure position (step S150), and the upper mold 22 is moved downward to form the molten glass droplet 31 by pressure (step S160) (see FIG. 4B). The molten glass droplet 31 received by the lower mold 21 is rapidly cooled by coming into contact with the lower mold 21 and the upper mold 22 and solidified to become a glass molded body 32. At this time, the phosphor supplied to the molding surfaces 211 and 221 is fixed to the surface of the glass molding 32. The time from the start of pressurization to the solidification of the glass depends on the type and size of the glass, but is usually in the range of several seconds to several tens of seconds. As described above, according to the method of the present embodiment, the time during which the phosphor is in contact with the high-temperature molten glass can be extremely shortened, so that deterioration of the phosphor can be sufficiently suppressed. Moreover, since the area | region where both were mixed is formed in the boundary part of glass and fluorescent substance by pressure molding, fluorescent substance can be fixed firmly.

溶融ガラス滴31を加圧するために加える荷重は一定であってもよいし、時間的に変化させてもよい。荷重の大きさは、製造するガラス成形体32のサイズ等に応じて適宜設定すればよい。通常は、数百〜数千Nの範囲で設定すればよい。また、上型22を上下移動させる駆動手段に特に制限はなく、エアシリンダ、油圧シリンダ、サーボモータ等の公知の駆動手段を適宜選択して用いることができる。   The load applied to press the molten glass droplet 31 may be constant or may be changed with time. What is necessary is just to set the magnitude | size of a load suitably according to the size etc. of the glass forming body 32 to manufacture. Usually, it may be set in the range of several hundred to several thousand N. The driving means for moving the upper mold 22 up and down is not particularly limited, and known driving means such as an air cylinder, a hydraulic cylinder, and a servo motor can be appropriately selected and used.

なお、図4(b)では、上型22のみを加圧方向に移動して溶融ガラス滴31の加圧成形を行っているが、このような構成に限定されるものではなく、上型22は固定しておいて下型21のみを加圧方向に移動して加圧成形を行ってもよいし、下型21と上型22の両方を移動して加圧成形を行ってもよい。   In FIG. 4B, only the upper mold 22 is moved in the pressurizing direction to perform the pressure molding of the molten glass droplet 31. However, the upper mold 22 is not limited to such a configuration. May be fixed, and only the lower mold 21 may be moved in the pressing direction to perform pressure molding, or both the lower mold 21 and the upper mold 22 may be moved to perform pressure molding.

次に、上型22を上方に移動して加圧を解除し、固化したガラス成形体32を回収する(工程S170)(図4(c)参照)。ガラス成形体32の回収は、例えば、真空吸着を利用した離型装置25を用いて行えばよい。ガラス成形体32を回収した後、引き続いてガラス成形体32の製造を行う場合は、下型21を再び滴下位置に移動し(工程S120)、以降の工程を繰り返せばよい。   Next, the upper mold 22 is moved upward to release the pressure, and the solidified glass molded body 32 is recovered (step S170) (see FIG. 4C). The glass molded body 32 may be collected using, for example, a mold release device 25 using vacuum suction. After recovering the glass molded body 32, when the glass molded body 32 is subsequently manufactured, the lower mold 21 is moved again to the dropping position (step S120), and the subsequent steps may be repeated.

なお、本実施形態の波長変換用ガラス部材の製造方法は、ここで説明した以外の別の工程を含んでいてもよい。例えば、ガラス成形体32を回収する前にガラス成形体32の形状を検査する工程や、ガラス成形体32を回収した後に下型21や上型22をクリーニングする工程を設けることも好ましい。   In addition, the manufacturing method of the glass member for wavelength conversion of this embodiment may include another process other than having demonstrated here. For example, it is also preferable to provide a step of inspecting the shape of the glass molded body 32 before collecting the glass molded body 32 and a step of cleaning the lower mold 21 and the upper mold 22 after collecting the glass molded body 32.

本実施形態の製造方法により製造されたガラス成形体32は、そのまま白色LED用の波長変換用ガラス部材として用いることができる。また、ガラス成形体32に、外径加工やアニール処理などの後処理を行ってから、波長変換用ガラス部材として用いることもできる。   The glass molded body 32 manufactured by the manufacturing method of this embodiment can be used as it is as a glass member for wavelength conversion for white LEDs. Further, the glass molded body 32 can be used as a glass member for wavelength conversion after being subjected to post-treatment such as outer diameter processing and annealing treatment.

10 白色LED
12 LEDチップ
13 波長変換用ガラス部材
131 ガラス層
132 蛍光体層
14 基板
21 下型
211 成形面
22 上型
221 成形面
23 滴下ノズル
31 溶融ガラス滴
10 White LED
12 LED chip 13 Glass member for wavelength conversion 131 Glass layer 132 Phosphor layer 14 Substrate 21 Lower mold 211 Molding surface 22 Upper mold 221 Molding surface 23 Dripping nozzle 31 Molten glass droplet

Claims (5)

光源からの光の少なくとも一部の波長を変換するための蛍光体を有する波長変換用ガラス部材の製造方法であって、
下型及び上型の少なくとも一方の成形面に蛍光体を供給する工程と、
前記下型と前記上型とでガラス素材を加圧成形し、前記ガラス素材と前記蛍光体とを一体化する工程と、を有することを特徴とする波長変換用ガラス部材の製造方法。
A method for producing a wavelength-converting glass member having a phosphor for converting the wavelength of at least part of light from a light source,
Supplying a phosphor to at least one molding surface of the lower mold and the upper mold;
A method for producing a glass member for wavelength conversion, comprising: pressing a glass material with the lower mold and the upper mold, and integrating the glass material and the phosphor.
前記ガラス素材は前記下型に滴下された溶融ガラス滴であることを特徴とする請求項1に記載の波長変換用ガラス部材の製造方法。   The said glass raw material is the molten glass droplet dripped at the said lower mold | type, The manufacturing method of the glass member for wavelength conversion of Claim 1 characterized by the above-mentioned. 前記下型及び前記上型の両方の成形面に蛍光体を供給することを特徴とする請求項1又は2に記載の波長変換用ガラス部材の製造方法。   3. The method for producing a wavelength conversion glass member according to claim 1, wherein the phosphor is supplied to molding surfaces of both the lower mold and the upper mold. 4. 前記蛍光体は、発光する光の波長が異なる複数種の蛍光体からなることを特徴とする請求項3に記載の波長変換用ガラス部材の製造方法。   The said fluorescent substance consists of multiple types of fluorescent substance from which the wavelength of the light to light-emit differs, The manufacturing method of the glass member for wavelength conversion of Claim 3 characterized by the above-mentioned. 前記下型の成形面には第1の波長の光を発光する第1の蛍光体を供給し、前記上型の成形面には第2の波長の光を発光する第2の蛍光体を供給することを特徴とする請求項4に記載の波長変換用ガラス部材の製造方法。   A first phosphor that emits light of a first wavelength is supplied to the molding surface of the lower mold, and a second phosphor that emits light of a second wavelength is supplied to the molding surface of the upper mold. The manufacturing method of the glass member for wavelength conversion of Claim 4 characterized by the above-mentioned.
JP2009135924A 2009-06-05 2009-06-05 Method for producing glass member for wavelength conversion Pending JP2010280536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135924A JP2010280536A (en) 2009-06-05 2009-06-05 Method for producing glass member for wavelength conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135924A JP2010280536A (en) 2009-06-05 2009-06-05 Method for producing glass member for wavelength conversion

Publications (1)

Publication Number Publication Date
JP2010280536A true JP2010280536A (en) 2010-12-16

Family

ID=43537670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135924A Pending JP2010280536A (en) 2009-06-05 2009-06-05 Method for producing glass member for wavelength conversion

Country Status (1)

Country Link
JP (1) JP2010280536A (en)

Similar Documents

Publication Publication Date Title
WO2010140417A1 (en) Method for producing glass member for wavelength conversion
JP5808487B2 (en) Method for manufacturing conversion element
US9409811B2 (en) Optical converter system for (W)LEDs
CN101427388B (en) Light emitting device
TWI726910B (en) Wavelength conversion member, light emitting device, and manufacturing method of wavelength conversion member
WO2011065322A1 (en) Method for manufacturing light emitting diode unit
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
JPWO2007058361A1 (en) Light reflecting material, light emitting element storage package, light emitting device, and method of manufacturing light emitting element storage package
CN101167194A (en) A cooling device for a light-emitting semiconductor device and a method of manufacturing such a cooling device
WO2010140416A1 (en) Method for producing glass member for wavelength conversion
KR20230144121A (en) Wavelength conversion member, and light emitting device using same
JP2016138020A (en) Crystallized glass phosphor and wavelength conversion member prepared therewith
JP5505864B2 (en) Manufacturing method of semiconductor light emitting device
WO2007135754A1 (en) Process for manufacturing light emitting device and light emitting device
CN1807297A (en) Method of manufacturing glass shaped article
CN104061531A (en) Manufacturing method of wavelength conversion device
KR20220087490A (en) Phosphor plate, light emitting device and manufacturing method of phosphor plate
CN106986626B (en) Hydroxyapatite-based fluorescent ceramic material and preparation method thereof
JP2011057506A (en) Method for producing glass member for wavelength conversion, glass member for wavelength conversion and light emitting diode element
JP2010280537A (en) Method for manufacturing glass member for wavelength conversion
JP2010280536A (en) Method for producing glass member for wavelength conversion
CN108395222A (en) A kind of reflective laser, which is shown, uses up conversion, heat-radiating integrated ceramic material and preparation method thereof
JP7469847B2 (en) Wavelength conversion member and light emitting device using same
JP2010283191A (en) Method of manufacturing glass member for wavelength conversion
JP2019019011A (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member and light-emitting device