JP2010280309A - Impact absorbing structure for vehicle - Google Patents

Impact absorbing structure for vehicle Download PDF

Info

Publication number
JP2010280309A
JP2010280309A JP2009135896A JP2009135896A JP2010280309A JP 2010280309 A JP2010280309 A JP 2010280309A JP 2009135896 A JP2009135896 A JP 2009135896A JP 2009135896 A JP2009135896 A JP 2009135896A JP 2010280309 A JP2010280309 A JP 2010280309A
Authority
JP
Japan
Prior art keywords
regular
cylindrical body
axial direction
gon
predetermined position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009135896A
Other languages
Japanese (ja)
Other versions
JP5439957B2 (en
Inventor
Takashi Yoshimura
孝史 吉村
Masanori Honda
正徳 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2009135896A priority Critical patent/JP5439957B2/en
Publication of JP2010280309A publication Critical patent/JP2010280309A/en
Application granted granted Critical
Publication of JP5439957B2 publication Critical patent/JP5439957B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact absorbing structure for a vehicle enhancing durability during the time when a load is applied and a complete compressive deformation occurs in an axial direction, while achieving high performance weight efficiency in terms of impact absorbing performance. <P>SOLUTION: The structure comprises an inner cylindrical body 2 and an outer tubular body 3. In the inner cylindrical body 2, vertical cross sections at positions separated oppositely in the axial direction by a predetermined distance from a predetermined position form a regular hexagon formed by rotating the regular hexagon located at the predetermined position approximately 30&deg; (180&deg;/6) around the axis; and lines connecting each side 21 to each apex 22 of each regular hexagon are used as a valley fold portion 23 or a crest fold portion 24 to form a substantially triangle plane portion 25A between the valley fold portion 23 and crest fold portion 24 regularly and continuously. The outer tubular body 3 has a cross-sectional shape circumscribed to each apex 22 of each regular hexagon of the inner cylindrical body 2 with inner spherical parts abutting on each apex 22 and connected, and cover the inner cylindrical body 2. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、軸方向の一方から荷重を受けた時に軸方向に圧縮変形することで衝撃を吸収する車両用衝撃吸収構造体に関する。   The present invention relates to an impact absorbing structure for a vehicle that absorbs an impact by compressing and deforming in the axial direction when a load is received from one of the axial directions.

従来より、車両衝突時等により発生した衝撃を、軸方向の圧縮変形により吸収する衝撃吸収構造体について様々なものが提案されている。   2. Description of the Related Art Various types of shock absorbing structures that absorb shock generated by a vehicle collision or the like by compressive deformation in the axial direction have been proposed.

例えば、下記特許文献1では、略蛇腹状をなして、軸方向の一方から荷重が作用した時には軸方向に伸縮することが可能な衝撃吸収部材(ディストオーションシェル)と、その内外両側の筒状体(テンションポスト)とからなる構造体が開示されている。   For example, in Patent Document 1 described below, a shock absorbing member (distortion shell) that has a substantially bellows shape and can expand and contract in the axial direction when a load is applied from one axial direction, and cylindrical shapes on both the inner and outer sides thereof. A structure comprising a body (tension post) is disclosed.

この場合、軸方向の一方から荷重が作用すると、上述した蛇腹状の衝撃吸収部材が前記荷重の方向に応じて伸長または収縮することにより、衝撃を吸収することができるようになっている。   In this case, when a load is applied from one side in the axial direction, the above-described bellows-like impact absorbing member expands or contracts in accordance with the direction of the load, so that the impact can be absorbed.

また、下記特許文献2では、所定位置において軸方向と直交する方向に切断した時の垂直方向断面が正n角形をなすとともに、前記所定位置から所定距離軸方向両側に離れたそれぞれの位置での垂直方向断面が、前記所定位置での前記正n角形を軸周りに約180°/n回転させた正n角形をなし、各正n角形の各辺部と各頂部とを結ぶ線を谷折り部又は山折り部として、該谷折り部と山折り部との間に、略三角形の平面部を規則的かつ連続的に形成した筒状の構造体が開示されている。   Further, in Patent Document 2 below, a vertical cross section when cut in a direction orthogonal to the axial direction at a predetermined position forms a regular n-gonal shape, and at each position away from the predetermined position on both sides in the predetermined axial direction. The vertical cross section is a regular n-gon obtained by rotating the regular n-gon at the predetermined position about 180 ° / n around the axis, and a line connecting each side and each top of each regular n-gon is valley-folded. As a part or a mountain fold part, a cylindrical structure in which a substantially triangular plane part is regularly and continuously formed between the valley fold part and the mountain fold part is disclosed.

このような多面構造をなす構造体の場合、多面構造を構成する最小構成単位としての平面部を規則的にかつ連続的に配置していることにより、軸方向の一方から荷重が作用すると、構造体の表面全体を略均等に潰すことが可能となる。このため、衝撃をより効率的に吸収することができるという利点がある。   In the case of a structure having such a polyhedral structure, when a load is applied from one side in the axial direction by regularly and continuously arranging the plane portion as the smallest structural unit constituting the polyhedral structure, the structure The entire surface of the body can be crushed almost uniformly. For this reason, there exists an advantage that an impact can be absorbed more efficiently.

下記特許文献2では、軸方向と直交する方向の幅(径)を同じに設定した多面構造を持たない筒状体に比べ、多面構造をなす構造体がより高い衝撃吸収性能を有することを実験により示している。   In the following Patent Document 2, an experiment is conducted on the fact that a structure having a multi-face structure has higher shock absorption performance than a cylindrical body having no multi-face structure in which the width (diameter) in the direction orthogonal to the axial direction is set to be the same. It shows by.

つまり、下記特許文献2に開示された構造体を採用することで、衝撃エネルギー吸収量を構造体の全体重量で除した数値、いわゆる性能重量効率を高めることができ、その結果、構造体の軽量化を図ることができる。   That is, by adopting the structure disclosed in Patent Document 2 below, it is possible to increase the numerical value obtained by dividing the impact energy absorption amount by the total weight of the structure, so-called performance weight efficiency. Can be achieved.

近年では、環境保護の観点から、燃費向上の要求が高まっており、これを実現すべく、車体の軽量化について様々な研究開発が進められている。このような理由から、衝撃吸収構造体においても、より軽量でありながら高い衝撃吸収性能を発揮するものが求められており、上述した性能重量効率は、衝撃吸収構造体を開発する上で極めて重要な要素となっている。   In recent years, from the viewpoint of environmental protection, there has been an increasing demand for improvement in fuel consumption, and various research and developments have been made on weight reduction of vehicle bodies in order to achieve this. For these reasons, there is a need for a shock absorbing structure that is lighter and that exhibits high shock absorbing performance, and the above performance weight efficiency is extremely important in developing the shock absorbing structure. It has become an element.

特開平7−81509号公報JP 7-81509 A 特開2002−284032号公報JP 2002-284032 A

ところで、構造体の衝撃吸収性能の評価は、一般的に構造体の圧縮変形により吸収できる衝撃エネルギー吸収量と、荷重が作用してから軸方向に完全に圧縮変形するまでの耐久性とによってなされる。   By the way, the impact absorption performance of a structure is generally evaluated by the amount of shock energy absorbed that can be absorbed by compressive deformation of the structure and the durability from when a load is applied until it completely compresses and deforms in the axial direction. The

ここで、前記特許文献1に開示された構造体について見てみると、これを構成する内外の筒状体は、衝撃吸収部材の端部のみに溶着された構造となっている。この場合、構造体の軸方向に荷重が作用した時、前記内外の筒状体は、衝撃吸収部材に対して相対的に軸方向に変位するだけで、圧縮変形を伴わないことになる。   Here, looking at the structure disclosed in Patent Document 1, the inner and outer cylindrical bodies constituting the structure are welded only to the end portions of the shock absorbing member. In this case, when a load is applied in the axial direction of the structure, the inner and outer cylindrical bodies are only displaced in the axial direction relative to the shock absorbing member, and are not accompanied by compressive deformation.

つまり、この場合、前記内外の筒状体は衝撃吸収に寄与していないことになり、構造体全体としては、衝撃吸収部材のみが衝撃吸収機能を有していることになる。従って、前記特許文献1に開示された構造体は、衝撃吸収部材の他に2つの筒状体を備えているにも関わらず、高い衝撃吸収性能を得られないことから、上述した性能重量効率が低下したものとなってしまう。   That is, in this case, the inner and outer cylindrical bodies do not contribute to shock absorption, and as a whole structure, only the shock absorbing member has a shock absorbing function. Therefore, since the structure disclosed in Patent Document 1 includes two cylindrical bodies in addition to the impact absorbing member, high impact absorbing performance cannot be obtained. Will be reduced.

さらに、前記特許文献1に開示された構造体では、前記内外の筒状体が上述したように衝撃吸収に寄与しないものとなっていることにより、軸方向に荷重が作用してから構造体(衝撃吸収体部材)が完全に圧縮変形するまでの耐久性を十分に高めることができないという問題もある。   Furthermore, in the structure disclosed in Patent Document 1, since the inner and outer cylindrical bodies do not contribute to shock absorption as described above, the structure ( There is also a problem that the durability until the shock absorber member) is completely compressed and deformed cannot be sufficiently increased.

一方、前記特許文献2に開示された構造体について、本発明者は、その衝撃吸収性能について、様々な解析、検討を行った。そして、鋭意研究の結果、確かに性能重量効率の向上を実現するものではあるが、軸方向に凹凸が連続する多面構造をなしているが故に、軸方向への変形が過剰に促進されてしまい、上述した耐久性がむしろ低下したものとなっていることを見出した。   On the other hand, the inventor conducted various analyzes and examinations on the shock absorbing performance of the structure disclosed in Patent Document 2. And as a result of earnest research, it certainly realizes improvement of performance weight efficiency, but because it has a polyhedral structure with unevenness in the axial direction, deformation in the axial direction is excessively promoted. It was found that the durability mentioned above was rather lowered.

この発明は、衝撃吸収性能に関し、高い性能重量効率を実現しつつ、荷重が作用してから軸方向に完全に圧縮変形するまでの耐久性を高めることができる車両用衝撃吸収構造体を提供することを目的とする。   The present invention relates to shock absorbing performance, and provides a vehicle shock absorbing structure capable of enhancing durability from when a load is applied until it is completely compressed and deformed in the axial direction while realizing high performance and weight efficiency. For the purpose.

この発明の車両用衝撃吸収構造体は、所定位置において軸方向と直交する方向に切断した時の垂直方向断面が、正n角形(n≧4)をなすとともに、前記所定位置から所定距離軸方向両側に離れたそれぞれの位置での垂直方向断面が、前記所定位置での前記正n角形を軸周りに約180°/n回転させた正n角形をなし、各正n角形の各辺部と各頂部とを結ぶ線を谷折り部又は山折り部として、該谷折り部と山折り部との間に、略三角形の平面部を規則的かつ連続的に形成してなる内筒体と、該内筒体の各正n角形の各頂部に外接する断面形状を有し、前記各頂部に内周部がそれぞれ当接して結合され、前記内筒体を覆う外筒体とからなるものである。   In the vehicle impact absorbing structure according to the present invention, a vertical cross section when cut in a direction orthogonal to the axial direction at a predetermined position forms a regular n-gon (n ≧ 4), and a predetermined distance axial direction from the predetermined position. A vertical cross section at each position separated on both sides forms a regular n-gon obtained by rotating the regular n-gon at the predetermined position about 180 ° / n around the axis, and each side of each regular n-gon A line connecting each apex as a valley fold or a mountain fold, and between the valley fold and the mountain fold, an inner cylinder formed with a regular triangular plane part regularly and continuously, It has a cross-sectional shape that circumscribes each apex of each regular n-gon of the inner cylinder, and is composed of an outer cylinder that covers and joins the inner peripheries to the apexes. is there.

この構成によれば、軸方向の一方から作用する荷重を、内筒体と外筒体との協働によって、先ずは各結合部及びその周辺で局所的に受け止めることができる。その結果、荷重が作用してから構造体が完全に圧縮変形するまでの耐久性を向上させることができる。
さらに、内筒体、外筒体を頂部毎に結合することで、圧縮変形が進行した時には、内筒体、外筒体をともに軸方向及び周方向において略均等に変形させることができる。このため、構造体の略全体が衝撃吸収に寄与することになり、その結果性能重量効率(衝撃エネルギー吸収量/構造体の全体重量)を向上させることができる。
According to this structure, the load which acts from one side of an axial direction can be first received locally in each coupling | bond part and its periphery by cooperation with an inner cylinder body and an outer cylinder body. As a result, it is possible to improve durability from when the load is applied until the structure is completely compressed and deformed.
Furthermore, by joining the inner cylinder body and the outer cylinder body for each top, when the compressive deformation proceeds, both the inner cylinder body and the outer cylinder body can be deformed substantially uniformly in the axial direction and the circumferential direction. For this reason, substantially the whole structure contributes to shock absorption, and as a result, performance weight efficiency (impact energy absorption amount / total weight of structure) can be improved.

この発明の一実施態様においては、前記外筒体の垂直方向断面が正2n角形をなす多角形管であり、前記外筒体の正2n角形の辺部と、前記内筒体の頂部とが軸方向視で一致しているものである。   In one embodiment of the present invention, the outer cylindrical body is a polygonal tube whose vertical cross section forms a regular 2n square, and the side of the regular 2n square of the outer cylindrical body and the top of the inner cylindrical body are This is consistent with the axial view.

この構成によれば、内筒体の頂部と外筒体の平面部の内周部とを確実に当接させることができ、両者を確実に結合させることができる。   According to this structure, the top part of an inner cylinder and the inner peripheral part of the plane part of an outer cylinder can be made to contact | abut reliably, and both can be combined reliably.

また、この発明の車両用衝撃吸収構造体は、所定位置において軸方向と直交する方向に切断した時の垂直方向断面が、正n角形(n≧4)をなすとともに、前記所定位置から所定距離軸方向両側に離れたそれぞれの位置での垂直方向断面が、前記所定位置での前記正n角形を軸周りに約180°/n回転させた正n角形をなし、各正n角形の各辺部と各頂部とを結ぶ線を谷折り部又は山折り部として、該谷折り部と山折り部との間に、略三角形の平面部を規則的かつ連続的に形成してなる外筒体と、該外筒体の各正n角形の各辺部に内接する断面形状を有し、前記各辺部に外周部がそれぞれ当接して結合され、前記外筒体に覆われる内筒体とからなるものである。   In the vehicle impact absorbing structure according to the present invention, the vertical cross section when cut in a direction orthogonal to the axial direction at a predetermined position forms a regular n-gon (n ≧ 4) and a predetermined distance from the predetermined position. A vertical cross section at each position apart on both sides in the axial direction forms a regular n-gon obtained by rotating the regular n-gon at the predetermined position about 180 ° / n around the axis, and each side of each regular n-gon An outer cylinder formed by regularly and continuously forming a substantially triangular plane portion between the valley fold portion and the mountain fold portion, with a line connecting the portion and each top portion as a valley fold portion or a mountain fold portion. And an inner cylindrical body having a cross-sectional shape inscribed in each side portion of each regular n-gon of the outer cylindrical body, an outer peripheral portion being in contact with and coupled to the respective side portions, and covered with the outer cylindrical body, It consists of

この構成によれば、軸方向の一方から作用する荷重を、内筒体と外筒体との協働によって、先ずは各結合部及びその周辺で局所的に受け止めることができる。その結果、荷重が作用してから構造体が完全に圧縮変形するまでの耐久性を向上させることができる。
さらに、内筒体、外筒体を辺部毎に結合することで、圧縮変形が進行した時には、内筒体、外筒体をともに軸方向及び周方向において略均等に変形させることができる。このため、構造体の略全体が衝撃吸収に寄与することになり、その結果性能重量効率(衝撃エネルギー吸収量/構造体の全体重量)を向上させることができる。
According to this structure, the load which acts from one side of an axial direction can be first received locally in each coupling | bond part and its periphery by cooperation with an inner cylinder body and an outer cylinder body. As a result, it is possible to improve durability from when the load is applied until the structure is completely compressed and deformed.
Furthermore, by joining the inner cylinder body and the outer cylinder body for each side portion, when the compressive deformation proceeds, both the inner cylinder body and the outer cylinder body can be deformed substantially uniformly in the axial direction and the circumferential direction. For this reason, substantially the whole structure contributes to shock absorption, and as a result, performance weight efficiency (impact energy absorption amount / total weight of structure) can be improved.

この発明の一実施態様においては、前記内筒体の垂直方向断面が正2n角形をなす多角形管であり、前記内筒体の正2n角形の辺部と、前記外筒体の辺部とが軸方向視で一致しているものである。   In one embodiment of the present invention, the inner cylindrical body is a polygonal tube whose vertical cross section is a regular 2n square, and the regular 2n square side part of the inner cylindrical body, the side part of the outer cylindrical body, Are in agreement in the axial direction.

この構成によれば、内筒体の平面部の外周部と外筒体の辺部とを確実に当接させることができ、両者を確実に結合させることができる。   According to this structure, the outer peripheral part of the plane part of an inner cylinder and the side part of an outer cylinder can be made to contact | abut reliably, and both can be combined reliably.

この発明の一実施態様においては、前記正n角形が、正六角形(n=6)であり、前記谷折り部と前記山折り部との間に、略二等辺三角形の前記平面部を規則的かつ連続的に形成してなるものである。   In one embodiment of the present invention, the regular n-gon is a regular hexagon (n = 6), and the planar portion of a substantially isosceles triangle is regularly arranged between the valley fold and the mountain fold. And it is formed continuously.

この構成によれば、多角形管の垂直方向断面を正十二角形とすることができ、多角形管における、荷重に対する耐久性を最大限向上させることができる。   According to this configuration, the polygonal tube can have a regular dodecagonal cross section in the vertical direction, and the durability against load in the polygonal tube can be improved to the maximum.

この発明の一実施態様においては、前記外筒体及び前記内筒体が、軸方向の一方に向かうほど、軸方向と直交する方向の幅が狭まるようにテーパ状をなしているものである。   In one embodiment of the present invention, the outer cylinder body and the inner cylinder body are tapered so that the width in the direction orthogonal to the axial direction is narrowed toward one side in the axial direction.

この構成によれば、構造体の製造時において内筒体を外筒体の内側に挿入する時には、外筒体の拡幅された側から内筒体を挿入するようにすることで、この挿入工程における作業を容易にすることができる。
また、内筒体、外筒体の拡幅された側により、構造体に対して軸方向に荷重が作用した時には、軸方向と直交する方向に構造体が倒れ込むことを抑制できる。
According to this configuration, when the inner cylinder is inserted into the outer cylinder at the time of manufacturing the structure, the insertion process is performed by inserting the inner cylinder from the widened side of the outer cylinder. The work in can be facilitated.
Moreover, when the load is applied to the structure in the axial direction by the widened sides of the inner cylinder and the outer cylinder, the structure can be prevented from falling in a direction orthogonal to the axial direction.

この発明によれば、軸方向の一方から作用する荷重を、内筒体と外筒体との協働によって、先ずは各結合部及びその周辺で局所的に受け止めることができるため、荷重が作用してから構造体が完全に圧縮変形するまでの耐久性を向上させることができる。
さらに、内筒体、外筒体を頂部毎に結合することで、圧縮変形が進行した時には、内筒体、外筒体をともに軸方向及び周方向において略均等に変形させることができ、その結果性能重量効率を向上させることができる。
According to the present invention, the load acting from one side in the axial direction can be first received locally at each coupling portion and its periphery by the cooperation of the inner cylinder body and the outer cylinder body. Then, the durability until the structure is completely compressed and deformed can be improved.
Furthermore, by joining the inner cylinder and the outer cylinder for each top, when compression deformation proceeds, both the inner cylinder and the outer cylinder can be deformed substantially equally in the axial direction and the circumferential direction. As a result, performance weight efficiency can be improved.

この発明の実施形態に係る車両用衝撃吸収構造体を示す斜視図。The perspective view which shows the shock absorption structure for vehicles which concerns on embodiment of this invention. (a)図1の車両用衝撃吸収構造体を構成する内筒体の斜視図、(b)同外筒体の斜視図、(c)外筒体と内筒体とを結合した状態を、外筒体を透過状態にして示した図。(A) A perspective view of the inner cylinder constituting the shock absorbing structure for a vehicle in FIG. 1, (b) a perspective view of the outer cylinder, (c) a state in which the outer cylinder and the inner cylinder are combined, The figure which showed the outer cylinder body in the permeation | transmission state. 車両用衝撃吸収構造体の平面図。The top view of the shock absorption structure for vehicles. 図3のA−A線矢視断面図。FIG. 4 is a cross-sectional view taken along line AA in FIG. 3. 図1に示す車両用衝撃吸収構造体に対し軸方向の一方から荷重を加えた時の挙動をCAEによりシミュレーション解析した結果を示す図であり、(a)圧縮荷重を付加する前の状態を示す図4相当の断面図、(b)圧縮荷重を付加した直後の状態を示す図4相当の断面図、(c)(b)の状態からさらに圧縮荷重を付加した時の状態を示す図4相当の断面図。It is a figure which shows the result of having carried out the simulation analysis by CAE about the behavior at the time of applying a load from one side of an axial direction to the shock absorption structure for vehicles shown in Drawing 1, and shows the state before adding (a) compression load. 4 is a cross-sectional view corresponding to FIG. 4, (b) a cross-sectional view corresponding to FIG. 4 showing a state immediately after the compression load is applied, and (c) equivalent to FIG. 4 showing a state when a compression load is further applied from the state of (b). FIG. この発明の他の実施形態に係る車両用衝撃吸収構造体を示す斜視図。The perspective view which shows the shock absorption structure for vehicles which concerns on other embodiment of this invention. (a)図6の車両用衝撃吸収構造体を構成する外筒体の斜視図、(b)同内筒体の斜視図、(c)外筒体と内筒体とを結合した状態を、外筒体を透過状態にして示した図。(A) A perspective view of an outer cylinder constituting the shock absorbing structure for a vehicle of FIG. 6, (b) a perspective view of the inner cylinder, (c) a state in which the outer cylinder and the inner cylinder are combined, The figure which showed the outer cylinder body in the permeation | transmission state. 車両用衝撃吸収構造体の平面図。The top view of the shock absorption structure for vehicles. 図8のB−B線矢視断面図。FIG. 9 is a sectional view taken along line B-B in FIG. 8. この発明のさらに他の実施形態に係る車両用衝撃吸収構造体を示す断面図。Sectional drawing which shows the impact-absorbing structure for vehicles which concerns on further another embodiment of this invention. この発明のさらに他の実施形態に係る車両用衝撃吸収構造体を示す断面図。Sectional drawing which shows the impact-absorbing structure for vehicles which concerns on further another embodiment of this invention.

以下、図面に基づいて本発明の実施形態を詳述する。
図1は、本実施形態に係る車両用衝撃吸収構造体を示す斜視図であり、図2(a)は、図1の車両用衝撃吸収構造体を構成する内筒体の斜視図、図2(b)は、同外筒体の斜視図、図2(c)は、外筒体と内筒体とを結合した状態を、外筒体を透過状態にして示した図である。図1、図2に示すように、車両用衝撃吸収構造体(以下、単に構造体と略記する。)1は、軸方向及び周方向において凹凸が規則的に連続した多面構造をなす内筒体2と、この内筒体2を覆い、軸方向に直交する方向の垂直方向断面が正多角形をなす多角形管の外筒体3とにより構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a perspective view showing a vehicle shock absorbing structure according to the present embodiment, and FIG. 2A is a perspective view of an inner cylinder constituting the vehicle shock absorbing structure of FIG. FIG. 2B is a perspective view of the outer cylindrical body, and FIG. 2C is a view showing a state in which the outer cylindrical body and the inner cylindrical body are coupled with the outer cylindrical body being in a transparent state. As shown in FIGS. 1 and 2, a shock absorbing structure for a vehicle (hereinafter simply referred to as a structure) 1 is an inner cylindrical body having a multi-face structure in which irregularities are regularly arranged in the axial direction and the circumferential direction. 2 and an outer cylindrical body 3 of a polygonal tube that covers the inner cylindrical body 2 and whose vertical cross section in a direction orthogonal to the axial direction forms a regular polygon.

ここで、内筒体2及び外筒体3は、いずれも構造体1の軸方向と直交する方向の幅、すなわちこれらを巨視的に円筒体として見た時の径が軸方向において一定とされている。   Here, the inner cylinder 2 and the outer cylinder 3 both have a width in a direction orthogonal to the axial direction of the structure 1, that is, a diameter when these are viewed macroscopically as a cylindrical body in the axial direction. ing.

図3は、構造体1の平面図である。内筒体2は、図3に示すように、所定位置において構造体1の軸方向と直交する方向に切断した時の垂直方向断面が正六角形をなしている。   FIG. 3 is a plan view of the structure 1. As shown in FIG. 3, the inner cylinder 2 has a regular hexagonal cross section when cut in a direction perpendicular to the axial direction of the structure 1 at a predetermined position.

そして、前記所定位置から所定距離軸方向両側に離れたそれぞれの位置での垂直方向断面は、前記所定位置での前記正六角形を軸周りに約30°(=180°/6)回転させた正六角形をなしている。   The vertical cross section at each position distant from the predetermined position on both sides in the predetermined distance axial direction is a regular hexagon obtained by rotating the regular hexagon at the predetermined position about 30 ° (= 180 ° / 6) around the axis. It has a square shape.

また、内筒体2では、図1〜図3に示すように、上述した各正六角形の各辺部21に谷折り部23、角部に対応する頂部22同士を結ぶ線に山折り部24が形成されており、これら谷折り部23と山折り部24との間に、略二等辺三角形の平面部25A、25A、…を規則的かつ連続的に形成している。   Moreover, in the inner cylinder 2, as shown in FIGS. 1-3, the mountain fold part 24 is formed in the line which connects each side part 21 of each regular hexagon mentioned above to the valley fold part 23 and the top parts 22 corresponding to a corner | angular part. .. Are formed between the valley fold portion 23 and the mountain fold portion 24 in a regular and continuous manner.

換言すれば、この内筒体2では、各正六角形の各頂部22を結ぶことにより、略四辺形(菱形)をなす構成単位面25が形成されている。そして、この構成単位面25の辺部に山折り部24を形成し、さらに、この構成単位面25の中央部(対角線上)に谷折り部23(辺部21)を形成することで、個々の構成単位面25には、最小構成単位をなす略二等辺三角形の平面部25A、25Aが2個形成されている。   In other words, in the inner cylindrical body 2, the structural unit surface 25 having a substantially quadrilateral shape (rhombus) is formed by connecting the apexes 22 of each regular hexagon. And the mountain fold part 24 is formed in the side part of this structural unit surface 25, Furthermore, the valley fold part 23 (side part 21) is formed in the center part (on a diagonal line) of this structural unit surface 25, and individual Two plane portions 25A, 25A having substantially isosceles triangles forming the minimum structural unit are formed on the structural unit surface 25.

これにより、平面部25A、25Aが辺部21(谷折り部23)で接続された(辺部21(谷折り部23)を共有する)構成となり、構成単位面25では、その断面がV字型をなしている。そして、この構成単位面25が、内筒体2の表面において、軸方向及び周方向に規則的に連続することで、内筒体2は、凹凸が規則的に連続した多面構造をなしている。なお、本明細書では、構造体1の表面側から見て谷状に成形されている部位を谷折り部23、山状に成形されている部位を山折り部24としている。   Thereby, it becomes the structure by which the plane parts 25A and 25A were connected by the side part 21 (valley fold part 23) (sharing the side part 21 (valley fold part 23)), and the cross section is V-shaped in the structural unit surface 25. Formed. And this structural unit surface 25 is regularly continuing in the axial direction and the circumferential direction on the surface of the inner cylinder 2, The inner cylinder 2 has comprised the polyhedral structure with which the unevenness | corrugation was regularly continued. . In the present specification, a portion formed in a valley shape when viewed from the surface side of the structure 1 is a valley fold portion 23, and a portion formed in a mountain shape is a mountain fold portion 24.

図4は、図3のA−A線矢視断面図である。内筒体2では、図1〜図4に示すように、各頂部22が略平面部をなしており、この各頂部22において、外筒体3が結合されている(図3、図4中×印で示す結合部P参照)。   4 is a cross-sectional view taken along line AA in FIG. In the inner cylinder 2, as shown in FIGS. 1-4, each top part 22 has comprised the substantially plane part, and the outer cylinder 3 is couple | bonded in this each top part 22 (in FIG. 3, FIG. 4). (See the connecting portion P indicated by a cross).

外筒体3は、図1〜図3に示すように、垂直方向断面が正十二(2×6)角形をなしている。これにより、内筒体2の外周に外筒体3を配置した時には、内筒体2において軸周りに約30°ずれた前記正六角形の各頂部22に各辺部31が軸方向視で一致して外接するようになっている。   As shown in FIGS. 1 to 3, the outer cylindrical body 3 has a regular twelve (2 × 6) square shape in cross section in the vertical direction. As a result, when the outer cylinder 3 is arranged on the outer periphery of the inner cylinder 2, each side 31 is aligned with each apex 22 of the regular hexagon shifted about 30 ° around the axis in the inner cylinder 2 as viewed in the axial direction. Then it has come to circumscribe.

そして、内筒体2にて平面をなす頂部22と、外筒体3にて正十二角形の辺部31を形成する平面部32の内周とが当接した状態で両者が結合されている。本実施形態では、内筒体2の各平面部25Aの頂部22が外筒体3に結合されており、結合部Pは、平面部25Aに対応して軸方向及び周方向に連続している。なお、内筒体2の頂部22と外筒体3の平面部32との当接部分の結合は、スポット溶接等による溶接や、接着剤を用いた接着等によりなされる。   And both are combined in the state which the top part 22 which makes a plane in the inner cylinder 2, and the inner periphery of the plane part 32 which forms the regular dodecagon side part 31 in the outer cylinder 3 contact | abut. Yes. In the present embodiment, the top portion 22 of each planar portion 25A of the inner cylindrical body 2 is coupled to the outer cylindrical body 3, and the coupling portion P is continuous in the axial direction and the circumferential direction corresponding to the planar portion 25A. . The contact portion between the top portion 22 of the inner cylindrical body 2 and the flat portion 32 of the outer cylindrical body 3 is joined by welding by spot welding or the like, adhesion using an adhesive, or the like.

次に、図5を参照して、構造体1の衝撃吸収性能について説明する。図5は、構造体1に対し軸方向の一方から荷重を加えた時の挙動をCAE(Computer Aided Engineering)によりシミュレーション解析した結果を示す図である。   Next, the shock absorbing performance of the structure 1 will be described with reference to FIG. FIG. 5 is a diagram showing the result of simulation analysis of the behavior when a load is applied to the structure 1 from one side in the axial direction by CAE (Computer Aided Engineering).

本発明者は、図1に示す構造体1の衝撃吸収性能を評価するにあたり、これに図5に示すような圧縮荷重Fを付加した時の挙動を解析した。この解析では、図5に示すように、軸方向が上下を向くように構造体1を台座X上に配置した状態で、上方から軸方向に圧縮荷重Fを付加した時の構造体1各部の変形量を算出した。   In evaluating the shock absorbing performance of the structure 1 shown in FIG. 1, the inventor analyzed the behavior when a compressive load F as shown in FIG. 5 was added thereto. In this analysis, as shown in FIG. 5, the structure 1 is placed on the pedestal X so that the axial direction is directed upward and downward. The amount of deformation was calculated.

ここで、図5では、この解析結果を図4相当の断面図で示しており、図5(a)は、圧縮荷重Fを付加する前の状態を示し、図5(b)は、圧縮荷重Fを付加した直後の状態、図5(c)は、図5(b)の状態からさらに圧縮荷重を付加した時の状態を示している。また、図5では、各部の変形量の大小を色の濃淡で示しており、変形量が大きいほど濃い色で示している。   Here, in FIG. 5, this analysis result is shown in a cross-sectional view corresponding to FIG. 4, FIG. 5 (a) shows a state before the compression load F is applied, and FIG. 5 (b) shows the compression load. The state immediately after adding F, FIG. 5C, shows a state when a compressive load is further applied from the state of FIG. 5B. Further, in FIG. 5, the magnitude of the deformation amount of each part is shown by color shading, and the larger the deformation amount, the darker the color.

図5(b)によれば、構造体1に圧縮荷重Fが付加された時には、圧縮荷重Fが作用する側の各結合部P(図4参照)とその周辺部に大きな変形が発生していることが分かる(図中の変形箇所α参照)。   According to FIG.5 (b), when the compressive load F is added to the structure 1, big deformation | transformation generate | occur | produced in each connection part P (refer FIG. 4) and the peripheral part by the side where the compressive load F acts. (See the deformed portion α in the figure).

この時、図示のように、内筒体2の構成単位面25、25、…では、これが谷折り部23を折りしろにして内向きに突出して潰れるとともに、外筒体3では、その平面部32が結合部Pの間で外向きに突出して潰れている。   At this time, as shown in the drawing, the structural unit surfaces 25, 25,... Of the inner cylinder 2 project inward with the valley folds 23 folded, and are flattened in the outer cylinder 3. 32 protrudes outward between the joint portions P and is crushed.

そして、さらに圧縮荷重Fを付加した時には、図5(c)に示すように、各変形箇所αにおける変形量及び変形領域が増大し、構成単位面25及び平面部32の突出量がよりさらに大きくなっている。   When the compressive load F is further applied, as shown in FIG. 5C, the deformation amount and the deformation region at each deformation location α increase, and the protruding amount of the structural unit surface 25 and the flat surface portion 32 is further increased. It has become.

ここで、本発明者は、図5に示す解析結果から、内筒体2と外筒体3とを頂部22で結合することにより、構造体1に圧縮荷重Fが付加された時には、先ず圧縮荷重F側の結合部P及びその周辺で局所的に変形が生じることを見出した。そして、このように圧縮荷重Fを結合部P及びその周辺部で受け止めることで、圧縮変形の軸方向への伝播が抑制されることを見出した。   Here, from the analysis result shown in FIG. 5, the inventor firstly compresses the structure 1 when the compressive load F is applied to the structure 1 by joining the inner cylinder 2 and the outer cylinder 3 at the top 22. It has been found that deformation occurs locally at the joint P on the load F side and in the vicinity thereof. And it discovered that propagation in the axial direction of a compressive deformation was suppressed by receiving the compressive load F in the coupling | bond part P and its peripheral part in this way.

そして、構造体1が圧縮変形する時には、内筒体2が結合部P毎に規則的に変形することで、外筒体3も結合部P毎に規則的に変形させることができ、その結果、圧縮荷重Fを内筒体2と外筒体3との協働で受け止めつつ、構造体1を軸方向及び周方向において略均等に変形させることができることを見出した。   When the structure 1 is compressed and deformed, the inner cylinder 2 is regularly deformed for each coupling portion P, so that the outer cylinder 3 can also be regularly deformed for each coupling portion P. As a result, The present inventors have found that the structure 1 can be deformed substantially uniformly in the axial direction and the circumferential direction while receiving the compressive load F in cooperation with the inner cylinder 2 and the outer cylinder 3.

このように、軸方向に離間した正多角形(ここでは正六角形)の辺部21及び頂部22を結ぶ線を谷折り部23、山折り部24にして略二等辺三角形の平面部25Aを形成した多面構造をなす内筒体2と、垂直方向断面が正多角形(ここでは正十二角形)をなす外筒体3とを頂部22で結合した構造体1とすることにより、軸方向の一方から作用する圧縮荷重Fを、内筒体2と外筒体3との協働によって、先ずは各結合部P及びその周辺で局所的に受け止めることができる。その結果、圧縮荷重Fが作用してから構造体1が完全に圧縮変形するまでの耐久性を向上させることができる。   In this way, a plane connecting the sides 21 and the tops 22 of the regular polygons (here regular hexagons) spaced apart in the axial direction is formed into a valley fold 23 and a mountain fold 24 to form a substantially isosceles flat plane 25A. By forming the structure 1 in which the inner cylinder 2 having the multi-face structure and the outer cylinder 3 having a vertical polygonal cross section (here, a regular dodecagon) are joined at the top portion 22, The compressive load F acting from one side can first be locally received at each coupling portion P and its periphery by the cooperation of the inner cylinder 2 and the outer cylinder 3. As a result, it is possible to improve the durability from when the compressive load F acts until the structure 1 is completely compressed and deformed.

さらに、内筒体2、外筒体3を各平面部25Aの頂部22毎に結合することで、圧縮変形が進行した時には、上述したように内筒体2、外筒体3をともに軸方向及び周方向において略均等に変形させることができることから、構造体1の略全体が圧縮荷重Fの衝撃吸収に寄与することになり、その結果性能重量効率(衝撃エネルギー吸収量/構造体1の全体重量)を向上させることができる。   Further, by connecting the inner cylindrical body 2 and the outer cylindrical body 3 for each top portion 22 of each flat portion 25A, when the compressive deformation proceeds, both the inner cylindrical body 2 and the outer cylindrical body 3 are axially moved as described above. Since the structure 1 can be deformed substantially uniformly in the circumferential direction, the substantially entire structure 1 contributes to the shock absorption of the compression load F. As a result, the performance weight efficiency (impact energy absorption amount / the entire structure 1). Weight) can be improved.

また、本実施形態のように、内筒体1を正n角形(n=6)とする一方で、外筒体2を正2n(=12)角形とし、内筒体2の頂部22と外筒体3の平面部32とを一致するように配置したことで、内筒体2の頂部22と外筒体3の平面部32の内周部とを確実に当接させることができ、両者を確実に結合させることができる。   Further, as in the present embodiment, the inner cylinder 1 is a regular n-gon (n = 6), while the outer cylinder 2 is a regular 2n (= 12), and the top 22 of the inner cylinder 2 and the outer By arrange | positioning so that the plane part 32 of the cylinder 3 may correspond, the top part 22 of the inner cylinder 2 and the inner peripheral part of the plane part 32 of the outer cylinder 3 can be reliably contacted, Can be reliably combined.

ところで、垂直方向断面が正多角形をなす多角形管においては、前記断面を十二角形とした場合に、軸方向の荷重に対し最も高い耐久性を示すことが知られている(中澤嘉明、他3名、「薄肉多角形部材の塑性座屈挙動に及ぼす断面形状因子の影響」、日本機械学会論文集(A編)論文No.06−0899、2007年3月、73巻727号、331〜337頁参照)。   By the way, it is known that a polygonal tube having a regular polygonal cross section in the vertical direction exhibits the highest durability against an axial load when the cross section is a dodecagon (Yoshiaki Nakazawa, Three others, “Influence of cross-sectional shape factor on plastic buckling behavior of thin polygonal member”, Transactions of the Japan Society of Mechanical Engineers (A) Paper No. 06-0899, March 2007, Vol. 73, No. 727, 331 See page 337).

そこで、本実施形態のように、内筒体1を正六角形(n=6)として、外筒体3の垂直方向断面を正十二角形とすることにより、外筒体3における、圧縮荷重Fに対する耐久性を最大限向上させることができる。   Therefore, as in the present embodiment, the inner cylinder 1 is a regular hexagon (n = 6), and the vertical cross section of the outer cylinder 3 is a regular dodecagon, thereby compressing the load F in the outer cylinder 3. The durability against the maximum can be improved.

次に、図6〜図9を参照して、本発明の他の実施形態について説明する。図6は、本発明の他の実施形態に係る構造体を示す斜視図であり、図7(a)は、図6の構造体を構成する外筒体の斜視図、図7(b)は、同内筒体の斜視図、図7(c)は、外筒体と内筒体とを結合した状態を、外筒体を透過状態にして示した図である。   Next, another embodiment of the present invention will be described with reference to FIGS. 6 is a perspective view showing a structure according to another embodiment of the present invention. FIG. 7A is a perspective view of an outer cylindrical body constituting the structure of FIG. 6, and FIG. FIG. 7C is a view showing a state in which the outer cylindrical body and the inner cylindrical body are coupled with the outer cylindrical body being in a transparent state.

図6、図7に示すように、構造体1′は、構造体1における内筒体2と外筒体3との位置関係が内外において逆に配置された構成となっている。すなわち、軸方向及び周方向において凹凸が規則的に連続した多面構造をなす外筒体4と、この外筒体4に覆われ、垂直方向断面が正多角形をなす多角形管の内筒体5とにより構成されている。そして、外筒体4及び内筒体5は、いずれも構造体1′の軸方向と直交する方向の幅が軸方向において一定とされている。   As shown in FIGS. 6 and 7, the structure 1 ′ has a configuration in which the positional relationship between the inner cylindrical body 2 and the outer cylindrical body 3 in the structure 1 is reversed inside and outside. That is, an outer cylindrical body 4 having a polyhedral structure in which irregularities are regularly arranged in the axial direction and the circumferential direction, and an inner cylindrical body of a polygonal tube that is covered with the outer cylindrical body 4 and whose vertical cross section forms a regular polygon. 5. And as for the outer cylinder body 4 and the inner cylinder body 5, the width | variety of the direction orthogonal to the axial direction of structure 1 'is made constant in the axial direction.

図8は、構造体1′の平面図である。本実施形態において、外筒体4は、構造体1の内筒体2と同様、図8に示すように、所定位置において構造体1′の垂直方向断面が正六角形をなし、前記所定位置から所定距離軸方向両側に離れたそれぞれの位置での垂直方向断面は、軸方向から見て前記所定位置での前記正六角形を軸周りに約30°回転させた正六角形をなしている。   FIG. 8 is a plan view of the structure 1 ′. In the present embodiment, as shown in FIG. 8, the outer cylinder 4 has a regular hexagonal cross section at a predetermined position, as in the inner cylinder 2 of the structure 1, and from the predetermined position. The vertical cross-sections at the respective positions apart on both sides in the predetermined axial direction form a regular hexagon obtained by rotating the regular hexagon at the predetermined position about 30 ° around the axis when viewed from the axial direction.

そして、外筒体4では、上述した各正六角形の各辺部41に谷折り部43、頂部42同士を結ぶ線に山折り部44が形成されている。このため、外筒体4では、頂部42を結ぶことにより、略四辺形をなす構成単位面45が形成され、さらには、谷折り部43と山折り部44との間に、略二等辺三角形の平面部45A、45A、…が規則的かつ連続的に形成されている。   And in the outer cylinder 4, the mountain fold part 44 is formed in the line | wire which connects the valley fold part 43 and the top parts 42 to each side part 41 of each regular hexagon mentioned above. For this reason, in the outer cylindrical body 4, a structural unit surface 45 having a substantially quadrilateral shape is formed by connecting the top portions 42, and further, a substantially isosceles triangle is formed between the valley fold portion 43 and the mountain fold portion 44. Are formed in a regular and continuous manner.

図9は、図8のB−B線矢視断面図である。本実施形態では、構造体1の場合と異なり、図6〜図9に示すように、頂部42の先端が尖った角部とされる代わりに、辺部41において、その中央部に軸方向に平行な平面部43aが形成されている。そして、外筒体4では、この平面部43aにおいて内筒体5が結合されている(図8、図9中×印で示す結合部P参照)。   9 is a cross-sectional view taken along line BB in FIG. In the present embodiment, unlike the structure 1, as shown in FIGS. 6 to 9, instead of the tip of the top portion 42 being a sharp corner, in the side portion 41, the central portion is axially arranged in the axial direction. Parallel plane portions 43a are formed. And in the outer cylinder 4, the inner cylinder 5 is couple | bonded in this plane part 43a (refer the coupling | bond part P shown by x in FIG. 8, FIG. 9).

内筒体5は、図6〜図8に示すように、垂直方向断面が正十二(2×6)角形をなしている。これにより、外筒体4の内周に内筒体5を配置した時には、外筒体4において軸周りに約30°ずれた前記各正六角形の各平面部43aに各辺部51が軸方向視で一致して内接するようになっている。そして、外筒体4の平面部43aと、内筒体5にて正十二角形の辺部51を形成する平面部52の外周とが当接した状態で両者が結合されている。   As shown in FIGS. 6 to 8, the inner cylindrical body 5 has a regular twelve (2 × 6) square cross section in the vertical direction. As a result, when the inner cylinder 5 is arranged on the inner periphery of the outer cylinder 4, the side portions 51 are axially arranged on the respective flat hexagonal flat portions 43 a shifted about 30 ° around the axis in the outer cylinder 4. They are inscribed in line with each other. And both are couple | bonded in the state which the flat part 43a of the outer cylinder 4 and the outer periphery of the plane part 52 which forms the regular dodecagon side part 51 in the inner cylinder 5 contact | abutted.

本実施形態では、外筒体4の各平面部45Aの辺部41に形成された平面部43aが内筒体5に結合されており、結合部Pは、平面部45Aに対応して軸方向及び周方向に連続している。   In this embodiment, the plane part 43a formed in the side part 41 of each plane part 45A of the outer cylinder 4 is couple | bonded with the inner cylinder 5, and the coupling | bond part P is axial direction corresponding to the plane part 45A. And it is continuous in the circumferential direction.

このような構成をなす構造体1′であっても、構造体1の場合と同様、外筒体4と内筒体5との協働によって、荷重が作用してから構造体1′が完全に圧縮変形するまでの耐久性を向上させることができる。   Even in the case of the structure 1 ′ having such a configuration, as in the case of the structure 1, the structure 1 ′ is completely formed after a load is applied by the cooperation of the outer cylinder 4 and the inner cylinder 5. It is possible to improve the durability until compression deformation occurs.

そして、外筒体4、内筒体5を辺部41毎に結合することで、圧縮変形が進行した時には、内筒体4、外筒体5をともに軸方向及び周方向において略均等に変形させることができる。このため、構造体1′の略全体が衝撃吸収に寄与することになり、その結果性能重量効率を向上させることができる。   Then, by joining the outer cylindrical body 4 and the inner cylindrical body 5 for each side portion 41, when the compressive deformation progresses, both the inner cylindrical body 4 and the outer cylindrical body 5 are deformed substantially equally in the axial direction and the circumferential direction. Can be made. For this reason, substantially the entire structure 1 ′ contributes to shock absorption, and as a result, the performance weight efficiency can be improved.

また、前記内筒体は、内筒体5の辺部51と、外筒体4の辺部41とが軸方向視で一致していることにより、内筒体5の平面部52の外周部と外筒体4の辺部41の平面部43aとを確実に当接させることができ、両者を確実に結合させることができる。   Further, the inner cylindrical body has an outer peripheral portion of the flat portion 52 of the inner cylindrical body 5 because the side 51 of the inner cylindrical body 5 and the side 41 of the outer cylindrical body 4 coincide with each other in the axial direction. And the flat portion 43a of the side portion 41 of the outer cylindrical body 4 can be reliably brought into contact with each other, and both can be reliably combined.

ところで、上述した各実施形態では、構造体1、1′を構成する内筒体2、5、外筒体3、4の、軸方向と直交する方向の幅がいずれも軸方向において一定とされているが、本発明は必ずしもこれに限定されるものではない。例えば、図10、図11に示す構造体10、10′のように、内筒体6、9及び外筒体7、8の前記幅が軸方向の一方に向かうにつれて狭まるような(内筒体6、9及び外筒体7、8を巨視的に円筒体として見た時の径が軸方向において縮径されるような)テーパ状に形成してもよい。   By the way, in each embodiment mentioned above, all the width | variety of the direction orthogonal to an axial direction of the inner cylinders 2 and 5 and the outer cylinders 3 and 4 which comprise the structure 1, 1 'is made constant in an axial direction. However, the present invention is not necessarily limited to this. For example, as in the structures 10 and 10 ′ shown in FIGS. 10 and 11, the widths of the inner cylindrical bodies 6 and 9 and the outer cylindrical bodies 7 and 8 become narrower toward one side in the axial direction (inner cylindrical body 6 and 9 and the outer cylindrical bodies 7 and 8 may be formed in a tapered shape so that the diameter when viewed as a cylindrical body macroscopically is reduced in the axial direction.

図10は、構造体1(図1〜図5参照)に対応する構造体10であって、内筒体2、外筒体3にそれぞれ対応する内筒体6、外筒体7により構成されている。   FIG. 10 shows a structure 10 corresponding to the structure 1 (see FIGS. 1 to 5), and is constituted by an inner cylinder 6 and an outer cylinder 7 corresponding to the inner cylinder 2 and the outer cylinder 3, respectively. ing.

図10では、内筒体6の辺部61(谷折り部63)の長さが軸方向の一方に向かうにつれて短くなっている。このため、頂部62の間隔が徐々に狭まり、かつ山折り部64の長さが徐々に短くなるように形成されている。そして、このような形状により、構成単位面65を構成する平面部65Aの面積が、軸方向の一方に向かうにつれて小さくなっている。このような構成により、内筒体6は、テーパ状をなしている。   In FIG. 10, the length of the side part 61 (valley fold part 63) of the inner cylindrical body 6 becomes shorter as it goes to one side in the axial direction. For this reason, it forms so that the space | interval of the top part 62 may become narrow gradually and the length of the mountain fold part 64 may become short gradually. And by such a shape, the area of the plane part 65A which comprises the structural unit surface 65 becomes small as it goes to one side of an axial direction. With such a configuration, the inner cylinder 6 has a tapered shape.

そして、外筒体7では、辺部71(平面部72)の長さが軸方向の一方に向かうにつれて短くなっており、これによって外筒体7も、内筒体6に対応してテーパ状をなしている。   In the outer cylindrical body 7, the length of the side portion 71 (plane portion 72) is shortened toward one side in the axial direction, and the outer cylindrical body 7 is also tapered corresponding to the inner cylindrical body 6. I am doing.

図11は、構造体2(図6〜図9参照)に対応する構造体10′であって、外筒体4、内筒体5にそれぞれ対応する外筒体8、内筒体9により構成されている。   FIG. 11 shows a structure 10 ′ corresponding to the structure 2 (see FIGS. 6 to 9), and includes an outer cylinder 8 and an inner cylinder 9 corresponding to the outer cylinder 4 and the inner cylinder 5, respectively. Has been.

図11では、外筒体8の辺部81(谷折り部83)の長さが、構造体10の内筒体6と同様、軸方向の一方に向かうにつれて短くなっている。このため、頂部82の間隔が徐々に狭まり、かつ山折り部84の長さが徐々に短くなるように形成されている。そして、このような形状により、構成単位面85を構成する平面部85Aの面積が、軸方向の一方に向かうにつれて小さくなっている。なお、図中符号83aで示す部位は、外筒体4の平面部43aに対応する平面部83aである。   In FIG. 11, the length of the side portion 81 (valley fold portion 83) of the outer cylindrical body 8 becomes shorter as it goes to one side in the axial direction, like the inner cylindrical body 6 of the structure 10. For this reason, it forms so that the space | interval of the top part 82 may become narrow gradually and the length of the mountain fold part 84 may become short gradually. And by such a shape, the area of the plane part 85A which comprises the structural unit surface 85 becomes small as it goes to one side of an axial direction. In addition, the site | part shown with the code | symbol 83a in the figure is the plane part 83a corresponding to the plane part 43a of the outer cylinder 4. As shown in FIG.

そして、外筒体8に対応して、内筒体9では、辺部91(平面部92)の長さが軸方向の一方に向かうにつれて短くなっており、これによって、外筒体8及び内筒体9はテーパ状をなしている。   Corresponding to the outer cylindrical body 8, in the inner cylindrical body 9, the length of the side portion 91 (plane portion 92) is shortened toward one side in the axial direction. The cylindrical body 9 has a tapered shape.

このように、内筒体6、9及び外筒体7、8をテーパ状に形成した場合、構造体10、10′の製造時において内筒体6、9を外筒体7、8の内側に挿入する時には、外筒体7、8の拡幅された側(大径側)から内筒体6、9を挿入するようにすることで、この挿入工程における作業を容易にすることができる。   As described above, when the inner cylinders 6 and 9 and the outer cylinders 7 and 8 are formed in a tapered shape, the inner cylinders 6 and 9 are arranged inside the outer cylinders 7 and 8 when the structures 10 and 10 ′ are manufactured. When inserting into the inner cylinders 6 and 9, the inner cylinders 6 and 9 can be inserted from the widened side (large diameter side) of the outer cylinders 7 and 8, thereby facilitating the work in this insertion process.

また、内筒体6、9、外筒体7、8の拡幅された側により、構造体10、10′に対して軸方向に荷重が作用した時には、軸方向と直交する方向に構造体10、10′が倒れ込むことを抑制できる。   Further, when a load is applied in the axial direction to the structural bodies 10 and 10 ′ by the widened sides of the inner cylindrical bodies 6 and 9 and the outer cylindrical bodies 7 and 8, the structural body 10 is orthogonal to the axial direction. 10 'can be prevented from falling.

ところで、上述した構造体1、1′、10、10′は、車体構造をなす構成部材のうち、例えば、車両前方両側部にて車両前後方向に延設されたフロントサイドフレームの前端部に結合され、車両前突時等において軸方向に圧縮変形することで衝突荷重の衝撃を吸収する衝撃吸収部材(クラッシュカン)に適用することができる。   By the way, the structural bodies 1, 1 ′, 10 and 10 ′ described above are coupled to the front end portion of the front side frame which extends in the vehicle front-rear direction at both sides of the front of the vehicle among the constituent members constituting the vehicle body structure. In addition, it can be applied to an impact absorbing member (crash can) that absorbs the impact of a collision load by compressing and deforming in the axial direction at the time of a frontal collision of the vehicle.

構造体1、1′、10、10′を上述した衝撃吸収部材に適用する場合には、例えば、図5に示す台座Xが、フロントサイドフレームの前端部に配設される結合用のプレート部材に対応する。   When the structural bodies 1, 1 ′, 10, and 10 ′ are applied to the above-described shock absorbing member, for example, a base plate X shown in FIG. 5 is a connecting plate member disposed at the front end of the front side frame. Corresponding to

また、構造体10、10′を車体の構造部材に適用する場合には、軸方向と直交する方向の幅が拡幅された側(大径側)を車体に取付け、前記幅が狭い側(小径側)を車外側に向けて配設するのが好ましい。このような構成にすることで、幅が狭い側に対し軸方向の斜めから荷重が作用した時、該荷重により車体への取付け側となる根元部で最初に変形が生じて構造体全体が早期に倒れ込むことを抑制できる。   When the structural bodies 10 and 10 'are applied to a structural member of a vehicle body, the side (large diameter side) whose width in the direction orthogonal to the axial direction is widened is attached to the vehicle body, and the narrow side (small diameter) It is preferable to arrange the side) toward the outside of the vehicle. By adopting such a configuration, when a load is applied obliquely in the axial direction to the narrow side, the load is first deformed at the base portion on the attachment side to the vehicle body, so that the entire structure is brought to an early stage. Can be prevented from falling down.

なお、上述した各実施形態では、筒体2、4、6、8の垂直方向断面を正六角形としているが、本発明は必ずしもこれに限定されるものではなく、少なくとも多角形の角の数nが4以上であればよい。   In each of the embodiments described above, the vertical cross section of the cylinders 2, 4, 6, and 8 is a regular hexagon. However, the present invention is not necessarily limited to this, and at least the number n of polygonal corners. May be 4 or more.

また、筒体2、4、6、8と結合される筒体3、5、7、9では、その垂直方向断面の形状を正十二角形としているが、本発明は必ずしもこれに限定されるものではなく、他の正多角形や円形としてもよい。   Further, in the cylinders 3, 5, 7, and 9 coupled to the cylinders 2, 4, 6, and 8, the shape of the cross section in the vertical direction is a regular dodecagon, but the present invention is not necessarily limited to this. It may be another regular polygon or circle instead of a thing.

この発明の構成と、上述の実施形態との対応において、
この発明の、略三角形の平面部を規則的かつ連続的に形成してなる内筒体は、内筒体2、6に対応し、
以下同様に、
前記内筒体を覆う外筒体は、外筒体3、7に対応し、
略三角形の平面部を規則的かつ連続的に形成してなる外筒体は、外筒体4、8に対応し、
前記外筒体に覆われる内筒体は、内筒体5、9に対応するも、
この発明は、上述の実施形態の構成のみに限定されるものではなく、多くの実施の形態を得ることができる。
In correspondence between the configuration of the present invention and the above-described embodiment,
The inner cylindrical body formed by regularly and continuously forming a substantially triangular plane portion of the present invention corresponds to the inner cylindrical bodies 2 and 6,
Similarly,
The outer cylinder covering the inner cylinder corresponds to the outer cylinders 3 and 7,
The outer cylinder formed by regularly and continuously forming a substantially triangular plane portion corresponds to the outer cylinders 4 and 8,
The inner cylinder covered by the outer cylinder corresponds to the inner cylinders 5 and 9,
The present invention is not limited only to the configuration of the above-described embodiment, and many embodiments can be obtained.

1、1′、10、10′…車両用衝撃吸収構造体
2、5、6、9…内筒体
3、4、7、8…外筒体
21、41、61、81…辺部
22、42、62、82…頂部
23、43、63、83…谷折り部
24、44、64、84…山折り部
31、51、71、91…辺部
DESCRIPTION OF SYMBOLS 1, 1 ', 10, 10' ... Vehicle shock absorption structure 2, 5, 6, 9 ... Inner cylinder 3, 4, 7, 8 ... Outer cylinder 21, 41, 61, 81 ... Side part 22, 42, 62, 82 ... top 23, 43, 63, 83 ... valley fold 24, 44, 64, 84 ... mountain fold 31, 31, 71, 91 ... side

Claims (6)

所定位置において軸方向と直交する方向に切断した時の垂直方向断面が、正n角形(n≧4)をなすとともに、
前記所定位置から所定距離軸方向両側に離れたそれぞれの位置での垂直方向断面が、前記所定位置での前記正n角形を軸周りに約180°/n回転させた正n角形をなし、
各正n角形の各辺部と各頂部とを結ぶ線を谷折り部又は山折り部として、該谷折り部と山折り部との間に、略三角形の平面部を規則的かつ連続的に形成してなる内筒体と、
該内筒体の各正n角形の各頂部に外接する断面形状を有し、
前記各頂部に内周部がそれぞれ当接して結合され、前記内筒体を覆う外筒体とからなる
車両用衝撃吸収構造体。
A vertical cross section when cut in a direction orthogonal to the axial direction at a predetermined position forms a regular n-gon (n ≧ 4),
A vertical cross section at each position away from the predetermined position on both sides in the axial direction by a predetermined distance forms a regular n-gon obtained by rotating the regular n-gon at the predetermined position about 180 ° / n around the axis,
A line connecting each side of each regular n-gon and each top is defined as a valley fold or a mountain fold, and a substantially triangular plane is regularly and continuously between the valley fold and the mountain fold. An inner cylinder formed,
Having a cross-sectional shape circumscribing each apex of each regular n-gon of the inner cylinder,
An impact absorbing structure for a vehicle comprising an outer cylindrical body that covers an inner cylindrical body, each of which has an inner peripheral portion in contact with and coupled to each of the top portions.
前記外筒体は、その垂直方向断面が正2n角形をなす多角形管であり、
前記外筒体の正2n角形の辺部と、前記内筒体の頂部とが軸方向視で一致している
請求項1記載の車両用衝撃吸収構造体。
The outer cylindrical body is a polygonal tube whose vertical cross section forms a regular 2n square,
2. The vehicle impact absorbing structure according to claim 1, wherein a regular 2n square side portion of the outer cylindrical body and a top portion of the inner cylindrical body coincide with each other in an axial view.
所定位置において軸方向と直交する方向に切断した時の垂直方向断面が、正n角形(n≧4)をなすとともに、
前記所定位置から所定距離軸方向両側に離れたそれぞれの位置での垂直方向断面が、前記所定位置での前記正n角形を軸周りに約180°/n回転させた正n角形をなし、
各正n角形の各辺部と各頂部とを結ぶ線を谷折り部又は山折り部として、該谷折り部と山折り部との間に、略三角形の平面部を規則的かつ連続的に形成してなる外筒体と、
該外筒体の各正n角形の各辺部に内接する断面形状を有し、
前記各辺部に外周部がそれぞれ当接して結合され、前記外筒体に覆われる内筒体とからなる
車両用衝撃吸収構造体。
A vertical cross section when cut in a direction orthogonal to the axial direction at a predetermined position forms a regular n-gon (n ≧ 4),
A vertical cross section at each position away from the predetermined position on both sides in the axial direction by a predetermined distance forms a regular n-gon obtained by rotating the regular n-gon at the predetermined position about 180 ° / n around the axis,
A line connecting each side of each regular n-gon and each top is defined as a valley fold or a mountain fold, and a substantially triangular plane is regularly and continuously between the valley fold and the mountain fold. An outer cylinder formed,
Having a cross-sectional shape inscribed in each side of each regular n-gon of the outer cylinder,
An impact-absorbing structure for a vehicle comprising an inner cylindrical body covered with the outer cylindrical body, each of which has an outer peripheral part in contact with and coupled to each side part.
前記内筒体は、その垂直方向断面が正2n角形をなす多角形管であり、
前記内筒体の正2n角形の辺部と、前記外筒体の辺部とが軸方向視で一致している
請求項3記載の車両用衝撃吸収構造体。
The inner cylindrical body is a polygonal tube whose vertical cross section forms a regular 2n square,
4. The shock absorbing structure for a vehicle according to claim 3, wherein a side of the regular 2n square of the inner cylinder and a side of the outer cylinder coincide with each other when viewed in the axial direction.
前記正n角形は、正六角形(n=6)であり、
前記谷折り部と前記山折り部との間に、略二等辺三角形の前記平面部を規則的かつ連続的に形成してなる
請求項2または4記載の車両用衝撃吸収構造体。
The regular n-gon is a regular hexagon (n = 6),
The shock absorbing structure for a vehicle according to claim 2 or 4, wherein the plane portion having a substantially isosceles triangle is regularly and continuously formed between the valley fold portion and the mountain fold portion.
前記外筒体及び前記内筒体は、軸方向の一方に向かうほど、軸方向と直交する方向の幅が狭まるようにテーパ状をなしている
請求項1〜5のいずれか一項に記載の車両用衝撃吸収構造体。
The said outer cylinder body and the said inner cylinder body are taper-shaped so that the width | variety of the direction orthogonal to an axial direction may become narrow, so that it goes to one side of an axial direction. Shock absorbing structure for vehicles.
JP2009135896A 2009-06-05 2009-06-05 Shock absorbing structure for vehicle Expired - Fee Related JP5439957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135896A JP5439957B2 (en) 2009-06-05 2009-06-05 Shock absorbing structure for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135896A JP5439957B2 (en) 2009-06-05 2009-06-05 Shock absorbing structure for vehicle

Publications (2)

Publication Number Publication Date
JP2010280309A true JP2010280309A (en) 2010-12-16
JP5439957B2 JP5439957B2 (en) 2014-03-12

Family

ID=43537482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135896A Expired - Fee Related JP5439957B2 (en) 2009-06-05 2009-06-05 Shock absorbing structure for vehicle

Country Status (1)

Country Link
JP (1) JP5439957B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153792A1 (en) * 2011-05-10 2012-11-15 株式会社深井製作所 Energy absorption member
CN110696761A (en) * 2019-11-07 2020-01-17 五邑大学 Method and structure for realizing paper folding dual energy absorption structure
CN111120552A (en) * 2020-01-10 2020-05-08 汕头大学 Columnar rebounding mechanism with gap structure
CN111186403A (en) * 2020-01-16 2020-05-22 大连理工大学 Collision energy-absorbing box based on end creases
CN111473076A (en) * 2020-01-10 2020-07-31 汕头大学 Damping device based on cylindrical periodic structure

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781509A (en) * 1993-09-16 1995-03-28 Kozuka Techno Kk Spacer block provided with shock absorbing function and hanger bracket
JPH09277954A (en) * 1996-04-15 1997-10-28 Nippon Steel Corp Tapered impact absorbing member
JP2002284032A (en) * 2001-03-27 2002-10-03 Kawasaki Steel Corp Multiple face structural member for automobile
JP2003139179A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Collision energy absorption member
JP2003312535A (en) * 2002-04-24 2003-11-06 Jfe Steel Kk Impact energy absorbing member
JP2004028315A (en) * 2002-06-28 2004-01-29 Honda Motor Co Ltd Shock absorber
JP2009002368A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Energy absorbing member
JP2009121599A (en) * 2007-11-15 2009-06-04 Jfe Techno Research Corp Impact energy absorber

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781509A (en) * 1993-09-16 1995-03-28 Kozuka Techno Kk Spacer block provided with shock absorbing function and hanger bracket
JPH09277954A (en) * 1996-04-15 1997-10-28 Nippon Steel Corp Tapered impact absorbing member
JP2002284032A (en) * 2001-03-27 2002-10-03 Kawasaki Steel Corp Multiple face structural member for automobile
JP2003139179A (en) * 2001-10-31 2003-05-14 Kawasaki Steel Corp Collision energy absorption member
JP2003312535A (en) * 2002-04-24 2003-11-06 Jfe Steel Kk Impact energy absorbing member
JP2004028315A (en) * 2002-06-28 2004-01-29 Honda Motor Co Ltd Shock absorber
JP2009002368A (en) * 2007-06-19 2009-01-08 Mazda Motor Corp Energy absorbing member
JP2009121599A (en) * 2007-11-15 2009-06-04 Jfe Techno Research Corp Impact energy absorber

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012153792A1 (en) * 2011-05-10 2012-11-15 株式会社深井製作所 Energy absorption member
CN110696761A (en) * 2019-11-07 2020-01-17 五邑大学 Method and structure for realizing paper folding dual energy absorption structure
CN111120552A (en) * 2020-01-10 2020-05-08 汕头大学 Columnar rebounding mechanism with gap structure
CN111473076A (en) * 2020-01-10 2020-07-31 汕头大学 Damping device based on cylindrical periodic structure
CN111186403A (en) * 2020-01-16 2020-05-22 大连理工大学 Collision energy-absorbing box based on end creases
CN111186403B (en) * 2020-01-16 2022-11-18 大连理工大学 Collision energy-absorbing box based on end creases

Also Published As

Publication number Publication date
JP5439957B2 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP4723942B2 (en) Vehicle shock absorber and vehicle shock absorption structure
JP5439957B2 (en) Shock absorbing structure for vehicle
JP5561691B2 (en) Shock absorbing member
JP5130878B2 (en) Shock absorbing structure
WO2016093073A1 (en) Vehicle-body front structure
JP5179390B2 (en) Energy absorbing member
JP5615869B2 (en) Car body rear structure
JP4983867B2 (en) Vehicle frame structure and vehicle frame manufacturing method
JP5803819B2 (en) Vehicle front structure
JP4983864B2 (en) Vehicle frame structure
JP6039600B2 (en) Shock absorption structure
JP2009045948A (en) Bumper mounting structure
JP5861288B2 (en) Front body structure of the vehicle
JP4983865B2 (en) Vehicle frame structure
JP2013087880A (en) Shock absorption member
JP2009190623A (en) Automobile bumper
JP2003072587A (en) Hollow member for car body frame
JP5761051B2 (en) Vehicle shock absorbing member and vehicle end structure
JP2013087879A (en) Shock absorption member
JP5743672B2 (en) Body structure
JP5632142B2 (en) Crash box
KR20110131827A (en) Stiffener unit for automotive bumper
JP4983866B2 (en) Vehicle frame structure
JP2003220975A (en) Vehicle body frame structure
JP2006193078A (en) Vehicle front structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Ref document number: 5439957

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees