JP2010280039A - Polishing device - Google Patents

Polishing device Download PDF

Info

Publication number
JP2010280039A
JP2010280039A JP2009135772A JP2009135772A JP2010280039A JP 2010280039 A JP2010280039 A JP 2010280039A JP 2009135772 A JP2009135772 A JP 2009135772A JP 2009135772 A JP2009135772 A JP 2009135772A JP 2010280039 A JP2010280039 A JP 2010280039A
Authority
JP
Japan
Prior art keywords
tool
polishing
load
cylindrical member
polishing tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009135772A
Other languages
Japanese (ja)
Other versions
JP5350083B2 (en
Inventor
Ikuhiro Zaitsu
育浩 財津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009135772A priority Critical patent/JP5350083B2/en
Publication of JP2010280039A publication Critical patent/JP2010280039A/en
Application granted granted Critical
Publication of JP5350083B2 publication Critical patent/JP5350083B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control with high accuracy a polishing load for pressing a rotating polishing tool to work. <P>SOLUTION: In the polishing device in which the polishing tool 1 is abutted on the workpiece to perform polishing working, a second member 4 for generating magnetic suction force in a radial direction is suitable for a first member 3 mounted to a tool shaft 2 of the polishing tool 1 and the second member 4 is rotated to rotate/drive the polishing tool 1. By moving the second member 4 in a thrust direction by a motor 12, the polishing load for pressing the polishing tool 1 to the workpiece is given. The polishing load is not influenced by the rotational number and rotation torque of the polishing tool 1. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、回転する研磨工具によって被加工物を研磨加工する研磨装置に関するものである。   The present invention relates to a polishing apparatus for polishing a workpiece with a rotating polishing tool.

一般に、研磨加工において、除去量は、工具を被加工面に押し付ける荷重、工具の回転数、加工時間に比例することがプレストンの経験則として知られている。除去量を高精度に制御するためには、工具を被加工面に押し付ける研磨荷重と工具の回転数を高精度に制御しなくてはならない。   In general, in the polishing process, it is known as Preston's rule of thumb that the removal amount is proportional to the load pressing the tool against the surface to be processed, the number of rotations of the tool, and the processing time. In order to control the removal amount with high accuracy, the polishing load for pressing the tool against the surface to be processed and the rotation speed of the tool must be controlled with high accuracy.

従来の研磨装置は、工具に荷重を加える加圧機構と、工具を回転させる回転駆動機構を工具軸の別の位置に設けていた(特許文献1参照)。図3は一従来例による研磨ヘッドを示すもので、工具101は、軸102の一端に固着され、軸102の外周には、回転体105が固着されている。回転体105は、空気静圧軸受108a、108bによって非接触で回転自在に支持されている。また、軸102は、軸102に固着されたロータ106aとステータ106bからなるモータ106により非接触にて回転駆動される。さらに、シリンダ室104の空気圧を制御することにより回転体105を移動させ、工具101を被加工面に押し付ける荷重(研磨荷重)を発生させる。このような構成を用いれば、工具を被加工面に押し付ける荷重と工具の回転数を制御することが可能である。   In the conventional polishing apparatus, a pressurizing mechanism for applying a load to the tool and a rotational drive mechanism for rotating the tool are provided at different positions on the tool shaft (see Patent Document 1). FIG. 3 shows a polishing head according to a conventional example. A tool 101 is fixed to one end of a shaft 102, and a rotating body 105 is fixed to the outer periphery of the shaft 102. The rotating body 105 is rotatably supported in a non-contact manner by the aerostatic bearings 108a and 108b. The shaft 102 is rotationally driven in a non-contact manner by a motor 106 composed of a rotor 106a fixed to the shaft 102 and a stator 106b. Further, by controlling the air pressure in the cylinder chamber 104, the rotating body 105 is moved to generate a load (polishing load) that presses the tool 101 against the surface to be processed. If such a structure is used, it is possible to control the load which presses a tool on a to-be-processed surface, and the rotation speed of a tool.

特開昭63−232929号公報JP-A-63-232929

しかしながら、従来の研磨ヘッドでは、軸102の軸方向の移動により、ロータ106aとステータ106bとの間において磁気吸引力が変化する。さらに、工具101の回転数や回転トルクを変化させると、ロータ106aとステータ106bの間の磁気吸引力が変化する。そのため、工具101を被加工面に押し付ける荷重を高精度に制御することが困難であるという課題があった。   However, in the conventional polishing head, the magnetic attraction force changes between the rotor 106a and the stator 106b due to the axial movement of the shaft 102. Further, when the rotational speed or rotational torque of the tool 101 is changed, the magnetic attractive force between the rotor 106a and the stator 106b changes. For this reason, there is a problem that it is difficult to control the load pressing the tool 101 against the surface to be processed with high accuracy.

本発明は、研磨加工中の研磨荷重を高精度で制御することのできる研磨装置を提供することを目的とするものである。   An object of the present invention is to provide a polishing apparatus capable of controlling a polishing load during polishing with high accuracy.

本発明の研磨装置は、被加工物に当接されて回転する研磨工具と、前記研磨工具の工具軸部に配置された第1の筒状部材と、前記第1の筒状部材に嵌合する第2の筒状部材と、前記第2の筒状部材と前記第1の筒状部材との間にラジアル方向の磁気吸引力を発生する手段と、前記第2の筒状部材を前記工具軸部のスラスト方向に駆動するスラスト駆動手段と、前記第2の筒状部材を回転駆動することで前記研磨工具を回転させる回転駆動手段と、を有し、前記スラスト駆動手段によって、前記研磨工具を被加工物に当接するための研磨荷重を制御することを特徴とする。   The polishing apparatus according to the present invention is fitted to the polishing tool that rotates in contact with the workpiece, the first cylindrical member disposed on the tool shaft of the polishing tool, and the first cylindrical member. A second cylindrical member that performs, a means for generating a magnetic attractive force in a radial direction between the second cylindrical member and the first cylindrical member, and the second cylindrical member as the tool. A thrust driving means for driving in a thrust direction of the shaft portion; and a rotation driving means for rotating the polishing tool by rotationally driving the second cylindrical member, and the polishing tool is used by the thrust driving means. The polishing load for contacting the workpiece with the workpiece is controlled.

上記構成によれば、研磨工具のスラスト方向の位置が変化しても、あるいは研磨工具の回転数や回転トルクを変化させても、研磨工具を被加工面に押し付ける研磨荷重を一定に保つことができる。また、研磨加工中の研磨荷重を任意に制御可能であるため、加工精度を大幅に向上できる。   According to the above configuration, even if the position of the polishing tool in the thrust direction changes, or even if the rotation speed or rotation torque of the polishing tool is changed, the polishing load that presses the polishing tool against the work surface can be kept constant. it can. Further, since the polishing load during the polishing process can be arbitrarily controlled, the processing accuracy can be greatly improved.

実施例1による研磨装置を示すもので、(a)はその主要部を示す模式部分断面図、(b)は第1部材と第2部材の間に磁気吸引力を発生する手段を示す部分拡大平面図である。1 shows a polishing apparatus according to a first embodiment, where (a) is a schematic partial cross-sectional view showing a main part thereof, and (b) is a partially enlarged view showing means for generating a magnetic attractive force between a first member and a second member. It is a top view. 実施例2及びその変形例による研磨装置をそれぞれ断面で示す図である。It is a figure which shows the grinding | polishing apparatus by Example 2 and its modification in a cross section, respectively. 一従来例による研磨装置の主要部を示す模式断面図である。It is a schematic cross section which shows the principal part of the grinding | polishing apparatus by one prior art example.

図1(a)に示すように、研磨装置の主要部である研磨ヘッドは、研磨工具である工具1と、工具軸部を構成する工具軸2と、第1の筒状部材である第1部材3と、で構成される。工具1は、工具軸2の一端に固着され、工具軸2には第1部材3が工具軸2と同軸に配置され固着されている。第1部材3に嵌合する第2の筒状部材である第2部材4は、回転体5に固着されており、第2部材4と回転体5は、一個体として運動する。第1部材3と第2部材4とは同軸に配置され、両者の間には、互いにラジアル方向の磁気吸引力が働いている。回転体5は、上部外周面が歯車となっており、回転駆動手段であるモータ6の回転トルクをモータ歯車7を介して伝達され、回転運動を行う。   As shown in FIG. 1A, the polishing head, which is a main part of the polishing apparatus, includes a tool 1 that is a polishing tool, a tool shaft 2 that constitutes a tool shaft portion, and a first cylindrical member. And the member 3. The tool 1 is fixed to one end of a tool shaft 2, and a first member 3 is arranged coaxially with the tool shaft 2 and fixed to the tool shaft 2. The second member 4, which is a second cylindrical member fitted to the first member 3, is fixed to the rotating body 5, and the second member 4 and the rotating body 5 move as a single body. The first member 3 and the second member 4 are arranged coaxially, and a magnetic attraction force in the radial direction acts between them. The rotating body 5 has a gear on its upper outer peripheral surface, and the rotational torque of the motor 6 serving as a rotational drive means is transmitted via the motor gear 7 to perform rotational motion.

第2部材4は、モータ6によって回転駆動され、工具軸2を回転させる。工具軸2は、静圧空気軸受8a、8bによってラジアル方向に支持されており、回転と上下方向の移動は自在に行うことができる。回転体5は、ベアリング9a、9bによって回転自在に支持されている。ベアリング9a、9b、モータ歯車7、モータ6、ナット10は、一体として構成されており、図示しないリニアガイドによって上下方向に自在に運動可能となっている。ナット10は、送りねじ11によって上下方向に移動し、第2部材4は、回転体5、ナット10、送りねじ11を介して、スラスト駆動手段であるモータ12によりスラスト方向である上下方向に移動する。静圧空気軸受8a、8b、リニアガイド、モータ12は、筐体13に固着されており、筐体13は図示しない手段により並進方向の位置決めと、姿勢を変化させることが可能である。   The second member 4 is rotationally driven by the motor 6 and rotates the tool shaft 2. The tool shaft 2 is supported in the radial direction by the static pressure air bearings 8a and 8b, and can be freely rotated and moved in the vertical direction. The rotating body 5 is rotatably supported by bearings 9a and 9b. The bearings 9a and 9b, the motor gear 7, the motor 6, and the nut 10 are integrally formed, and can be freely moved in the vertical direction by a linear guide (not shown). The nut 10 is moved in the vertical direction by the feed screw 11, and the second member 4 is moved in the vertical direction, which is the thrust direction, by the motor 12 as thrust driving means via the rotating body 5, the nut 10 and the feed screw 11. To do. The hydrostatic air bearings 8a and 8b, the linear guide, and the motor 12 are fixed to the housing 13, and the housing 13 can be positioned in the translational direction and the posture can be changed by means not shown.

図1(b)は、第1部材3と第2部材4の間に磁気吸引力を発生する手段を示すもので、第1部材3と一体である内輪30の外周面に12個の第1の磁石31を配置し、第2部材4と一体である外輪40の内周面に12個の第2の磁石41を配置している。周方向に配列された磁石31、41は、ラジアル方向に対向している磁石対が逆磁極になるように配置され、ラジアル方向の磁気吸引力が働いている。内輪30が外輪40の中心にあればスラスト方向の力の大きさは0であるが、内輪30がスラスト方向に並進移動すると、内輪30を中心側へ引き戻すようにスラスト方向の力が働く。   FIG. 1 (b) shows a means for generating a magnetic attractive force between the first member 3 and the second member 4, and twelve firsts are provided on the outer peripheral surface of the inner ring 30 that is integral with the first member 3. The magnets 31 are arranged, and twelve second magnets 41 are arranged on the inner peripheral surface of the outer ring 40 that is integral with the second member 4. The magnets 31 and 41 arranged in the circumferential direction are arranged such that a pair of magnets facing each other in the radial direction become opposite magnetic poles, and a magnetic attractive force in the radial direction works. If the inner ring 30 is at the center of the outer ring 40, the magnitude of the force in the thrust direction is zero. However, when the inner ring 30 translates in the thrust direction, a force in the thrust direction acts to pull the inner ring 30 back toward the center.

本実施例の研磨装置の動作を以下に説明する。図示しない手段により筐体13の位置と姿勢を変化させ、工具1が被加工物の被加工面に近接するよう筐体13の位置と姿勢を定める。このとき、第1部材3と第2部材4の間には磁気吸引力が働いており、工具1と工具軸2と第1部材3で構成される工具軸部は、上記のスラスト方向に働く力と工具軸部に作用する重力がつりあう位置にとどまっている。ここで、モータ12の駆動により第2部材4を下降させると、工具軸部が下降し、工具1が被加工面に当接し、さらに第2部材4を下降させると、上記のように第1部材3に作用するスラスト方向の力により、工具1が被加工面に押し付けられる。モータ12によって第1部材3と第2部材4の相対位置を変化させることで、工具1が被加工面に押し付けられる荷重(研磨荷重)を制御することができる。工具1を所望の研磨荷重で被加工面に押し付けた状態で第1部材3と第2部材4の相対位置を維持したままでモータ6により工具1を回転させることで、研磨加工を行う。   The operation of the polishing apparatus of this embodiment will be described below. The position and orientation of the housing 13 are changed by means not shown, and the position and orientation of the housing 13 are determined so that the tool 1 comes close to the work surface of the work piece. At this time, a magnetic attractive force acts between the first member 3 and the second member 4, and the tool shaft portion constituted by the tool 1, the tool shaft 2, and the first member 3 works in the thrust direction. It remains in a position where the force and gravity acting on the tool shaft are balanced. Here, when the second member 4 is lowered by driving the motor 12, the tool shaft portion is lowered, the tool 1 comes into contact with the surface to be machined, and when the second member 4 is further lowered, the first member as described above. The tool 1 is pressed against the work surface by the thrust force acting on the member 3. By changing the relative position of the first member 3 and the second member 4 by the motor 12, the load (polishing load) on which the tool 1 is pressed against the surface to be processed can be controlled. Polishing is performed by rotating the tool 1 with the motor 6 while maintaining the relative positions of the first member 3 and the second member 4 in a state where the tool 1 is pressed against the processing surface with a desired polishing load.

研磨加工中に、工具1の位置が上下方向に変化したり、工具1の回転数や回転トルクを変化させる場合においても、工具1を被加工面に押し付ける研磨荷重を一定に保つことができ、任意に制御することも可能である。このように、工具位置や工具の回転数、回転トルクに係わりなく、工具1を被加工面に押し付ける研磨荷重を高精度に制御することで、より高精度な研磨加工が可能となる。   During the polishing process, even when the position of the tool 1 changes in the vertical direction or when the rotational speed or rotational torque of the tool 1 is changed, the polishing load that presses the tool 1 against the work surface can be kept constant. Arbitrary control is also possible. As described above, by controlling the polishing load that presses the tool 1 against the surface to be processed with high accuracy regardless of the tool position, the number of rotations of the tool, and the rotational torque, higher-precision polishing can be performed.

本実施例は、図2(a)に示すように、第1部材3と第2部材4の相対変位を検出するための第1変位検出手段14及び第2変位検出手段15を付加した点のみが実施例1と異なる。   In this embodiment, as shown in FIG. 2A, only the first displacement detection means 14 and the second displacement detection means 15 for detecting the relative displacement between the first member 3 and the second member 4 are added. Is different from the first embodiment.

第1変位検出手段14は、回転体5の上面の上下方向の変位を非接触にて検出する。第2変位検出手段15は、工具軸2の上端面の上下方向の変位を非接触にて検出する。第2部材4の変位は、回転体5の変位と等しく、第1部材3の変位は、工具軸2の変位に等しいので、第1変位検出手段14と第2変位検出手段15で検出した変位の差をとることにより、第1部材3と第2部材4の相対位置の変化を検知可能である。検知した第1部材3と第2部材4の相対位置を一定にするようにモータ12を駆動することで、より高精度に工具1の被加工面に対する押し付け荷重である研磨荷重を一定に保つことが可能となる。また、第1部材3と第2部材4の相対位置と研磨荷重の関係を明らかにしておけば、モータ12によって研磨荷重を任意に制御することができる。これによって、研磨量を必要に応じて変化させることが可能となる。   The first displacement detector 14 detects the displacement in the vertical direction of the upper surface of the rotating body 5 in a non-contact manner. The second displacement detection means 15 detects the vertical displacement of the upper end surface of the tool shaft 2 in a non-contact manner. Since the displacement of the second member 4 is equal to the displacement of the rotating body 5 and the displacement of the first member 3 is equal to the displacement of the tool shaft 2, the displacement detected by the first displacement detection means 14 and the second displacement detection means 15. By taking the difference, it is possible to detect a change in the relative position of the first member 3 and the second member 4. By driving the motor 12 so that the detected relative position between the first member 3 and the second member 4 is constant, the polishing load, which is the pressing load against the work surface of the tool 1, can be kept constant with higher accuracy. Is possible. If the relationship between the relative position of the first member 3 and the second member 4 and the polishing load is clarified, the polishing load can be arbitrarily controlled by the motor 12. As a result, the polishing amount can be changed as necessary.

図2(b)は、本実施例の一変形例を示すもので、変位検出手段14、15の代わりに、工具軸2との距離を検出するために取付ステー16に取り付けられた距離検出手段17を設ける。取付ステー16は、ナット10の上下動にともなって上下に移動するので、第2部材4の上下動と同じ距離だけ上下に変位する。距離検出手段17により、第1部材3と第2部材4の相対位置の変化を検知することで、工具1が被加工面を押し付ける研磨荷重を一定に保持することや任意に制御することが可能となる。   FIG. 2B shows a modification of the present embodiment. Instead of the displacement detection means 14 and 15, distance detection means attached to the attachment stay 16 for detecting the distance to the tool shaft 2. 17 is provided. Since the mounting stay 16 moves up and down as the nut 10 moves up and down, it moves up and down by the same distance as the up and down movement of the second member 4. By detecting a change in the relative position of the first member 3 and the second member 4 by the distance detection means 17, the polishing load that the tool 1 presses the work surface can be held constant or arbitrarily controlled. It becomes.

1 工具
2 工具軸
3 第1部材
4 第2部材
5 回転体
6、12 モータ
7 モータ歯車
13 筐体
14、15 変位検出手段
17 距離検出手段
DESCRIPTION OF SYMBOLS 1 Tool 2 Tool axis | shaft 3 1st member 4 2nd member 5 Rotating body 6, 12 Motor 7 Motor gear wheel 13 Case 14, 15 Displacement detection means 17 Distance detection means

Claims (2)

被加工物に当接されて回転する研磨工具と、
前記研磨工具の工具軸部に配置された第1の筒状部材と、
前記第1の筒状部材に嵌合する第2の筒状部材と、
前記第2の筒状部材と前記第1の筒状部材との間にラジアル方向の磁気吸引力を発生する手段と、
前記第2の筒状部材を前記工具軸部のスラスト方向に駆動するスラスト駆動手段と、
前記第2の筒状部材を回転駆動することで前記研磨工具を回転させる回転駆動手段と、を有し、
前記スラスト駆動手段によって、前記研磨工具を被加工物に当接するための研磨荷重を制御することを特徴とする研磨装置。
A polishing tool rotating in contact with the workpiece;
A first tubular member disposed on the tool shaft of the polishing tool;
A second tubular member that fits into the first tubular member;
Means for generating a radial magnetic attractive force between the second cylindrical member and the first cylindrical member;
Thrust driving means for driving the second cylindrical member in a thrust direction of the tool shaft portion;
Rotation driving means for rotating the polishing tool by rotating the second cylindrical member,
A polishing apparatus for controlling a polishing load for bringing the polishing tool into contact with a workpiece by the thrust driving means.
前記第1の筒状部材は、前記工具軸部の周方向に配置された第1の磁石を備え、
前記第2の筒状部材は、前記第1の磁石に対向して逆磁極になるように配置された第2の磁石を備えたことを特徴とする請求項1に記載の研磨装置。
The first cylindrical member includes a first magnet disposed in a circumferential direction of the tool shaft portion,
The polishing apparatus according to claim 1, wherein the second cylindrical member includes a second magnet disposed so as to be a reverse magnetic pole facing the first magnet.
JP2009135772A 2009-06-05 2009-06-05 Polishing equipment Expired - Fee Related JP5350083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009135772A JP5350083B2 (en) 2009-06-05 2009-06-05 Polishing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009135772A JP5350083B2 (en) 2009-06-05 2009-06-05 Polishing equipment

Publications (2)

Publication Number Publication Date
JP2010280039A true JP2010280039A (en) 2010-12-16
JP5350083B2 JP5350083B2 (en) 2013-11-27

Family

ID=43537260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009135772A Expired - Fee Related JP5350083B2 (en) 2009-06-05 2009-06-05 Polishing equipment

Country Status (1)

Country Link
JP (1) JP5350083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107584412A (en) * 2017-09-18 2018-01-16 安易斯密封(宁波)有限公司 A kind of grinding and polishing device of the frivolous part of large scale

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232948A (en) * 1987-03-19 1988-09-28 Canon Inc Pressure turning gear
JPH0256555U (en) * 1988-10-14 1990-04-24
JPH02212622A (en) * 1989-02-10 1990-08-23 Koyo Seiko Co Ltd Magnetic bearing spindle unit
JPH0655309A (en) * 1992-08-04 1994-03-01 Seiko Seiki Co Ltd Spindle supporting device
JP2000167739A (en) * 1998-12-07 2000-06-20 Mori Seiki Co Ltd Machine tool
JP2002052466A (en) * 2000-08-16 2002-02-19 Nakanishi:Kk Tool driving device
JP2007054921A (en) * 2005-08-25 2007-03-08 Ebara Corp Polishing device
JP2008023683A (en) * 2006-07-25 2008-02-07 Jtekt Corp Machine tool

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232948A (en) * 1987-03-19 1988-09-28 Canon Inc Pressure turning gear
JPH0256555U (en) * 1988-10-14 1990-04-24
JPH02212622A (en) * 1989-02-10 1990-08-23 Koyo Seiko Co Ltd Magnetic bearing spindle unit
JPH0655309A (en) * 1992-08-04 1994-03-01 Seiko Seiki Co Ltd Spindle supporting device
JP2000167739A (en) * 1998-12-07 2000-06-20 Mori Seiki Co Ltd Machine tool
JP2002052466A (en) * 2000-08-16 2002-02-19 Nakanishi:Kk Tool driving device
JP2007054921A (en) * 2005-08-25 2007-03-08 Ebara Corp Polishing device
JP2008023683A (en) * 2006-07-25 2008-02-07 Jtekt Corp Machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107584412A (en) * 2017-09-18 2018-01-16 安易斯密封(宁波)有限公司 A kind of grinding and polishing device of the frivolous part of large scale

Also Published As

Publication number Publication date
JP5350083B2 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
KR102352534B1 (en) processing equipment
TW201509077A (en) Motor driven linear actuator and electric motor thereof
JP2008155337A (en) Indexing device
US20080246358A1 (en) Magnetic bearing spindle device for machine tool
SE511542C2 (en) Externally abrading machine
KR940008813A (en) Before and after rotation
JP5350083B2 (en) Polishing equipment
KR20010015524A (en) Double face abrading machine
EP2929971B1 (en) Electric discharge machine with rotary table
JP5877566B2 (en) Drilling and chamfering head
EP1155780A2 (en) Grinding machine with direct drive rotary wheelhead
JP3815415B2 (en) 2-DOF actuator
JP2008023683A (en) Machine tool
CN201907046U (en) High-precision and high-speed grinding and machining mechanism for longhole inner annular groove
KR100649546B1 (en) Built in motor linear motion device
JP2002354778A (en) Rotary table apparatus driven by linear motor
JP2006218597A (en) Polishing device
JP2006026864A (en) Fine working device
JP4322494B2 (en) Magnetic bearing device
CN209027461U (en) Straight-line displacement mechanism and image instrument with straight-line displacement mechanism
JP2013126699A (en) Grinding method
JP4923813B2 (en) Machine Tools
JP2008023684A (en) Machine tool
US20220056951A1 (en) High-speed, low runout spindle assembly
JP2003028260A (en) Bearing device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130228

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

LAPS Cancellation because of no payment of annual fees