JP2010278243A - Semiconductor protection device - Google Patents

Semiconductor protection device Download PDF

Info

Publication number
JP2010278243A
JP2010278243A JP2009129361A JP2009129361A JP2010278243A JP 2010278243 A JP2010278243 A JP 2010278243A JP 2009129361 A JP2009129361 A JP 2009129361A JP 2009129361 A JP2009129361 A JP 2009129361A JP 2010278243 A JP2010278243 A JP 2010278243A
Authority
JP
Japan
Prior art keywords
impurity region
type impurity
conductivity type
resistance
protection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009129361A
Other languages
Japanese (ja)
Inventor
Mikito Sakakibara
幹人 榊原
Shigehiro Nakamura
滋宏 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2009129361A priority Critical patent/JP2010278243A/en
Publication of JP2010278243A publication Critical patent/JP2010278243A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve such a problem that there is a need for increasing the width W of resistance R and reducing a capacity of pn-junction at the lower part of a pad in the case of maintaining EMI filter characteristics of a semiconductor protection device to separate the pad in the semiconductor protection device with the resistance and a diode formed in the same n-type impurity region, but ESD resistance is deteriorated by reduction in the capacity of pn-junction at the lower part of the pad in this case. <P>SOLUTION: An n-type impurity region which becomes the resistance of a semiconductor protection device is separated from the n-type impurity region which becomes a diode, and the area of the n-type impurity region which becomes the resistance is made to be the minimum area that is required for EMI filter characteristics. Thereby, the total area of the n-type impurity region which becomes the diode can be secured to the maximum. Thereby, the pads can be separated from each other while improving the ESD resistance more than that of a conventional one. Moreover, an area of both ends of the n-type impurity region which becomes the resistance of the semiconductor protection device is increased more than the width of the resistance. The other n-type impurity region having an area equivalent to that of both ends of the n-type impurity region which is separated therefrom to be the resistance is provided to form the diode, so that improvement can be made in the ESD resistance. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、静電気放電から電子機器を保護する保護回路とEMI(electro magnetic interference)フィルタとを兼ね備えた半導体保護装置に関する。   The present invention relates to a semiconductor protection device having both a protection circuit for protecting an electronic device from electrostatic discharge and an EMI (electro magnetic interference) filter.

フラッシュメモリを内蔵したメモリカードが例えば携帯電話などに搭載された場合、メモリカードのスロットから集積回路素子へ繋がる信号ラインで発生する電波が携帯電話の通信周波数の電波に影響を与え、通信品質を劣化させてしまう。同時にメモリカードをスロットにセットする場合、人的接触による静電気放電によって集積回路素子を破壊する可能性がある。   When a memory card with built-in flash memory is installed in a mobile phone, for example, the radio waves generated in the signal line from the memory card slot to the integrated circuit element affect the radio frequency of the mobile phone communication frequency. It will deteriorate. When the memory card is set in the slot at the same time, there is a possibility that the integrated circuit element is destroyed by electrostatic discharge due to human contact.

そこで信号ラインから発生する電波の漏洩を防止し、通信周波数の電波への妨害を改善するためのEMIフィルタと電子機器を静電気放電から保護するため保護回路を兼ね備えた半導体保護装置が用いられている。   Therefore, a semiconductor protection device having a protection circuit for preventing the leakage of radio waves generated from the signal line and improving the interference with the radio waves at the communication frequency and the electronic equipment from electrostatic discharge is used. .

図4は、従来の半導体保護装置510の一例を示す図であり、図4(A)が回路図であり、図4(B)が断面図である。図4(A)に示す半導体保護装置510は2つのダイオードD51、D52の低電圧側を接続し、2つのダイオードD51、D52の高電圧側の一端の間に抵抗Rが直列接続したものである。半導体保護装置510の入力端子Vi’は入力信号端子に接続し、出力端子Vo’は集積回路素子(不図示)に接続する。   4A and 4B are diagrams showing an example of a conventional semiconductor protection device 510, where FIG. 4A is a circuit diagram and FIG. 4B is a cross-sectional view. The semiconductor protection device 510 shown in FIG. 4A is obtained by connecting the low voltage side of two diodes D51 and D52, and connecting a resistor R in series between one end of the two diodes D51 and D52 on the high voltage side. . The input terminal Vi ′ of the semiconductor protection device 510 is connected to an input signal terminal, and the output terminal Vo ′ is connected to an integrated circuit element (not shown).

この回路は、2つのダイオードD51、D52のpn接合容量を利用してこれらをはしご型に接続し、その間に抵抗Rを接続した低域通過フィルタ(Low-Pass Filter:LPF)であり、これを入力信号端子と集積回路素子間に接続することによって、信号ラインから発生する不要な電波はLPFによって遮断されるため、周辺システムに与える影響を極めて小さくできる。同時に2つのダイオードD51、D52は静電気放電を高電圧側から低電圧側に逃がすことができるため、入力信号端子から印加された静電気放電から集積回路素子を保護できる。   This circuit is a low-pass filter (LPF) in which a pn junction capacitance of two diodes D51 and D52 is connected to a ladder and a resistor R is connected between them. By connecting between the input signal terminal and the integrated circuit element, unnecessary radio waves generated from the signal line are blocked by the LPF, so that the influence on the peripheral system can be extremely reduced. At the same time, since the two diodes D51 and D52 can release electrostatic discharge from the high voltage side to the low voltage side, the integrated circuit element can be protected from the electrostatic discharge applied from the input signal terminal.

図4(B)は図4(A)の半導体保護装置510の構造の一例を示す断面図である。   4B is a cross-sectional view illustrating an example of the structure of the semiconductor protective device 510 in FIG.

半導体保護装置510は、p型半導体基板507の表面に、互いに離間したn型層505、506を設け、p型半導体基板507に絶縁層504を設ける。n型層505、506間のp型半導体基板上には、絶縁層504を介してポリシリコン503による抵抗Rが設けられる。絶縁層504上に一端がn型層505、506とそれぞれコンタクトするアルミ配線501、502が設けられる。アルミ配線501、502の他端は、それぞれ抵抗Rの両端と接続する。n型層505、506上のアルミ配線は、ボンディングワイヤが固着するパッド部となる。アルミ配線501、502とコンタクトするn型層505、506がp型半導体基板507とpn接合ダイオードD51、D52を形成し、これらのpn接合容量と、ポリシリコン503の抵抗Rによって、半導体保護装置510が形成される。   In the semiconductor protection device 510, n-type layers 505 and 506 spaced apart from each other are provided on the surface of a p-type semiconductor substrate 507, and an insulating layer 504 is provided on the p-type semiconductor substrate 507. On the p-type semiconductor substrate between the n-type layers 505 and 506, a resistor R made of polysilicon 503 is provided via an insulating layer 504. Aluminum wirings 501 and 502 having one ends contacting n-type layers 505 and 506 are provided on insulating layer 504. The other ends of the aluminum wirings 501 and 502 are connected to both ends of the resistor R, respectively. The aluminum wiring on the n-type layers 505 and 506 becomes a pad portion to which the bonding wire is fixed. The n-type layers 505 and 506 in contact with the aluminum wirings 501 and 502 form the p-type semiconductor substrate 507 and the pn junction diodes D51 and D52, and the semiconductor protection device 510 is configured by the pn junction capacitance and the resistance R of the polysilicon 503. Is formed.

また、図5は、p型半導体基板507の表面に拡散法やイオン注入法等によりn型層524を形成した半導体保護装置520であり、図5(A)が断面図、図5(B)が平面図、図5(C)が平面図である。図5(A)は図5(B)のc−c線断面である。但し、図5(B)では、半導体基板507上の外部電極521、522や絶縁層504を省略している。   FIG. 5 shows a semiconductor protection device 520 in which an n-type layer 524 is formed on the surface of a p-type semiconductor substrate 507 by a diffusion method, an ion implantation method, or the like. FIG. 5A is a cross-sectional view, and FIG. Is a plan view, and FIG. 5C is a plan view. FIG. 5A is a cross-sectional view taken along the line cc of FIG. However, in FIG. 5B, the external electrodes 521 and 522 and the insulating layer 504 over the semiconductor substrate 507 are omitted.

n型層524の両端には、絶縁層504の開口部を介してボンディングワイヤの固着するパッド部となる外部電極521、522が設けられる。この構成では、n型層524とp型半導体基板507によりダイオードD51、D52が形成され、n型層524が抵抗Rとしても機能するため、図4(A)に示す回路構成と同様の半導体保護装置520が実現する。   At both ends of the n-type layer 524, external electrodes 521 and 522 serving as pad portions to which bonding wires are fixed are provided through openings in the insulating layer 504. In this configuration, diodes D51 and D52 are formed by the n-type layer 524 and the p-type semiconductor substrate 507, and the n-type layer 524 also functions as a resistor R. Therefore, the same semiconductor protection as the circuit configuration shown in FIG. A device 520 is realized.

特許公開2005−167906号公報Japanese Patent Publication No. 2005-167906

図4に示す半導体保護装置510では、抵抗Rをポリシリコン503で形成し、ダイオードD51、D52のn型不純物領域を拡散領域で形成する。これらは別工程となるため、製造工程数が増加する問題がある。   In the semiconductor protection device 510 shown in FIG. 4, the resistor R is formed of polysilicon 503, and the n-type impurity regions of the diodes D51 and D52 are formed of diffusion regions. Since these are separate processes, there is a problem that the number of manufacturing processes increases.

一方図5の如く、抵抗Rを不純物領域(n型層)で形成した半導体保護装置520は、ダイオードD51、D52と抵抗Rを不純物領域で共用でき、製造工程数の増加を回避できる。   On the other hand, as shown in FIG. 5, the semiconductor protection device 520 in which the resistor R is formed in the impurity region (n-type layer) can share the diodes D51 and D52 and the resistor R in the impurity region, thereby avoiding an increase in the number of manufacturing steps.

図5(A)において、抵抗R(n型層524)の両端の上方には外部電極521、522が設けられ、既述の如くボンディングワイヤが固着するパッド部となる。n型層524は両端の面積が、パッド部と重畳するように面積が大きく確保され(図5(B))、ダイオードD51、D52として機能する。   In FIG. 5A, external electrodes 521 and 522 are provided above both ends of the resistor R (n-type layer 524), and serve as a pad portion to which a bonding wire is fixed as described above. The n-type layer 524 has a large area so that the area of both ends overlaps with the pad portion (FIG. 5B), and functions as the diodes D51 and D52.

ところで、この半導体保護装置520を例えばフリップチップ実装する場合においては、パッド部にバンプ電極等を設けて実装基板に実装される。更に、バンプ電極の位置は実装基板の配線によって制限されることがある。例えばパッド部(外部電極521、522)はチップ内で最も離間(例えば500μm程度)して配置されることとなる。   When the semiconductor protection device 520 is flip-chip mounted, for example, a bump electrode or the like is provided on the pad portion and mounted on the mounting substrate. Further, the position of the bump electrode may be limited by the wiring of the mounting substrate. For example, the pad portions (external electrodes 521 and 522) are arranged most distant (for example, about 500 μm) in the chip.

そしてこれに伴い、パッド部に両端が接続するn型層524もその長さLを長さL’に伸長する必要がある(図5(A)(C)参照)。半導体保護装置のEMIフィルタ特性(カットオフ周波数fc)は、抵抗Rの抵抗値と、ダイオードD51、D52のpn接合容量で決定する。つまり、n型層524のパターンは、フィルタ特性に影響を与える。   Accordingly, it is necessary to extend the length L of the n-type layer 524 whose both ends are connected to the pad portion to the length L ′ (see FIGS. 5A and 5C). The EMI filter characteristic (cut-off frequency fc) of the semiconductor protection device is determined by the resistance value of the resistor R and the pn junction capacitances of the diodes D51 and D52. That is, the pattern of the n-type layer 524 affects the filter characteristics.

具体的には、抵抗Rを不純物領域(n型層)で形成した場合、これとp型半導体基板507で形成されるpn接合も半導体保護装置520の容量成分となる。したがって、パッド部を離間する場合に、n型層524のパターンを伸長し、抵抗Rの抵抗値を維持するために抵抗Rの幅Wを幅W’に広げると、pn接合面積の増加によりEMIフィルタ全体の容量が増加する問題がある。そのため、フィルタ特性として要求される抵抗Rの抵抗値と総容量を維持して抵抗Rを伸長するには、抵抗Rの幅を広くし、かつ外部電極521下方のpn接合(ダイオードD51)および外部電極522下方のpn接合(ダイオードD52)の容量成分を減らす必要がある(図5(C)参照)。しかし、外部電極521、522下方のpn接合(ダイオードD51、D52)の容量成分が小さくなったことで静電気放電(electrostatic discharge:ESD)からの耐量が劣化する問題があった。   Specifically, when the resistor R is formed by an impurity region (n-type layer), the pn junction formed by this and the p-type semiconductor substrate 507 is also a capacitance component of the semiconductor protection device 520. Accordingly, when the pad portions are separated from each other, if the pattern of the n-type layer 524 is extended and the width W of the resistor R is increased to the width W ′ in order to maintain the resistance value of the resistor R, an increase in the pn junction area increases the EMI. There is a problem that the capacity of the entire filter increases. Therefore, in order to maintain the resistance value and total capacity of the resistor R required as filter characteristics and extend the resistor R, the width of the resistor R is widened, and the pn junction (diode D51) below the external electrode 521 and the external It is necessary to reduce the capacitance component of the pn junction (diode D52) below the electrode 522 (see FIG. 5C). However, since the capacitance component of the pn junctions (diodes D51 and D52) below the external electrodes 521 and 522 is reduced, there is a problem that the withstand capacity from electrostatic discharge (ESD) deteriorates.

本発明はかかる課題に鑑みてなされ、一導電型半導体基板と、該一導電型半導体基板に設けられた第1逆導電型不純物領域と、該第1逆導電型不純物領域と離間して前記一導電型半導体層に設けられた第2逆導電型不純物領域と、前記第1逆導電型不純物領域および第2逆導電型不純物領域と離間してこれらの間の前記一導電型半導体層に設けられ、第1端部と第2端部、および該第1端部および第2端部を連結する抵抗部とを有する第3逆導電型不純物領域と、前記一導電型半導体層上に設けられた絶縁膜と、該絶縁膜に設けられ、前記第1逆導電型不純物領域の一部が露出する第1開口部と、前記第2逆導電型不純物領域の一部が露出する第2開口部と、前記第1端部の一部および第2端部の一部がそれぞれ露出する第3開口部および第4開口部と、前記第1逆導電型不純物領域および前記第1端部を被覆してこれらとコンタクトする第1金属層と、前記第2逆導電型不純物領域および前記第2端部を被覆してこれらとコンタクトする第2金属層とを具備することにより解決するものである。   The present invention has been made in view of the above problems, and has a one-conductivity-type semiconductor substrate, a first reverse-conductivity-type impurity region provided on the one-conductivity-type semiconductor substrate, and the first reverse-conductivity-type impurity region apart from the one-conductivity-type impurity region. A second reverse conductivity type impurity region provided in the conductive type semiconductor layer, and the first reverse conductivity type impurity region and the first reverse conductivity type impurity region spaced apart from each other and provided in the one conductive type semiconductor layer. A third opposite conductivity type impurity region having a first end portion and a second end portion, and a resistance portion connecting the first end portion and the second end portion, and provided on the one conductivity type semiconductor layer An insulating film; a first opening provided in the insulating film and exposing a part of the first reverse conductivity type impurity region; and a second opening exposing a part of the second reverse conductivity type impurity region; , A third opening and a second opening in which a part of the first end and a part of the second end are respectively exposed. An opening, a first metal layer covering and contacting the first reverse conductivity type impurity region and the first end, and covering the second reverse conductivity type impurity region and the second end. This is solved by providing a second metal layer in contact with these.

本発明の実施形態に依れば以下の数々の効果が得られる。   According to the embodiment of the present invention, the following numerous effects can be obtained.

第1に、EMIフィルタ特性と静電破壊耐量(ESD耐量)を従来どおり維持できる。n型不純物領域により抵抗体を形成する構造において、金属層とコンタクトしない抵抗体の面積(長さ×幅)はESD保護に殆ど寄与せず、金属層とコンタクトするn型不純物領域の総面積がESD耐量の向上に寄与する。   First, EMI filter characteristics and electrostatic breakdown resistance (ESD resistance) can be maintained as before. In the structure in which the resistor is formed by the n-type impurity region, the area (length × width) of the resistor that is not in contact with the metal layer hardly contributes to ESD protection, and the total area of the n-type impurity region in contact with the metal layer is Contributes to the improvement of ESD tolerance.

そこで、半導体保護装置の抵抗となるn型不純物領域とダイオードとなるn型不純物領域を離間することにより、抵抗となるn型不純物領域の面積をEMIフィルタ特性において必要な最小限の面積とすることができ、ダイオードとなるn型不純物領域の総面積を最大限に確保できるので、ESD耐量を従来どおり維持しつつパッド部間を離間できる。さらにn型不純物領域の面積を最適化することで、ESD耐量向上が実現できる。具田的には抵抗となるn型不純物領域両端とダイオードとなるn型不純物領域の面積を同等にすることで、局所的にESD耐量に弱い部分を排除できるので、ESD耐量向上が実現できる。   Therefore, by separating the n-type impurity region serving as the resistance of the semiconductor protection device from the n-type impurity region serving as the diode, the area of the n-type impurity region serving as the resistor is set to the minimum area necessary for the EMI filter characteristics. Since the total area of the n-type impurity region serving as a diode can be ensured to the maximum, the pad portions can be separated while maintaining the ESD resistance as before. Furthermore, the ESD tolerance can be improved by optimizing the area of the n-type impurity region. Specifically, by making the areas of both ends of the n-type impurity region serving as a resistance equal to the area of the n-type impurity region serving as a diode, a portion that is weak in the ESD tolerance can be eliminated locally, so that the ESD tolerance can be improved.

このように抵抗のパターンを変えずに(すなわち従来のフィルタ特性を維持して)パッド部を所望の位置に配置できるので、例えばフリップチップ実装などにおいて、パッド部をチップ端部に設ける場合であっても、ESD耐量の劣化を防止できる。   As described above, the pad portion can be arranged at a desired position without changing the resistance pattern (that is, maintaining the conventional filter characteristics). For example, in flip chip mounting, the pad portion is provided at the chip end portion. However, it is possible to prevent deterioration of the ESD tolerance.

第2に、抵抗はダイオードのn型不純物領域と同一工程にて形成できるので、抵抗をポリシリコンで形成する場合と比較して製造工程数の増加を抑制できる。   Second, since the resistor can be formed in the same process as the n-type impurity region of the diode, an increase in the number of manufacturing steps can be suppressed as compared with the case where the resistor is formed of polysilicon.

本発明の実施形態を説明するための(A)平面図、(B)平面図、(C)断面図である。It is (A) top view, (B) top view, and (C) sectional view for explaining an embodiment of the present invention. 本発明の実施形態を説明するための回路図である。It is a circuit diagram for demonstrating embodiment of this invention. 本発明の実施形態を説明するための(A)平面図、(B)平面図、(C)断面図である。It is (A) top view, (B) top view, and (C) sectional view for explaining an embodiment of the present invention. 従来構造を説明するための(A)回路図、(B)断面図である。It is (A) circuit diagram and (B) sectional drawing for demonstrating a conventional structure. 従来構造を説明するための(A)断面図、(B)平面図、(C)平面図である。It is (A) sectional drawing, (B) top view, and (C) top view for demonstrating a conventional structure.

以下に本発明の半導体保護装置について、図1から図3を参照して説明する。図1および図3はそれぞれ本実施形態の半導体保護装置100、150を説明する図である。図2は本実施形態の半導体保護装置100、150の回路図である。   The semiconductor protective device of the present invention will be described below with reference to FIGS. 1 and 3 are diagrams for explaining the semiconductor protection devices 100 and 150 of the present embodiment, respectively. FIG. 2 is a circuit diagram of the semiconductor protection devices 100 and 150 of this embodiment.

半導体保護装置100、150は、静電気放電から電子機器を保護する保護回路と例えば電磁干渉を防止するための低域通過フィルタ(LPF)型のEMI(Electro-magnetic interference)フィルタを兼ね備えた半導体保護装置である。   Semiconductor protection devices 100 and 150 are semiconductor protection devices having a protection circuit that protects electronic equipment from electrostatic discharge and a low-pass filter (LPF) type EMI (Electro-magnetic interference) filter for preventing electromagnetic interference, for example. It is.

本実施形態の半導体保護装置100、150は、一導電型半導体基板と、第1逆導電型不純物領域と、第2逆導電型不純物領域と、第3逆導電型不純物領域と、絶縁膜と、第1金属層と、第2金属層とを有する。   The semiconductor protection devices 100 and 150 of the present embodiment include a one-conductivity type semiconductor substrate, a first reverse-conductivity type impurity region, a second reverse-conductivity type impurity region, a third reverse-conductivity type impurity region, an insulating film, It has a 1st metal layer and a 2nd metal layer.

図1は、本実施形態の第1の実施形態の半導体保護装置100を示す図であり、図1(A)が金属層を省略した平面図であり、図1(B)が金属層のパターンも含めた平面図であり、図1(C)が図1(B)のa−a線断面図である。また、図2は、本実施形態の半導体保護装置の回路図である。   FIG. 1 is a diagram illustrating a semiconductor protection device 100 according to a first embodiment of the present embodiment, FIG. 1A is a plan view in which a metal layer is omitted, and FIG. 1B is a pattern of a metal layer. 1C is a cross-sectional view taken along the line aa of FIG. 1B. FIG. 2 is a circuit diagram of the semiconductor protection device of this embodiment.

p型半導体基板10は、不純物濃度が例えば8E18cm−3程度であり、その表面に第1n型不純物領域11、第2n型不純物領域12、第3n型不純物領域13が設けられる。これらの不純物濃度は、いずれも例えば8E19cm−3程度であり、第3n型不純物領域13の両外側にそれぞれこれと離間して第1n型不純物領域11および第2n型不純物領域12が設けられる。 The p-type semiconductor substrate 10 has an impurity concentration of, for example, about 8E18 cm −3 , and a first n-type impurity region 11, a second n-type impurity region 12, and a third n-type impurity region 13 are provided on the surface thereof. Each of these impurity concentrations is, for example, about 8E19 cm −3 , and the first n-type impurity region 11 and the second n-type impurity region 12 are provided on both outer sides of the third n-type impurity region 13 so as to be spaced apart from each other.

p型半導体基板10上には絶縁膜30が設けられ、絶縁膜30には第1開口部OP1、第2開口部OP2、第3開口部OP3、第4開口部OP4が設けられる(図1(C))。   An insulating film 30 is provided on the p-type semiconductor substrate 10, and a first opening OP1, a second opening OP2, a third opening OP3, and a fourth opening OP4 are provided in the insulating film 30 (FIG. 1 ( C)).

第1n型不純物領域11はここでは例えば直径が70μm程度の略円形であり、第1開口部OP1から露出する第1コンタクト部111(破線)を有する。すなわち、第1コンタクト部111は、第1n型不純物領域11の内側の領域であり、例えば直径が68μm程度の略円形の領域である。ここで略円形とは、円形または、多角形の角部分を曲率の小さい円弧状または曲線状に面取りした形状をいう。   Here, the first n-type impurity region 11 has a substantially circular shape with a diameter of about 70 μm, for example, and has a first contact portion 111 (broken line) exposed from the first opening OP1. That is, the first contact portion 111 is a region inside the first n-type impurity region 11, and is a substantially circular region having a diameter of about 68 μm, for example. Here, “substantially circular” refers to a circular shape or a polygonal corner portion chamfered into an arc shape or curved shape with a small curvature.

第2n型不純物領域12も第1n型不純物領域11と同様である。すなわち、例えば直径が70μm程度の略円形であり、第2開口部OP2から露出する略円形(例えば直径68μm程度)の第2コンタクト部121(破線)を有する。   The second n-type impurity region 12 is the same as the first n-type impurity region 11. That is, for example, the second contact portion 121 (broken line) having a substantially circular shape with a diameter of about 70 μm and a substantially circular shape (for example, with a diameter of about 68 μm) exposed from the second opening OP2.

第3n型不純物領域13は、第1n型不純物領域11および第2n型不純物領域12と離間してこれらの間のp型半導体基板10に設けられる。第3n型不純物領域13は、第1端部134と第2端部135、および第1端部134および第2端部135を連結する抵抗部133とを有する。第1端部134および第2端部135はそれぞれ、例えば直径15μm程度の略円形であり、第3開口部OP3から露出する略円形(例えば直径13μm程度)の第3コンタクト部131(破線)と、第4開口部OP4から露出する略円形(例えば直径13μm程度)の第4コンタクト部132(破線)を有する。   The third n-type impurity region 13 is provided in the p-type semiconductor substrate 10 apart from the first n-type impurity region 11 and the second n-type impurity region 12. The third n-type impurity region 13 includes a first end portion 134 and a second end portion 135, and a resistance portion 133 that connects the first end portion 134 and the second end portion 135. Each of the first end portion 134 and the second end portion 135 has a substantially circular shape with a diameter of, for example, about 15 μm, and a third contact portion 131 (broken line) with a substantially circular shape (for example, with a diameter of about 13 μm) exposed from the third opening OP3. And a fourth contact portion 132 (broken line) having a substantially circular shape (for example, a diameter of about 13 μm) exposed from the fourth opening OP4.

抵抗部133は、幅Wが例えば10μm、長さLが例えば100μm程度であり、抵抗値は例えば100Ω程度である。また、抵抗部133の幅Wは、第1端部134および第2端部135の幅(ここでは直径)より小さい。尚、第3n型不純物領域13はその全体が半導体保護装置100の抵抗成分として機能するが、本実施形態では説明の便宜上、第1端部134および第2端部135の間に設けられてこれらを連結する領域を抵抗部133と称する。   The resistance portion 133 has a width W of, for example, 10 μm, a length L of, for example, about 100 μm, and a resistance value of, for example, about 100Ω. Further, the width W of the resistance portion 133 is smaller than the width (here, the diameter) of the first end portion 134 and the second end portion 135. The entire third n-type impurity region 13 functions as a resistance component of the semiconductor protection device 100. In the present embodiment, for convenience of explanation, the third n-type impurity region 13 is provided between the first end portion 134 and the second end portion 135. A region connecting the two is referred to as a resistance portion 133.

第1金属層41は、例えばアルミニウム(Al)であり、第1コンタクト部111および第3コンタクト部131を被覆してこれらとコンタクトする。第1金属層41は、第1パッド部41pと、これと接続する第1電極部41eを有する。第1パッド部41pは第1コンタクト部111の直上でこれと重畳し、第1電極部41eは第3コンタクト部131の直上でこれと重畳する。   The first metal layer 41 is, for example, aluminum (Al), and covers and contacts the first contact portion 111 and the third contact portion 131. The first metal layer 41 includes a first pad portion 41p and a first electrode portion 41e connected to the first pad portion 41p. The first pad portion 41 p overlaps with the first contact portion 111 and the first electrode portion 41 e overlaps with the third contact portion 131.

第2金属層42は、第2コンタクト部121および第4コンタクト部132を被覆してこれらとコンタクトする。第2金属層42は、第2パッド部42pと、これと接続する第2電極部42eを有する。第2パッド部42pは第2コンタクト部121の直上でこれと重畳し、第2電極部42eは第4コンタクト部132の直上でこれと重畳する。   The second metal layer 42 covers and contacts the second contact portion 121 and the fourth contact portion 132. The second metal layer 42 includes a second pad portion 42p and a second electrode portion 42e connected to the second pad portion 42p. The second pad portion 42p overlaps with this just above the second contact portion 121, and the second electrode portion 42e overlaps with this just above the fourth contact portion 132.

第1電極部41eおよび第2電極部42eは、それぞれ、第1パッド部41pおよび第2パッド部42pより小さい面積を有する。   The first electrode part 41e and the second electrode part 42e have smaller areas than the first pad part 41p and the second pad part 42p, respectively.

第3不純物領域13の抵抗部133の上は、絶縁膜30で覆われ、抵抗部133が第1金属層41または第2金属層42と直接コンタクトすることはない(図1(C))。   The resistance portion 133 of the third impurity region 13 is covered with the insulating film 30, and the resistance portion 133 is not in direct contact with the first metal layer 41 or the second metal layer 42 (FIG. 1C).

第1n型不純物領域11、第2n型不純物領域12および第3n型不純物領域13と、p型半導体基板10によってそれぞれダイオードD1、D2、D3が形成される。そして、これらのpn接合容量C1、C2、C3と、抵抗部133によって、半導体保護装置100が構成される(図1(C)、図2)。   Diodes D1, D2, and D3 are formed by the first n-type impurity region 11, the second n-type impurity region 12, the third n-type impurity region 13, and the p-type semiconductor substrate 10, respectively. The pn junction capacitors C1, C2, and C3 and the resistance unit 133 constitute the semiconductor protection device 100 (FIG. 1C and FIG. 2).

すなわち図2の如く、半導体保護装置100、150はダイオードD1、D2、D3の低電圧側を接続し、ダイオードD1、D2、D3の高電圧側の一端の間に抵抗Rが直列接続したものである。半導体保護装置100の入力端子Viは入力信号端子に接続し、出力端子Voは集積回路素子(不図示)に接続する。   That is, as shown in FIG. 2, the semiconductor protection devices 100 and 150 are formed by connecting the low-voltage side of the diodes D1, D2, and D3, and connecting a resistor R in series between one ends of the diodes D1, D2, and D3 on the high-voltage side. is there. The input terminal Vi of the semiconductor protection device 100 is connected to an input signal terminal, and the output terminal Vo is connected to an integrated circuit element (not shown).

ここで、総容量Cは、第1n型不純物領域11とp型半導体基板10のpn接合容量C1と、第2n型不純物領域12とp型半導体基板10のpn接合容量C2と、第3n型不純物領域13とp型半導体基板10のpn接合容量C3の合計である。   Here, the total capacitance C includes the pn junction capacitance C1 of the first n-type impurity region 11 and the p-type semiconductor substrate 10, the pn junction capacitance C2 of the second n-type impurity region 12 and the p-type semiconductor substrate 10, and the third n-type impurity. This is the total of the pn junction capacitance C3 of the region 13 and the p-type semiconductor substrate 10.

第3n型不純物領域13によって半導体保護装置の抵抗部133を形成した場合、これとp型半導体基板10で形成されるpn接合容量も半導体保護装置の容量成分となる。   When the resistor part 133 of the semiconductor protection device is formed by the third n-type impurity region 13, the pn junction capacitance formed by this and the p-type semiconductor substrate 10 is also a capacitance component of the semiconductor protection device.

本実施形態ではこのように、第1パッド部41pと第2パッド部42pの直下に位置し、ダイオードD1およびダイオードD2を構成する第1n型不純物領域11および第2n型不純物領域12を、抵抗部133と分離して配置する。   In this embodiment, as described above, the first n-type impurity region 11 and the second n-type impurity region 12 that are located immediately below the first pad portion 41p and the second pad portion 42p and constitute the diode D1 and the diode D2 are replaced with the resistor portion. 133 and arranged separately.

半導体保護装置100をフリップチップ実装する場合には、第1パッド部41pおよび第2パッド部42pにバンプ電極が設けられる。そしてこのようなフリップチップ実装の場合は特に、バンプ電極の位置は実装基板の配線によって制限される。例えば第1パッド部41pおよび第2パッド部42pはチップ内で最も離間(例えば500μm程度)して配置されることとなる。   When the semiconductor protection device 100 is flip-chip mounted, bump electrodes are provided on the first pad portion 41p and the second pad portion 42p. Especially in the case of such flip chip mounting, the position of the bump electrode is limited by the wiring of the mounting substrate. For example, the first pad portion 41p and the second pad portion 42p are arranged most distant (for example, about 500 μm) in the chip.

このような場合には、従来構造では抵抗Rを伸長し、抵抗Rの両端に金属層をコンタクトさせてパッド部に接続する構成を採用していた(図5参照)。   In such a case, the conventional structure employs a configuration in which the resistor R is extended and a metal layer is brought into contact with both ends of the resistor R and connected to the pad portion (see FIG. 5).

しかし、離間したパッド部に接続させるため、抵抗Rの抵抗値とpn接合容量を維持して抵抗Rを伸長するには、抵抗Rの幅Wを広くし、パッド部下方のpn接合容量を小さくする必要がある。この場合、パッド部下方のpn接合容量小さくなることによりESD耐量が劣化する問題があった。   However, in order to maintain the resistance value of the resistor R and the pn junction capacitance while extending the resistor R in order to connect to the separated pad portions, the width W of the resistor R is increased and the pn junction capacitance below the pad portion is reduced. There is a need to. In this case, there has been a problem that the ESD tolerance is deteriorated due to a decrease in the pn junction capacitance below the pad portion.

そこで本実施形態では、半導体保護装置100の抵抗となるn型不純物領域と、第1パッド部41pおよび第2パッド部42p直下でダイオードD1、D2となるn型不純物領域とを離間することとした。   Therefore, in the present embodiment, the n-type impurity region serving as the resistance of the semiconductor protection device 100 is separated from the n-type impurity regions serving as the diodes D1 and D2 immediately below the first pad portion 41p and the second pad portion 42p. .

具体的には、第3n型不純物領域13は、第1n型不純物領域11および第2n型不純物領域12と離間してこれらの間のp型半導体基板10に設けことにより、抵抗となるn型不純物領域の面積をEMIフィルタ特性において必要な最小限の面積とすることができ、第1パッド部41pおよび第2パッド部42p直下でダイオードD1、D2となるn型不純物領域の総面積を最大限に確保できるので、図5(C)よりESD耐量を向上しつつパッド部間を離間できる。   Specifically, the third n-type impurity region 13 is separated from the first n-type impurity region 11 and the second n-type impurity region 12, and is provided in the p-type semiconductor substrate 10 between them, whereby an n-type impurity serving as a resistance is provided. The area of the region can be set to the minimum area necessary for the EMI filter characteristics, and the total area of the n-type impurity regions that become the diodes D1 and D2 immediately below the first pad portion 41p and the second pad portion 42p is maximized. Since it can be ensured, the pad portions can be separated while improving the ESD resistance from FIG.

図3は、第2の実施形態の半導体保護装置150を示す図であり、図3(A)が金属層を省略した平面図であり、図3(B)が金属層のパターンも示す平面図であり、図3(C)が図3(B)のb−b線断面図である。また、第1の実施形態と同一構成要素は同一符号で示す。   3A and 3B are diagrams showing the semiconductor protection device 150 according to the second embodiment, in which FIG. 3A is a plan view in which the metal layer is omitted, and FIG. 3B is a plan view in which the pattern of the metal layer is also shown. FIG. 3C is a cross-sectional view taken along the line bb of FIG. Moreover, the same component as 1st Embodiment is shown with the same code | symbol.

第2の実施形態の半導体保護装置150も、第1パッド部51pと第2パッド部52pの直下に位置し、ダイオードD1およびダイオードD2を構成する第1n型不純物領域21および第2n型不純物領域22を、抵抗部233と分離して配置したものであるが、第1n型不純物領域21とp型半導体基板10が形成するpn接合面積と、第3n型不純物領域23の第1端部234とp型半導体基板10とが形成するpn接合面積が同等である。   The semiconductor protection device 150 of the second embodiment is also located immediately below the first pad portion 51p and the second pad portion 52p, and the first n-type impurity region 21 and the second n-type impurity region 22 constituting the diode D1 and the diode D2. Are arranged separately from the resistance portion 233, but the pn junction area formed by the first n-type impurity region 21 and the p-type semiconductor substrate 10, and the first end portion 234 of the third n-type impurity region 23 and the p The pn junction area formed by the type semiconductor substrate 10 is equivalent.

実際には、第1端部234は、抵抗部233と連続しており、抵抗部233との接続部分では、p型半導体基板10の深さ方向におけるpn接合は形成されない(図1(C))。しかし、抵抗部233の幅Wは10μm程度であって、面積(幅10μm×深さ1.5μm程度)としては非常に微小である。具体的には、第1端部234を抵抗部233と離間して略円形に形成した場合(第1n型不純物領域21と同じ面積に形成した場合)のpn接合面積(底部も含む)と、抵抗部233との接合部分が欠落した(C字状の)場合のpn接合面積(底部も含む)の差(欠落部分の面積)はおよそ幅10μm×深さ1.5μm程度である。本実施形態では、略円形に形成した場合(第1n型不純物領域21と同じ面積に形成した場合)のpn接合面積(底部も含む)と欠落部分の面積の比が10分の1程度以下までを同等の面積とする。   Actually, the first end portion 234 is continuous with the resistance portion 233, and a pn junction in the depth direction of the p-type semiconductor substrate 10 is not formed at a connection portion with the resistance portion 233 (FIG. 1C). ). However, the width W of the resistance portion 233 is about 10 μm, and the area (width 10 μm × depth 1.5 μm) is very small. Specifically, the pn junction area (including the bottom portion) when the first end portion 234 is formed in a substantially circular shape separated from the resistance portion 233 (when formed in the same area as the first n-type impurity region 21), The difference (area of the missing part) of the pn junction area (including the bottom part) when the junction part with the resistance part 233 is missing (C-shaped) is approximately 10 μm wide × 1.5 μm deep. In the present embodiment, the ratio of the area of the pn junction area (including the bottom part) to the missing part when formed in a substantially circular shape (when formed in the same area as the first n-type impurity region 21) is about 1/10 or less. Are equivalent areas.

一例として第1n型不純物領域21と第1端部234は、直径が約50μmの略円形であり、第1開口部OP1、第3開口部OP3は、直径が約48μmの略円形である。   As an example, the first n-type impurity region 21 and the first end 234 are substantially circular with a diameter of about 50 μm, and the first opening OP1 and the third opening OP3 are substantially circular with a diameter of about 48 μm.

また、第1金属層51が、第1n型不純物領域21の第1コンタクト部211および第1端部234の第3コンタクト部231を被覆してこれらとコンタクトする。第1金属層51の、第1パッド部51pと第1電極部51eの面積は同等である。   Further, the first metal layer 51 covers and contacts the first contact portion 211 of the first n-type impurity region 21 and the third contact portion 231 of the first end portion 234. The areas of the first pad portion 51p and the first electrode portion 51e of the first metal layer 51 are equal.

これにより、第1n型不純物領域21とp型半導体基板10で形成されるpn接合容量C1と、第1端部234とp型半導体基板10とで形成されるpn接合容量C31を同等にすることができる(図3(C))。   Thereby, the pn junction capacitance C1 formed by the first n-type impurity region 21 and the p-type semiconductor substrate 10 and the pn junction capacitance C31 formed by the first end 234 and the p-type semiconductor substrate 10 are made equal. (FIG. 3C).

ESD耐量は、総容量Cが大きいほど強くなる。つまり、ESD耐量を向上させるには、総容量Cを大きくすればよいのであるが、上記の如く所定のフィルタ特性を維持する総容量Cは、所定の範囲に制限されているため、それ以上に大きくすることはできない。   The ESD tolerance increases as the total capacity C increases. That is, in order to improve the ESD tolerance, the total capacity C may be increased. However, as described above, the total capacity C that maintains the predetermined filter characteristics is limited to a predetermined range. It cannot be made larger.

そこで、本実施形態では、ESD耐量に寄与する金属層(第1パッド部51p、第1電極部51e)直下のn型不純物領域(第1n型不純物領域21および第1端部234)を略円形の同等の面積とすることで、電界集中を緩和し、チップ内のESD耐量を均一化することができ、これによってもESD耐量向上を実現できる。   Therefore, in the present embodiment, the n-type impurity region (the first n-type impurity region 21 and the first end portion 234) immediately below the metal layer (the first pad portion 51p and the first electrode portion 51e) that contributes to ESD tolerance is substantially circular. By setting the same area, it is possible to alleviate electric field concentration and uniformize the ESD tolerance in the chip, and this can also improve the ESD tolerance.

この構成は第2n型不純物領域22および第2端部235でも同様である。すなわち、第2n型不純物領域22とp型半導体基板10で形成されるpn接合面積および第2端部235とp型半導体基板10で形成されるpn接合面積は、同等である。具体的には、第2n型不純物領域22および第2端部235が直径約50μmの略円形であり、第2開口部OP2および第4開口部OP4が直径約48μmの略円形である。   This configuration is the same for the second n-type impurity region 22 and the second end portion 235. That is, the pn junction area formed by the second n-type impurity region 22 and the p-type semiconductor substrate 10 and the pn junction area formed by the second end 235 and the p-type semiconductor substrate 10 are equivalent. Specifically, the second n-type impurity region 22 and the second end 235 are substantially circular with a diameter of about 50 μm, and the second opening OP2 and the fourth opening OP4 are substantially circular with a diameter of about 48 μm.

また、第2金属層52が、第2n型不純物領域22の第2コンタクト部221および第2端部235の第4コンタクト部232を被覆してこれらとコンタクトする。第2金属層52の、第2パッド部52pと第2電極部52eの面積は同等である。   The second metal layer 52 covers and contacts the second contact portion 221 of the second n-type impurity region 22 and the fourth contact portion 232 of the second end portion 235. The areas of the second pad portion 52p and the second electrode portion 52e of the second metal layer 52 are equal.

これにより、第2n型不純物領域22とp型半導体基板10で形成されるpn接合容量C2と、第2端部235とp型半導体基板10で形成されるpn接合容量C32を同等にすることができ、チップ内のESD耐量を均一化することができる。   Thereby, the pn junction capacitance C2 formed by the second n-type impurity region 22 and the p-type semiconductor substrate 10 and the pn junction capacitance C32 formed by the second end portion 235 and the p-type semiconductor substrate 10 can be made equal. It is possible to make the ESD tolerance in the chip uniform.

尚、ここでは、第1n型不純物領域21と、第2n型不純物領域22のpn接合面積を同等としたが、これらは異なるpn接合面積であってもよい。   Here, although the pn junction areas of the first n-type impurity region 21 and the second n-type impurity region 22 are equal, they may be different pn junction areas.

これ以外の構成は、第1の実施形態と同様であるので、説明は省略する。   Since the configuration other than this is the same as that of the first embodiment, the description thereof is omitted.

更に、本実施形態では抵抗部133、233と各コンタクト部(ダイオード)となるn型不純物領域の不純物濃度は同じであるので、これらを同一工程で形成でき、ポリシリコンによる抵抗体を設ける構造と比較して、製造工程数を低減できる。   Furthermore, in this embodiment, the resistance portions 133 and 233 and the n-type impurity regions serving as the contact portions (diodes) have the same impurity concentration. Therefore, they can be formed in the same process and have a structure in which a resistor made of polysilicon is provided. In comparison, the number of manufacturing steps can be reduced.

10 p型半導体基板
11、21 第1n型不純物領域
12、22 第2n型不純物領域
13、23 第3n型不純物領域
30 絶縁膜
41、51 第1金属層
41p、51p 第1パッド部
41e、51e 第1電極部
42、52 第2金属層
42p、52p 第2パッド部
42e、51p 第2電極部
100、150 半導体保護装置
111、211 第1コンタクト部
121、221 第2コンタクト部
131、231 第3コンタクト部
132、232 第4コンタクト部
133、233 抵抗部
501、502 アルミ配線
503 ポリシリコン
504 絶縁層
505、506 n型層
507 p型半導体基板
510、520 半導体保護装置
521、522 外部電極
524 n型層
10 p-type semiconductor substrate 11, 21 first n-type impurity region 12, 22 second n-type impurity region 13, 23 third n-type impurity region 30 insulating film 41, 51 first metal layer 41p, 51p first pad portion 41e, 51e first 1 electrode part 42,52 2nd metal layer 42p, 52p 2nd pad part 42e, 51p 2nd electrode part 100,150 Semiconductor protection device 111,211 1st contact part 121,221 2nd contact part 131,231 3rd contact Portion 132, 232 Fourth contact portion 133, 233 Resistance portion 501, 502 Aluminum wiring 503 Polysilicon 504 Insulating layer 505, 506 n-type layer 507 p-type semiconductor substrate 510, 520 Semiconductor protection device 521, 522 External electrode 524 n-type layer

Claims (6)

一導電型半導体基板と、
該一導電型半導体基板に設けられた第1逆導電型不純物領域と、
該第1逆導電型不純物領域と離間して前記一導電型半導体層に設けられた第2逆導電型不純物領域と、
前記第1逆導電型不純物領域および前記第2逆導電型不純物領域と離間してこれらの間の前記一導電型半導体層に設けられ、第1端部と第2端部、および該第1端部および該第2端部を連結する抵抗部とを有する第3逆導電型不純物領域と、
前記一導電型半導体基板上に設けられた絶縁膜と、
該絶縁膜に設けられ、前記第1逆導電型不純物領域の一部が露出する第1開口部と、前記第2逆導電型不純物領域の一部が露出する第2開口部と、前記第1端部の一部および前記第2端部の一部がそれぞれ露出する第3開口部および第4開口部と、
前記第1逆導電型不純物領域および前記第1端部を被覆してこれらとコンタクトする第1金属層と、
前記第2逆導電型不純物領域および前記第2端部を被覆してこれらとコンタクトする第2金属層とを具備することを特徴とする半導体保護装置。
One conductivity type semiconductor substrate;
A first reverse conductivity type impurity region provided in the one conductivity type semiconductor substrate;
A second reverse conductivity type impurity region provided in the one conductivity type semiconductor layer apart from the first reverse conductivity type impurity region;
The first and second opposite conductivity type impurity regions and the second opposite conductivity type impurity region are spaced apart from each other, and are provided in the one conductivity type semiconductor layer between the first and second opposite conductivity type impurity regions. A third reverse conductivity type impurity region having a portion and a resistance portion connecting the second end portion;
An insulating film provided on the one conductivity type semiconductor substrate;
A first opening provided in the insulating film and exposing a part of the first reverse conductivity type impurity region; a second opening exposing a part of the second reverse conductivity type impurity region; A third opening and a fourth opening in which a part of the end and a part of the second end are respectively exposed;
A first metal layer covering and contacting the first opposite conductivity type impurity region and the first end;
A semiconductor protective device comprising: the second reverse conductivity type impurity region and the second metal layer covering and contacting the second end portion.
前記抵抗部の幅は、前記第1端部および前記第2端部の幅より小さいことを特徴とする請求項1に記載の半導体保護装置。   The semiconductor protection device according to claim 1, wherein a width of the resistance portion is smaller than a width of the first end portion and the second end portion. 前記第1逆導電型不純物領域、前記第2逆導電型不純物領域、第1端部および前記第2端部は略円形であることを特徴とする請求項2に記載の半導体保護装置。   3. The semiconductor protection device according to claim 2, wherein the first reverse conductivity type impurity region, the second reverse conductivity type impurity region, the first end portion, and the second end portion are substantially circular. 前記第1逆導電型不純物領域と前記一導電型半導体基板が形成するpn接合面積と、前記第1端部と前記一導電型半導体基板が形成するpn接合面積は同等であることを特徴とする請求項3に記載の半導体保護装置。   The pn junction area formed by the first opposite conductivity type impurity region and the one conductivity type semiconductor substrate is equal to the pn junction area formed by the first end portion and the one conductivity type semiconductor substrate. The semiconductor protection device according to claim 3. 前記第2逆導電型不純物領域と前記一導電型半導体基板が形成するpn接合面積と、前記第2端部と前記一導電型半導体基板が形成するpn接合面積は同等であることを特徴とする請求項4に記載の半導体保護装置。   The pn junction area formed by the second opposite conductivity type impurity region and the one conductivity type semiconductor substrate is equal to the pn junction area formed by the second end portion and the one conductivity type semiconductor substrate. The semiconductor protection device according to claim 4. 前記第1端部および前記第2端部は同等の面積であることを特徴とする請求項5に記載の半導体保護装置。   The semiconductor protection device according to claim 5, wherein the first end portion and the second end portion have the same area.
JP2009129361A 2009-05-28 2009-05-28 Semiconductor protection device Pending JP2010278243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009129361A JP2010278243A (en) 2009-05-28 2009-05-28 Semiconductor protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129361A JP2010278243A (en) 2009-05-28 2009-05-28 Semiconductor protection device

Publications (1)

Publication Number Publication Date
JP2010278243A true JP2010278243A (en) 2010-12-09

Family

ID=43424936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129361A Pending JP2010278243A (en) 2009-05-28 2009-05-28 Semiconductor protection device

Country Status (1)

Country Link
JP (1) JP2010278243A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220130A1 (en) * 2021-04-13 2022-10-20 株式会社村田製作所 Transient voltage absorbing element and transient voltage absorbing circuit

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036154B1 (en) * 1971-07-19 1975-11-21
JPS61207047U (en) * 1985-06-14 1986-12-27
JPS6318657A (en) * 1986-07-11 1988-01-26 Hitachi Micro Comput Eng Ltd Laminated resistor elements and semiconductor device using same
JPH0563147A (en) * 1991-08-30 1993-03-12 Fujitsu Ltd Integrated circuit and manufacture thereof
JP2005167096A (en) * 2003-12-04 2005-06-23 Matsushita Electric Ind Co Ltd Semiconductor protective device
JP2005167095A (en) * 2003-12-04 2005-06-23 Matsushita Electric Ind Co Ltd Semiconductor protective device
JP2007027637A (en) * 2005-07-21 2007-02-01 Sanken Electric Co Ltd Semiconductor device having flr region
JP2007103724A (en) * 2005-10-05 2007-04-19 Toshiba Corp Emi filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036154B1 (en) * 1971-07-19 1975-11-21
JPS61207047U (en) * 1985-06-14 1986-12-27
JPS6318657A (en) * 1986-07-11 1988-01-26 Hitachi Micro Comput Eng Ltd Laminated resistor elements and semiconductor device using same
JPH0563147A (en) * 1991-08-30 1993-03-12 Fujitsu Ltd Integrated circuit and manufacture thereof
JP2005167096A (en) * 2003-12-04 2005-06-23 Matsushita Electric Ind Co Ltd Semiconductor protective device
JP2005167095A (en) * 2003-12-04 2005-06-23 Matsushita Electric Ind Co Ltd Semiconductor protective device
JP2007027637A (en) * 2005-07-21 2007-02-01 Sanken Electric Co Ltd Semiconductor device having flr region
JP2007103724A (en) * 2005-10-05 2007-04-19 Toshiba Corp Emi filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022220130A1 (en) * 2021-04-13 2022-10-20 株式会社村田製作所 Transient voltage absorbing element and transient voltage absorbing circuit

Similar Documents

Publication Publication Date Title
US9824955B2 (en) Semiconductor device
US9633989B2 (en) ESD protection device
US8253523B2 (en) Spiral inductor device
US9704799B2 (en) Semiconductor device
US10886730B2 (en) Filter having an ESD protection device
US10770451B2 (en) Thin-film ESD protection device
US20160351504A1 (en) Semiconductor package and mounting structure thereof
US11917750B2 (en) Shielding structure for system-in-package and electronic device
KR100475477B1 (en) Inductance element and semiconductor device
US11444078B2 (en) ESD protection element
US20200137879A1 (en) Chip package and power module
JP6923303B2 (en) Diode element
US10804258B2 (en) ESD protection device and signal transmission line
US20180177040A1 (en) Multilayer substrate
US11469593B2 (en) Thin-film ESD protection device with compact size
JP2013065771A (en) Emi filter
US9142541B2 (en) Semiconductor device having inductor
JP2010278243A (en) Semiconductor protection device
US9041201B2 (en) Integrated circuit device
WO2019202774A1 (en) Esd protective element
JP2009124410A (en) Emi filter, and electronic apparatus
CN114171494A (en) Diode and semiconductor structure thereof
JP2005167095A (en) Semiconductor protective device
CN105789177A (en) Semiconductor device with a plurality of semiconductor chips
JP2018125392A (en) Semiconductor device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110613

A621 Written request for application examination

Effective date: 20120514

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Effective date: 20130218

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130408

A131 Notification of reasons for refusal

Effective date: 20130806

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107