JP2010276161A - Bearing device - Google Patents

Bearing device Download PDF

Info

Publication number
JP2010276161A
JP2010276161A JP2009131088A JP2009131088A JP2010276161A JP 2010276161 A JP2010276161 A JP 2010276161A JP 2009131088 A JP2009131088 A JP 2009131088A JP 2009131088 A JP2009131088 A JP 2009131088A JP 2010276161 A JP2010276161 A JP 2010276161A
Authority
JP
Japan
Prior art keywords
rotating shaft
bearing
natural frequency
peripheral surface
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009131088A
Other languages
Japanese (ja)
Other versions
JP5435215B2 (en
Inventor
Akira Ito
昭 伊藤
Yosuke Kondo
洋介 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2009131088A priority Critical patent/JP5435215B2/en
Publication of JP2010276161A publication Critical patent/JP2010276161A/en
Application granted granted Critical
Publication of JP5435215B2 publication Critical patent/JP5435215B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing device to support the rotary shaft of a rotary machine with three or more bearings, capable of precluding such an occurrence that a change in the supporting rigidity of the rotary shaft causes the vibration characteristics of the rotary machine to change abruptly even in case a node of the vibration mode due to the operating range natural frequency lies in the position of any bearing. <P>SOLUTION: The bearing device 10 supports the radially directed load on the rotary shaft of the rotary machine with three or more bearings 5a, 5b, 5c, wherein the natural frequency of the rotary shaft 3 lying within the operating speed range of the rotary machine is used as the operating range natural frequency, and the bearing 5b lying at a node of the vibration mode or around the node due to the operating range natural frequency is formed as a negative gap bearing. The negative gap bearing is configured so as to transmit the force from the rotary shaft 3 to a stationary side member 7 of the rotary machine at all times. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、回転機械の回転シャフトの半径方向荷重を3つ以上の軸受で支持する軸受装置に関する。   The present invention relates to a bearing device that supports a radial load of a rotating shaft of a rotating machine with three or more bearings.

ジェットエンジン、ガスタービン、圧縮機、過給機などの回転機械は、回転駆動される回転シャフトと、この回転シャフトの半径方向荷重を支持する複数の軸受とを有する。該軸受として、例えば転がり軸受が使用される。前記各軸受の内部には、回転シャフトの半径方向に隙間(遊び)が存在する。   A rotary machine such as a jet engine, a gas turbine, a compressor, and a supercharger has a rotary shaft that is rotationally driven and a plurality of bearings that support a radial load of the rotary shaft. For example, a rolling bearing is used as the bearing. Inside each of the bearings, there is a gap (play) in the radial direction of the rotating shaft.

このような軸受は、通常、1つの回転シャフトに対し2つ設けられる。これら2つの軸受には、回転シャフトの自重または振れにより、前記半径方向荷重が常に作用している。   Two such bearings are usually provided for one rotating shaft. The radial load is always applied to these two bearings due to the weight or vibration of the rotating shaft.

特開2004−100841号公報JP 2004-1000084 A

しかし、回転機械の回転シャフトの半径方向荷重を3つ軸受で支持する場合には、特定の運転回転数において、回転シャフトを2つの軸受のみで支持し、残りの軸受には、半径方向荷重が作用しない場合があり得る。この場合、回転シャフトの支持剛性が変化し、回転機械の振動特性が急激に変わってしまう。具体的には、次の通りである。
まず、前記回転機械の運転回転数範囲内にある回転シャフトの固有振動数を運転域固有振動数とする。回転シャフトにおいて、運転域固有振動数による振動モードの節が軸受の軸方向位置にある場合、該軸受には、該運転域固有振動数の時に回転シャフトから荷重がほとんど作用しなくなる場合がある。この場合、回転シャフトを他の2つの軸受で支持することになるため、回転シャフトの半径方向荷重を支持する支持剛性が変化し、回転機械の振動特性が急激に変わってしまう。回転シャフトの半径方向荷重を4つ以上の軸受で支持する場合も同様である。
However, when the radial load of the rotating shaft of a rotating machine is supported by three bearings, the rotating shaft is supported by only two bearings at a specific operating rotational speed, and the remaining bearings have a radial load. It may not work. In this case, the support rigidity of the rotating shaft changes, and the vibration characteristics of the rotating machine change abruptly. Specifically, it is as follows.
First, let the natural frequency of the rotating shaft within the operating rotational speed range of the rotating machine be the operating region natural frequency. In the rotating shaft, when the node of the vibration mode by the operating region natural frequency is at the axial position of the bearing, the load may hardly be applied to the bearing from the rotating shaft at the operating region natural frequency. In this case, since the rotating shaft is supported by the other two bearings, the support rigidity for supporting the radial load of the rotating shaft changes, and the vibration characteristics of the rotating machine change abruptly. The same applies when the radial load of the rotating shaft is supported by four or more bearings.

本発明者は、上述の課題に着目して、本発明を創案した。即ち、本発明の目的は、回転シャフトを3つ以上の軸受で支持する軸受装置において、運転域固有振動数による振動モードの節が軸受の位置にある場合でも、回転シャフトの支持剛性が変化し、回転機械の振動特性が急激に変わることを防止することにある。   The inventor of the present invention has created the present invention by paying attention to the above-mentioned problems. That is, an object of the present invention is to provide a bearing device that supports a rotating shaft with three or more bearings, and the support rigidity of the rotating shaft changes even when the vibration mode node due to the natural frequency in the operating range is at the position of the bearing. It is to prevent the vibration characteristics of the rotating machine from changing abruptly.

上記目的を達成するため、本発明によると、回転機械の回転シャフトの半径方向荷重を3つ以上の軸受で支持する軸受装置であって、
前記回転機械の運転回転数範囲内にある回転シャフトの固有振動数を運転域固有振動数とし、
該運転域固有振動数による振動モードの節または該節付近にある前記軸受を、負隙間軸受として構成し、
前記負隙間軸受は、前記回転シャフトから前記回転機械の静止側部材へ常に力を伝達するように構成されている、ことを特徴とする軸受装置が提供される。
In order to achieve the above object, according to the present invention, there is provided a bearing device for supporting a radial load of a rotating shaft of a rotating machine by three or more bearings,
The natural frequency of the rotating shaft within the operating rotational speed range of the rotating machine is the natural frequency of the operating region,
The bearing at or near the node of the vibration mode according to the natural frequency of the operating region is configured as a negative clearance bearing,
The negative gap bearing is configured to always transmit force from the rotating shaft to the stationary member of the rotating machine.

上述した本発明の軸受装置では、前記運転域固有振動数による回転シャフトの振動モードの節となる軸方向位置または該軸方向位置付近にある軸受を、負隙間軸受として構成し、前記負隙間軸受は、前記回転シャフトから前記回転機械の静止側部材へ常に力を伝達するように構成されているので、負隙間軸受は、運転域固有振動数の時にも、回転シャフトからの半径方向荷重を支持する。よって、回転シャフトの支持剛性が変化し、回転機械の振動特性が急激に変わることが防止される。   In the above-described bearing device according to the present invention, the axial position serving as a node of the vibration mode of the rotating shaft at the operating region natural frequency or a bearing near the axial position is configured as a negative clearance bearing, and the negative clearance bearing Is configured to always transmit force from the rotating shaft to the stationary side member of the rotating machine, so the negative clearance bearing supports the radial load from the rotating shaft even at the operating frequency range. To do. Therefore, it is possible to prevent the support rigidity of the rotating shaft from changing and the vibration characteristics of the rotating machine from changing suddenly.

上述の負隙間軸受は、次のように構成してよい。即ち、前記負隙間軸受は、回転シャフトに取り付けられる内輪と、前記回転機械の静止側部材に取り付けられる外輪と、内輪と外輪との間に設けられる複数の転動体とを有し、前記内輪の外周面と前記外輪の内周面とは、前記回転シャフトの軸方向から見た場合に円形であり、かつ、該外周面と該内周面との隙間は、前記転動体の寸法より小さい。   The negative clearance bearing described above may be configured as follows. That is, the negative clearance bearing has an inner ring attached to the rotating shaft, an outer ring attached to the stationary side member of the rotating machine, and a plurality of rolling elements provided between the inner ring and the outer ring. The outer peripheral surface and the inner peripheral surface of the outer ring are circular when viewed from the axial direction of the rotating shaft, and the gap between the outer peripheral surface and the inner peripheral surface is smaller than the dimensions of the rolling elements.

また、上述の負隙間軸受は、次のように構成してもよい。即ち、前記負隙間軸受は、回転シャフトに取り付けられる内輪と、前記回転機械の静止側部材に取り付けられる外輪と、内輪と外輪との間に設けられる複数の転動体とを有し、前記内輪の外周面と前記外輪の内周面の少なくとも一方は、前記回転シャフトの軸方向から見た場合に非円形であり、かつ、前記回転シャフトの軸を周る周方向において少なくとも部分的に、前記外周面と前記内周面との隙間は、前記転動体の寸法より小さい。   Moreover, you may comprise the above-mentioned negative clearance bearing as follows. That is, the negative clearance bearing has an inner ring attached to the rotating shaft, an outer ring attached to the stationary side member of the rotating machine, and a plurality of rolling elements provided between the inner ring and the outer ring. At least one of the outer peripheral surface and the inner peripheral surface of the outer ring is non-circular when viewed from the axial direction of the rotary shaft, and at least partially in the circumferential direction around the axis of the rotary shaft, The clearance between the surface and the inner peripheral surface is smaller than the size of the rolling element.

上述した本発明によると、回転シャフトを3つ以上の軸受で支持する軸受装置において、運転域固有振動数による振動モードの節が軸受の位置にある場合でも、回転シャフトの支持剛性が変化し、回転機械の振動特性が急激に変わることを防止できる。   According to the above-described present invention, in the bearing device that supports the rotating shaft with three or more bearings, even when the vibration mode node due to the natural frequency of the operating region is at the position of the bearing, the supporting rigidity of the rotating shaft changes, It is possible to prevent the vibration characteristics of the rotating machine from changing suddenly.

本発明の実施形態による軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing apparatus by embodiment of this invention. (A)は、図1の回転シャフトにおける1番目の振動モードの振幅を示し、(B)は、図1の回転シャフトにおける2番目の振動モードの振幅を示し、(C)は、図1の回転シャフトにおける3番目の振動モードの振幅を示す。(A) shows the amplitude of the first vibration mode in the rotating shaft of FIG. 1, (B) shows the amplitude of the second vibration mode in the rotating shaft of FIG. 1, and (C) shows the amplitude of FIG. The amplitude of the 3rd vibration mode in a rotating shaft is shown. 図1のA−A矢視図であり、負隙間軸受の構成例を示す。It is an AA arrow line view of FIG. 1, and shows the structural example of a negative clearance bearing. (A)は、図1のA−A矢視図であるが、負隙間軸受の別の構成例を示し、(B)は、図1のA−A矢視図であるが、負隙間軸受のさらに別の構成例を示す。(A) is an AA arrow view of FIG. 1, shows another configuration example of the negative gap bearing, (B) is an AA arrow view of FIG. Another example of the configuration will be described. 本発明の他の実施形態による軸受装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the bearing apparatus by other embodiment of this invention. (A)は、図5の回転シャフトにおける1番目の振動モードの振幅を示し、(B)は、図5の回転シャフトにおける2番目の振動モードの振幅を示し、(C)は、図5の回転シャフトにおける3番目の振動モードの振幅を示す。(A) shows the amplitude of the first vibration mode in the rotating shaft of FIG. 5, (B) shows the amplitude of the second vibration mode in the rotating shaft of FIG. 5, and (C) shows the amplitude of FIG. The amplitude of the 3rd vibration mode in a rotating shaft is shown.

本発明を実施するための最良の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   The best mode for carrying out the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明の実施形態による軸受装置10の構成を示す模式図である。軸受装置10は、回転機械の回転シャフト3の半径方向荷重を3つ以上の軸受(図1では、3つの軸受5a,5b,5c)で支持する。回転機械は、回転駆動される回転シャフト3を有し、例えば、ジェットエンジン、ガスタービン、圧縮機、過給機などである。本願では、回転シャフト3に固定されて回転シャフト3と一体的に回転する部材も、回転シャフト3に含まれる。図1では、回転シャフト3に固定される部材(例えば、回転ディスク、動翼、タービン翼、コンプレッサ翼など)を省略している。各軸受5a,5b,5cは、転がり軸受であってよい。図1において、各軸受5a,5b,5cは、回転機械に設けられ回転しない静止側部材7に取付けられる。   FIG. 1 is a schematic diagram showing a configuration of a bearing device 10 according to an embodiment of the present invention. The bearing device 10 supports the radial load of the rotating shaft 3 of the rotating machine with three or more bearings (in FIG. 1, three bearings 5a, 5b, and 5c). The rotating machine has a rotating shaft 3 that is driven to rotate, and is, for example, a jet engine, a gas turbine, a compressor, a supercharger, or the like. In the present application, a member that is fixed to the rotating shaft 3 and rotates integrally with the rotating shaft 3 is also included in the rotating shaft 3. In FIG. 1, members (for example, a rotating disk, a moving blade, a turbine blade, a compressor blade, etc.) fixed to the rotating shaft 3 are omitted. Each bearing 5a, 5b, 5c may be a rolling bearing. In FIG. 1, each bearing 5a, 5b, 5c is attached to a stationary member 7 that is provided in a rotating machine and does not rotate.

用語を定義する。本願において、運転域固有振動数は、前記回転機械の運転回転数範囲内にある回転シャフト3の固有振動数である。例えば、mを2以上の整数として、1番目の振動モード〜m番目の振動モードの前記固有振動数が、回転機械の運転回転数範囲内にある場合には、1番目の振動モード〜m番目の振動モードの前記各固有振動数が、運転域固有振動数である。なお、運転回転数範囲は、1分間における回転シャフト3の回転数(rpm)の範囲であり、例えば、ゼロ〜所定値までの範囲である。固有振動数は、回転シャフト3の共振周波数である。共振周波数の強制振動を回転シャフト3に与えると、回転シャフト3の振幅は増大して回転シャフト3が破損する可能性がある。   Define terms. In the present application, the operating region natural frequency is a natural frequency of the rotating shaft 3 within the operating rotational speed range of the rotating machine. For example, when m is an integer of 2 or more and the natural frequency of the first vibration mode to the mth vibration mode is within the operating rotational speed range of the rotating machine, the first vibration mode to the mth vibration mode Each natural frequency of the vibration mode is an operating region natural frequency. The operating rotational speed range is a range of the rotational speed (rpm) of the rotating shaft 3 in one minute, for example, a range from zero to a predetermined value. The natural frequency is the resonance frequency of the rotating shaft 3. When forced vibration with a resonance frequency is applied to the rotating shaft 3, the amplitude of the rotating shaft 3 increases and the rotating shaft 3 may be damaged.

本実施形態によると、運転域固有振動数による回転シャフト3の振動モードの節または該節付近にある軸受5a,5bまたは5cを、負隙間軸受として構成する。前記負隙間軸受は、前記回転機械の静止側部材7および回転シャフト3に予圧を作用させるように構成されている。即ち、負隙間軸受は、常に、回転シャフト3から静止側部材7に力を伝達するように、前記回転機械の静止側部材7および回転シャフト3に力を作用させる。   According to this embodiment, the node 5a, 5b or 5c in the vicinity of the vibration mode node of the rotating shaft 3 at the operating region natural frequency is configured as a negative clearance bearing. The negative clearance bearing is configured to apply a preload to the stationary side member 7 and the rotating shaft 3 of the rotating machine. That is, the negative clearance bearing always applies a force to the stationary member 7 and the rotating shaft 3 of the rotating machine so as to transmit the force from the rotating shaft 3 to the stationary member 7.

図2(A)は、図1の軸受装置10において、1番目の振動モードの固有振動数による回転シャフト3の振幅を破曲線で示し、図2(B)は、図1の軸受装置10において、2番目の振動モードの固有振動数による回転シャフト3の振幅を破曲線で示し、図2(C)は、図1の軸受装置10において、3番目の振動モードの固有振動数による回転シャフト3の振幅を破曲線で示す。この例では、簡単のため、図1の回転シャフト3の運転域固有振動数には、1番目の振動モードの固有振動数、2番目の振動モードの固有振動数および3番目の振動モードの固有振動数があるとする。
図2のように、回転シャフト3において、2番目の振動モードの固有振動数の節が軸受5bの位置にある。従って、この軸受5bを負隙間軸受として構成する。
2A shows a broken curve of the amplitude of the rotating shaft 3 at the natural frequency of the first vibration mode in the bearing device 10 of FIG. 1, and FIG. 2B shows the bearing device 10 of FIG. The amplitude of the rotating shaft 3 according to the natural frequency of the second vibration mode is shown by a broken line. FIG. 2C shows the rotating shaft 3 according to the natural frequency of the third vibration mode in the bearing device 10 of FIG. The amplitude of is shown by a broken curve. In this example, for the sake of simplicity, the operating range natural frequency of the rotating shaft 3 in FIG. 1 includes the natural frequency of the first vibration mode, the natural frequency of the second vibration mode, and the natural frequency of the third vibration mode. Suppose that there is a frequency.
As shown in FIG. 2, in the rotating shaft 3, the node of the natural frequency of the second vibration mode is at the position of the bearing 5b. Therefore, this bearing 5b is configured as a negative clearance bearing.

図3は、図1のA−A矢視図であり、回転シャフト3と静止側部材7に組まれた状態の前記負隙間軸受の構成例を示す。図3に示すように、前記負隙間軸受は、回転シャフト3に取り付けられる内輪9と、前記回転機械の静止側部材7に取り付けられる外輪11と、内輪9と外輪11との間に設けられる複数の転動体13とを有する。内輪9の外周面9aと外輪11の内周面11aとは、回転シャフト3の軸方向から見た場合に円形(即ち、真円)であり、かつ、前記軸方向に対する半径方向において、外周面9aと内周面11aとの隙間は、転動体13の寸法より小さく、これにより、前記負隙間軸受は、常に、回転シャフト3から前記回転機械の静止側部材7に力を伝達する。このように、各転動体13が、常に、内輪9および外輪11を介して、回転シャフト3から静止側部材7に力を伝達するように、静止側部材7および回転シャフト3に力を作用させる。言い換えると、内輪9と外輪11とは、各転動体13に常に予圧を作用させる。なお、内輪9は、回転シャフト3に固定され、外輪11は、静止側部材7に固定されてよい。転動体13は、玉またはコロである。また、前記予圧は、軸受5bの寿命の低下が許容範囲内に抑えられるように設定する。   3 is an AA arrow view of FIG. 1 and shows a configuration example of the negative clearance bearing in a state assembled to the rotating shaft 3 and the stationary side member 7. As shown in FIG. 3, the negative clearance bearing is provided between the inner ring 9 attached to the rotating shaft 3, the outer ring 11 attached to the stationary side member 7 of the rotating machine, and between the inner ring 9 and the outer ring 11. Rolling elements 13. The outer peripheral surface 9a of the inner ring 9 and the inner peripheral surface 11a of the outer ring 11 are circular (that is, a perfect circle) when viewed from the axial direction of the rotary shaft 3, and the outer peripheral surface in the radial direction with respect to the axial direction. The gap between 9a and the inner peripheral surface 11a is smaller than the dimension of the rolling element 13, whereby the negative gap bearing always transmits force from the rotating shaft 3 to the stationary side member 7 of the rotating machine. In this way, each rolling element 13 applies a force to the stationary member 7 and the rotating shaft 3 so as to always transmit a force from the rotating shaft 3 to the stationary member 7 via the inner ring 9 and the outer ring 11. . In other words, the inner ring 9 and the outer ring 11 always apply a preload to each rolling element 13. The inner ring 9 may be fixed to the rotary shaft 3 and the outer ring 11 may be fixed to the stationary member 7. The rolling element 13 is a ball or a roller. The preload is set so that the decrease in the life of the bearing 5b can be suppressed within an allowable range.

図3の構成例では、回転シャフト3の半径方向に関し、内輪9と外輪11との前記隙間が、転動体13の寸法よりも小さい。従って、図3において、各転動体13は、常に、内輪9および外輪11との間で力を及ぼし合う。   In the configuration example of FIG. 3, the gap between the inner ring 9 and the outer ring 11 is smaller than the size of the rolling element 13 in the radial direction of the rotating shaft 3. Therefore, in FIG. 3, each rolling element 13 always exerts a force between the inner ring 9 and the outer ring 11.

このような負隙間軸受を、例えば、次のように組み立てる。まず、外輪11を静止側部材7に予め組む。この状態で、外輪11と静止側部材7を加熱により膨張させる。外輪11と静止側部材7が膨張することで、外輪11の内径が大きくなる。この状態で、回転シャフト3と共に、回転シャフト3に組んだ内輪9と転動体13を外輪11に通すことで、転動体13を、内輪9と外輪11との間に配置する。この時、外周面9aと内周面11aとの前記隙間は前記膨張で大きくなっているので、転動体13を、内輪9と外輪11との間に抵抗なく配置できる。その後、外輪11と静止側部材7が冷めて前記膨張がなくなると、上述のように内輪9と外輪11とは、各転動体13に予圧を作用させる。なお、他の方法で、図3の負隙間軸受を組み立ててもよい。   Such a negative clearance bearing is assembled as follows, for example. First, the outer ring 11 is assembled to the stationary member 7 in advance. In this state, the outer ring 11 and the stationary member 7 are expanded by heating. As the outer ring 11 and the stationary member 7 expand, the inner diameter of the outer ring 11 increases. In this state, the rolling element 13 is disposed between the inner ring 9 and the outer ring 11 by passing the inner ring 9 and the rolling element 13 assembled to the rotating shaft 3 together with the rotating shaft 3 through the outer ring 11. At this time, since the gap between the outer peripheral surface 9a and the inner peripheral surface 11a is increased by the expansion, the rolling element 13 can be disposed between the inner ring 9 and the outer ring 11 without resistance. Thereafter, when the outer ring 11 and the stationary member 7 are cooled and the expansion is stopped, the inner ring 9 and the outer ring 11 apply a preload to the rolling elements 13 as described above. In addition, you may assemble the negative clearance bearing of FIG. 3 with another method.

図4(A)、(B)は、図1のA−A矢視図であるが、回転シャフト3と静止側部材7に組まれた状態の負隙間軸受の別の構成例を示す。図4(A)、(B)の構成例は、以下で説明する以外の点は、図3の構成例と同じである。図4(A)、(B)に示すように、前記負隙間軸受では、内輪9の外周面9aと外輪11の内周面11aの少なくとも一方(図4の例では、内周面11a)は、回転シャフト3の軸方向から見た場合に非円形(図4(A)では、複数の円弧からなる形状、図4(B)では、楕円形)である。また、回転シャフト3の軸を周る周方向において少なくとも部分的に(図4(A)では、周方向箇所17,18,19で、図4(B)では、周方向箇所17,18で)、外周面9aと内周面11aとの前記半径方向の隙間は、転動体13の前記半径方向の寸法より小さく、これにより、前記負隙間軸受は、常に、回転シャフト3から前記回転機械の静止側部材7に力を伝達する。このように、図4(A)では、周方向箇所17,18,19に位置する転動体13が、内輪9および外輪11との間で力を及ぼし合い、図4(B)では、周方向箇所17,18に位置する転動体13が、内輪9および外輪11との間で力を及ぼし合い、これにより、前記負隙間軸受は、常に、回転シャフト3から前記回転機械の静止側部材7に力を伝達する。
なお、各転動体13の周方向位置によらず、常に、1つ以上の転動体13が、図4(A)では周方向箇所17,18,19に位置し、図4(B)では周方向箇所17,18に位置し、これにより、当該1つ以上の転動体13は、常に、内輪9および外輪11との間で力を及ぼし合う。
4 (A) and 4 (B) are AA arrow views of FIG. 1, and show another configuration example of the negative clearance bearing in a state assembled to the rotating shaft 3 and the stationary side member 7. The configuration examples in FIGS. 4A and 4B are the same as the configuration example in FIG. 3 except for the points described below. 4A and 4B, in the negative clearance bearing, at least one of the outer peripheral surface 9a of the inner ring 9 and the inner peripheral surface 11a of the outer ring 11 (in the example of FIG. 4, the inner peripheral surface 11a) is When viewed from the axial direction of the rotary shaft 3, it is non-circular (in FIG. 4A, a shape formed of a plurality of arcs, and in FIG. 4B, an ellipse). Further, at least partially in the circumferential direction around the axis of the rotating shaft 3 (in FIG. 4A, at the circumferential locations 17, 18, 19 and in FIG. 4B, at the circumferential locations 17, 18). The radial gap between the outer peripheral surface 9a and the inner peripheral surface 11a is smaller than the radial dimension of the rolling element 13, so that the negative gap bearing is always stationary from the rotary shaft 3 to the rotating machine. Force is transmitted to the side member 7. Thus, in FIG. 4 (A), the rolling elements 13 located in the circumferential locations 17, 18, and 19 exert a force between the inner ring 9 and the outer ring 11, and in FIG. 4 (B), in the circumferential direction. The rolling elements 13 located at the locations 17 and 18 exert a force between the inner ring 9 and the outer ring 11, whereby the negative clearance bearing always moves from the rotating shaft 3 to the stationary side member 7 of the rotating machine. Transmit power.
Regardless of the circumferential position of each rolling element 13, one or more rolling elements 13 are always located at circumferential locations 17, 18, and 19 in FIG. 4A, and in FIG. Located in the directional locations 17, 18, the one or more rolling elements 13 thus always exert forces between the inner ring 9 and the outer ring 11.

図4(A)、(B)の負隙間軸受は、上述した図3の負隙間軸受の組み立てと同じ方法で組み立ててもよいし、他の方法で組み立ててもよい。   4A and 4B may be assembled by the same method as the assembly of the negative clearance bearing of FIG. 3 described above, or may be assembled by other methods.

なお、図3または図4に基づいて説明した負隙間軸受の他の構成は、一般的な転がり軸受の構成と同じであってよい。例えば、各転動体13は、図示しない保持器により互いの周方向間隔が保持される。   In addition, the other structure of the negative clearance bearing demonstrated based on FIG. 3 or FIG. 4 may be the same as the structure of a general rolling bearing. For example, the rolling elements 13 are held at intervals in the circumferential direction by a retainer (not shown).

上述した本発明の実施形態による軸受装置10では、前記運転域固有振動数による回転シャフト3の振動モードの節となる軸方向位置または該軸方向位置付近にある軸受5a,5bまたは5cを、負隙間軸受として構成し、前記負隙間軸受は、前記回転機械の静止側部材7および回転シャフト3に予圧を作用させるように構成されているので、負隙間軸受には、運転域固有振動数の時にも、回転シャフト3から荷重が作用する。よって、回転シャフト3の支持剛性が変化し、回転機械の振動特性が急激に変わることが防止される。   In the bearing device 10 according to the above-described embodiment of the present invention, the bearing 5a, 5b, or 5c at or near the axial position serving as a node of the vibration mode of the rotating shaft 3 at the operating region natural frequency is negative. Since it is configured as a clearance bearing, and the negative clearance bearing is configured to apply a preload to the stationary side member 7 and the rotating shaft 3 of the rotating machine, the negative clearance bearing has a natural frequency at the operating region. Also, a load acts from the rotating shaft 3. Therefore, it is possible to prevent the support rigidity of the rotating shaft 3 from changing and the vibration characteristics of the rotating machine from changing suddenly.

本発明は上述した実施の形態に限定されず、以下のように本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention as follows.

本発明で使用する負隙間軸受は、図3、図4に示した構成に限定されない。例えば、図4では、軸方向から見た場合に、内輪9の外周面9aを円形とし、外輪11の内周面11aを非円形としたが、内輪9の外周面9aを非円形とし、外輪11の外周面11aを円形としてもよい。   The negative clearance bearing used in the present invention is not limited to the configuration shown in FIGS. For example, in FIG. 4, when viewed from the axial direction, the outer peripheral surface 9a of the inner ring 9 is circular and the inner peripheral surface 11a of the outer ring 11 is non-circular. However, the outer peripheral surface 9a of the inner ring 9 is non-circular, The outer peripheral surface 11a of 11 may be circular.

また、本発明では、各運転域固有振動数について、該運転域固有振動数の節に位置する転がり軸受(例えば、軸受5a,5b,5c)を負隙間軸受として構成するので、負隙間軸受とする軸受の数は2つ以上であってもよい。その一例を図5、図6に基づいて説明する。   In the present invention, the rolling bearings (for example, the bearings 5a, 5b, 5c) positioned at the nodes of the operating range natural frequencies are configured as negative clearance bearings for each operating range natural frequency. Two or more bearings may be used. One example will be described with reference to FIGS.

図5は、軸受装置10において、軸受5a,5b,5cの位置が図1の場合と異なる場合を示す。図6(A)は、図5の軸受装置10において、1番目の振動モードの固有振動数による回転シャフト3の振幅を破曲線で示し、図6(B)は、図5の軸受装置10において、2番目の振動モードの固有振動数による回転シャフト3の振幅を破曲線で示し、図6(C)は、図5の軸受装置10において、3番目の振動モードの固有振動数による回転シャフト3の振幅を破曲線で示す。この例では、簡単のため、図5の回転シャフト3の運転域固有振動数には、1番目の振動モードの固有振動数、2番目の振動モードの固有振動数および3番目の振動モードの固有振動数があるとする。
図6のように、回転シャフト3において、2番目の振動モードの固有振動数の節が軸受5bの位置にあり、3番目の振動モードの固有振動数の節が軸受5aの位置にある。従って、これら軸受5b、5aを上述の負隙間軸受として構成する。
FIG. 5 shows a case where the positions of the bearings 5a, 5b, and 5c in the bearing device 10 are different from those in FIG. 6A shows a broken curve of the amplitude of the rotating shaft 3 at the natural frequency of the first vibration mode in the bearing device 10 of FIG. 5, and FIG. 6B shows the bearing device 10 of FIG. The amplitude of the rotating shaft 3 according to the natural frequency of the second vibration mode is shown by a broken line. FIG. 6C shows the rotating shaft 3 according to the natural frequency of the third vibration mode in the bearing device 10 of FIG. The amplitude of is shown by a broken curve. In this example, for the sake of simplicity, the natural frequency of the operating range of the rotary shaft 3 in FIG. 5 includes the natural frequency of the first vibration mode, the natural frequency of the second vibration mode, and the natural frequency of the third vibration mode. Suppose that there is a frequency.
As shown in FIG. 6, in the rotary shaft 3, the node of the natural frequency of the second vibration mode is at the position of the bearing 5b, and the node of the natural frequency of the third vibration mode is at the position of the bearing 5a. Accordingly, these bearings 5b and 5a are configured as the above-described negative clearance bearings.

3 回転シャフト、5a,5b,5c 軸受、7 静止側部材、
9 内輪、9a 内輪の外周面、10 軸受装置、
11 外輪、11a 外輪の内周面、13 転動体、
3 rotating shaft, 5a, 5b, 5c bearing, 7 stationary side member,
9 inner ring, 9a outer peripheral surface of inner ring, 10 bearing device,
11 outer ring, 11a inner peripheral surface of outer ring, 13 rolling element,

Claims (3)

回転機械の回転シャフトの半径方向荷重を3つ以上の軸受で支持する軸受装置であって、
前記回転機械の運転回転数範囲内にある回転シャフトの固有振動数を運転域固有振動数とし、
該運転域固有振動数による振動モードの節または該節付近にある前記軸受を、負隙間軸受として構成し、
前記負隙間軸受は、前記回転シャフトから前記回転機械の静止側部材へ常に力を伝達するように構成されている、ことを特徴とする軸受装置。
A bearing device for supporting a radial load of a rotating shaft of a rotating machine with three or more bearings,
The natural frequency of the rotating shaft within the operating rotational speed range of the rotating machine is the natural frequency of the operating region,
The bearing at or near the node of the vibration mode according to the natural frequency of the operating region is configured as a negative clearance bearing,
The negative gap bearing is configured to always transmit force from the rotating shaft to a stationary member of the rotating machine.
前記負隙間軸受は、回転シャフトに取り付けられる内輪と、前記回転機械の静止側部材に取り付けられる外輪と、内輪と外輪との間に設けられる複数の転動体とを有し、
前記内輪の外周面と前記外輪の内周面とは、前記回転シャフトの軸方向から見た場合に円形であり、かつ、該外周面と該内周面との隙間は、前記転動体の寸法より小さい、ことを特徴とする請求項1に記載の軸受装置。
The negative clearance bearing has an inner ring attached to the rotating shaft, an outer ring attached to the stationary side member of the rotating machine, and a plurality of rolling elements provided between the inner ring and the outer ring,
The outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring are circular when viewed from the axial direction of the rotary shaft, and the gap between the outer peripheral surface and the inner peripheral surface is a dimension of the rolling element. The bearing device according to claim 1, wherein the bearing device is smaller.
前記負隙間軸受は、回転シャフトに取り付けられる内輪と、前記回転機械の静止側部材に取り付けられる外輪と、内輪と外輪との間に設けられる複数の転動体とを有し、
前記内輪の外周面と前記外輪の内周面の少なくとも一方は、前記回転シャフトの軸方向から見た場合に非円形であり、かつ、前記回転シャフトの軸を周る周方向において少なくとも部分的に、前記外周面と前記内周面との隙間は、前記転動体の寸法より小さい、ことを特徴とする請求項1に記載の軸受装置。
The negative clearance bearing has an inner ring attached to the rotating shaft, an outer ring attached to the stationary side member of the rotating machine, and a plurality of rolling elements provided between the inner ring and the outer ring,
At least one of the outer peripheral surface of the inner ring and the inner peripheral surface of the outer ring is non-circular when viewed from the axial direction of the rotating shaft, and at least partially in the circumferential direction around the axis of the rotating shaft. The bearing device according to claim 1, wherein a gap between the outer peripheral surface and the inner peripheral surface is smaller than a dimension of the rolling element.
JP2009131088A 2009-05-29 2009-05-29 Bearing device Active JP5435215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131088A JP5435215B2 (en) 2009-05-29 2009-05-29 Bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131088A JP5435215B2 (en) 2009-05-29 2009-05-29 Bearing device

Publications (2)

Publication Number Publication Date
JP2010276161A true JP2010276161A (en) 2010-12-09
JP5435215B2 JP5435215B2 (en) 2014-03-05

Family

ID=43423298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131088A Active JP5435215B2 (en) 2009-05-29 2009-05-29 Bearing device

Country Status (1)

Country Link
JP (1) JP5435215B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096312A (en) * 2011-11-01 2013-05-20 Ihi Corp Rotary machine, and method for determining bearing position of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144775U (en) * 1985-02-26 1986-09-06
JPH0386228U (en) * 1989-12-21 1991-08-30
JP2001193744A (en) * 2000-01-05 2001-07-17 Nsk Ltd Rotation supporting device for spindle in machine tool
JP2004150563A (en) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd Supporting structure of spindle and machine tool
JP2004261886A (en) * 2003-02-18 2004-09-24 Ntn Corp Link operating device
JP2008116026A (en) * 2006-11-08 2008-05-22 Ntn Corp Vehicular bearing device
WO2010074285A1 (en) * 2008-12-26 2010-07-01 日本精工株式会社 Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144775U (en) * 1985-02-26 1986-09-06
JPH0386228U (en) * 1989-12-21 1991-08-30
JP2001193744A (en) * 2000-01-05 2001-07-17 Nsk Ltd Rotation supporting device for spindle in machine tool
JP2004150563A (en) * 2002-10-31 2004-05-27 Mitsubishi Heavy Ind Ltd Supporting structure of spindle and machine tool
JP2004261886A (en) * 2003-02-18 2004-09-24 Ntn Corp Link operating device
JP2008116026A (en) * 2006-11-08 2008-05-22 Ntn Corp Vehicular bearing device
WO2010074285A1 (en) * 2008-12-26 2010-07-01 日本精工株式会社 Pulley support structure for belt-drive continuously variable transmission and belt-drive continuously variable transmission

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013096312A (en) * 2011-11-01 2013-05-20 Ihi Corp Rotary machine, and method for determining bearing position of the same

Also Published As

Publication number Publication date
JP5435215B2 (en) 2014-03-05

Similar Documents

Publication Publication Date Title
JP2006125387A5 (en)
US20060078244A1 (en) Hybrid bearing
JP2002286030A5 (en)
JP2009057973A (en) Gas turbine rotor and stator support system
EP2758679A1 (en) Tilt pad bearing with through-pivot lubrication
US20140321779A1 (en) Split combo bearing
CN107044346A (en) Bearing outer race maintenance during high capacity event
JP2013145021A5 (en)
JP2004084877A (en) Foil bearing
JP5435215B2 (en) Bearing device
KR101675269B1 (en) Gas Turbine disk
JP2008298274A (en) Roller bearing, retainer segment for roller bearing, and spindle supporting structure of wind-power plant
KR20130062757A (en) Journal foil bearing having bump foil without corrugation and motor having the same
JP2018531346A5 (en)
JP6697094B2 (en) Rotating machinery
JP2017145935A (en) Bearing device and rotary machine
JP5286934B2 (en) Foil bearing
JP2006177445A (en) Double-row automatic aligned roller bearing
KR101024361B1 (en) Thrust Bearing
JP2012021582A (en) Rotation system
JP2009228424A (en) Axial flow rotating machine
JP2015116111A (en) Rotation system
JP2008291810A (en) Turbocharger
JP2019027501A (en) Bearing structure
JP5845711B2 (en) Thrust bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131126

R151 Written notification of patent or utility model registration

Ref document number: 5435215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250