JP2010275802A - Base-isolated structure and building - Google Patents

Base-isolated structure and building Download PDF

Info

Publication number
JP2010275802A
JP2010275802A JP2009130647A JP2009130647A JP2010275802A JP 2010275802 A JP2010275802 A JP 2010275802A JP 2009130647 A JP2009130647 A JP 2009130647A JP 2009130647 A JP2009130647 A JP 2009130647A JP 2010275802 A JP2010275802 A JP 2010275802A
Authority
JP
Japan
Prior art keywords
earth
liquefaction
seismic isolation
water
tub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009130647A
Other languages
Japanese (ja)
Inventor
Masahito Koyama
雅人 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Homes Corp
Original Assignee
Asahi Kasei Homes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Homes Corp filed Critical Asahi Kasei Homes Corp
Priority to JP2009130647A priority Critical patent/JP2010275802A/en
Publication of JP2010275802A publication Critical patent/JP2010275802A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base-isolated structure which can surely perform base isolation by utilizing a liquefaction phenomenon regardless of the quality of ground, and furthermore which can be executed in a simpler structure. <P>SOLUTION: This base-isolated structure 1 includes: an earth tank 10 which is formed in an excavated section A obtained by excavating a ground surface and in which water can be stored; a horizontal displacement device 11 which is installed on the bottom surface 10a of the earth tank 10, which allows the horizontal displacement of a building B, and which bears a vertical load of the building B; liquefaction-inducing soil 12 which is infilled into the earth tank 10 and which attenuates the horizontal vibrations of the building B by inducing the liquefaction in the earth tank 10; and a water supply device 13 which supplies water to the liquefaction-inducing soil in the earth tank 10. The horizontal displacement device 11 comprises a plurality of rollable spheres 20 which bear the vertical load of the building B, and a frame body 21 which houses and surrounds the plurality of rollable spheres 20. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、液状化誘発土を用いた免震構造物及び当該免震構造物を有する建物に関する。   The present invention relates to a base isolation structure using liquefaction-induced soil and a building having the base isolation structure.

中低層で最新の耐震基準に従って建てられた建物は、比較的硬質な地盤に建てられた場合の方がいわゆる軟弱地盤に建てられた場合より地震動の卓越周期と建物の固有周期が近く、共振して振動被害を受ける傾向がある。一方、その地域が東海・東南海地震の震源断層付近のように極めて地震ハサ゛ート゛が高い場合、むしろ液状化が起こった方が振動被害を軽減できる。   Buildings built according to the latest seismic standards in the middle and lower floors resonate when built on relatively hard ground, closer to the dominant period of seismic motion and the natural period of the building than when built on so-called soft ground. Tend to be damaged by vibration. On the other hand, if the area has an extremely high earthquake hazard such as the vicinity of the fault of the Tokai / Tonankai earthquake, vibration damage can be reduced if liquefaction occurs.

特許文献1には、液状化現象を利用した免震建物が提案されている。すなわち、特許文献1には、一定以上の強度の地震動が作用した時に液状化が発生するように地盤改良仕様を調整し、強い地震動作用時には、液状化により建物への地震入力を低減する地盤改良構法が記載されている。液状化が発生することで建物の振動被害(構造体の損傷や2次部材、設備の被害)を軽減することが可能であるが、特許文献1では液状化に伴って建物が不同沈下して上部構造の被害が誘発されることを防ぐことは難しい。   Patent Document 1 proposes a seismic isolation building using a liquefaction phenomenon. That is, in Patent Document 1, the ground improvement specification is adjusted so that liquefaction occurs when seismic motion of a certain level or more acts, and the ground improvement that reduces earthquake input to the building by liquefaction during strong earthquake operation. The construction method is described. It is possible to reduce vibration damage (damage of structures, damage to secondary members, equipment) due to the occurrence of liquefaction. However, in Patent Document 1, the building is subsided with liquefaction. It is difficult to prevent superstructure damage from being induced.

そこで、特許文献2では、地下水を汲み上げて区画された液状化層を構成し、建物を杭で支持することが提案されている。しかしながら、この場合、液状化の条件が地盤の地下水の状態に依存する。すなわち、特許文献2における地下水供給は、地震時の地盤歪による間隙水圧の上昇を利用したものであり、間隙水圧が上昇しない地盤では液状化が起こらない可能性がある。よって、特許文献2の技術では、地盤によって免震を実施できない場合がある。   Therefore, in Patent Document 2, it is proposed to construct a liquefied layer partitioned by pumping up groundwater and to support the building with a pile. However, in this case, the liquefaction conditions depend on the groundwater condition of the ground. That is, the groundwater supply in Patent Document 2 utilizes the increase in pore water pressure due to ground strain at the time of an earthquake, and liquefaction may not occur on the ground where the pore water pressure does not increase. Therefore, in the technique of Patent Document 2, there is a case where seismic isolation cannot be performed depending on the ground.

また、特許文献2では、内部通路のある杭を地中深く貫入する必要があり、免震のための構造が複雑かつ大型化し、また施工が困難になる。   Moreover, in patent document 2, it is necessary to penetrate the pile with an internal passage deeply in the ground, and the structure for seismic isolation becomes complicated and large, and construction becomes difficult.

特許第4035744号公報Japanese Patent No. 4035744 特開平11−315544号公報JP 11-315544 A

本発明は、かかる点に鑑みてなされたものであり、液状化現象を利用した免震を、地盤の質にかかわらず確実に行うことができ、なおかつより簡単な構造で行うことができる免震構造物及び建物を提供することをその目的とする。   The present invention has been made in view of the above points, and is capable of performing seismic isolation utilizing the liquefaction phenomenon reliably regardless of the quality of the ground and yet having a simpler structure. Its purpose is to provide structures and buildings.

上記目的を達成するための本発明は、地表面が掘削された掘込みに形成され、水を貯留可能な土槽と、該土槽の底面上に設けられ、構築物の水平移動を許容し且つ構築物の鉛直荷重を支える水平移動装置と、前記土槽内に充填され、前記土槽内の液状化を誘発して構築物の水平振動を減衰させる液状化誘発土と、前記土槽内の液状化誘発土に水を供給する水供給装置と、を有し、前記水平移動装置は、前記構築物の鉛直荷重を支え転動可能な複数の球体と、当該複数の球体を収容し囲む枠体と、を有することを特徴とする免震構造である。   In order to achieve the above object, the present invention provides a soil basin formed on an excavation where the ground surface is excavated and capable of storing water, and provided on the bottom surface of the soil basin, allowing horizontal movement of the structure and A horizontal movement device that supports the vertical load of the structure, a liquefaction-induced soil that fills the earth tub and induces liquefaction in the earth tub to attenuate horizontal vibration of the structure, and liquefaction in the earth tub A water supply device that supplies water to the induced soil, and the horizontal movement device supports a vertical load of the structure and can roll, and a frame that houses and surrounds the plurality of spheres, It is a seismic isolation structure characterized by having.

本発明によれば、水供給装置により土槽内の液状化誘発土に水を供給できるので、液状化現象を利用した免震を地盤の質にかかわらず確実に行うことができる。また、構築物を、土槽の底面上の複数の球体を用いて支承するので、簡単な構造で免震を行うことができる。また、球体を用いることにより、免震に必要な構築物の水平方向の移動性を十分に確保できる。   According to the present invention, water can be supplied to the liquefaction-induced soil in the soil tank by the water supply device, so that the seismic isolation utilizing the liquefaction phenomenon can be reliably performed regardless of the ground quality. In addition, since the structure is supported using a plurality of spheres on the bottom surface of the earth tub, seismic isolation can be performed with a simple structure. In addition, by using a sphere, the horizontal mobility of the structure required for seismic isolation can be sufficiently secured.

前記枠体は、格子状に形成され、当該格子状の各方形枠内に球体が収容されていてもよい。かかる場合、球体同士の位置関係や、球体と構築物との位置関係が変動しないので、構築物の総ての方向の水平移動を確実に安定して確保できる。   The frame may be formed in a lattice shape, and a sphere may be accommodated in each square frame of the lattice shape. In such a case, since the positional relationship between the spheres and the positional relationship between the sphere and the structure do not change, it is possible to reliably and stably ensure horizontal movement in all directions of the structure.

前記複数の球体と前記構築物の間には、板状体が介在されていてもよい。かかる場合、構築物から複数の球体にかかる荷重を均等化できる。また、板状体は、構築物の基礎コンクリート打設時の型枠の役割を果たすことができる。   A plate-like body may be interposed between the plurality of spheres and the structure. In such a case, the load applied to the plurality of spheres from the structure can be equalized. Moreover, a plate-shaped object can play the role of the formwork at the time of foundation concrete placement of a structure.

上記免震構造物は、前記土槽の内側壁に設けられ、前記構築物の接触に対し弾性力を生じさせる弾性装置、または前記構築物の外側壁に設けられ、前記土槽の内側壁の接触に対し弾性力を生じさせる弾性装置をさらに有していてもよい。かかる場合、地震による構築物の横ずれに対し構築物を元の位置に戻す方向に押すことができるので、地震による構築物の位置ずれを低減できる。   The seismic isolation structure is provided on the inner wall of the earth tub, and is provided on an outer wall of the structure or an elastic device that generates elastic force against the contact of the structure. It may further have an elastic device that generates an elastic force. In such a case, the structure can be pushed back in the direction of returning to the original position against the lateral displacement of the structure due to the earthquake, so that the displacement of the structure due to the earthquake can be reduced.

前記弾性装置は、発泡ゴムで構成されていてもよい。   The elastic device may be made of foamed rubber.

前記土槽は、上面が開放された鉄筋コンクリートの箱型形状を有していてもよい。   The clay tank may have a box shape of reinforced concrete with an open top surface.

前記土槽は、前記掘込みの表面に遮水シートを敷設して形成されていてもよい。また、前記土槽の遮水シート上に底版が設置され、当該底版上に前記水平移動装置が設けられていてもよい。   The soil tank may be formed by laying a water shielding sheet on the surface of the dug. Moreover, a bottom plate may be installed on the water-impervious sheet of the earth tub, and the horizontal movement device may be provided on the bottom plate.

前記水供給装置は、前記土槽内に水を供給する管路と、当該管路を開閉する開閉弁と、前記土槽内の水位を検出するセンサと、当該センサによる水位の検出結果に基づいて、水位が所定の高さ以上になるように前記開閉弁を開閉する制御部とを有していてもよい。かかる場合、土槽内の水量を確実に維持して、液状化現象による免震を確実に行うことができる。   The water supply device is based on a pipe that supplies water into the earth tub, an on-off valve that opens and closes the pipe, a sensor that detects a water level in the earth tub, and a detection result of the water level by the sensor. And a controller that opens and closes the on-off valve so that the water level is equal to or higher than a predetermined height. In such a case, it is possible to reliably maintain the amount of water in the soil tank and to perform seismic isolation due to the liquefaction phenomenon.

別の観点による本発明によれば、上記免震構造物を有する建物が提供される。   According to this invention from another viewpoint, the building which has the said seismic isolation structure is provided.

本発明によれば、液状化現象を利用した免震を、地盤の質にかかわらず確実に行うことができ、なおかつ簡単な構造で行うことができる。   According to the present invention, the seismic isolation using the liquefaction phenomenon can be reliably performed regardless of the quality of the ground, and can be performed with a simple structure.

本実施の形態にかかる免震構造物を有する建物の構成の概略を示す説明図であ る。It is explanatory drawing which shows the outline of a structure of the building which has a seismic isolation structure concerning this Embodiment. (a)は、水平移動装置の構成の概略を示す平面図である。(b)は、水平移 動装置の縦断面図である。(A) is a top view which shows the outline of a structure of a horizontal displacement apparatus. (B) is a longitudinal cross-sectional view of a horizontal moving device. 側方から見た弾性装置を示す説明図である。It is explanatory drawing which shows the elastic device seen from the side. 弾性装置を上方から見た説明図である。It is explanatory drawing which looked at the elastic device from the upper part. 構築物が接触した状態の弾性装置を示す説明図である。It is explanatory drawing which shows the elastic device of the state which the structure contacted. 施工時に水平移動装置を設置した状態を示す説明図である。It is explanatory drawing which shows the state which installed the horizontal displacement apparatus at the time of construction. 施工時に液状化誘発土により球体を埋めた状態を示す説明図である。It is explanatory drawing which shows the state which filled the sphere with the liquefaction induction soil at the time of construction. 遮水シートの土槽を有する免震構造物の構成を示す説明図である。It is explanatory drawing which shows the structure of the seismic isolation structure which has the soil tank of a water shielding sheet.

以下、図面を参照して、本発明の好ましい実施の形態について説明する。図1は、本実施の形態に係る免震構造物1を有する建物2の構成の概略を示す説明図である。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Drawing 1 is an explanatory view showing the outline of the composition of building 2 which has seismic isolation structure 1 concerning this embodiment.

免震構造物1は、例えば地表面が掘削された掘込みAに形成され、水を貯留可能な土槽10と、土槽10の底面10a上に設けられ、構築物Bの水平移動を許容し且つ構築物Bの鉛直荷重を支える水平移動装置11と、土槽10内に充填され、土槽10内の液状化を誘発して構築物Bの水平振動を減衰させる液状化誘発土12と、土槽10内の液状化誘発土12に水を供給する水供給装置13を有している。   The seismic isolation structure 1 is formed in, for example, a dug A where the ground surface is excavated, and is provided on a soil tank 10 capable of storing water and a bottom surface 10a of the soil tank 10, and allows horizontal movement of the structure B. And the horizontal movement apparatus 11 which supports the vertical load of the structure B, the liquefaction induction soil 12 which is filled in the earth tub 10 and induces liquefaction in the earth tub 10 to attenuate the horizontal vibration of the structure B, and the earth tub 10 has a water supply device 13 for supplying water to the liquefaction-inducing soil 12 in the inside.

土槽10は、例えば上面が開放された鉄筋コンクリートの箱型形状を有している。水平移動装置11は、例えば構築物Bの鉛直荷重を支え転動可能な複数の球体20と、複数の球体20を収容し囲む枠体21を有している。球体20には、例えば工業用ガラス球、工業用磁器球、コンクリート球などが用いられる。枠体21は、例えば図2(a)に示すように方形の格子状に形成され、当該格子状の各方形枠21a内に球体20が収容されている。球体20は、後述するように地震発生時には方形枠21a内で転動でき、球体20と枠体21はいっしょに底面10a上を水平移動する(枠体21は土槽10の底版に固定されていない)。また枠体21は、図2(b)に示すように上下方向の寸法(枠体21が土槽10の底面10aから突出する高さ)が球体20の径よりも短く(低く)形成され、球体20を収容した際に、球体20の上側が枠体21よりも突出するようになっている。これにより、球体20は、上面で後述する板状体22を支持できる。また、底面10aに対する球体20及び枠体21の敷設範囲は、構築物Bの底面とほぼ同じ面積を有している。   The earth tub 10 has, for example, a box shape of reinforced concrete with an open upper surface. The horizontal movement device 11 includes, for example, a plurality of spheres 20 that can roll while supporting the vertical load of the structure B, and a frame body 21 that houses and surrounds the plurality of spheres 20. As the sphere 20, for example, an industrial glass sphere, an industrial porcelain sphere, a concrete sphere, or the like is used. For example, as shown in FIG. 2A, the frame body 21 is formed in a rectangular lattice shape, and the spherical body 20 is accommodated in each of the lattice-shaped square frames 21a. As will be described later, the sphere 20 can roll in a rectangular frame 21a when an earthquake occurs, and the sphere 20 and the frame 21 move horizontally on the bottom surface 10a together (the frame 21 is fixed to the bottom plate of the earth tub 10). Absent). Further, the frame body 21 is formed such that the vertical dimension (the height at which the frame body 21 protrudes from the bottom surface 10a of the earth tub 10) is shorter (lower) than the diameter of the sphere body 20, as shown in FIG. When the sphere 20 is accommodated, the upper side of the sphere 20 protrudes from the frame 21. Thereby, the spherical body 20 can support the plate-like body 22 to be described later on the upper surface. Further, the laying range of the sphere 20 and the frame body 21 with respect to the bottom surface 10a has substantially the same area as the bottom surface of the structure B.

図1に示すように複数の球体20上には、板状体22が載置され、その上に構築物Bが支承されている。板状体22は、構築物Bの底面全体を覆う大きさを有し、球体20に対し水平移動できる。なお、板状体22は、樹脂板、鋼板等を用いることができる。   As shown in FIG. 1, a plate-like body 22 is placed on a plurality of spheres 20, and a structure B is supported thereon. The plate-like body 22 has a size that covers the entire bottom surface of the structure B, and can move horizontally with respect to the sphere 20. The plate-like body 22 can be a resin plate, a steel plate, or the like.

図3に示すように土槽10の内側壁10bには、例えば構築物Bの接触に対し弾性力を生じさせる弾性装置30が設けられている。弾性装置30は、例えば発泡ゴムで構成されている。弾性装置30は、例えば土槽10の内側壁10bから内側に突出し先細の側方から見て台形の形状を有している。また、弾性装置30は、図4に示すように土槽10の内側壁10bに沿って水平方向に長く形成されている。弾性装置30は、例えば箱型形状の土槽10の各辺(平面視)の内側壁10bにそれぞれ形成されている。また、弾性装置30は、構築物Bの大きさ(奥行や幅)に応じて等間隔に複数設けてもよい。この弾性装置30により、図5に示すように構築物Bが地震により水平方向に移動した際に弾性装置30と接触し弾性力を生じさせて、構築物Bを元の位置に戻す方向に押すことができる。   As shown in FIG. 3, the inner wall 10 b of the earth tub 10 is provided with an elastic device 30 that generates an elastic force against the contact with the structure B, for example. The elastic device 30 is made of foamed rubber, for example. The elastic device 30 protrudes inward from the inner wall 10b of the earth tub 10, for example, and has a trapezoidal shape when viewed from a tapered side. Moreover, the elastic device 30 is formed long in the horizontal direction along the inner wall 10b of the earth tub 10 as shown in FIG. The elastic device 30 is formed on the inner wall 10b of each side (in plan view) of the box-shaped earth tub 10, for example. A plurality of elastic devices 30 may be provided at equal intervals according to the size (depth or width) of the structure B. With this elastic device 30, as shown in FIG. 5, when the structure B moves in the horizontal direction due to an earthquake, the elastic device 30 comes into contact with the elastic device 30 to generate an elastic force, and pushes the structure B in a direction to return the structure B to the original position. it can.

水供給装置13は、例えば図1に示すように土槽10内に水を供給する管路40と、管路40を開閉する開閉弁41と、土槽10内の液状化誘発土12の水位を検出するセンサ42と、当該センサ42による水位の検出結果に基づいて、水位が所定の高さ以上になるように開閉弁41を開閉する制御部43を有している。管路40は、水道などの水の供給源44に接続されている。開閉弁41には、例えば電磁弁が用いられ、センサ42には、例えば水圧計が用いられる。制御部43としては、例えばCPU、メモリなどを有するコンピュータが用いられる。   For example, as shown in FIG. 1, the water supply device 13 includes a pipe 40 that supplies water into the earth tub 10, an on-off valve 41 that opens and closes the pipe 40, and a water level of the liquefaction-induced soil 12 in the earth tub 10. And a control unit 43 that opens and closes the on-off valve 41 so that the water level becomes equal to or higher than a predetermined height based on the detection result of the water level by the sensor 42. The pipeline 40 is connected to a water supply source 44 such as water. As the on-off valve 41, for example, an electromagnetic valve is used, and for the sensor 42, for example, a water pressure gauge is used. As the control unit 43, for example, a computer having a CPU, a memory, and the like is used.

液状化誘発土12には、例えば細粒度含有率が10%程度と低く、大多数の粒径が0.1mm〜1.0mmの間にある比較的均一の砂質土が用いられる。また、液状化誘発土12は、土砂以外であってもよく、例えば、均質な粒径を有する樹脂ビーズやガラスビーズなどの材料を用いることができる。   As the liquefaction-inducing soil 12, for example, a relatively uniform sandy soil having a low fine particle size content of about 10% and a majority particle size of 0.1 mm to 1.0 mm is used. Moreover, the liquefaction induction soil 12 may be other than earth and sand, and for example, materials such as resin beads and glass beads having a uniform particle diameter can be used.

次に、以上の免震構造物1の施工方法について説明する。先ず地表面に掘込みAが掘削され、その掘込みAに土槽10が形成される。土槽10は、杭等により下から支持されてもよい。その後、図6に示すように土槽10の底面10a上に水平移動装置11の枠体21が設置され、枠体21の各方形枠21a内に球体20が収容される。さらに、土槽10には、水供給装置13や弾性装置30が設置される。   Next, the construction method of the above seismic isolation structure 1 is demonstrated. First, the excavation A is excavated on the ground surface, and the earth tub 10 is formed in the excavation A. The earth tub 10 may be supported from below by a pile or the like. After that, as shown in FIG. 6, the frame body 21 of the horizontal movement device 11 is installed on the bottom surface 10 a of the earth tub 10, and the sphere body 20 is accommodated in each rectangular frame 21 a of the frame body 21. Furthermore, a water supply device 13 and an elastic device 30 are installed in the earth tub 10.

次に、図7に示すように球体20が埋まるように液状化誘発土12が土槽10内に入れられる。その後、球体20上に板状体22が載置される。次に、図1に示すように板状体22上に構築物Bの基礎が構築され、土槽10内に地表面と同程度の高さになるように液状化誘発土12が入れられる。次に構築物Bが構築され、その後土槽10内の水位が所定の高さになるように水供給装置13により土槽10内に水が供給される。施工後は、センサ42により土槽10内の水位が監視され、所定の水位より下がると、制御部43により開閉弁41が開放され、管路40を通じて土槽10内に水が供給される。   Next, as shown in FIG. 7, the liquefaction-induced soil 12 is placed in the earth tub 10 so that the sphere 20 is buried. Thereafter, the plate-like body 22 is placed on the sphere 20. Next, as shown in FIG. 1, the foundation of the structure B is constructed on the plate-like body 22, and the liquefaction-inducing soil 12 is placed in the earth tub 10 so as to have the same height as the ground surface. Next, the structure B is constructed, and then water is supplied into the earth tub 10 by the water supply device 13 so that the water level in the earth tub 10 becomes a predetermined height. After construction, the water level in the earth tub 10 is monitored by the sensor 42. When the water level falls below a predetermined water level, the control valve 43 opens the on-off valve 41, and water is supplied into the earth tub 10 through the pipeline 40.

地震発生時には、球体20自身は、底面10a上を枠体21(土槽10の底版に固定していない)とともに水平振動し、球状20上の板状体22に載置された構築物Bも容易に水平振動する。このとき、球体20及び枠体21の水平移動の幅は、構築物Bの水平移動の幅より小さいことから、構造物Bが片持支持状態になる場合がある(図5参照)。
そして、構築物Bが水平移動して弾性装置30に接触すると、弾性装置30が縮んで反発力を生じさせ、構築物Bを土槽10の中央側に押し戻す。さらに構築物Bは、土槽10の中央を通過して水平移動し、反対側の内側壁10bの弾性装置30に接触すると、弾性装置30が縮んで反発力を生じさせ、構築物Bを土槽10の中央側に押し戻す。このような繰り返しにより、地震後の構築物Bの位置ずれ(水平振動による変位(振幅))が復元される。その一方で液状化誘発土12が液状化し、粘性体となって構築物Bの水平振動を減衰させる。これにより、構築物Bが免震される。なお、複数の球体20は、枠体21が整列されているので、水平振動によって構造物Bの下面から散らばることがなく、構造物Bの支持状態は維持される。
When an earthquake occurs, the sphere 20 itself vibrates horizontally on the bottom surface 10 a together with the frame body 21 (not fixed to the bottom plate of the earth tub 10), and the structure B placed on the plate-like body 22 on the sphere 20 is also easy. Vibrates horizontally. At this time, since the horizontal movement width of the sphere 20 and the frame body 21 is smaller than the horizontal movement width of the structure B, the structure B may be in a cantilevered state (see FIG. 5).
When the structure B moves horizontally and contacts the elastic device 30, the elastic device 30 contracts to generate a repulsive force, and pushes the structure B back to the center side of the earth tub 10. Further, when the structure B passes through the center of the earth tub 10 and moves horizontally and contacts the elastic device 30 on the opposite inner wall 10b, the elastic device 30 contracts to generate a repulsive force, and the structure B is transferred to the earth tub 10. Push it back to the center. By such repetition, the displacement (the displacement (amplitude) due to horizontal vibration) of the structure B after the earthquake is restored. On the other hand, the liquefaction-induced soil 12 liquefies and becomes a viscous body, which damps the horizontal vibration of the structure B. Thereby, the structure B is seismically isolated. In addition, since the frame 21 is aligned, the plurality of spheres 20 are not scattered from the lower surface of the structure B due to horizontal vibration, and the support state of the structure B is maintained.

以上の実施の形態によれば、水供給装置13により液状化誘発土12に水を供給できるので、液状化現象を利用した免震を地盤の質にかかわらず確実に行うことができる。また、構築物Bを、土槽10の底面10a上の複数の球体20を用いて支承できるので、簡単な構造で免震を行うことができる。また、球体20を用いることにより、免震に必要な構築物Bの水平方向の移動性を十分に確保できる。   According to the above embodiment, since water can be supplied to the liquefaction induction soil 12 by the water supply device 13, the seismic isolation utilizing the liquefaction phenomenon can be reliably performed regardless of the ground quality. Moreover, since the structure B can be supported using the plurality of spheres 20 on the bottom surface 10a of the earth tub 10, seismic isolation can be performed with a simple structure. In addition, by using the sphere 20, the horizontal mobility of the structure B necessary for seismic isolation can be sufficiently secured.

枠体21は、格子状に形成され、各方形枠21a内に球体20が収容されるので、球体20同士の位置関係が不変になり、それらの球体20上の構築物Bの総ての方向の水平移動を確実に安定的に確保できる。   The frames 21 are formed in a lattice shape, and the spheres 20 are accommodated in the respective rectangular frames 21a. Therefore, the positional relationship between the spheres 20 remains unchanged, and the structures B in all directions of the structures B on the spheres 20 are invariable. The horizontal movement can be secured reliably and stably.

複数の球体20と構築物Bの間には、板状体22が介在されているので、構築物Bから複数の球体20にかかる荷重を均等化できる。また、板状体は、構築物Bの基礎コンクリート打設時の型枠の役割を果たしたすことができる。   Since the plate-like body 22 is interposed between the plurality of spheres 20 and the structure B, the load applied to the plurality of spheres 20 from the structure B can be equalized. In addition, the plate-like body can serve as a formwork when the foundation B of the structure B is placed.

土槽10の内側壁10bには、構築物Bの接触に対し弾性力を生じさせる弾性装置30が設けられているので、地震による構築物Bの位置ずれ(水平振動による変位)を復元できる。なお、上記実施の形態では、弾性装置30が土槽10の内側壁10bに設けられていたが、構築物Bの外側壁に設けられていてもよい。かかる場合も、構築物Bが水平移動して土槽10が弾性装置30に接触すると、弾性装置30が縮んで反発力を生じさせ、構築物Bを土槽10の中央側に押し戻す。さらに構築物Bは、土槽10の中央を通過し、反対側の内側壁10bの弾性装置30に接触すると、弾性装置30が縮んで反発力を生じさせ、構築物Bを土槽10の中央側に押し戻す。このような繰り返しにより、地震後の構築物Bの位置ずれ(水平振動の変位(振幅))が復元される。   Since the inner wall 10b of the earth tub 10 is provided with the elastic device 30 that generates an elastic force against the contact with the structure B, the displacement of the structure B due to the earthquake (displacement due to horizontal vibration) can be restored. In addition, in the said embodiment, although the elastic apparatus 30 was provided in the inner wall 10b of the earth tub 10, you may be provided in the outer side wall of the structure B. FIG. Also in this case, when the structure B moves horizontally and the earth tub 10 contacts the elastic device 30, the elastic device 30 contracts to generate a repulsive force and pushes the structure B back to the center side of the earth tub 10. Furthermore, when the structure B passes through the center of the earth tub 10 and comes into contact with the elastic device 30 on the inner wall 10b on the opposite side, the elastic device 30 contracts to generate a repulsive force, and the structure B is moved toward the center of the earth tub 10. Push back. By such repetition, the displacement of the structure B after the earthquake (horizontal vibration displacement (amplitude)) is restored.

また、上記実施の形態では、土槽10は、上面が開放された鉄筋コンクリートの箱型形状を有しているので、液状化のための保水を適正に行うことができる。   Moreover, in the said embodiment, since the earth tub 10 has the box shape shape of the reinforced concrete with which the upper surface was open | released, the water retention for liquefaction can be performed appropriately.

水供給装置13の制御部43により、センサ42による土槽10内の水位の検出結果に基づいて、水位が所定の高さ以上になるように開閉弁41が制御されるので、土槽10内の水量を確実に維持して、液状化現象による免震を確実に行うことができる。   The on / off valve 41 is controlled by the control unit 43 of the water supply device 13 based on the detection result of the water level in the earth tub 10 by the sensor 42 so that the water level becomes a predetermined height or more. It is possible to reliably maintain seismic isolation due to the liquefaction phenomenon.

以上の実施の形態では、鉄筋コンクリートの土槽10であったが、図8に示すように掘込みAの表面に遮水シート50を敷設して形成された土槽51であってもよい。かかる場合、土槽10の遮水シート50上に、例えば鉄筋コンクリート製の底版52が設置され、その底版52上に水平移動装置11の球体20、枠体21が設けられてもよい。また、この場合、弾性装置30を構築物Bの外壁面に設け、反力壁用に鉄筋コンクリート製の底版52の外縁を立ち上げて、当該底版52の外縁部52aに弾性装置30を反発させるようにしてもよい。また、弾性装置30をバネとして、反力壁と構築物Bを連結しておくこともできる。かかる場合、より簡単な構造で安価な免震構造物1を実現できる。   In the above embodiment, the earthen basin 10 is reinforced concrete, but it may be an earthen basin 51 formed by laying a water shielding sheet 50 on the surface of the digging A as shown in FIG. In such a case, a bottom slab 52 made of, for example, reinforced concrete may be installed on the water-impervious sheet 50 of the earth tub 10, and the sphere 20 and the frame 21 of the horizontal movement device 11 may be provided on the bottom slab 52. In this case, the elastic device 30 is provided on the outer wall surface of the structure B, and the outer edge of the bottom slab 52 made of reinforced concrete is raised for the reaction wall so that the elastic device 30 is repelled by the outer edge portion 52a of the bottom slab 52. May be. Moreover, the reaction force wall and the structure B can be connected using the elastic device 30 as a spring. In such a case, an inexpensive seismic isolation structure 1 with a simpler structure can be realized.

以上、添付図面を参照しながら本発明の好適な実施の形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the idea described in the claims, and these naturally belong to the technical scope of the present invention. It is understood.

例えば以上の実施の形態では、底面10aに対する球体20及び枠体21の敷設範囲は、構築物Bの底面とほぼ同じ面積に合わせて設けられていたが、構築物Bの底面より広い面積として余裕をもって敷設してもよい。構築物Bが敷設範囲から大きくはみ出しては、構造物Bが傾いてしまうことを防止するためである(図5参照)。
また、他の水平移動装置の構成として、枠体21を板状体22側に固定して、球体20を収容した際に球体20の下側が枠体21よりも突出するようにして土槽10の底面10a上を転動するようにしてもよい。
また、弾性装置30が発泡ゴムであったが、弾性力を生じさせるものであれば、高減衰ゴムなどの他のゴムであってもよいし、またバネや、バネを用いたバネ機構等であってもよい。
For example, in the above embodiment, the laying range of the sphere 20 and the frame body 21 with respect to the bottom surface 10a is provided in accordance with substantially the same area as that of the bottom surface of the structure B. May be. This is to prevent the structure B from tilting when the structure B protrudes greatly from the laying range (see FIG. 5).
Further, as another configuration of the horizontal movement device, the frame body 21 is fixed to the plate-like body 22 side, and when the sphere 20 is accommodated, the lower side of the sphere 20 protrudes from the frame body 21 so that the earth tub 10. You may make it roll on the bottom face 10a.
Further, although the elastic device 30 is foamed rubber, it may be other rubber such as high damping rubber as long as it generates an elastic force, or a spring or a spring mechanism using a spring. There may be.

1 免震構造物
2 建物
10 土槽
11 水平移動装置
12 液状化誘発土
13 水供給装置
20 球体
21 枠体
A 掘込み
B 構築物
DESCRIPTION OF SYMBOLS 1 Seismic isolation structure 2 Building 10 Earth tank 11 Horizontal movement apparatus 12 Liquefaction induction soil 13 Water supply apparatus 20 Sphere 21 Frame A A digging B Structure

Claims (10)

地表面が掘削された掘込みに形成され、水を貯留可能な土槽と、
該土槽の底面上に設けられ、構築物の水平移動を許容し且つ構築物の鉛直荷重を支える水平移動装置と、
前記土槽内に充填され、前記土槽内の液状化を誘発して構築物の水平振動を減衰させる液状化誘発土と、
前記土槽内の液状化誘発土に水を供給する水供給装置と、を有し、
前記水平移動装置は、前記構築物の鉛直荷重を支え転動可能な複数の球体と、当該複数の球体を収容し囲む枠体と、を有することを特徴とする、免震構造物。
A soil tank that is formed in an excavation where the ground surface is excavated and can store water;
A horizontal movement device that is provided on the bottom surface of the earth tub and allows horizontal movement of the structure and supports the vertical load of the structure;
Liquefaction-induced soil filled in the earth basin and inducing liquefaction in the earth basin to attenuate horizontal vibrations of the structure;
A water supply device for supplying water to the liquefaction-induced soil in the clay tank,
The horizontal movement device includes a plurality of spheres capable of supporting and rolling the vertical load of the structure, and a frame body that houses and surrounds the plurality of spheres.
前記枠体は、格子状に形成され、当該格子状の各方形枠内に球体が収容されていることを特徴とする、請求項1に記載の免震構造物。   The seismic isolation structure according to claim 1, wherein the frame is formed in a lattice shape, and a sphere is accommodated in each square frame of the lattice shape. 前記複数の球体と前記構築物の間には、板状体が介在されていることを特徴とする、請求項1又は2に記載の免震構造物。   The seismic isolation structure according to claim 1, wherein a plate-like body is interposed between the plurality of spheres and the structure. 前記土槽の内側壁に設けられ、前記構築物の接触に対し弾性力を生じさせる弾性装置、または前記構築物の外側壁に設けられ、前記土槽の内側壁の接触に対し弾性力を生じさせる弾性装置をさらに有することを特徴とする、請求項1〜3のいずれかに記載の免震構造物。   An elastic device that is provided on the inner wall of the earth tub and generates elastic force against the contact of the structure, or an elastic device that is provided on the outer wall of the structure and generates elastic force against the contact of the inner wall of the earth tub The seismic isolation structure according to claim 1, further comprising a device. 前記弾性装置は、発泡ゴムで構成されていることを特徴とする、請求項4に記載の免震構造物。   The seismic isolation structure according to claim 4, wherein the elastic device is made of foamed rubber. 前記土槽は、上面が開放された鉄筋コンクリートの箱型形状を有していることを特徴とする、請求項1〜5のいずれかに記載の免震構造物。   The seismic isolation structure according to any one of claims 1 to 5, wherein the earth tub has a box shape of reinforced concrete with an open upper surface. 前記土槽は、前記掘込みの表面に遮水シートを敷設して形成されていることを特徴とする、請求項1〜5のいずれかに記載の免震構造物。   The seismic isolation structure according to claim 1, wherein the earth tub is formed by laying a water shielding sheet on a surface of the excavation. 前記土槽の遮水シート上に底版が設置され、当該底版上に前記水平移動装置が設けられていることを特徴とする、請求項7に記載の免震構造物。   The seismic isolation structure according to claim 7, wherein a bottom plate is installed on a water shielding sheet of the earth tub, and the horizontal movement device is provided on the bottom plate. 前記水供給装置は、前記土槽内に水を供給する管路と、当該管路を開閉する開閉弁と、 前記土槽内の水位を検出するセンサと、当該センサによる水位の検出結果に基づいて、 前記土槽内の水位が所定の高さ以上になるように前記開閉弁を開閉する制御部とを有することを特徴とする、請求項1〜8のいずれかに記載の免震構造物。   The water supply device is based on a pipe for supplying water into the earth tub, an on-off valve for opening and closing the pipe, a sensor for detecting the water level in the earth tub, and a detection result of the water level by the sensor. And a control unit that opens and closes the on-off valve so that the water level in the earth tub is equal to or higher than a predetermined height. . 請求項1〜9のいずれかに記載の免震構造物を有する建物。   A building having the base-isolated structure according to claim 1.
JP2009130647A 2009-05-29 2009-05-29 Base-isolated structure and building Withdrawn JP2010275802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130647A JP2010275802A (en) 2009-05-29 2009-05-29 Base-isolated structure and building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130647A JP2010275802A (en) 2009-05-29 2009-05-29 Base-isolated structure and building

Publications (1)

Publication Number Publication Date
JP2010275802A true JP2010275802A (en) 2010-12-09

Family

ID=43423012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130647A Withdrawn JP2010275802A (en) 2009-05-29 2009-05-29 Base-isolated structure and building

Country Status (1)

Country Link
JP (1) JP2010275802A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180651A (en) * 2011-02-28 2012-09-20 Sumitomo Forestry Co Ltd Sensitivity control structure of seismic isolator
JP2013002076A (en) * 2011-06-14 2013-01-07 Taisei Corp Pile foundation structure
JP2013142440A (en) * 2012-01-11 2013-07-22 Shibata Industrial Co Ltd Base isolation structure
JP2015017640A (en) * 2013-07-10 2015-01-29 シバタ工業株式会社 Base isolation structure
JP2016056624A (en) * 2014-09-11 2016-04-21 清水建設株式会社 Construction method of buoyancy-type base isolated foundation structure, and buoyancy-type base isolated foundation structure
JP2016113846A (en) * 2014-12-17 2016-06-23 清水建設株式会社 Finite sliding bearing, seismically isolated foundation structure, construction method of finite sliding bearing
WO2021141479A1 (en) * 2020-01-06 2021-07-15 Lamrani Mohammed Foundation bed for safeguarding buildings during horizontal seismic movements
CN114517534A (en) * 2020-11-19 2022-05-20 倪文兵 Shock insulation support with vibration liquefaction material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180651A (en) * 2011-02-28 2012-09-20 Sumitomo Forestry Co Ltd Sensitivity control structure of seismic isolator
JP2013002076A (en) * 2011-06-14 2013-01-07 Taisei Corp Pile foundation structure
JP2013142440A (en) * 2012-01-11 2013-07-22 Shibata Industrial Co Ltd Base isolation structure
JP2015017640A (en) * 2013-07-10 2015-01-29 シバタ工業株式会社 Base isolation structure
JP2016056624A (en) * 2014-09-11 2016-04-21 清水建設株式会社 Construction method of buoyancy-type base isolated foundation structure, and buoyancy-type base isolated foundation structure
JP2016113846A (en) * 2014-12-17 2016-06-23 清水建設株式会社 Finite sliding bearing, seismically isolated foundation structure, construction method of finite sliding bearing
WO2021141479A1 (en) * 2020-01-06 2021-07-15 Lamrani Mohammed Foundation bed for safeguarding buildings during horizontal seismic movements
CN114517534A (en) * 2020-11-19 2022-05-20 倪文兵 Shock insulation support with vibration liquefaction material
CN114517534B (en) * 2020-11-19 2024-06-04 倪文兵 Shock insulation support with vibration liquefaction material

Similar Documents

Publication Publication Date Title
JP2010275802A (en) Base-isolated structure and building
JP4111952B2 (en) Seismic isolation due to electroosmosis during earthquake events
JP5071930B2 (en) Ground liquefaction prevention method and liquefaction resistant ground and building base structure
JP4824441B2 (en) Seismic isolation structure and seismic isolation device
JP5382900B2 (en) How to prevent underground structures from floating due to liquefaction
JP5834223B2 (en) Seismic isolation structure and material with plastic colloid of heavy structure
JP2013245502A (en) Seismic isolation structure
JP2010275803A (en) Base-isolated structure and building
RU2447348C2 (en) Method to install pipelines in seismic regions
JP2016023516A (en) Ground vibration reducing device and ground vibration reducing method
JP6007092B2 (en) Ground liquefaction countermeasure structure using structural load
JP3134768U (en) Weak seismic structure for wooden structures
JP2015165067A (en) Retaining structure
JP2014001619A (en) Structure and method for reducing liquefaction damage of structure
JP6691751B2 (en) Liquefaction seismic isolation structure
JP2000064327A (en) Base isolation structure of structure
JP4900091B2 (en) Embankment structure, embankment method
JP2008232266A (en) Pipe structure
Tarinejad et al. Buried pipeline response analysis to reverse-slip fault displacements
CN219973543U (en) Post-cast strip outer wall soil-resistant anti-seismic water stop device
KR102242353B1 (en) Negative skin friction reduction pile equipped with liquid discharge type negative skin friction reduction device and negative skin friction reduction method
JP2008127865A (en) Base isolation structure
Boominathan et al. Numerical analysis on mitigation of liquefaction induced uplift of shallow tunnels
JP5834222B2 (en) Oil film slider isolation method and oil film slider base isolation structure
Vazinram et al. Seismic hazards for lifelines

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807