JP2010275446A - ETHYLENE-alpha-OLEFIN COPOLYMER FOR CALENDERING AND CALENDER MOLDED ARTICLE - Google Patents

ETHYLENE-alpha-OLEFIN COPOLYMER FOR CALENDERING AND CALENDER MOLDED ARTICLE Download PDF

Info

Publication number
JP2010275446A
JP2010275446A JP2009130160A JP2009130160A JP2010275446A JP 2010275446 A JP2010275446 A JP 2010275446A JP 2009130160 A JP2009130160 A JP 2009130160A JP 2009130160 A JP2009130160 A JP 2009130160A JP 2010275446 A JP2010275446 A JP 2010275446A
Authority
JP
Japan
Prior art keywords
group
zirconium dichloride
ethylene
diphenylmethylene
fluorenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009130160A
Other languages
Japanese (ja)
Other versions
JP5182224B2 (en
Inventor
Susumu Ejiri
晋 江尻
Yoshinobu Nozue
佳伸 野末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009130160A priority Critical patent/JP5182224B2/en
Publication of JP2010275446A publication Critical patent/JP2010275446A/en
Application granted granted Critical
Publication of JP5182224B2 publication Critical patent/JP5182224B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ethylene-α-olefin copolymer for calendering which is excellent in moldability, easy to release from a calendar roll when calendar-rolling, and which gives a molded article having excellent impact strength and anti-blocking property. <P>SOLUTION: The ethylene-α-olefin copolymer for calendering includes an ethylene-based monomer unit and a 3-20C α-olefin-based monomer unit, wherein a density (d) is 860-950 kg/m<SP>3</SP>, a melt flow rate (MFR) is 0.01-5 (g/10 minutes), a ratio (Mw/Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 4-30, a ratio (Mz/Mw) of the Z average molecular weight (Mz) to the weight average molecular weight (Mw) is 2-5, and g* obtained by formula (I): g*=[η]/([η]<SB>GPC</SB>×g<SB>SCB</SB>*) is 0.79-0.95. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、カレンダー成形用エチレン−α−オレフィン共重合体ならびに該共重合体を用いて得られるカレンダー成形体に関するものである。   The present invention relates to an ethylene-α-olefin copolymer for calender molding and a calender molded product obtained by using the copolymer.

エチレン−α−オレフィン共重合体をカレンダー成形することによって、種々のシートやターポリンが製造されている。   Various sheets and tarpaulins have been produced by calendering ethylene-α-olefin copolymers.

例えば特許文献1には、バナジウム系触媒を用いて製造されたエチレン−α−オレフィン共重合体をカレンダー成形して得られるカレンダー成形体が記載されている。また、特許文献2には、シリカ、ヘキサメチルジシラザン、ジエチル亜鉛、ペンタフルオロフェノールおよび水が接触されてなる助触媒成分と、トリイソブチルアルミニウムと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシドとからなるメタロセン触媒を用いて重合されたエチレン−α−オレフィン共重合体を含む組成物をカレンダー成形することが記載されている。   For example, Patent Document 1 describes a calender molded body obtained by calendering an ethylene-α-olefin copolymer produced using a vanadium-based catalyst. Patent Document 2 discloses a promoter component obtained by contacting silica, hexamethyldisilazane, diethyl zinc, pentafluorophenol and water, triisobutylaluminum, and racemic-ethylenebis (1-indenyl) zirconium diphenoxide. And calendering a composition containing an ethylene-α-olefin copolymer polymerized using a metallocene catalyst comprising:

特開2001−114838公報JP 2001-114838 A 特開2007−51283公報JP 2007-51283 A

しかしながら、特許文献1記載のエチレン−α−オレフィン共重合体からなるカレンダー成形体は、耐衝撃性と抗ブロッキング性の面において、さらなる改良が求められていた。また特許文献2記載の組成物は、カレンダー加工によって広幅の成形体を製造する際に、カレンダーロールから成形体を引き剥がしにくいことがあった。
かかる状況の下、本発明が解決しようとする課題は、カレンダー成形時にカレンダーロールからの剥離が容易であって成形性に優れるエチレン−α−オレフィン共重合体であって、かつ、衝撃強度および抗ブロッキング性に優れる成形体が得られるカレンダー成形用エチレン−α−オレフィン共重合体、ならびに、該共重合体を用いたカレンダー成形体を提供することにある。
However, the calendar molded body made of the ethylene-α-olefin copolymer described in Patent Document 1 has been required to be further improved in terms of impact resistance and anti-blocking property. In addition, the composition described in Patent Document 2 may be difficult to peel off the molded body from the calendar roll when producing a wide molded body by calendering.
Under such circumstances, the problem to be solved by the present invention is an ethylene-α-olefin copolymer that is easily peeled from a calender roll during calender molding and has excellent moldability, and has impact strength and resistance. An object of the present invention is to provide an ethylene-α-olefin copolymer for calender molding from which a molded product having excellent blocking properties can be obtained, and a calender molded product using the copolymer.

すなわち本発明の第一は、 エチレンに基づく単量体単位と炭素数3〜20のα−オレフィンに基づく単量体単位を有し、密度(d)が860〜950kg/m3であり、メルトフローレート(MFR)が0.01〜5(g/10分)であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4〜30であり、Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が2〜5であり、下記式(I)で求められるg*が0.79〜0.95である、カレンダー成形用エチレン−α−オレフィン共重合体である。
g*=[η]/([η]GPC×gSCB*) (I)
[式中、[η]は、エチレン−α−オレフィン共重合体の極限粘度(単位:dl/g)を表し、下記式(I−I)によって定義され、[η]GPCは、下記式(I−II)によって定義され、gSCB*は、下記式(I−III)によって定義される。
[η]=23.3×log(ηrel) (I−I)
(式中、ηrelは、エチレン−α−オレフィン共重合体の相対粘度を表す。)
[η]GPC=0.00046×Mv0.725 (I−II)
(式中、Mvは、エチレン−α−オレフィン共重合体の粘度平均分子量を表す。)
SCB*=(1−A)1.725 (I−III)
(式中、Aは、エチレン−α−オレフィン共重合体中の短鎖分岐の含量測定から求めることができる。)]
That is, the first of the present invention has a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, the density (d) is 860 to 950 kg / m 3 , The flow rate (MFR) is 0.01 to 5 (g / 10 min), the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 4 to 30, and the Z average The ratio (Mz / Mw) between the molecular weight (Mz) and the weight average molecular weight (Mw) is 2 to 5, and g * obtained by the following formula (I) is 0.79 to 0.95. It is an ethylene-α-olefin copolymer.
g * = [η] / ([η] GPC × g SCB *) (I)
[In the formula, [η] represents the intrinsic viscosity (unit: dl / g) of the ethylene-α-olefin copolymer, and is defined by the following formula (I-I), and [η] GPC is represented by the following formula ( G SCB * is defined by the following formula (I-III).
[Η] = 23.3 × log (ηrel) (II)
(In the formula, ηrel represents the relative viscosity of the ethylene-α-olefin copolymer.)
[Η] GPC = 0.00046 × Mv 0.725 (I-II)
(In the formula, Mv represents the viscosity average molecular weight of the ethylene-α-olefin copolymer.)
g SCB * = (1-A) 1.725 (I-III)
(In the formula, A can be obtained from the measurement of the content of short chain branches in the ethylene-α-olefin copolymer.)]

本発明の第二は、上記エチレン−α−オレフィン共重合体を用いて得られるカレンダー成形体である。   The second of the present invention is a calendered molding obtained by using the ethylene-α-olefin copolymer.

本発明により、カレンダー成形時にカレンダーロールからの剥離が容易であって成形性に優れるエチレン−α−オレフィン共重合体であって、かつ、衝撃強度および抗ブロッキング性に優れる成形体が得られるカレンダー成形用エチレン−α−オレフィン共重合体、ならびに、該共重合体を用いたカレンダー成形体を提供することができる。   According to the present invention, a calendar molding is obtained which is an ethylene-α-olefin copolymer which is easily peeled off from a calender roll during calender molding and has excellent moldability, and which has excellent impact strength and anti-blocking properties. An ethylene-α-olefin copolymer for use, and a calender molded body using the copolymer can be provided.

本発明のエチレン−α−オレフィン共重合体は、エチレンに基づく単量体単位と炭素数3〜20のα−オレフィンに基づく単量体単位とを含むエチレン−α−オレフィン共重合体である。該α−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン等があげられ、これらは単独で用いられていてもよく、2種以上を併用されていてもよい。α−オレフィンとしては、好ましくは1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンである。   The ethylene-α-olefin copolymer of the present invention is an ethylene-α-olefin copolymer containing a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene, 4 -Methyl- 1-hexene etc. are mention | raise | lifted and these may be used independently and 2 or more types may be used together. The α-olefin is preferably 1-butene, 1-hexene, 4-methyl-1-pentene or 1-octene.

本発明のエチレン−α−オレフィン共重合体は、上記のエチレンに基づく単量体単位および炭素数3〜20のα−オレフィンに基づく単量体単位に加え、本発明の効果を損なわない範囲において、他の単量体に基づく単量体単位を有していてもよい。他の単量体としては、例えば、共役ジエン(例えばブタジエンやイソプレン)、非共役ジエン(例えば1,4−ペンタジエン)、アクリル酸、アクリル酸エステル(例えばアクリル酸メチルやアクリル酸エチル)、メタクリル酸、メタクリル酸エステル(例えばメタクリル酸メチルやメタクリル酸エチル)、酢酸ビニル等があげられる。   The ethylene-α-olefin copolymer of the present invention, in addition to the above-described monomer units based on ethylene and monomer units based on α-olefins having 3 to 20 carbon atoms, does not impair the effects of the present invention. And may have a monomer unit based on another monomer. Examples of other monomers include conjugated dienes (for example, butadiene and isoprene), non-conjugated dienes (for example, 1,4-pentadiene), acrylic acid, acrylic acid esters (for example, methyl acrylate and ethyl acrylate), and methacrylic acid. Methacrylic acid esters (for example, methyl methacrylate and ethyl methacrylate), vinyl acetate and the like.

本発明のエチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常50〜99.5重量%である。またα−オレフィンに基づく単量体単位の含有量は、エチレン−α−オレフィン共重合体の全重量(100重量%)に対して、通常0.5〜50重量%である。   The content of the monomer unit based on ethylene in the ethylene-α-olefin copolymer of the present invention is usually from 50 to 99.75 based on the total weight (100% by weight) of the ethylene-α-olefin copolymer. 5% by weight. The content of the monomer unit based on the α-olefin is usually 0.5 to 50% by weight with respect to the total weight (100% by weight) of the ethylene-α-olefin copolymer.

本発明のエチレン−α−オレフィン共重合体として、好ましくは、エチレンに基づく単量体単位および炭素数4〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、より好ましくは、エチレンに基づく単量体単位および炭素数5〜20のα−オレフィンに基づく単量体単位を有する共重合体であり、さらに好ましくは、エチレンに基づく単量体単位および炭素数6〜8のα−オレフィンに基づく単量体単位を有する共重合体である。   The ethylene-α-olefin copolymer of the present invention is preferably a copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 4 to 20 carbon atoms, more preferably. , A copolymer having a monomer unit based on ethylene and a monomer unit based on an α-olefin having 5 to 20 carbon atoms, more preferably a monomer unit based on ethylene and 6 to 8 carbon atoms. It is a copolymer having monomer units based on α-olefin.

本発明のエチレン−α−オレフィン共重合体としては、例えば、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−オクテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−オクテン共重合体、エチレン−1−ヘキセン−1−オクテン共重合体等があげられ、好ましくはエチレン−1−ヘキセン共重合体、エチレン−4−メチル−1−ペンテン共重合体、エチレン−1−ブテン−1−ヘキセン共重合体、エチレン−1−ブテン−1−オクテン共重合体、エチレン−1−ヘキセン−1−オクテン共重合体である。   Examples of the ethylene-α-olefin copolymer of the present invention include an ethylene-1-butene copolymer, an ethylene-1-hexene copolymer, an ethylene-4-methyl-1-pentene copolymer, and ethylene-1. -Octene copolymer, ethylene-1-butene-1-hexene copolymer, ethylene-1-butene-4-methyl-1-pentene copolymer, ethylene-1-butene-1-octene copolymer, ethylene -1-hexene-1-octene copolymer and the like, preferably ethylene-1-hexene copolymer, ethylene-4-methyl-1-pentene copolymer, ethylene-1-butene-1-hexene copolymer A polymer, an ethylene-1-butene-1-octene copolymer, and an ethylene-1-hexene-1-octene copolymer.

本発明のエチレン−α−オレフィン共重合体の密度(以下、「d」と記載することがある。)は、860〜950kg/mである。得られるカレンダー成形体の衝撃強度を高める観点から、好ましくは940kg/m以下であり、より好ましくは935kg/m以下であり、更に好ましくは930kg/m以下である。また、得られる成形体の抗ブロッキング性を高める観点から、好ましくは870kg/m3以上であり、より好ましくは880kg/m3以上であり、更に好ましくは890kg/m3以上であり、特に好ましくは900kg/m3以上である。該密度は、JIS K6760−1995に記載のアニーリングを行った後、JIS K7112−1980のうち、A法に規定された方法に従って測定される。また、エチレン−α−オレフィン共重合体の密度は、エチレン−α−オレフィン共重合体中のエチレンに基づく単量体単位の含有量により変更することができる。 The density of the ethylene-α-olefin copolymer of the present invention (hereinafter sometimes referred to as “d”) is 860 to 950 kg / m 3 . From the viewpoint of increasing the impact strength of the obtained calendered article, it is preferably 940 kg / m 3 or less, more preferably 935 kg / m 3 or less, and still more preferably 930 kg / m 3 or less. Further, in view of enhancing the anti-blocking property of the resulting molded article, preferably 870 kg / m 3 or more, more preferably 880 kg / m 3 or more, more preferably 890 kg / m 3 or more, particularly preferably 900 kg / m 3 or more. The density is measured according to the method defined in Method A of JIS K7112-1980 after annealing described in JIS K6760-1995. Moreover, the density of an ethylene-alpha-olefin copolymer can be changed with content of the monomer unit based on ethylene in an ethylene-alpha-olefin copolymer.

成形体のブロッキングとは、シート状で重ねたりロール状に巻くなど、成形体同士が直接接触する状態において、経時で成形体同士が接着する現象である。成形体がブロッキングを起こすと成形体として使用できない場合も起こりうる。一般に冷キシレン可溶分に代表される成分が少なくなると、ブロッキングを起こしにくい性質、すなわち抗ブロッキング性が向上する。冷キシレン可溶分は、結晶性の低い成分が多くなる、あるいは低分子量成分が多くなる、と増加する。エチレン−α−オレフィン共重合体における結晶性の低い成分の多少は、共重合体製造時の触媒成分により定まるエチレンとα−オレフィンの共重合性に依存する。   The blocking of the molded body is a phenomenon in which the molded bodies adhere to each other over time in a state where the molded bodies are in direct contact with each other, such as being stacked in a sheet form or wound in a roll form. If the molded body is blocked, it may not be used as a molded body. In general, when the amount of components typified by cold xylene is reduced, the property of preventing blocking, that is, the anti-blocking property is improved. The amount of cold xylene solubles increases as the amount of low crystallinity components increases or the amount of low molecular weight components increases. The amount of the low crystallinity component in the ethylene-α-olefin copolymer depends on the copolymerization properties of ethylene and α-olefin determined by the catalyst component at the time of producing the copolymer.

本発明のエチレン−α−オレフィン共重合体のメルトフローレート(以下、「MFR」と記載することがある。)は、通常、0.01〜5(g/10分)である。該メルトフローレートは、成形加工時の混練負荷を低減する観点から、好ましくは0.05g/10分以上であり、より好ましくは0.1g/10分以上である。該メルトフローレートは、抗ブロッキング性を向上する観点から、好ましくは2g/10分以下であり、より好ましくは1g/10分以下である。該メルトフローレートは、JIS K7210−1995に規定された方法において、温度190℃、荷重21.18Nの条件で、A法により測定される値である。また、エチレン−α−オレフィン共重合体のメルトフローレートは、後述する製造方法において、例えば、水素濃度または重合温度により変更することができ、水素濃度または重合温度を高くすると、エチレン−α−オレフィン共重合体のメルトフローレートが大きくなる。   The melt flow rate (hereinafter sometimes referred to as “MFR”) of the ethylene-α-olefin copolymer of the present invention is usually 0.01 to 5 (g / 10 minutes). The melt flow rate is preferably 0.05 g / 10 min or more, more preferably 0.1 g / 10 min or more, from the viewpoint of reducing the kneading load during molding. The melt flow rate is preferably 2 g / 10 minutes or less, more preferably 1 g / 10 minutes or less, from the viewpoint of improving antiblocking properties. The melt flow rate is a value measured by Method A under the conditions of a temperature of 190 ° C. and a load of 21.18 N in the method defined in JIS K7210-1995. Further, the melt flow rate of the ethylene-α-olefin copolymer can be changed by, for example, the hydrogen concentration or the polymerization temperature in the production method described later. When the hydrogen concentration or the polymerization temperature is increased, the ethylene-α-olefin copolymer is changed. The melt flow rate of the copolymer is increased.

本発明のエチレン−α−オレフィン共重合体の重量平均分子量(以下、「Mw」と記載することがある。)と数平均分子量(以下、「Mn」と記載することがある。)との比(以下、「Mw/Mn」と記載することがある。)は、4〜30であり、Z平均分子量(以下、「Mz」と記載することがある。)と重量平均分子量(Mw)との比(以下、「Mz/Mw」と記載することがある。)は、2〜5である。Mw/Mnが小さすぎると、カレンダー成形時の混練負荷が高くなり、カレンダーロールからの剥離性が悪化することがある。Mw/Mnは、好ましくは4.5以上であり、より好ましくは5.5以上であり、さらに好ましくは6以上である。Mz/Mwが大きすぎると、カレンダー成形時に成形体がちぎれるといった現象が生じることがある。Mz/Mwは、好ましくは4.5以下である。Mw/Mnが大きすぎる、あるいはMz/Mwが小さすぎると、得られる成形体の衝撃強度が低くなることがある。またMw/Mnが大きすぎると抗ブロッキング性が低下することがある。Mw/Mnは、好ましくは25以下であり、より好ましくは20以下であり、さらに好ましくは18以下であり、特に好ましくは15以下である。Mz/Mwは、好ましくは2.5以上である。なお、該Mw/Mnと該Mz/Mwとは、ゲル・パーミエイション・クロマトグラフ(GPC)法により、数平均分子量(Mn)、重量平均分子量(Mw)およびZ平均分子量(Mz)を測定し、MwをMnで除し、MzをMwで除すことにより求められる。また、該Mw/Mnは、後述する製造方法において、例えば、水素濃度または重合温度により変更することができ、水素濃度または重合温度を高くすると、エチレン−α−オレフィン共重合体のMw/Mnが大きくなる。該Mz/Mwは、後述する製造方法において、例えば、遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができ、遷移金属化合物(A2)の使用割合を低くすることによりエチレン−α−オレフィン共重合体のMz/Mwが小さくなる。   The ratio of the weight average molecular weight (hereinafter sometimes referred to as “Mw”) and the number average molecular weight (hereinafter sometimes referred to as “Mn”) of the ethylene-α-olefin copolymer of the present invention. (Hereinafter, sometimes referred to as “Mw / Mn”) is 4 to 30, and is the Z average molecular weight (hereinafter sometimes referred to as “Mz”) and the weight average molecular weight (Mw). The ratio (hereinafter sometimes referred to as “Mz / Mw”) is 2-5. When Mw / Mn is too small, the kneading load at the time of calendar molding becomes high, and the peelability from the calendar roll may be deteriorated. Mw / Mn is preferably 4.5 or more, more preferably 5.5 or more, and further preferably 6 or more. If Mz / Mw is too large, a phenomenon may occur in which the molded body is torn off during calendar molding. Mz / Mw is preferably 4.5 or less. If Mw / Mn is too large or Mz / Mw is too small, the impact strength of the resulting molded product may be low. On the other hand, if Mw / Mn is too large, the anti-blocking property may be lowered. Mw / Mn is preferably 25 or less, more preferably 20 or less, still more preferably 18 or less, and particularly preferably 15 or less. Mz / Mw is preferably 2.5 or more. In addition, this Mw / Mn and this Mz / Mw measure the number average molecular weight (Mn), the weight average molecular weight (Mw), and the Z average molecular weight (Mz) by gel permeation chromatograph (GPC) method. And Mw is divided by Mn, and Mz is divided by Mw. The Mw / Mn can be changed by, for example, the hydrogen concentration or the polymerization temperature in the production method described later. When the hydrogen concentration or the polymerization temperature is increased, the Mw / Mn of the ethylene-α-olefin copolymer is increased. growing. The Mz / Mw can be changed by, for example, the use ratio of the transition metal compound (A1) and the transition metal compound (A2) in the production method described later, and the use ratio of the transition metal compound (A2) is lowered. This reduces the Mz / Mw of the ethylene-α-olefin copolymer.

Mz/Mwは、高分子量成分の分子量分布を表すもので、Mw/Mnに比してMz/Mwが小さいことは高分子量成分の分子量分布が狭く、非常に高い分子量の成分割合が少ないことを意味し、Mw/Mnに比してMz/Mwが大きいことは高分子量成分の分子量分布が広く、非常に高い分子量の成分割合が高いことを意味する。カレンダー成形時の混練負荷を低減する観点から、好ましくは(Mw/Mn)−(Mz/Mw)が1以上であり、より好ましくは(Mw/Mn)−(Mz/Mw)が2以上である。(Mw/Mn)−(Mz/Mw)は、例えば、遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができ、遷移金属化合物(A2)の使用割合を多くすると、エチレン−α−オレフィン共重合体の(Mw/Mn)−(Mz/Mw)が大きくなる。また、適切な条件下で予備重合を実施することでも、(Mw/Mn)−(Mz/Mw)を大きくすることができる。   Mz / Mw represents the molecular weight distribution of the high molecular weight component. A smaller Mz / Mw compared to Mw / Mn means that the molecular weight distribution of the high molecular weight component is narrow and the proportion of the component having a very high molecular weight is small. It means that Mz / Mw is larger than Mw / Mn, which means that the molecular weight distribution of the high molecular weight component is wide and the component ratio of very high molecular weight is high. From the viewpoint of reducing the kneading load during calendar molding, preferably (Mw / Mn)-(Mz / Mw) is 1 or more, more preferably (Mw / Mn)-(Mz / Mw) is 2 or more. . (Mw / Mn)-(Mz / Mw) can be changed, for example, depending on the use ratio of the transition metal compound (A1) and the transition metal compound (A2), and the use ratio of the transition metal compound (A2) is increased. Then, (Mw / Mn)-(Mz / Mw) of the ethylene-α-olefin copolymer increases. Also, (Mw / Mn)-(Mz / Mw) can be increased by carrying out prepolymerization under appropriate conditions.

本発明のエチレン−α−オレフィン共重合体は、下記式(III)で定義されるg*が0.79〜0.95である(g*については以下の文献を参考にした:Developments in Polymer Characterisation-4,. J. V.. Dawkins,. Ed.,. Applied Science, London,. 1983, Chapter. I,. 「Characterization. of. Long Chain Branching in Polymers,」 Th. G. Scholte著)。
g*=[η]/([η]GPC×gSCB*) (III)
[式中、[η]は、エチレン−α−オレフィン共重合体の極限粘度(単位:dl/g)を表し、下記式(III−I)によって定義される。下記式(III−II)によって定義されるものとした。gSCB*は、下記式(III−III)によって定義される。
[η]=23.3×log(ηrel) (III−I)
(式中、ηrelは、エチレン−α−オレフィン共重合体の相対粘度を表す。)
[η]GPC=0.00046×Mv0.725 (III−II)
(式中、Mvは、エチレン−α−オレフィン共重合体の粘度平均分子量を表す。)
SCB*=(1−A)1.725 (III−III)
(式中、Aは、エチレン−α−オレフィン共重合体中の短鎖分岐の含量測定から直接求めることができる。)]
In the ethylene-α-olefin copolymer of the present invention, g * defined by the following formula (III) is 0.79 to 0.95 (for g *, the following document was referred to: Developments in Polymer) Characterization-4, JV Dawkins, Ed., Applied Science, London, 1983, Chapter I, “Characterization. Of Long Chain Branching in Polymers,” by Th. G. Scholte).
g * = [η] / ([η] GPC × g SCB *) (III)
[Wherein [η] represents the intrinsic viscosity (unit: dl / g) of the ethylene-α-olefin copolymer and is defined by the following formula (III-I). It was defined by the following formula (III-II). g SCB * is defined by the following formula (III-III).
[Η] = 23.3 × log (ηrel) (III-I)
(In the formula, ηrel represents the relative viscosity of the ethylene-α-olefin copolymer.)
[Η] GPC = 0.00046 × Mv 0.725 (III-II)
(In the formula, Mv represents the viscosity average molecular weight of the ethylene-α-olefin copolymer.)
g SCB * = (1-A) 1.725 (III-III)
(In the formula, A can be determined directly from the measurement of the content of short chain branches in the ethylene-α-olefin copolymer.)]

[η]GPCは、分子量分布がエチレン−α−オレフィン共重合体と同一の分子量分布であって、かつ分子鎖が直鎖状であると仮定した重合体の極限粘度(単位:dl/g)を表す。
SCB*は、エチレン−α−オレフィン共重合体に短鎖分岐を導入することによって生じるg*への寄与を表す。
式(III−II)は、L. H. Tung著 Journal of Polymer Science, 36, 130 (1959) 287-294頁に記載の式を用いた。
[Η] GPC is the intrinsic viscosity (unit: dl / g) of a polymer that is assumed to have the same molecular weight distribution as that of the ethylene-α-olefin copolymer and that the molecular chain is linear. Represents.
g SCB * represents the contribution to g * produced by introducing short chain branching into the ethylene-α-olefin copolymer.
As the formula (III-II), the formula described in Journal of Polymer Science, 36, 130 (1959) pp. 287-294 by LH Tung was used.

エチレン−α−オレフィン共重合体の相対粘度(ηrel)は、熱劣化防止剤としてブチルヒドロキシトルエン(BHT)を0.5重量%含むテトラリン100mlに、オレフィン重合体100mgを135℃で溶解してサンプル溶液を調製し、ウベローデ型粘度計を用いて前記サンプル溶液と熱劣化防止剤としてBHTを0.5重量%のみを含むテトラリンからなるブランク溶液との降下時間から算出される。   The relative viscosity (ηrel) of the ethylene-α-olefin copolymer is a sample prepared by dissolving 100 mg of an olefin polymer at 135 ° C. in 100 ml of tetralin containing 0.5% by weight of butylhydroxytoluene (BHT) as a thermal degradation inhibitor. A solution is prepared, and is calculated from the falling time of the sample solution and a blank solution made of tetralin containing only 0.5% by weight of BHT as a thermal degradation inhibitor using an Ubbelohde viscometer.

エチレン−α−オレフィン共重合体の粘度平均分子量(Mv)は、下式(III−IV)

Figure 2010275446
で定義され、a=0.725とした。 The viscosity average molecular weight (Mv) of the ethylene-α-olefin copolymer is represented by the following formula (III-IV)
Figure 2010275446
And a = 0.725.

式(III−III)中のAについては、短鎖分岐の分岐炭素数をn(例えばα−オレフィンとしてブテンを用いた場合はn=2、ヘキセンを用いた場合はn=4)とし、NMRないしは赤外分光より求められる炭素数1000個あたりの短鎖分岐数をyとした時、
A=((12×n+2n+1)×y)/((1000−2y−2)×14+(y+2)×15+y×13)
として見積もった。
For A in formula (III-III), the number of short-chain branched carbons is n (for example, n = 2 when butene is used as the α-olefin, n = 4 when hexene is used), and NMR Or when the number of short chain branches per 1000 carbon atoms determined by infrared spectroscopy is y,
A = ((12 × n + 2n + 1) × y) / ((1000−2y−2) × 14 + (y + 2) × 15 + y × 13)
As estimated.

g*は、長鎖分岐に起因する、溶液中での分子の収縮度を表す指標であり、分子鎖あたりの長鎖分岐を含有する量が多ければ分子鎖の収縮は大きくなり、g*は小さくなる。エチレン−α−オレフィン共重合体のg*は、混練負荷を低減させる観点から、好ましくは0.90以下であり、より好ましくは0.85以下である。g*が大きい場合、長鎖分岐が十分に含まれていないため、十分に混練負荷を低減できない。また、エチレン−α−オレフィン共重合体のg*は、成形体の衝撃強度向上の観点から、好ましくは0.80以上であり、より好ましくは0.81以上である。g*が小さすぎると、結晶を形成したときの分子鎖の広がりが小さすぎるため、タイ分子の生成確率が落ち、衝撃強度が低下する。g*は、例えば適切な条件下で予備重合を実施することで低くすることができる。   g * is an index representing the degree of contraction of a molecule in a solution caused by long chain branching. When the amount of long chain branching per molecular chain is large, the contraction of the molecular chain increases. Get smaller. From the viewpoint of reducing the kneading load, g * of the ethylene-α-olefin copolymer is preferably 0.90 or less, more preferably 0.85 or less. When g * is large, long chain branching is not sufficiently contained, and thus the kneading load cannot be sufficiently reduced. Further, g * of the ethylene-α-olefin copolymer is preferably 0.80 or more, and more preferably 0.81 or more, from the viewpoint of improving the impact strength of the molded product. If g * is too small, the molecular chain spread when the crystal is formed is too small, so the probability of tie molecule formation decreases and the impact strength decreases. g * can be lowered, for example, by carrying out prepolymerization under suitable conditions.

本発明のエチレン−α−オレフィン共重合体の流動の活性化エネルギー(以下、「Ea」と記載することがある。)は、カレンダー成形時の混練負荷をより低減しカレンダーロールからの剥離性を向上する観点から、好ましくは60kJ/mol以上であり、より好ましくは70kJ/mol以上である。また、流動の活性化エネルギーは、カレンダー成形時に成形体がちぎれにくくするためには、好ましくは150kJ/mol以下であり、より好ましくは130kJ/mol以下であり、更に好ましくは110kJ/mol以下である。また、流動の活性化エネルギーは、後述する製造方法において、例えば、遷移金属化合物(A1)と遷移金属化合物(A2)との使用割合により変更することができ、遷移金属化合物(A2)の使用割合を高くすると、エチレン−α−オレフィン共重合体のEaが大きくなる。   The activation energy of the flow of the ethylene-α-olefin copolymer of the present invention (hereinafter sometimes referred to as “Ea”) reduces the kneading load at the time of calendering and improves the peelability from the calender roll. From the viewpoint of improvement, it is preferably 60 kJ / mol or more, more preferably 70 kJ / mol or more. Further, the activation energy of the flow is preferably 150 kJ / mol or less, more preferably 130 kJ / mol or less, and further preferably 110 kJ / mol or less in order to make the molded body difficult to tear at the time of calender molding. . In addition, the flow activation energy can be changed by, for example, the use ratio of the transition metal compound (A1) and the transition metal compound (A2) in the production method described later, and the use ratio of the transition metal compound (A2). When E is increased, Ea of the ethylene-α-olefin copolymer is increased.

流動の活性化エネルギー(Ea)は、温度−時間重ね合わせ原理に基づいて、190℃での溶融複素粘度(単位はPa・secである。)の角周波数(単位:rad/sec)依存性を示すマスターカーブを作成する際のシフトファクター(aT)からアレニウス型方程式により算出される数値であって、以下に示す方法で求められる値である。すなわち、130℃、150℃、170℃および190℃夫々の温度(T、単位:℃)におけるエチレン−α−オレフィン共重合体の溶融複素粘度−角周波数曲線(溶融複素粘度の単位はPa・sec、角周波数の単位はrad/secである。)を、温度−時間重ね合わせ原理に基づいて、各温度(T)での溶融複素粘度−角周波数曲線毎に、190℃でのエチレン系共重合体の溶融複素粘度−角周波数曲線に重ね合わせた際に得られる各温度(T)でのシフトファクター(aT)を求め、夫々の温度(T)と、各温度(T)でのシフトファクター(aT)とから、最小自乗法により[ln(aT)]と[1/(T+273.16)]との一次近似式(下記(I)式)を算出する。次に、該一次式の傾きmと下記式(II)とからEaを求める。
ln(aT) = m(1/(T+273.16))+n (I)
Ea = |0.008314×m| (II)
T :シフトファクター
Ea:流動の活性化エネルギー(単位:kJ/mol)
T :温度(単位:℃)
上記計算は、市販の計算ソフトウェアを用いてもよく、該計算ソフトウェアとしては、Rheometrics社製 Rhios V.4.4.4などがあげられる。
なお、シフトファクター(aT)は、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線を、log(Y)=−log(X)軸方向に移動させて(但し、Y軸を溶融複素粘度、X軸を角周波数とする。)、190℃での溶融複素粘度−角周波数曲線に重ね合わせた際の移動量であり、該重ね合わせでは、夫々の温度(T)における溶融複素粘度−角周波数の両対数曲線は、各曲線ごとに、角周波数をaT倍に、溶融複素粘度を1/aT倍に移動させる。また、130℃、150℃、170℃および190℃の4点の値から(I)式を最小自乗法で求めるときの相関係数は、通常、0.99以上である。
The activation energy (Ea) of the flow is dependent on the angular frequency (unit: rad / sec) dependence of the melt complex viscosity (unit: Pa · sec) at 190 ° C. based on the temperature-time superposition principle. It is a numerical value calculated by the Arrhenius type equation from the shift factor (a T ) when creating the master curve shown, and is a value obtained by the method shown below. That is, the melt complex viscosity-angular frequency curve of the ethylene-α-olefin copolymer at temperatures of 130 ° C., 150 ° C., 170 ° C. and 190 ° C. (T, unit: ° C.) (the unit of melt complex viscosity is Pa · sec. The unit of the angular frequency is rad / sec.), Based on the temperature-time superposition principle, for each melt complex viscosity-angular frequency curve at each temperature (T), The shift factor (a T ) at each temperature (T) obtained when superposed on the melt complex viscosity-angular frequency curve of the coalescence is obtained, and each temperature (T) and the shift factor at each temperature ( T ) are obtained. From (a T ), a first-order approximate expression (formula (I) below) of [ln (a T )] and [1 / (T + 273.16)] is calculated by the method of least squares. Next, Ea is obtained from the slope m of the linear expression and the following expression (II).
ln (a T ) = m (1 / (T + 273.16)) + n (I)
Ea = | 0.008314 × m | (II)
a T : Shift factor Ea: Activation energy of flow (unit: kJ / mol)
T: Temperature (unit: ° C)
For the calculation, commercially available calculation software may be used. As the calculation software, Rheos V. manufactured by Rheometrics is used. 4.4.4.
The shift factor (a T ) is obtained by moving the logarithmic curve of the melt complex viscosity-angular frequency at each temperature (T) in the log (Y) = − log (X) axis direction (however, the Y axis Is the complex viscosity of the melt, and the X axis is the angular frequency.), And the amount of movement when superposed on the melt complex viscosity-angular frequency curve at 190 ° C., in the superposition, melting at each temperature (T) The logarithmic curve of complex viscosity-angular frequency shifts the angular frequency by a T times and the melt complex viscosity by 1 / a T times for each curve. Moreover, the correlation coefficient when calculating | requiring (I) Formula by the least squares method from the value of four points | pieces, 130 degreeC, 150 degreeC, 170 degreeC, and 190 degreeC is usually 0.99 or more.

溶融複素粘度−角周波数曲線の測定は、粘弾性測定装置(例えば、Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800など。)を用い、通常、ジオメトリー:パラレルプレート、プレート直径:25mm、プレート間隔:1.5〜2mm、ストレイン:5%、角周波数:0.1〜100rad/秒の条件で行われる。なお、測定は窒素雰囲気下で行われ、また、測定試料には予め酸化防止剤を適量(例えば1000ppm。)を配合することが好ましい。   The melt complex viscosity-angular frequency curve is measured using a viscoelasticity measuring apparatus (for example, Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), and usually geometry: parallel plate, plate diameter: 25 mm, plate interval: 1. It is performed under the conditions of 5 to 2 mm, strain: 5%, angular frequency: 0.1 to 100 rad / sec. The measurement is performed in a nitrogen atmosphere, and it is preferable that an appropriate amount (for example, 1000 ppm) of an antioxidant is added to the measurement sample in advance.

本発明のエチレン−α−オレフィン共重合体のメルトフローレート比(以下、「MFRR」と記載することがある。)は、成形加工時の混練負荷をより低減する観点から、好ましくは70以上であり、より好ましくは80以上であり、更に好ましくは90以上である。また、得られる成形体の衝撃強度をより高める観点から、好ましくは200以下であり、より好ましくは180以下である。該MFRRは、JIS K7210−1995に規定された方法において、荷重211.82N、温度190℃の条件で測定されるメルトフローレート(以下、「H−MFR」と記載することがある。)を、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)で除した値である。また、MFRRは、後述する製造方法において、例えば、水素濃度により変更することができ、水素濃度を高くすると、エチレン−α−オレフィン共重合体のMFRRが小さくなる。   The melt flow rate ratio of the ethylene-α-olefin copolymer of the present invention (hereinafter sometimes referred to as “MFRR”) is preferably 70 or more from the viewpoint of further reducing the kneading load during the molding process. Yes, more preferably 80 or more, still more preferably 90 or more. Moreover, from a viewpoint which raises the impact strength of the molded object obtained more, Preferably it is 200 or less, More preferably, it is 180 or less. The MFRR is a melt flow rate (hereinafter sometimes referred to as “H-MFR”) measured under conditions of a load of 211.82 N and a temperature of 190 ° C. in the method defined in JIS K7210-1995. In the method defined in JIS K7210-1995, it is a value divided by the melt flow rate (MFR) measured under conditions of a load of 21.18 N and a temperature of 190 ° C. In addition, MFRR can be changed by, for example, the hydrogen concentration in the production method described later. When the hydrogen concentration is increased, the MFRR of the ethylene-α-olefin copolymer is decreased.

本発明のエチレン−α−オレフィン共重合体は、エチレン−α−オレフィン共重合体の示差走査熱量測定から得られる融解曲線において、25℃から融解終了温度までの範囲に存在する融解ピークが単一である共重合体であることが好ましい。融解ピークが複数存在するということは、エチレン−α−オレフィン共重合体の融解曲線において、最大融解ピーク(ピーク高さが最も大きい融解ピーク)とは別の融解ピークが存在するということであり、エチレン−α−オレフィン共重合体の組成分布(エチレン−α−オレフィン共重合体に含まれる各重合体成分間での単量体単位の含有割合の分布)が広いことを意味しており、結晶性が低い成分を含む。結晶性が低い成分は、成形加工時に揮発しやすく、清浄性に優れる成形体が得られにくい。本発明の好ましいエチレン−α−オレフィン共重合体は、融解ピークが単一である、すなわち組成分布が狭いため、清浄性に優れる成形体を得ることができる。   The ethylene-α-olefin copolymer of the present invention has a single melting peak existing in the range from 25 ° C. to the end of melting temperature in the melting curve obtained from differential scanning calorimetry of the ethylene-α-olefin copolymer. It is preferable that it is a copolymer which is. The presence of a plurality of melting peaks means that there is a melting peak different from the maximum melting peak (melting peak having the highest peak height) in the melting curve of the ethylene-α-olefin copolymer, This means that the composition distribution of the ethylene-α-olefin copolymer (distribution of the content ratio of monomer units among the polymer components contained in the ethylene-α-olefin copolymer) is wide, and the crystal Contains ingredients with low properties. Ingredients having low crystallinity tend to volatilize during molding, and it is difficult to obtain a molded article having excellent cleanliness. Since the preferable ethylene-α-olefin copolymer of the present invention has a single melting peak, that is, a narrow composition distribution, it is possible to obtain a molded article having excellent cleanliness.

なお、エチレン−α−オレフィン共重合体の融解曲線は、示差走査熱量計(例えば、パーキンエルマー社製の示差走査型熱量計DSC−7型)により、例えば、約10mgの試料を封入したアルミニウムパンを、(1)150℃で5分間保持し、(2)5℃/分で150℃から20℃まで降温し、(3)20℃で2分間保持し、(4)5℃/分で20℃から融解終了温度+約20℃(通常150℃程度)まで昇温して、(4)の測定で得られた示差走査熱量測定曲線から得られる。   In addition, the melting curve of the ethylene-α-olefin copolymer is measured by using a differential scanning calorimeter (for example, a differential scanning calorimeter DSC-7 manufactured by Perkin Elmer), for example, an aluminum pan in which about 10 mg of a sample is sealed. (1) held at 150 ° C. for 5 minutes, (2) lowered from 150 ° C. to 20 ° C. at 5 ° C./minute, (3) held at 20 ° C. for 2 minutes, and (4) 20 at 5 ° C./minute. It is obtained from the differential scanning calorimetry curve obtained in (4) by raising the temperature from 0 ° C. to the melting end temperature + about 20 ° C. (usually about 150 ° C.).

本発明のエチレン−α−オレフィン共重合体の製造方法としては、下記一般式(1)で表される遷移金属化合物(A1)と、下記一般式(3)で表される遷移金属化合物(A2)と、後述の助触媒成分(B)とを接触させて形成される重合用触媒であって、遷移金属化合物(A1)と遷移金属化合物(A2)とのモル比((A1)/(A2))を0.5〜50で、接触させる重合用触媒の存在下、前記共重合体のメルトフローレート(MFR)が0.01(g/10分)以上〜1(g/10分)未満になるように、エチレンと炭素数3〜20のα−オレフィンとを共重合する方法をあげることができる。(A1)/(A2)は、溶融状態におけるエチレン−α−オレフィン共重合体の混練負荷を低くする観点から、かつ機械強度を高める観点から、好ましくは、1以上である。また、(A1)/(A2)は、カレンダー成形時のカレンダーロールからの剥離性を高める観点から、好ましくは、好ましくは、30以下であり、より好ましくは20以下である。   As a manufacturing method of the ethylene-alpha-olefin copolymer of this invention, the transition metal compound (A1) represented by the following general formula (1) and the transition metal compound (A2) represented by the following general formula (3) ) And a cocatalyst component (B) to be described later, and a molar ratio of the transition metal compound (A1) to the transition metal compound (A2) ((A1) / (A2) )) At 0.5 to 50 in the presence of a polymerization catalyst to be contacted, the melt flow rate (MFR) of the copolymer is 0.01 (g / 10 min) or more to less than 1 (g / 10 min) The method of copolymerizing ethylene and a C3-C20 alpha olefin can be mentioned so that it may become. (A1) / (A2) is preferably 1 or more from the viewpoint of reducing the kneading load of the ethylene-α-olefin copolymer in the molten state and increasing the mechanical strength. Further, (A1) / (A2) is preferably 30 or less, more preferably 20 or less, from the viewpoint of enhancing the peelability from the calender roll during calendar molding.

Figure 2010275446

[式中、M1は元素周期律表の第4族の遷移金属原子を表し、X1およびR1は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のX1は互いに同じであっても異なっていてもよく、複数のR1は互いに同じであっても異なっていてもよく、Q1は下記一般式(2)で表される架橋基を表す。
Figure 2010275446
(式中、mは1〜5の整数であり、J1は元素周期律表の第14族の原子を表し、R2は、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のR2は互いに同じであっても異なっていてもよい。)]
Figure 2010275446

[Wherein, M 1 represents a group 4 transition metal atom in the periodic table of the elements, and X 1 and R 1 are each independently a hydrogen atom, a halogen atom, or a C 1-20 substituted group. A good hydrocarbyl group, an optionally substituted hydrocarbyloxy group having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, or a substituted amino group having 1 to 20 carbon atoms, and a plurality of X 1 May be the same as or different from each other, the plurality of R 1 may be the same or different from each other, and Q 1 represents a bridging group represented by the following general formula (2).
Figure 2010275446
(In the formula, m is an integer of 1 to 5, J 1 represents an atom belonging to Group 14 of the periodic table, and R 2 is a hydrogen atom, a halogen atom, or a C 1-20 substituted atom. A hydrocarbyl group having 1 to 20 carbon atoms, a hydrocarbyloxy group optionally having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, or a substituted amino group having 1 to 20 carbon atoms, and a plurality of R 2 may be the same or different from each other.)]

Figure 2010275446

[式中、M2は元素周期律表の第4族の遷移金属原子を表し、X2、R3およびR4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のX2は互いに同じであっても異なっていてもよく、複数のR3は互いに同じであっても異なっていてもよく、複数のR4は互いに同じであっても異なっていてもよく、Q2は、下記一般式(4)で表される架橋基を表す。
Figure 2010275446
(式中、nは1〜5の整数であり、J2は元素周期律表の第14族の原子を表し、R5は、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のR5は互いに同じであっても異なっていてもよい。)]
Figure 2010275446

[Wherein, M 2 represents a transition metal atom of Group 4 of the periodic table, and X 2 , R 3, and R 4 are each independently a hydrogen atom, a halogen atom, or a C 1-20 substituted group. A hydrocarbyl group optionally having 1 to 20 carbon atoms, a hydrocarbyloxy group optionally having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, or a substituted amino group having 1 to 20 carbon atoms. X 2 may be the same or different from each other, the plurality of R 3 may be the same or different from each other, and the plurality of R 4 may be the same or different from each other. Q 2 represents a crosslinking group represented by the following general formula (4).
Figure 2010275446
(In the formula, n is an integer of 1 to 5, J 2 represents an atom belonging to Group 14 of the periodic table, and R 5 is a hydrogen atom, a halogen atom, or a C 1-20 substituted atom. A hydrocarbyl group having 1 to 20 carbon atoms, a hydrocarbyloxy group optionally having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, or a substituted amino group having 1 to 20 carbon atoms, and a plurality of R 5 may be the same or different from each other.)]

一般式(1)のM1および一般式(3)のM2は、元素周期律表の第4族の遷移金属原子を表し、例えば、チタン原子、ジルコニウム原子、ハフニウム原子などがあげられる。 M 1 in the general formula (1) and M 2 in the general formula (3) represent a transition metal atom of Group 4 of the periodic table of elements, and examples thereof include a titanium atom, a zirconium atom, and a hafnium atom.

一般式(1)のX1、R1、一般式(3)のX2、R3、R4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のX1は互いに同じであっても異なっていてもよく、複数のR1は互いに同じであっても異なっていてもよく、複数のX2は互いに同じであっても異なっていてもよく、複数のR3は互いに同じであっても異なっていてもよく、複数のR4は互いに同じであっても異なっていてもよい。 X 1 , R 1 in the general formula ( 1 ) and X 2 , R 3 , R 4 in the general formula (3) may each independently be a hydrogen atom, a halogen atom, or a C 1-20 substituent. A hydrocarbyl group, an optionally substituted hydrocarbyloxy group having 1 to 20 carbon atoms, a substituted silyl group having 1 to 20 carbon atoms, or a substituted amino group having 1 to 20 carbon atoms, and a plurality of X 1 are The plurality of R 1 may be the same or different from each other, the plurality of X 2 may be the same or different from each other, and the plurality of R 3 May be the same or different from each other, and the plurality of R 4 may be the same or different from each other.

1、R1、X2、R3およびR4のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などがあげられる。 Examples of the halogen atom for X 1 , R 1 , X 2 , R 3 and R 4 include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

1、R1、X2、R3およびR4の炭素数1〜20の置換されていてもよいハイドロカルビル基としては、炭素数1〜20のアルキル基、炭素数1〜20のハロゲン化アルキル基、炭素数7〜20のアラルキル基、炭素数6〜20のアリール基などがあげられる。 Examples of the optionally substituted hydrocarbyl group having 1 to 20 carbon atoms of X 1 , R 1 , X 2 , R 3 and R 4 include an alkyl group having 1 to 20 carbon atoms and a halogen having 1 to 20 carbon atoms. An alkyl group, an aralkyl group having 7 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the like.

炭素数1〜20のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、イソペンチル基、n−ヘキシル基、n−へプチル基、n−オクチル基、n−デシル基、n−ノニル基、n−デシル基、n−ドデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基などがあげられる。   Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, Isopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group, n-nonyl group, n-decyl group, n-dodecyl group, n-dodecyl group, n-tridecyl group, n -Tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like can be mentioned.

炭素数1〜20のハロゲン化アルキル基としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、ヨードメチル基、ジヨードメチル基、トリヨードメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、テトラクロロエチル基、ペンタクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、テトラブロモエチル基、ペンタブロモエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロドデシル基、パーフルオロペンタデシル基、パーフルオロエイコシル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘキシル基、パークロロオクチル基、パークロロドデシル基、パークロロペンタデシル基、パークロロエイコシル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘキシル基、パーブロモオクチル基、パーブロモドデシル基、パーブロモペンタデシル基、パーブロモエイコシル基などがあげられる。   Examples of the halogenated alkyl group having 1 to 20 carbon atoms include fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloromethyl group, dichloromethyl group, trichloromethyl group, bromomethyl group, dibromomethyl group, and tribromomethyl. Group, iodomethyl group, diiodomethyl group, triiodomethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, tetrafluoroethyl group, pentafluoroethyl group, chloroethyl group, dichloroethyl group, trichloroethyl group, tetrachloroethyl group , Pentachloroethyl group, bromoethyl group, dibromoethyl group, tribromoethyl group, tetrabromoethyl group, pentabromoethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group Group, perfluorooctyl group, perfluorododecyl group, perfluoropentadecyl group, perfluoroeicosyl group, perchloropropyl group, perchlorobutyl group, perchloropentyl group, perchlorohexyl group, perchlorooctyl group, Perchlorododecyl group, perchloropentadecyl group, perchloroeicosyl group, perbromopropyl group, perbromobutyl group, perbromopentyl group, perbromohexyl group, perbromooctyl group, perbromododecyl group, perbromopenta group Examples include decyl group and perbromoeicosyl group.

炭素数7〜20のアラルキル基としては、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(4,6−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−テトラデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基などがあげられる。また、これらのアラルキル基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アラルキル基などがあげられる。   Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, and (2,3-dimethylphenyl). ) Methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethylphenyl) methyl group, (4 , 6-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethylphenyl) methyl group, (3 , 4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) methyl group, (2,3,4, -Tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group, (n-propylphenyl) methyl group, (isopropyl) (Phenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (n-pentylphenyl) methyl group, (neopentylphenyl) methyl group, n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-decylphenyl) methyl group, (n-tetradecylphenyl) methyl group, naphthylmethyl group, anthra Cenylmethyl group, phenylethyl group, phenylpropyl group, phenylbutyl group, diphenyl Methyl, diphenylethyl group, diphenylpropyl group, diphenylbutyl group. Moreover, the halogenated aralkyl group etc. which these aralkyl groups substituted by halogen atoms, such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, are mention | raise | lifted.

炭素数6〜20のアリール基としては、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、ジエチルフェニル基、トリエチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基などがあげられる。また、これらのアリール基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アリール基などがあげられる。   Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, and 2,5-xylyl group. Group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,6-trimethyl Phenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6-tetramethylphenyl group, 2 , 3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, diethylphenyl group, triethylphenyl group, n-propylphenyl group, isopropylphenyl group, n-butylphenyl group, se -Butylphenyl group, tert-butylphenyl group, n-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl group, n-tetradecyl Examples thereof include a phenyl group, a naphthyl group, and an anthracenyl group. Moreover, the halogenated aryl group etc. which these aryl groups substituted by halogen atoms, such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, are mention | raise | lifted.

また、炭素数1〜20の置換されていてもよいハイドロカルビル基としては、置換シリル基で置換されたハイドロカルビル基、置換アミノ基で置換されたハイドロカルビル基、ハイドロカルビルオキシ基で置換されたハイドロカルビル基などがあげられる。   The hydrocarbyl group having 1 to 20 carbon atoms which may be substituted includes a hydrocarbyl group substituted with a substituted silyl group, a hydrocarbyl group substituted with a substituted amino group, and a hydrocarbyloxy group. And hydrocarbyl groups substituted with.

置換シリル基で置換されたハイドロカルビル基としては、トリメチルシリルメチル基、トリメチルシリルエチル基、トリメチルシリルプロピル基、トリメチルシリルブチル基、トリメチルシリルフェニル基、ビス(トリメチルシリル)メチル基、ビス(トリメチルシリル)エチル基、ビス(トリメチルシリル)プロピル基、ビス(トリメチルシリル)ブチル基、ビス(トリメチルシリル)フェニル基、トリフェニルシリルメチル基などがあげられる。   Hydrocarbyl groups substituted with substituted silyl groups include trimethylsilylmethyl, trimethylsilylethyl, trimethylsilylpropyl, trimethylsilylbutyl, trimethylsilylphenyl, bis (trimethylsilyl) methyl, bis (trimethylsilyl) ethyl, bis ( Examples thereof include trimethylsilyl) propyl group, bis (trimethylsilyl) butyl group, bis (trimethylsilyl) phenyl group, and triphenylsilylmethyl group.

置換アミノ基で置換されたハイドロカルビル基としては、ジメチルアミノメチル基、ジメチルアミノエチル基、ジメチルアミノプロピル基、ジメチルアミノブチル基、ジメチルアミノフェニル基、ビス(ジメチルアミノ)メチル基、ビス(ジメチルアミノ)エチル基、ビス(ジメチルアミノ)プロピル基、ビス(ジメチルアミノ)ブチル基、ビス(ジメチルアミノ)フェニル基、フェニルアミノメチル基、ジフェニルアミノメチル基、ジフェニルアミノフェニル基などがあげられる。   Hydrocarbyl groups substituted with substituted amino groups include dimethylaminomethyl group, dimethylaminoethyl group, dimethylaminopropyl group, dimethylaminobutyl group, dimethylaminophenyl group, bis (dimethylamino) methyl group, bis (dimethyl Amino) ethyl group, bis (dimethylamino) propyl group, bis (dimethylamino) butyl group, bis (dimethylamino) phenyl group, phenylaminomethyl group, diphenylaminomethyl group, diphenylaminophenyl group and the like.

ハイドロカルビルオキシ基で置換されたハイドロカルビル基としては、メトキシメチル基、エトキシメチル基、n−プロポキシメチル基、イソプロポキシメチル基、n−ブトキシメチル基、sec−ブトキシメチル基、tert−ブトキシメチル基、フェノキシメチル基、メトキシエチル基、エトキシエチル基、n−プロポキシエチル基、イソプロポキシエチル基、n−ブトキシエチル基、sec−ブトキシエチル基、tert−ブトキシエチル基、フェノキシエチル基、メトキシ−n−プロピル基、エトキシ−n−プロピル基、n−プロポキシ−n−プロピル基、イソプロポキシ−n−プロピル基、n−ブトキシ−n−プロピル基、sec−ブトキシ−n−プロピル基、tert−ブトキシ−n−プロピル基、フェノキシ−n−プロピル基、メトキシイソプロピル基、エトキシイソプロピル基、n−プロポキシイソプロピル基、イソプロポキシイソプロピル基、n−ブトキシイソプロピル基、sec−ブトキシイソプロピル基、tert−ブトキシイソプロピル基、フェノキシイソプロピル基、メトキシフェニル基、エトキシフェニル基、n−プロポキシフェニル基、イソプロポキシフェニル基、n−ブトキシフェニル基、sec−ブトキシフェニル基、tert−ブトキシフェニル基、フェノキシフェニル基などがあげられる。   Examples of the hydrocarbyl group substituted with a hydrocarbyloxy group include a methoxymethyl group, an ethoxymethyl group, an n-propoxymethyl group, an isopropoxymethyl group, an n-butoxymethyl group, a sec-butoxymethyl group, and a tert-butoxy group. Methyl group, phenoxymethyl group, methoxyethyl group, ethoxyethyl group, n-propoxyethyl group, isopropoxyethyl group, n-butoxyethyl group, sec-butoxyethyl group, tert-butoxyethyl group, phenoxyethyl group, methoxy- n-propyl group, ethoxy-n-propyl group, n-propoxy-n-propyl group, isopropoxy-n-propyl group, n-butoxy-n-propyl group, sec-butoxy-n-propyl group, tert-butoxy -N-propyl group, phenoxy-n-propyl group Methoxyisopropyl group, ethoxyisopropyl group, n-propoxyisopropyl group, isopropoxyisopropyl group, n-butoxyisopropyl group, sec-butoxyisopropyl group, tert-butoxyisopropyl group, phenoxyisopropyl group, methoxyphenyl group, ethoxyphenyl group, n -Propoxyphenyl group, isopropoxyphenyl group, n-butoxyphenyl group, sec-butoxyphenyl group, tert-butoxyphenyl group, phenoxyphenyl group and the like.

1、R1、X2、R3およびR4の炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基としては、炭素数1〜20のアルコキシ基、炭素数7〜20のアラルキルオキシ基、炭素数6〜20のアリールオキシ基などがあげられる。 Examples of the optionally substituted hydrocarbyloxy group of X 1 , R 1 , X 2 , R 3 and R 4 having 1 to 20 carbon atoms include an alkoxy group having 1 to 20 carbon atoms and a carbon number of 7 to 20 carbon atoms. Examples thereof include an aralkyloxy group and an aryloxy group having 6 to 20 carbon atoms.

炭素数1〜20のアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペンチルオキシ基、ネオペンチルオキシ基、n−ヘキシルオキシ基、n−オクチルオキシ基、n−ノニルオキシ基、n−デシルオキシ基、n−ウンデシルオキシ基、n−ドデシルオキシ基、n−トリデシルオキシ基、n−テトラデシルオキシ基、n−ペンタデシルオキシ基、n−ヘキサデシルオキシ基、n−ヘプタデシルオキシ基、n−ヘプタデシルオキシ基、n−オクタデシルオキシ基、n−ノナデシルオキシ基、n−エイコソキシ基などがあげられる。また、これらのアルコキシ基が、フッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アルコキシ基などがあげられる。   Examples of the alkoxy group having 1 to 20 carbon atoms include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group, neo Pentyloxy group, n-hexyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, n-dodecyloxy group, n-tridecyloxy group, n-tetradecyl group Examples include oxy group, n-pentadecyloxy group, n-hexadecyloxy group, n-heptadecyloxy group, n-heptadecyloxy group, n-octadecyloxy group, n-nonadecyloxy group, n-eicosoxy group and the like. . Further, halogenated alkoxy groups in which these alkoxy groups are substituted with halogen atoms such as fluorine atom, chlorine atom, bromine atom or iodine atom can be mentioned.

炭素数7〜20のアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2−メチルフェニル)メトキシ基、(3−メチルフェニル)メトキシ基、(4−メチルフェニル)メトキシ基、(2,3−ジメチルフェニル)メトキシ基、(2,4−ジメチルフェニル)メトキシ基、(2,5−ジメチルフェニル)メトキシ基、(2,6−ジメチルフェニル)メトキシ基、(3,4−ジメチルフェニル)メトキシ基、(3,5−ジメチルフェニル)メトキシ基、(2,3,4−トリメチルフェニル)メトキシ基、(2,3,5−トリメチルフェニル)メトキシ基、(2,3,6−トリメチルフェニル)メトキシ基、(2,4,5−トリメチルフェニル)メトキシ基、(2,4,6−トリメチルフェニル)メトキシ基、(3,4,5−トリメチルフェニル)メトキシ基、(2,3,4,5−テトラメチルフェニル)メトキシ基、(2,3,4,6−テトラメチルフェニル)メトキシ基、(2,3,5,6−テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n−プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n−ブチルフェニル)メトキシ基、(sec−ブチルフェニル)メトキシ基、(tert−ブチルフェニル)メトキシ基、(n−ヘキシルフェニル)メトキシ基、(n−オクチルフェニル)メトキシ基、(n−デシルフェニル)メトキシ基、(n−テトラデシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基などがあげられる。また、これらのアラルキルオキシ基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アラルキルオキシ基などがあげられる。   Examples of the aralkyloxy group having 7 to 20 carbon atoms include benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4-methylphenyl) methoxy group, (2,3- (Dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group, (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, (2,3,6-trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) methoxy group, (3,4,5-trimethyl) Enyl) methoxy group, (2,3,4,5-tetramethylphenyl) methoxy group, (2,3,4,6-tetramethylphenyl) methoxy group, (2,3,5,6-tetramethylphenyl) Methoxy group, (pentamethylphenyl) methoxy group, (ethylphenyl) methoxy group, (n-propylphenyl) methoxy group, (isopropylphenyl) methoxy group, (n-butylphenyl) methoxy group, (sec-butylphenyl) methoxy Group, (tert-butylphenyl) methoxy group, (n-hexylphenyl) methoxy group, (n-octylphenyl) methoxy group, (n-decylphenyl) methoxy group, (n-tetradecylphenyl) methoxy group, naphthylmethoxy Group, anthracenylmethoxy group and the like. In addition, a halogenated aralkyloxy group in which these aralkyloxy groups are substituted with a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.

炭素数6〜20のアリールオキシ基としては、例えば、フェノキシ基、2−メチルフェノキシ基、3−メチルフェノキシ基、4−メチルフェノキシ基、2,3−ジメチルフェノキシ基、2,4−ジメチルフェノキシ基、2,5−ジメチルフェノキシ基、2,6−ジメチルフェノキシ基、3,4−ジメチルフェノキシ基、3,5−ジメチルフェノキシ基、2,3,4−トリメチルフェノキシ基、2,3,5−トリメチルフェノキシ基、2,3,6−トリメチルフェノキシ基、2,4,5−トリメチルフェノキシ基、2,4,6−トリメチルフェノキシ基、3,4,5−トリメチルフェノキシ基、2,3,4,5−テトラメチルフェノキシ基、2,3,4,6−テトラメチルフェノキシ基、2,3,5,6−テトラメチルフェノキシ基、ペンタメチルフェノキシ基、エチルフェノキシ基、n−プロピルフェノキシ基、イソプロピルフェノキシ基、n−ブチルフェノキシ基、sec−ブチルフェノキシ基、tert−ブチルフェノキシ基、n−ヘキシルフェノキシ基、n−オクチルフェノキシ基、n−デシルフェノキシ基、n−テトラデシルフェノキシ基、ナフトキシ基、アントラセノキシ基などがあげられる。また、これらのアリールオキシ基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換されたハロゲン化アリールオキシ基などがあげられる。   Examples of the aryloxy group having 6 to 20 carbon atoms include phenoxy group, 2-methylphenoxy group, 3-methylphenoxy group, 4-methylphenoxy group, 2,3-dimethylphenoxy group, and 2,4-dimethylphenoxy group. 2,5-dimethylphenoxy group, 2,6-dimethylphenoxy group, 3,4-dimethylphenoxy group, 3,5-dimethylphenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethyl Phenoxy group, 2,3,6-trimethylphenoxy group, 2,4,5-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5 -Tetramethylphenoxy group, 2,3,4,6-tetramethylphenoxy group, 2,3,5,6-tetramethylphenoxy group, pentamethyl Ruphenoxy group, ethylphenoxy group, n-propylphenoxy group, isopropylphenoxy group, n-butylphenoxy group, sec-butylphenoxy group, tert-butylphenoxy group, n-hexylphenoxy group, n-octylphenoxy group, n- Examples include decylphenoxy group, n-tetradecylphenoxy group, naphthoxy group, anthracenoxy group and the like. Moreover, the halogenated aryloxy group etc. which these aryloxy groups substituted by halogen atoms, such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, are mention | raise | lifted.

1、R1、X2、R3およびR4の炭素数1〜20の置換シリル基としては、アルキル基、アリール基などのハイドロカルビル基で置換されたシリル基をあげることできる。具体的には、例えば、メチルシリル基、エチルシリル基、n−プロピルシリル基、イソプロピルシリル基、n−ブチルシリル基、sec−ブチルシリル基、tert−ブチルシリル基、イソブチルシリル基、n−ペンチルシリル基、n−ヘキシルシリル基、フェニルシリル基などの1置換シリル基;ジメチルシリル基、ジエチルシリル基、ジ−n−プロピルシリル基、ジイソプロピルシリル基、ジ−n−ブチルシリル基、ジ−sec−ブチルシリル基、ジ−tert−ブチルシリル基、ジイソブチルシリル基、ジフェニルシリル基などの2置換シリル基;トリメチルシリル基、トリエチルシリル基、トリ−n−プロピルシリル基、トリイソプロピルシリル基、トリ−n−ブチルシリル基、トリ−sec−ブチルシリル基、トリ−tert−ブチルシリル基、トリイソブチルシリル基、tert−ブチル−ジメチルシリル基、トリ−n−ペンチルシリル基、トリ−n−ヘキシルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基などの3置換シリル基などがあげられる。 Examples of the substituted silyl group having 1 to 20 carbon atoms of X 1 , R 1 , X 2 , R 3 and R 4 include silyl groups substituted with hydrocarbyl groups such as alkyl groups and aryl groups. Specifically, for example, methylsilyl group, ethylsilyl group, n-propylsilyl group, isopropylsilyl group, n-butylsilyl group, sec-butylsilyl group, tert-butylsilyl group, isobutylsilyl group, n-pentylsilyl group, n- 1-substituted silyl groups such as hexylsilyl group and phenylsilyl group; dimethylsilyl group, diethylsilyl group, di-n-propylsilyl group, diisopropylsilyl group, di-n-butylsilyl group, di-sec-butylsilyl group, di- disubstituted silyl groups such as tert-butylsilyl group, diisobutylsilyl group, diphenylsilyl group; trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, tri-sec- Butylsilyl group, tri-tert-butyl Examples include tri-substituted silyl groups such as rusilyl group, triisobutylsilyl group, tert-butyl-dimethylsilyl group, tri-n-pentylsilyl group, tri-n-hexylsilyl group, tricyclohexylsilyl group, and triphenylsilyl group. It is done.

1、R1、X2、R3およびR4の炭素数1〜20の置換アミノ基としては、例えば、アルキル基、アリール基などのハイドロカルビル基2つで置換されたアミノ基をあげることできる。具体的には、例えば、メチルアミノ基、エチルアミノ基、n−プロピルアミノ基、イソプロピルアミノ基、n−ブチルアミノ基、sec−ブチルアミノ基、tert−ブチルアミノ基、イソブチルアミノ基、n−ヘキシルアミノ基、n−オクチルアミノ基、n−デシルアミノ基、フェニルアミノ基、ベンジルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジ−n−プロピルアミノ基、ジイソプロピルアミノ基、ジ−n−ブチルアミノ基、ジ−sec−ブチルアミノ基、ジ−tert−ブチルアミノ基、ジ−イソブチルアミノ基、tert−ブチルイソプロピルアミノ基、ジ−n−ヘキシルアミノ基、ジ−n−オクチルアミノ基、ジ−n−デシルアミノ基、ジフェニルアミノ基、ジベンジルアミノ基、tert−ブチルイソプロピルアミノ基、フェニルエチルアミノ基、フェニルプロピルアミノ基、フェニルブチルアミノ基、ピロリル基、ピロリジニル基、ピペリジニル基、カルバゾリル基、ジヒドロイソインドリル基などがあげられる。 Examples of the substituted amino group having 1 to 20 carbon atoms of X 1 , R 1 , X 2 , R 3 and R 4 include an amino group substituted with two hydrocarbyl groups such as an alkyl group and an aryl group. I can. Specifically, for example, methylamino group, ethylamino group, n-propylamino group, isopropylamino group, n-butylamino group, sec-butylamino group, tert-butylamino group, isobutylamino group, n-hexyl Amino group, n-octylamino group, n-decylamino group, phenylamino group, benzylamino group, dimethylamino group, diethylamino group, di-n-propylamino group, diisopropylamino group, di-n-butylamino group, di -Sec-butylamino group, di-tert-butylamino group, di-isobutylamino group, tert-butylisopropylamino group, di-n-hexylamino group, di-n-octylamino group, di-n-decylamino group , Diphenylamino group, dibenzylamino group, tert-butylisopropylamino , Phenylethyl group, phenylpropyl group, phenylbutyl group, a pyrrolyl group, a pyrrolidinyl group, a piperidinyl group, a carbazolyl group, such as dihydroisoindolyl group.

1として好ましくは、塩素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、トリフルオロメトキシ基、フェニル基、フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、3,4,5−トリフルオロフェノキシ基、ペンタフルオロフェノキシ基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシ基、ベンジル基である。 X 1 is preferably chlorine, methyl, ethyl, n-propyl, isopropyl, n-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, trifluoro Methoxy group, phenyl group, phenoxy group, 2,6-di-tert-butylphenoxy group, 3,4,5-trifluorophenoxy group, pentafluorophenoxy group, 2,3,5,6-tetrafluoro-4- A pentafluorophenylphenoxy group and a benzyl group.

1として好ましくは、水素原子、炭素数1〜6のアルキル基であり、より好ましくは、水素原子、炭素数1〜4のアルキル基であり、更に好ましくは水素原子である。 R 1 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, still more preferably a hydrogen atom.

2として好ましくは、塩素原子、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、トリフルオロメトキシ基、フェニル基、フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、3,4,5−トリフルオロフェノキシ基、ペンタフルオロフェノキシ基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシ基、ベンジル基である。 X 2 is preferably chlorine, methyl, ethyl, n-propyl, isopropyl, n-butyl, methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, trifluoro Methoxy group, phenyl group, phenoxy group, 2,6-di-tert-butylphenoxy group, 3,4,5-trifluorophenoxy group, pentafluorophenoxy group, 2,3,5,6-tetrafluoro-4- A pentafluorophenylphenoxy group and a benzyl group.

3として好ましくは、水素原子、炭素数1〜6のアルキル基であり、より好ましくは、水素原子、炭素数1〜4のアルキル基であり、更に好ましくは水素原子である。 R 3 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and still more preferably a hydrogen atom.

4として好ましくは、水素原子、炭素数1〜6のアルキル基であり、より好ましくは、水素原子、炭素数1〜4のアルキル基であり、更に好ましくは水素原子である。 R 4 is preferably a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and still more preferably a hydrogen atom.

一般式(1)のQ1は一般式(2)で表される架橋基を表し、一般式(3)のQ2は一般式(4)で表される架橋基を表す。 Q 1 in the general formula (1) represents a crosslinking group represented by the general formula ( 2 ), and Q 2 in the general formula (3) represents a crosslinking group represented by the general formula (4).

一般式(2)のmおよび一般式(4)のnは1〜5の整数である。mとして好ましくは、1〜2であり、nとして好ましくは、1〜2である。   M in the general formula (2) and n in the general formula (4) are integers of 1 to 5. m is preferably 1-2, and n is preferably 1-2.

一般式(2)のJ1および一般式(4)のJ2は、元素周期律表の第14族の遷移金属原子を表し、炭素原子、ケイ素原子、ゲルマニウム原子などがあげられる。好ましくは、炭素原子またはケイ素原子である。 J 2 of J 1 and of the general formula (2) (4) represents a Group 14 transition metal atom of the periodic table of elements, carbon atoms, a silicon atom, such as a germanium atom. Preferably, they are a carbon atom or a silicon atom.

一般式(2)のR2、一般式(4)のR5は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基または炭素数1〜20の置換アミノ基であり、複数のR2は互いに同じであっても異なっていてもよく、複数のR5は互いに同じであっても異なっていてもよい。 R 2 in the general formula (2) and R 5 in the general formula (4) are each independently a hydrogen atom, a halogen atom, an optionally substituted hydrocarbyl group having 1 to 20 carbon atoms, or 1 to carbon atoms. A 20-substituted hydrocarbyloxy group, a substituted silyl group having 1 to 20 carbon atoms, or a substituted amino group having 1 to 20 carbon atoms, and a plurality of R 2 may be the same or different from each other; The plurality of R 5 may be the same as or different from each other.

2およびR5のハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基および炭素数1〜20の置換アミノ基としては、X1、R1、X2、R3およびR4のハロゲン原子、炭素数1〜20の置換されていてもよいハイドロカルビル基、炭素数1〜20の置換されていてもよいハイドロカルビルオキシ基、炭素数1〜20の置換シリル基および炭素数1〜20の置換アミノ基として例示したものをあげることができる。 R 2 and R 5 halogen atom, C 1-20 optionally substituted hydrocarbyl group, C 1-20 optionally substituted hydrocarbyloxy group, C 1-20 carbon atom Examples of the substituted silyl group and the substituted amino group having 1 to 20 carbon atoms include a halogen atom of X 1 , R 1 , X 2 , R 3 and R 4 , and an optionally substituted hydrocarbyl group having 1 to 20 carbon atoms. And those exemplified as the hydrocarbyloxy group having 1 to 20 carbon atoms which may be substituted, the substituted silyl group having 1 to 20 carbon atoms and the substituted amino group having 1 to 20 carbon atoms.

1およびQ2としては、メチレン基、エチリデン基、エチレン基、プロピリデン基、プロピレン基、ブチリデン基、ブチレン基、ペンチリデン基、ペンチレン基、ヘキシリデン基、イソプロピリデン基、メチルエチルメチレン基、メチルプロピルメチレン基、メチルブチルメチレン基、ビス(シクロヘキシル)メチレン基、メチルフェニルメチレン基、ジフェニルメチレン基、フェニル(メチルフェニル)メチレン基、ジ(メチルフェニル)メチレン基、ビス(ジメチルフェニル)メチレン基、ビス(トリメチルフェニル)メチレン基、フェニル(エチルフェニル)メチレン基、ジ(エチルフェニル)メチレン基、ビス(ジエチルフェニル)メチレン基、フェニル(プロピルフェニル)メチレン基、ジ(プロピルフェニル)メチレン基、ビス(ジプロピルフェニル)メチレン基、フェニル(ブチルフェニル)メチレン基、ジ(ブチルフェニル)メチレン基、フェニル(ナフチル)メチレン基、ジ(ナフチル)メチレン基、フェニル(ビフェニル)メチレン基、ジ(ビフェニル)メチレン基、フェニル(トリメチルシリルフェニル)メチレン基、ビス(トリメチルシリルフェニル)メチレン基、ビス(ペンタフルオロフェニル)メチレン基、 Q 1 and Q 2 are methylene group, ethylidene group, ethylene group, propylidene group, propylene group, butylidene group, butylene group, pentylidene group, pentylene group, hexylidene group, isopropylidene group, methylethylmethylene group, methylpropylmethylene group. Group, methylbutylmethylene group, bis (cyclohexyl) methylene group, methylphenylmethylene group, diphenylmethylene group, phenyl (methylphenyl) methylene group, di (methylphenyl) methylene group, bis (dimethylphenyl) methylene group, bis (trimethyl) Phenyl) methylene group, phenyl (ethylphenyl) methylene group, di (ethylphenyl) methylene group, bis (diethylphenyl) methylene group, phenyl (propylphenyl) methylene group, di (propylphenyl) methylene group, bis (Dipropylphenyl) methylene group, phenyl (butylphenyl) methylene group, di (butylphenyl) methylene group, phenyl (naphthyl) methylene group, di (naphthyl) methylene group, phenyl (biphenyl) methylene group, di (biphenyl) methylene Group, phenyl (trimethylsilylphenyl) methylene group, bis (trimethylsilylphenyl) methylene group, bis (pentafluorophenyl) methylene group,

シランジイル基、ジシランジイル基、トリシランジイル基、テトラシランジイル基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基、ジエチルシランジイル基、ジプロピルシランジイル基、ジブチルシランジイル基、ジフェニルシランジイル基、シラシクロブタンジイル基、シラシクロヘキサンジイル基、ジビニルシランジイル基、ジアリルシランジイル基、(メチル)(ビニル)シランジイル基、(アリル)(メチル)シランジイル基等をあげることができる。 Silanediyl group, disilanediyl group, trisilanediyl group, tetrasilanediyl group, dimethylsilanediyl group, bis (dimethylsilane) diyl group, diethylsilanediyl group, dipropylsilanediyl group, dibutylsilanediyl group, diphenylsilanediyl group, silacyclobutane Examples thereof include a diyl group, a silacyclohexanediyl group, a divinylsilanediyl group, a diallylsilanediyl group, a (methyl) (vinyl) silanediyl group, and an (allyl) (methyl) silanediyl group.

1として好ましくは、メチレン基、エチレン基、イソプロピリデン基、ビス(シクロヘキシル)メチレン基、ジフェニルメチレン基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基であり、より好ましくは、エチレン基、ジメチルシランジイル基である。また、Q2として好ましくは、メチレン基、エチレン基、イソプロピリデン基、ビス(シクロヘキシル)メチレン基、ジフェニルメチレン基、ジメチルシランジイル基、ビス(ジメチルシラン)ジイル基であり、より好ましくは、ジフェニルメチレン基である。 Q 1 is preferably a methylene group, an ethylene group, an isopropylidene group, a bis (cyclohexyl) methylene group, a diphenylmethylene group, a dimethylsilanediyl group, or a bis (dimethylsilane) diyl group, and more preferably an ethylene group or a dimethyl group. Silane diyl group. Q 2 is preferably a methylene group, ethylene group, isopropylidene group, bis (cyclohexyl) methylene group, diphenylmethylene group, dimethylsilanediyl group, or bis (dimethylsilane) diyl group, and more preferably diphenylmethylene. It is a group.

一般式(1)で表される遷移金属化合物(A1)としては、M1をジルコニウム原子、X1を塩素原子としたものとして、メチレンビス(インデニル)ジルコニウムジクロリド、イソプロピリデンビス(インデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(インデニル)ジルコニウムジクロリド、ジフェニルメチレンビス(インデニル)ジルコニウムジクロリド、エチレンビス(インデニル)ジルコニウムジクロリド、 As the transition metal compound (A1) represented by the general formula (1), m 1 is a zirconium atom, X 1 is a chlorine atom, methylene bis (indenyl) zirconium dichloride, isopropylidenebis (indenyl) zirconium dichloride, (Methyl) (phenyl) methylenebis (indenyl) zirconium dichloride, diphenylmethylenebis (indenyl) zirconium dichloride, ethylenebis (indenyl) zirconium dichloride,

メチレンビス(メチルインデニル)ジルコニウムジクロリド、イソプロピリデンビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(メチルインデニル)ジルコニウムジクロリド、ジフェニルメチレンビス(メチルインデニル)ジルコニウムジクロリド、エチレンビス(メチルインデニル)ジルコニウムジクロリド、 Methylenebis (methylindenyl) zirconium dichloride, isopropylidenebis (methylindenyl) zirconium dichloride, (methyl) (phenyl) methylenebis (methylindenyl) zirconium dichloride, diphenylmethylenebis (methylindenyl) zirconium dichloride, ethylenebis (methyl Indenyl) zirconium dichloride,

メチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、イソプロピリデン(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジフェニルメチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、エチレン(インデニル)(メチルインデニル)ジルコニウムジクロリド、 Methylene (indenyl) (methylindenyl) zirconium dichloride, isopropylidene (indenyl) (methylindenyl) zirconium dichloride, (methyl) (phenyl) methylene (indenyl) (methylindenyl) zirconium dichloride, diphenylmethylene (indenyl) (methyl) Indenyl) zirconium dichloride, ethylene (indenyl) (methylindenyl) zirconium dichloride,

メチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、イソプロピリデンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)メチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジフェニルメチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、エチレンビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、 Methylenebis (2,4-dimethylindenyl) zirconium dichloride, isopropylidenebis (2,4-dimethylindenyl) zirconium dichloride, (methyl) (phenyl) methylenebis (2,4-dimethylindenyl) zirconium dichloride, diphenylmethylenebis (2,4-dimethylindenyl) zirconium dichloride, ethylenebis (2,4-dimethylindenyl) zirconium dichloride,

ジメチルシランジイルビス(インデニル)ジルコニウムジクロリド、ジエチルシランジイルビス(インデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(インデニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(インデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(インデニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(インデニル)ジルコニウムジクロリド、ジ(p−トリル)シランジイルビス(インデニル)ジルコニウムジクロリド、ジビニルシランジイルビス(インデニル)ジルコニウムジクロリド、ジアリルシランジイルビス(インデニル)ジルコニウムジクロリド、(メチル)(ビニル)シランジイルビス(インデニル)ジルコニウムジクロリド、(アリル)(メチル)シランジイルビス(インデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(インデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(インデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(インデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(インデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(インデニル)ジルコニウムジクロリド、 Dimethylsilanediylbis (indenyl) zirconium dichloride, diethylsilanediylbis (indenyl) zirconium dichloride, di (n-propyl) silanediylbis (indenyl) zirconium dichloride, diisopropylsilanediylbis (indenyl) zirconium dichloride, dicyclohexylsilanediylbis (indenyl) Zirconium dichloride, diphenylsilanediylbis (indenyl) zirconium dichloride, di (p-tolyl) silanediylbis (indenyl) zirconium dichloride, divinylsilanediylbis (indenyl) zirconium dichloride, diallylsilanediylbis (indenyl) zirconium dichloride, (methyl) ( Vinyl) silanediylbis (indenyl) zirconium dichloride, Allyl) (methyl) silanediylbis (indenyl) zirconium dichloride, (ethyl) (methyl) silanediylbis (indenyl) zirconium dichloride, (methyl) (n-propyl) silanediylbis (indenyl) zirconium dichloride, (methyl) (isopropyl) silanediylbis (indenyl) Zirconium dichloride, (cyclohexyl) (methyl) bis (indenyl) zirconium dichloride, (methyl) (phenyl) silanediylbis (indenyl) zirconium dichloride,

ジメチルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジエチルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(メチルインデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(メチルインデニル)ジルコニウムジクロリド、 Dimethylsilanediylbis (methylindenyl) zirconium dichloride, diethylsilanediylbis (methylindenyl) zirconium dichloride, di (n-propyl) silanediylbis (methylindenyl) zirconium dichloride, diisopropylsilanediylbis (methylindenyl) zirconium dichloride , Dicyclohexylsilanediylbis (methylindenyl) zirconium dichloride, diphenylsilanediylbis (methylindenyl) zirconium dichloride, (ethyl) (methyl) silanediylbis (methylindenyl) zirconium dichloride, (methyl) (n-propyl) silanediylbis ( Methylindenyl) zirconium dichloride, (methyl) (isopropyl) silanediylbis (methylindenyl) zyl Niumujikurorido, (cyclohexyl) (methyl) bis (methylindenyl) zirconium dichloride, (methyl) (phenyl) silanediylbis (methylindenyl) zirconium dichloride,

ジメチルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジエチルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジイソプロピルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、ジフェニルシランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)(インデニル)(メチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイル(インデニル)(メチルインデニル)ジルコニウムジクロリド、 Dimethylsilanediyl (indenyl) (methylindenyl) zirconium dichloride, diethylsilanediyl (indenyl) (methylindenyl) zirconium dichloride, di (n-propyl) silanediyl (indenyl) (methylindenyl) zirconium dichloride, diisopropylsilanediyl ( Indenyl) (methylindenyl) zirconium dichloride, dicyclohexylsilanediyl (indenyl) (methylindenyl) zirconium dichloride, diphenylsilanediyl (indenyl) (methylindenyl) zirconium dichloride, (ethyl) (methyl) silanediyl (indenyl) (methyl) Indenyl) zirconium dichloride, (methyl) (n-propyl) silanediyl (indenyl) (methylindenyl) zirconium Dichloride, (methyl) (isopropyl) silanediyl (indenyl) (methylindenyl) zirconium dichloride, (cyclohexyl) (methyl) (indenyl) (methylindenyl) zirconium dichloride, (methyl) (phenyl) silanediyl (indenyl) (methylindene) Nil) zirconium dichloride,

ジメチルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジエチルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジ(n−プロピル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジイソプロピルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジシクロヘキシルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(エチル)(メチル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(n−プロピル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(イソプロピル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(シクロヘキシル)(メチル)ビス(2,4−ジメチルインデニル)ジルコニウムジクロリド、(メチル)(フェニル)シランジイルビス(2,4−ジメチルインデニル)ジルコニウムジクロリド等を例示することができる。 Dimethylsilanediylbis (2,4-dimethylindenyl) zirconium dichloride, diethylsilanediylbis (2,4-dimethylindenyl) zirconium dichloride, di (n-propyl) silanediylbis (2,4-dimethylindenyl) zirconium dichloride Diisopropylsilanediylbis (2,4-dimethylindenyl) zirconium dichloride, dicyclohexylsilanediylbis (2,4-dimethylindenyl) zirconium dichloride, diphenylsilanediylbis (2,4-dimethylindenyl) zirconium dichloride, ( Ethyl) (methyl) silanediylbis (2,4-dimethylindenyl) zirconium dichloride, (methyl) (n-propyl) silanediylbis (2,4-dimethylindenyl) zirconium Dichloride, (methyl) (isopropyl) silanediylbis (2,4-dimethylindenyl) zirconium dichloride, (cyclohexyl) (methyl) bis (2,4-dimethylindenyl) zirconium dichloride, (methyl) (phenyl) silanediylbis (2, 4-dimethylindenyl) zirconium dichloride and the like can be exemplified.

上記例示においてη5−インデニル基の置換体は、架橋基が1−位の場合、一置換体であれば、2−位、3−位、4−位、5−位、6−位および7−位の置換体を含み、架橋位が1−位以外でも同様に全ての組合せを含む。二置換体以上も同様に、置換基および架橋位の全ての組合せを含む。また、上記遷移金属化合物のX1のジクロリドをジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジメトキシド、ジエトキシド、ジプロポキシド、ジブトキシド、ビス(トリフルオロメトキシド)、ジフェニル、ジフェノキシド、ビス(2,6−ジ−tert−ブチルフェノキシド)、ビス(3,4,5−トリフルオロフェノキシド)、ビス(ペンタフルオロフェノキシド)、ビス(2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシド)、ジベンジル等に変更した化合物を例示することができる。さらに、上記遷移金属化合物のM1のジルコニウムをチタンまたはハフニウムに変更した化合物を例示することができる。 In the above exemplification, when the bridging group is in the 1-position, the η 5 -indenyl group is substituted in the 2-position, 3-position, 4-position, 5-position, 6-position and 7 Including all substitutions in the -position, including bridged positions other than the 1-position. Bi- or higher substituents similarly include all combinations of substituents and crosslinks. Further, X 1 dichloride of the above transition metal compound is difluoride, dibromide, diiodide, dimethyl, diethyl, diisopropyl, dimethoxide, diethoxide, dipropoxide, dibutoxide, bis (trifluoromethoxide), diphenyl, diphenoxide, bis (2, 6-di-tert-butylphenoxide), bis (3,4,5-trifluorophenoxide), bis (pentafluorophenoxide), bis (2,3,5,6-tetrafluoro-4-pentafluorophenylphenoxide) Examples thereof include compounds changed to dibenzyl and the like. Furthermore, the zirconium M 1 of the transition metal compound may be exemplified compound was changed to titanium or hafnium.

一般式(1)で表される遷移金属化合物(A1)として好ましくは、エチレンビス(インデニル)ジルコニウムジフェノキシド、エチレンビス(インデニル)ジルコニウムジクロリド、ジメチルシリレンビス(インデニル)ジルコニウムジクロリドである。   The transition metal compound (A1) represented by the general formula (1) is preferably ethylene bis (indenyl) zirconium diphenoxide, ethylene bis (indenyl) zirconium dichloride, or dimethylsilylene bis (indenyl) zirconium dichloride.

一般式(3)で表される遷移金属化合物(A2)としては、M2をジルコニウム原子、X2を塩素原子とし、架橋基Q2をジフェニルメチレン基としたものとして、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、 As the transition metal compound (A2) represented by the general formula (3), M 2 is a zirconium atom, X 2 is a chlorine atom, and the bridging group Q 2 is a diphenylmethylene group. Pentadienyl) (9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-methyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4 -Dimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-trimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2, , 5-Trimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-trimethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4,5-tetramethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-ethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-ethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4 -Diethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diethyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2, , 5-triethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4,5-tetraethyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-n-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-n-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-di-n-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-di-n-propyl-1-cyclopentadienyl) (9-fluorenyl) ) Zirconium dichloride, diphenylmethylene (3,4-di-n-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tri-n-propyl-1-cyclo) Pentadienyl) (9-fluorenyl) zyl Nium dichloride, diphenylmethylene (2,3,5-tri-n-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tri-n-propyl-1- Cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetra-n-propyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-isopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-isopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4 -Diisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diisopropyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium Chloride, diphenylmethylene (2,3,5-triisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1-cyclopentadienyl) (9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraisopropyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-phenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-phenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4 -Diphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diphenyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-triphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmeth Len (2,3,5-triphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl-1-cyclopentadienyl) (9-fluorenyl) Zirconium dichloride, diphenylmethylene (2,3,4,5-tetraphenyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-trimethylsilyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4 -Bis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-bis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-bis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tris (trimethylsilyl) -1-cyclo Ntadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tris (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tris ( Trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrakis (trimethylsilyl) -1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-methyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (2,7-dimethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dimethyl-1-cyclopentadi) Enyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4-Trimethyl-1- Clopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-trimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride Diphenylmethylene (3,4,5-trimethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetramethyl-1-cyclo) Pentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-ethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-ethyl-1-cyclopentadienyl) (2,7-dimethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diethyl-1-cyclopentadi) Enyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4-Triethyl-1- Clopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride Diphenylmethylene (3,4,5-triethyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraethyl-1-cyclopenta Dienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-n-propyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-n-propyl-1-cyclopentadienyl) (2,7 -Dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-di-n-propyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5 -Di-n-propyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-di-n-propyl-1-cyclopentadienyl) (2 , 7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmeth Len (2,3,4-tri-n-propyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tri-n-propyl- 1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tri-n-propyl-1-cyclopentadienyl) (2,7-dimethyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetra-n-propyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-isopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-isopropyl-1-cyclopentadienyl) (2,7-dimethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadi) Enyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene 2,3,4-triisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triisopropyl-1-cyclopentadienyl) ( 2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4,5-tetraisopropyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-phenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-phenyl-1-cyclopentadienyl) (2,7-dimethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadi) Enyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4-trif Nyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triphenyl-1-cyclopentadienyl) (2,7-dimethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5- Tetraphenyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジメチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-trimethylsilyl-1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (2,7-dimethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9- Fluorenyl) Jill Nium dichloride, diphenylmethylene (2,3,4-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tris (trimethylsilyl) ) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl) -9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrakis (trimethylsilyl) -1-cyclopentadienyl) (2,7-dimethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-methyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (2,7-diethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dimethyl-1-cyclopentadi) Enyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4-Trimethyl-1- Clopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-trimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride Diphenylmethylene (3,4,5-trimethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetramethyl-1-cyclo) Pentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-ethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-ethyl-1-cyclopentadienyl) (2,7-diethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diethyl-1-cyclopentadi) Enyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4-Triethyl-1- Clopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride Diphenylmethylene (3,4,5-triethyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraethyl-1-cyclopenta Dienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-n-propyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-n-propyl-1-cyclopentadienyl) (2,7 -Diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-di-n-propyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5 -Di-n-propyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-di-n-propyl-1-cyclopentadienyl) (2 , 7-diethyl-9-fluorenyl) zirconium dichloride, diphenylme Len (2,3,4-tri-n-propyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tri-n-propyl- 1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tri-n-propyl-1-cyclopentadienyl) (2,7-diethyl- 9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetra-n-propyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-isopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-isopropyl-1-cyclopentadienyl) (2,7-diethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadi) Enyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene 2,3,4-triisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triisopropyl-1-cyclopentadienyl) ( 2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4,5-tetraisopropyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-phenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-phenyl-1-cyclopentadienyl) (2,7-diethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadi) Enyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2 , 3,4-trif Nyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triphenyl-1-cyclopentadienyl) (2,7-diethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5- Tetraphenyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジエチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-trimethylsilyl-1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (2,7-diethyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9- Fluorenyl) Jill Nium dichloride, diphenylmethylene (2,3,4-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tris (trimethylsilyl) ) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl) -9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrakis (trimethylsilyl) -1-cyclopentadienyl) (2,7-diethyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−メチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−メチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラメチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-methyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-methyl-1-cyclopentadienyl) (2,7 -Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-dimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-dimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-dimethyl-1-cyclopentadienyl) (2 , 7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene 2,3,4-trimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-trimethyl-1-cyclopentadienyl) ) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-trimethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9- Fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetramethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−エチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−エチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラエチル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-ethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-ethyl-1-cyclopentadienyl) (2,7 -Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diethyl-1-cyclopentadienyl) (2 , 7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene 2,3,4-triethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triethyl-1-cyclopentadienyl) ) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9- Fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraethyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラ−n−プロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-n-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-n-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-di-n-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9 -Fluorenyl) zirconium dichloride, diphenylmethylene (2,5-di-n-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4 -Di-n-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirco Um dichloride, diphenylmethylene (2,3,4-tri-n-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4) 5-tri-n-propyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tri-n-propyl-1- Cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetra-n-propyl-1-cyclopentadienyl) (2, 7-di-t-butyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−イソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−イソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリイソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトライソプロピル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-isopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-isopropyl-1-cyclopentadienyl) (2,7 -Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diisopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diisopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diisopropyl-1-cyclopentadienyl) (2 , 7-Di-t-butyl-9-fluorenyl) zirconium Chloride, diphenylmethylene (2,3,4-triisopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triisopropyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triisopropyl-1-cyclopentadienyl) (2,7- Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraisopropyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium Dichloride,

ジフェニルメチレン(2−フェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−フェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ジフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラフェニル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、 Diphenylmethylene (2-phenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-phenyl-1-cyclopentadienyl) (2,7 -Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-diphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,5-diphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-diphenyl-1-cyclopentadienyl) (2 , 7-di-t-butyl-9-fluorenyl) zirconium dichloride, dipheny Methylene (2,3,4-triphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-triphenyl-1- Cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-triphenyl-1-cyclopentadienyl) (2,7-di-t -Butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetraphenyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride,

ジフェニルメチレン(2−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3−トリメチルシリル−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,5−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4−ビス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(3,4,5−トリス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド、ジフェニルメチレン(2,3,4,5−テトラキス(トリメチルシリル)−1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド等を例示することができる。 Diphenylmethylene (2-trimethylsilyl-1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3-trimethylsilyl-1-cyclopentadienyl) (2,7 -Di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,4-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride Diphenylmethylene (2,5-bis (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4-bis (trimethylsilyl)- 1-cyclopentadienyl) (2,7-di-t- Til-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (3,4,5-tris (trimethylsilyl) -1-cyclopentadienyl) (2,7-di-t-butyl-9-fluorenyl) zirconium dichloride, diphenylmethylene (2,3,4,5-tetrakis (trimethylsilyl) -1-cyclopentadienyl) ( 2,7-di-t-butyl-9-fluorenyl) zirconium dic It can be exemplified Lido like.

上記遷移金属化合物のX2のジクロリドを、ジフルオライド、ジブロマイド、ジアイオダイド、ジメチル、ジエチル、ジイソプロピル、ジメトキシド、ジエトキシド、ジプロポキシド、ジブトキシド、ビス(トリフルオロメトキシド)、ジフェニル、ジフェノキシド、ビス(2,6−ジ−tert−ブチルフェノキシド)、ビス(3,4,5−トリフルオロフェノキシド)、ビス(ペンタフルオロフェノキシド)、ビス(2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノキシド)、ジベンジル等に変更した化合物を例示することができる。また、上記遷移金属化合物のQ2のジフェニルメチレン基を、メチレン基、エチレン基、イソプロピリデン基、メチルフェニルメチレン基、ジメチルシランジイル基、ジフェニルシランジイル基、シラシクロブタンジイル基、シラシクロヘキサンジイル基等に変更した化合物を例示することができる。さらに、上記遷移金属化合物のM2のジルコニウムをチタンまたはハフニウムに変更した化合物を例示することもできる。 X 2 dichloride of the above transition metal compound is difluoride, dibromide, diiodide, dimethyl, diethyl, diisopropyl, dimethoxide, diethoxide, dipropoxide, dibutoxide, bis (trifluoromethoxide), diphenyl, diphenoxide, bis (2,6 -Di-tert-butylphenoxide), bis (3,4,5-trifluorophenoxide), bis (pentafluorophenoxide), bis (2,3,5,6-tetrafluoro-4-pentafluorophenylphenoxide), Examples include compounds changed to dibenzyl and the like. Further, the diphenylmethylene group of Q 2 of the transition metal compound is a methylene group, ethylene group, isopropylidene group, methylphenylmethylene group, dimethylsilanediyl group, diphenylsilanediyl group, silacyclobutanediyl group, silacyclohexanediyl group, etc. Examples of the compound can be exemplified. Furthermore, the zirconium M 2 of the transition metal compound may be exemplified compound was changed to titanium or hafnium.

一般式(3)で表される遷移金属化合物(A2)として好ましくは、ジフェニルメチレン(1−シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロリドである。   The transition metal compound (A2) represented by the general formula (3) is preferably diphenylmethylene (1-cyclopentadienyl) (9-fluorenyl) zirconium dichloride.

本発明のエチレン−α−オレフィン共重合体の製造に用いられる重合用触媒の調製に使用される助触媒成分(B)としては、下記成分(b1)、下記成分(b2)、下記成分(b3)および下記成分(b4)を接触させて形成される固体触媒成分があげられる。
(b1):下記一般式(5)で表される化合物
3x (5)
[式中、M3はリチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム原子、ベリリウム原子、マグネシウム原子、カルシウム原子、ストロンチウム原子、バリウム原子、亜鉛原子、ゲルマニウム原子、スズ原子、鉛原子、アンチモン原子またはビスマス原子を表し、xはM3の原子価に相当する数を表す。Lは水素原子、ハロゲン原子または置換されていてもよいハイドロカルビル基を表し、Lが複数存在する場合、それらは互いに同じであっても異なっていてもよい。]
(b2):下記一般式(6)で表される化合物
6 t-11H (6)
[式中、T1は酸素原子、硫黄原子、窒素原子またはリン原子を表し、tはT1の原子価に相当する数を表す。R6はハロゲン原子、電子吸引性基、ハロゲン原子を含有する基または電子吸引性基を有する基を表し、R6が複数存在する場合、それらは互いに同じであっても異なっていてもよい。]
(b3):下記一般式(7)で表される化合物
7 s-222 (7)
[式中、T2は酸素原子、硫黄原子、窒素原子またはリン原子を表し、sはT2の原子価に相当する数を表す。R7はハロゲン原子、ハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。]
(b4):粒子状担体
The promoter component (B) used for the preparation of the polymerization catalyst used in the production of the ethylene-α-olefin copolymer of the present invention includes the following component (b1), the following component (b2), and the following component (b3). And a solid catalyst component formed by contacting the following component (b4).
(B1): Compound represented by the following general formula (5)
M 3 L x (5)
[Wherein M 3 is lithium atom, sodium atom, potassium atom, rubidium atom, cesium atom, beryllium atom, magnesium atom, calcium atom, strontium atom, barium atom, zinc atom, germanium atom, tin atom, lead atom, antimony Represents an atom or a bismuth atom, and x represents a number corresponding to the valence of M 3 . L represents a hydrogen atom, a halogen atom or an optionally substituted hydrocarbyl group, and when a plurality of L are present, they may be the same as or different from each other. ]
(B2): Compound represented by the following general formula (6)
R 6 t-1 T 1 H (6)
[Wherein T 1 represents an oxygen atom, a sulfur atom, a nitrogen atom or a phosphorus atom, and t represents a number corresponding to the valence of T 1 . R 6 represents a halogen atom, an electron-withdrawing group, a group containing a halogen atom or a group having an electron-withdrawing group, and when a plurality of R 6 are present, they may be the same or different from each other. ]
(B3): Compound represented by the following general formula (7)
R 7 s-2 T 2 H 2 (7)
[Wherein T 2 represents an oxygen atom, a sulfur atom, a nitrogen atom or a phosphorus atom, and s represents a number corresponding to the valence of T 2 . R 7 represents a halogen atom, a hydrocarbyl group or a halogenated hydrocarbyl group. ]
(B4): particulate carrier

一般式(5)のM3は、リチウム原子、ナトリウム原子、カリウム原子、ルビジウム原子、セシウム原子、ベリリウム原子、マグネシウム原子、カルシウム原子、ストロンチウム原子、バリウム原子、亜鉛原子、ゲルマニウム原子、スズ原子、鉛原子、アンチモン原子またはビスマス原子である。好ましくは、マグネシウム原子、カルシウム原子、ストロンチウム原子、バリウム原子、亜鉛原子、ゲルマニウム原子、スズ原子またはビスマス原子であり、より好ましくは、マグネシウム原子、亜鉛原子、スズ原子またはビスマス原子であり、更に好ましくは亜鉛原子である。 M 3 in the general formula (5) is lithium atom, sodium atom, potassium atom, rubidium atom, cesium atom, beryllium atom, magnesium atom, calcium atom, strontium atom, barium atom, zinc atom, germanium atom, tin atom, lead An atom, an antimony atom or a bismuth atom. Preferred is a magnesium atom, calcium atom, strontium atom, barium atom, zinc atom, germanium atom, tin atom or bismuth atom, more preferred is a magnesium atom, zinc atom, tin atom or bismuth atom, still more preferred. It is a zinc atom.

一般式(5)のxはM3の原子価に相当する数を表す。例えば、M3が亜鉛原子の場合、xは2である。 X in the general formula (5) represents a number corresponding to the valence of M 3 . For example, when M 3 is a zinc atom, x is 2.

一般式(5)のLは、水素原子、ハロゲン原子または置換されていてもよいハイドロカルビル基を表し、Lが複数存在する場合、それらは互いに同じであっても異なっていてもよい。   L in the general formula (5) represents a hydrogen atom, a halogen atom or an optionally substituted hydrocarbyl group, and when a plurality of L are present, they may be the same or different from each other.

Lのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などがあげられる。   Examples of the halogen atom for L include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

Lの置換されていてもよいハイドロカルビル基としては、アルキル基、アラルキル基、アリール基、ハロゲン化アルキル基などがあげられる。   Examples of the optionally substituted hydrocarbyl group for L include an alkyl group, an aralkyl group, an aryl group, and a halogenated alkyl group.

Lのアルキル基としては、炭素数1〜20のアルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、ネオペンチル基、イソペンチル基、n−ヘキシル基、n−へプチル基、n−オクチル基、n−デシル基、n−ノニル基、n−デシル基、n−ドデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基、n−エイコシル基などがあげられる。好ましくは、メチル基、エチル基、イソプロピル基、tert−ブチル基またはイソブチル基である。   As the alkyl group for L, an alkyl group having 1 to 20 carbon atoms is preferable. Group, n-pentyl group, neopentyl group, isopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-decyl group, n-nonyl group, n-decyl group, n-dodecyl group, n -Dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group and the like. Preferably, they are a methyl group, an ethyl group, an isopropyl group, a tert-butyl group or an isobutyl group.

Lのハロゲン化アルキル基としては、炭素数1〜20のハロゲン化アルキル基が好ましく、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、ヨードメチル基、ジヨードメチル基、トリヨードメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、テトラフルオロエチル基、ペンタフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、テトラクロロエチル基、ペンタクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、テトラブロモエチル基、ペンタブロモエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロオクチル基、パーフルオロドデシル基、パーフルオロペンタデシル基、パーフルオロエイコシル基、パークロロプロピル基、パークロロブチル基、パークロロペンチル基、パークロロヘキシル基、パークロロオクチル基、パークロロドデシル基、パークロロペンタデシル基、パークロロエイコシル基、パーブロモプロピル基、パーブロモブチル基、パーブロモペンチル基、パーブロモヘキシル基、パーブロモオクチル基、パーブロモドデシル基、パーブロモペンタデシル基、パーブロモエイコシル基などがあげられる。   As the halogenated alkyl group of L, a halogenated alkyl group having 1 to 20 carbon atoms is preferable, and examples thereof include a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, a chloromethyl group, a dichloromethyl group, a trichloromethyl group, and a bromomethyl. Group, dibromomethyl group, tribromomethyl group, iodomethyl group, diiodomethyl group, triiodomethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, tetrafluoroethyl group, pentafluoroethyl group, chloroethyl group, dichloroethyl Group, trichloroethyl group, tetrachloroethyl group, pentachloroethyl group, bromoethyl group, dibromoethyl group, tribromoethyl group, tetrabromoethyl group, pentabromoethyl group, perfluoropropyl group, perfluorobutyl group, per group Fluoropentyl group, perfluorohexyl group, perfluorooctyl group, perfluorododecyl group, perfluoropentadecyl group, perfluoroeicosyl group, perchloropropyl group, perchlorobutyl group, perchloropentyl group, perchlorohexyl group, Perchlorooctyl group, perchlorododecyl group, perchloropentadecyl group, perchloroeicosyl group, perbromopropyl group, perbromobutyl group, perbromopentyl group, perbromohexyl group, perbromooctyl group, perbromododecyl group Group, perbromopentadecyl group, perbromoeicosyl group and the like.

Lのアラルキル基としては、炭素数7〜20のアラルキル基が好ましく、例えば、ベンジル基、(2−メチルフェニル)メチル基、(3−メチルフェニル)メチル基、(4−メチルフェニル)メチル基、(2,3−ジメチルフェニル)メチル基、(2,4−ジメチルフェニル)メチル基、(2,5−ジメチルフェニル)メチル基、(2,6−ジメチルフェニル)メチル基、(3,4−ジメチルフェニル)メチル基、(4,6−ジメチルフェニル)メチル基、(2,3,4−トリメチルフェニル)メチル基、(2,3,5−トリメチルフェニル)メチル基、(2,3,6−トリメチルフェニル)メチル基、(3,4,5−トリメチルフェニル)メチル基、(2,4,6−トリメチルフェニル)メチル基、(2,3,4,5−テトラメチルフェニル)メチル基、(2,3,4,6−テトラメチルフェニル)メチル基、(2,3,5,6−テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n−プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n−ブチルフェニル)メチル基、(sec−ブチルフェニル)メチル基、(tert−ブチルフェニル)メチル基、(n−ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n−ヘキシルフェニル)メチル基、(n−オクチルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−デシルフェニル)メチル基、(n−テトラデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、フェニルエチル基、フェニルプロピル基、フェニルブチル基、ジフェニルメチル基、ジフェニルエチル基、ジフェニルプロピル基、ジフェニルブチル基などがあげられる。好ましくは、ベンジル基である。また、これらのアラルキル基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換された炭素数7〜20のハロゲン化アラルキル基などがあげられる。   As the aralkyl group of L, an aralkyl group having 7 to 20 carbon atoms is preferable. (2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, (3,4-dimethyl) Phenyl) methyl group, (4,6-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2,3,6-trimethyl) Phenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-tetramethylphenyl) ) Methyl group, (2,3,4,6-tetramethylphenyl) methyl group, (2,3,5,6-tetramethylphenyl) methyl group, (pentamethylphenyl) methyl group, (ethylphenyl) methyl group , (N-propylphenyl) methyl group, (isopropylphenyl) methyl group, (n-butylphenyl) methyl group, (sec-butylphenyl) methyl group, (tert-butylphenyl) methyl group, (n-pentylphenyl) Methyl group, (neopentylphenyl) methyl group, (n-hexylphenyl) methyl group, (n-octylphenyl) methyl group, (n-decylphenyl) methyl group, (n-decylphenyl) methyl group, (n- Tetradecylphenyl) methyl group, naphthylmethyl group, anthracenylmethyl group, phenylethyl group, phenylpropyl group Phenylbutyl group, diphenylmethyl group, diphenylethyl group, diphenylpropyl group, diphenylbutyl group. Preferably, it is a benzyl group. Moreover, the C7-20 halogenated aralkyl group etc. which these aralkyl groups substituted by halogen atoms, such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, are mention | raise | lifted.

Lのアリール基としては、炭素数6〜20のアリール基が好ましく、例えば、フェニル基、2−トリル基、3−トリル基、4−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、2,6−キシリル基、3,4−キシリル基、3,5−キシリル基、2,3,4−トリメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、2,4,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,3,4,5−テトラメチルフェニル基、2,3,4,6−テトラメチルフェニル基、2,3,5,6−テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、ジエチルフェニル基、トリエチルフェニル基、n−プロピルフェニル基、イソプロピルフェニル基、n−ブチルフェニル基、sec−ブチルフェニル基、tert−ブチルフェニル基、n−ペンチルフェニル基、ネオペンチルフェニル基、n−ヘキシルフェニル基、n−オクチルフェニル基、n−デシルフェニル基、n−ドデシルフェニル基、n−テトラデシルフェニル基、ナフチル基、アントラセニル基などがあげられる。好ましくは、フェニル基である。また、これらのアリール基がフッ素原子、塩素原子、臭素原子またはヨウ素原子などのハロゲン原子で置換された炭素数6〜20のハロゲン化アリール基などがあげられる。   The aryl group of L is preferably an aryl group having 6 to 20 carbon atoms, such as a phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, and 2,4-xylyl group. Group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group, 2,3,5-trimethylphenyl group, 2,3,4-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetramethylphenyl group, 2,3,4,6 -Tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, diethylphenyl group, triethylphenyl group, n-propylphenyl group, isopropylphenyl group, -Butylphenyl group, sec-butylphenyl group, tert-butylphenyl group, n-pentylphenyl group, neopentylphenyl group, n-hexylphenyl group, n-octylphenyl group, n-decylphenyl group, n-dodecylphenyl Group, n-tetradecylphenyl group, naphthyl group, anthracenyl group and the like. Preferably, it is a phenyl group. Moreover, the C6-C20 halogenated aryl group etc. which these aryl groups substituted by halogen atoms, such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, are mention | raise | lifted.

Lとして好ましくは、水素原子、アルキル基またはアリール基であり、より好ましくは、水素原子またはアルキル基であり、更に好ましくはアルキル基である。   L is preferably a hydrogen atom, an alkyl group or an aryl group, more preferably a hydrogen atom or an alkyl group, and still more preferably an alkyl group.

一般式(6)のT1は、酸素原子、硫黄原子、窒素原子またはリン原子であり、好ましくは、窒素原子または酸素原子であり、より好ましくは酸素原子である。 T 1 in the general formula (6) is an oxygen atom, a sulfur atom, a nitrogen atom or a phosphorus atom, preferably a nitrogen atom or an oxygen atom, and more preferably an oxygen atom.

一般式(6)のtは、T1の原子価を表し、T1が酸素原子または硫黄原子の場合、tは2であり、T1が窒素原子またはリン原子の場合、tは3である。 The t in the general formula (6) represents a valence of T 1, if T 1 is an oxygen atom or a sulfur atom, t is 2, if T 1 is a nitrogen atom or phosphorus atom, t is 3 .

一般式(6)のR6は、ハロゲン原子、電子吸引性基、ハロゲン原子を含有する基、電子吸引性基を有する基を表し、電子吸引性基を含有する基または電子吸引性基を表し、R6が複数存在する場合、それらは互いに同じであっても異なっていてもよい。電子吸引性の指標としては、ハメット則の置換基定数σ等が知られており、ハメット則の置換基定数σが正である官能基が電子吸引性基としてあげられる。 R 6 in the general formula (6) represents a halogen atom, an electron-withdrawing group, a group containing a halogen atom, or a group having an electron-withdrawing group, and represents a group containing an electron-withdrawing group or an electron-withdrawing group. , R 6 may be the same as or different from each other. As an index of electron withdrawing property, Hammett's rule substituent constant σ and the like are known, and functional groups having positive Hammett's rule substituent constant σ are listed as electron withdrawing groups.

6のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などがあげられる。 Examples of the halogen atom for R 6 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

6の電子吸引性基としては、シアノ基、ニトロ基、カルボニル基、ハイドロカルビルオキシカルボニル基、スルホン基、フェニル基などがあげられる。 Examples of the electron-withdrawing group for R 6 include a cyano group, a nitro group, a carbonyl group, a hydrocarbyloxycarbonyl group, a sulfone group, and a phenyl group.

6のハロゲンを含有する基としては、ハロゲン化アルキル基、ハロゲン化アラルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基などのハロゲン化ハイドロカルビル基;ハロゲン化ハイドロカルビルオキシ基;ハロゲン化ハイドロカルビルオキシカルボニル基などがあげられる。また、R6の電子吸引性基を有する基としては、シアノ化アリール基などのシアノ化ハイドロカルビル基、ニトロ化アリール基などのニトロ化ハイドロカルビル基などがあげられる。 Examples of the halogen-containing group represented by R 6 include halogenated hydrocarbyl groups such as halogenated alkyl groups, halogenated aralkyl groups, halogenated aryl groups, and (halogenated alkyl) aryl groups; halogenated hydrocarbyloxy groups; And halogenated hydrocarbyloxycarbonyl group. Examples of the group having an electron-withdrawing group of R 6 include a cyanated hydrocarbyl group such as a cyanated aryl group and a nitrated hydrocarbyl group such as a nitrated aryl group.

6のハロゲン化アルキル基としては、フルオロメチル基、クロロメチル基、ブロモメチル基、ヨードメチル基、ジフルオロメチル基、ジクロロメチル基、ジブロモメチル基、ジヨードメチル基トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、トリヨードメチル基、2,2,2−トリフルオロエチル基、2,2,2−トリクロロエチル基、2,2,2−トリブロモエチル基、2,2,2−トリヨードエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,3,3,3−ペンタクロロプロピル基、2,2,3,3,3−ペンタブロモプロピル基、2,2,3,3,3−ペンタヨードプロピル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基、2,2,2−トリクロロ−1−トリクロロメチルエチル基、2,2,2−トリブロモ−1−トリブロモメチルエチル基、2,2,2−トリヨード−1−トリヨードメチルエチル基、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基 、1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエチル基、1,1−ビス(トリブロモメチル)−2,2,2−トリブロモエチル基 、1,1−ビス(トリヨードメチル)−2,2,2−トリヨードエチル基などがあげられる。 Examples of the halogenated alkyl group for R 6 include a fluoromethyl group, a chloromethyl group, a bromomethyl group, an iodomethyl group, a difluoromethyl group, a dichloromethyl group, a dibromomethyl group, a diiodomethyl group, a trifluoromethyl group, a trichloromethyl group, and a tribromomethyl group. Group, triiodomethyl group, 2,2,2-trifluoroethyl group, 2,2,2-trichloroethyl group, 2,2,2-tribromoethyl group, 2,2,2-triiodoethyl group, 2,2,3,3,3-pentafluoropropyl group, 2,2,3,3,3-pentachloropropyl group, 2,2,3,3,3-pentabromopropyl group, 2,2,3 , 3,3-pentaiodopropyl group, 2,2,2-trifluoro-1-trifluoromethylethyl group, 2,2,2-trichloro-1-trichloromethyl Til group, 2,2,2-tribromo-1-tribromomethylethyl group, 2,2,2-triiodo-1-triiodomethylethyl group, 1,1-bis (trifluoromethyl) -2,2, 2-trifluoroethyl group, 1,1-bis (trichloromethyl) -2,2,2-trichloroethyl group, 1,1-bis (tribromomethyl) -2,2,2-tribromoethyl group, 1 , 1-bis (triiodomethyl) -2,2,2-triiodoethyl group, and the like.

6のハロゲン化アリール基としては、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、3,4,5−トリフルオロフェニル基、2,3,5,6−テトラフルオロフェニル基、ペンタフルオロフェニル基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニル基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェニル基、パーフルオロ−1−ナフチル基、パーフルオロ−2−ナフチル基、2−クロロフェニル基、3−クロロフェニル基、4−クロロフェニル基、2,4−ジクロロフェニル基、2,6−ジクロロフェニル基、3,4−ジクロロフェニル基、3,5−ジクロロフェニル基、2,4,6−トリクロロフェニル基、3,4,5−トリクロロフェニル基、2,3,5,6−テトラクロロフェニル基、ペンタクロロフェニル基、2,3,5,6−テトラクロロ−4−トリクロロメチルフェニル基、2,3,5,6−テトラクロロ−4−ペンタクロロフェニルフェニル基、パークロロ−1−ナフチル基、パークロロ−2−ナフチル基、2−ブロモフェニル基、3−ブロモフェニル基、4−ブロモフェニル基、2,4−ジブロモフェニル基、2,6−ジブロモフェニル基、3,4−ジブロモフェニル基、3,5−ジブロモフェニル基、2,4,6−トリブロモフェニル基、3,4,5−トリブロモフェニル基、2,3,5,6−テトラブロモフェニル基、ペンタブロモフェニル基、2,3,5,6−テトラブロモ−4−トリブロモメチルフェニル基、2,3,5,6−テトラブロモ−4−ペンタブロモフェニルフェニル基、パーブロモ−1−ナフチル基、パーブロモ−2−ナフチル基、2−ヨードフェニル基、3−ヨードフェニル基、4−ヨードフェニル基、2,4−ジヨードフェニル基、2,6−ジヨードフェニル基、3,4−ジヨードフェニル基、3,5−ジヨードフェニル基、2,4,6−トリヨードフェニル基、3,4,5−トリヨードフェニル基、2,3,5,6−テトラヨードフェニル基、ペンタヨードフェニル基、2,3,5,6−テトラヨード−4−トリヨードメチルフェニル基、2,3,5,6−テトラヨード−4−ペンタヨードフェニルフェニル基、パーヨード−1−ナフチル基、パーヨード−2−ナフチル基などがあげられる。 As the halogenated aryl group for R 6 , 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl Group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, 3,4,5-trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, pentafluorophenyl group, 2,3,5,6-tetrafluoro-4-trifluoromethylphenyl group, 2,3,5,6-tetrafluoro-4-pentafluorophenylphenyl group, perfluoro-1-naphthyl group, perfluoro-2 -Naphthyl group, 2-chlorophenyl group, 3-chlorophenyl group, 4-chlorophenyl group, 2,4-dichlorophenyl group, 2,6- Chlorophenyl group, 3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2,4,6-trichlorophenyl group, 3,4,5-trichlorophenyl group, 2,3,5,6-tetrachlorophenyl group, penta Chlorophenyl group, 2,3,5,6-tetrachloro-4-trichloromethylphenyl group, 2,3,5,6-tetrachloro-4-pentachlorophenylphenyl group, perchloro-1-naphthyl group, perchloro-2- Naphtyl group, 2-bromophenyl group, 3-bromophenyl group, 4-bromophenyl group, 2,4-dibromophenyl group, 2,6-dibromophenyl group, 3,4-dibromophenyl group, 3,5-dibromo Phenyl group, 2,4,6-tribromophenyl group, 3,4,5-tribromophenyl group, 2,3,5,6-tetrabromophenyl Phenyl group, pentabromophenyl group, 2,3,5,6-tetrabromo-4-tribromomethylphenyl group, 2,3,5,6-tetrabromo-4-pentabromophenylphenyl group, perbromo-1-naphthyl group Perbromo-2-naphthyl group, 2-iodophenyl group, 3-iodophenyl group, 4-iodophenyl group, 2,4-diiodophenyl group, 2,6-diiodophenyl group, 3,4-diiodo Phenyl group, 3,5-diiodophenyl group, 2,4,6-triiodophenyl group, 3,4,5-triiodophenyl group, 2,3,5,6-tetraiodophenyl group, pentaiodophenyl Group, 2,3,5,6-tetraiodo-4-triiodomethylphenyl group, 2,3,5,6-tetraiodo-4-pentaiodophenylphenyl group, periodate 1-naphthyl group, etc. Payodo-2-naphthyl group.

6の(ハロゲン化アルキル)アリール基としては、2−(トリフルオロメチル)フェニル基、3−(トリフルオロメチル)フェニル基、4−(トリフルオロメチル)フェニル基、2,6−ビス(トリフルオロメチル)フェニル基、3,5−ビス(トリフルオロメチル)フェニル基、2,4,6−トリス(トリフルオロメチル)フェニル基、3,4,5−トリス(トリフルオロメチル)フェニル基などがあげられる。 As the (halogenated alkyl) aryl group of R 6 , 2- (trifluoromethyl) phenyl group, 3- (trifluoromethyl) phenyl group, 4- (trifluoromethyl) phenyl group, 2,6-bis (trimethyl) Fluoromethyl) phenyl group, 3,5-bis (trifluoromethyl) phenyl group, 2,4,6-tris (trifluoromethyl) phenyl group, 3,4,5-tris (trifluoromethyl) phenyl group, etc. can give.

6のシアノ化アリール基としては、2−シアノフェニル基、3−シアノフェニル基、4−シアノフェニル基などがあげられる。 Examples of the cyanated aryl group for R 6 include a 2-cyanophenyl group, a 3-cyanophenyl group, and a 4-cyanophenyl group.

6のニトロ化アリール基としては、2−ニトロフェニル基、3−ニトロフェニル基、4−ニトロフェニル基などがあげられる。 Examples of the nitrated aryl group for R 6 include a 2-nitrophenyl group, a 3-nitrophenyl group, and a 4-nitrophenyl group.

6のハイドロカルビルオキシカルボニル基としては、アルコキシカルボニル基、アラルキルオキシカルボニル基、アリールオキシカルボニル基などがあげられ、より具体的には、メトキシカルボニル基、エトキシカルボニル基、n−プロポキシカルボニル基、イソプロポキシカルボニル基、フェノキシカルボニル基などがあげられる。 Examples of the hydrocarbyloxycarbonyl group for R 6 include an alkoxycarbonyl group, an aralkyloxycarbonyl group, an aryloxycarbonyl group, and the like. More specifically, a methoxycarbonyl group, an ethoxycarbonyl group, an n-propoxycarbonyl group, Examples thereof include an isopropoxycarbonyl group and a phenoxycarbonyl group.

6のハロゲン化ハイドロカルビルオキシカルボニル基としては、ハロゲン化アルコキシカルボニル基、ハロゲン化アラルキルオキシカルボニル基、ハロゲン化アリールオキシカルボニル基などがあげられ、より具体的には、トリフルオロメトキシカルボニル基、ペンタフルオロフェノキシカルボニル基などがあげられる。 Examples of the halogenated hydrocarbyloxycarbonyl group for R 6 include a halogenated alkoxycarbonyl group, a halogenated aralkyloxycarbonyl group, a halogenated aryloxycarbonyl group, and the like. More specifically, a trifluoromethoxycarbonyl group, And pentafluorophenoxycarbonyl group.

6として好ましくは、ハロゲン化ハイドロカルビル基であり、より好ましくは、ハロゲン化アルキル基またはハロゲン化アリール基であり、さらに好ましくは、フッ素化アルキル基、フッ素化アリール基、塩素化アルキル基または塩素化アリール基であり、特に好ましくは、フッ素化アルキル基またはフッ素化アリール基である。フッ素化アルキル基として好ましくは、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、2,2,3,3,3−ペンタフルオロプロピル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基または1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基であり、より好ましくは、トリフルオロメチル基、2,2,2−トリフルオロ−1−トリフルオロメチルエチル基または1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル基である。フッ素化アリール基として好ましくは、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,4−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,4,6−トリフルオロフェニル基、3,4,5−トリフルオロフェニル基、2,3,5,6−テトラフルオロフェニル基、ペンタフルオロフェニル基、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェニル基、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェニル基、パーフルオロ−1−ナフチル基またはパーフルオロ−2−ナフチル基であり、より好ましくは、3,5−ジフルオロフェニル基、3,4,5−トリフルオロフェニル基またはペンタフルオロフェニル基である。塩素化アルキル基として好ましくは、クロロメチル基、ジクロロメチル基、トリクロロメチル基、2,2,2−トリクロロエチル基、2,2,3,3,3−ペンタクロロプロピル基、2,2,2−トリクロロ−1−トリクロロメチルエチル基または1,1−ビス(トリクロロメチル)−2,2,2−トリクロロエチル基である。塩素化アリール基として好ましくは、4−クロロフェニル基、2,6−ジクロロフェニル基、3.5−ジクロロフェニル基、2,4,6−トリクロロフェニル基、3,4,5−トリクロロフェニル基またはペンタクロロフェニル基である。 R 6 is preferably a halogenated hydrocarbyl group, more preferably a halogenated alkyl group or a halogenated aryl group, still more preferably a fluorinated alkyl group, a fluorinated aryl group, a chlorinated alkyl group or A chlorinated aryl group, particularly preferably a fluorinated alkyl group or a fluorinated aryl group. The fluorinated alkyl group is preferably a fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 2,2,3,3,3-pentafluoropropyl group, 2,2 , 2-trifluoro-1-trifluoromethylethyl group or 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl group, more preferably trifluoromethyl group, 2,2 , 2-trifluoro-1-trifluoromethylethyl group or 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl group. As the fluorinated aryl group, 2-fluorophenyl group, 3-fluorophenyl group, 4-fluorophenyl group, 2,4-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl group, 3,5-difluorophenyl group, 2,4,6-trifluorophenyl group, 3,4,5-trifluorophenyl group, 2,3,5,6-tetrafluorophenyl group, pentafluorophenyl group, 2, 3,5,6-tetrafluoro-4-trifluoromethylphenyl group, 2,3,5,6-tetrafluoro-4-pentafluorophenylphenyl group, perfluoro-1-naphthyl group or perfluoro-2-naphthyl group More preferably a 3,5-difluorophenyl group, a 3,4,5-trifluorophenyl group or a penta group. Is a Ruorofeniru group. The chlorinated alkyl group is preferably a chloromethyl group, dichloromethyl group, trichloromethyl group, 2,2,2-trichloroethyl group, 2,2,3,3,3-pentachloropropyl group, 2,2,2 -Trichloro-1-trichloromethylethyl group or 1,1-bis (trichloromethyl) -2,2,2-trichloroethyl group. The chlorinated aryl group is preferably a 4-chlorophenyl group, a 2,6-dichlorophenyl group, a 3.5-dichlorophenyl group, a 2,4,6-trichlorophenyl group, a 3,4,5-trichlorophenyl group or a pentachlorophenyl group. It is.

一般式(7)のT2は、酸素原子、硫黄原子、窒素原子またはリン原子であり、好ましくは、窒素原子または酸素原子であり、より好ましくは酸素原子である。 T 2 in the general formula (7) is an oxygen atom, a sulfur atom, a nitrogen atom or a phosphorus atom, preferably a nitrogen atom or an oxygen atom, more preferably an oxygen atom.

一般式(7)のsは、T2の原子価を表し、T2が酸素原子または硫黄原子の場合、sは2であり、T2が窒素原子またはリン原子の場合、sは3である。 The s of the general formula (7) represents a valence of T 2, if T 2 is an oxygen atom or a sulfur atom, s is 2, if T 2 is a nitrogen atom or a phosphorus atom, s is 3 .

一般式(7)のR7は、ハイドロカルビル基またはハロゲン化ハイドロカルビル基を表す。R7のハイドロカルビル基としては、アルキル基、アラルキル基、アリール基などがあげられ、Lのアルキル基、アラルキル基、アリール基として例示した基を例示することができる。R7のハロゲン化ハイドロカルビル基としては、ハロゲン化アルキル基、ハロゲン化アラルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基などのハロゲン化ハイドロカルビル基などがあげられ、R6のハロゲン化アルキル基、ハロゲン化アリール基、(ハロゲン化アルキル)アリール基として例示した基を例示することができる。 R 7 in the general formula (7) represents a hydrocarbyl group or a halogenated hydrocarbyl group. Examples of the hydrocarbyl group for R 7 include an alkyl group, an aralkyl group, an aryl group, and the like, and examples thereof include the groups exemplified as the alkyl group, the aralkyl group, and the aryl group for L. The halogenated hydrocarbyl group R 7, a halogenated alkyl group, halogenated aralkyl group, halogenated aryl group, and halogenated hydrocarbyl groups, such as (halogenated alkyl) aryl group and the like, the R 6 The groups exemplified as the halogenated alkyl group, the halogenated aryl group, and the (halogenated alkyl) aryl group can be exemplified.

7として好ましくは、ハロゲン化ハイドロカルビル基であり、より好ましくは、フッ素化ハイドロカルビル基である。 R 7 is preferably a halogenated hydrocarbyl group, and more preferably a fluorinated hydrocarbyl group.

成分(b1)の一般式(5)で表される化合物としては、M3が亜鉛原子である化合物として、ジメチル亜鉛、ジエチル亜鉛、ジ−n−プロピル亜鉛、ジイソプロピル亜鉛、ジ−n−ブチル亜鉛、ジイソブチル亜鉛、ジ−n−ヘキシル亜鉛等のジアルキル亜鉛;ジフェニル亜鉛、ジナフチル亜鉛、ビス(ペンタフルオロフェニル)亜鉛等のジアリール亜鉛;ジアリル亜鉛等のジアルケニル亜鉛;ビス(シクロペンタジエニル)亜鉛;塩化メチル亜鉛、塩化エチル亜鉛、塩化n−プロピル亜鉛、塩化イソプロピル亜鉛、塩化n−ブチル亜鉛、塩化イソブチル亜鉛、塩化n−ヘキシル亜鉛、臭化メチル亜鉛、臭化エチル亜鉛、臭化n−プロピル亜鉛、臭化イソプロピル亜鉛、臭化n−ブチル亜鉛、臭化イソブチル亜鉛、臭化n−ヘキシル亜鉛、よう化メチル亜鉛、よう化エチル亜鉛、よう化n−プロピル亜鉛、よう化イソプロピル亜鉛、よう化n−ブチル亜鉛、よう化イソブチル亜鉛、よう化n−ヘキシル亜鉛等のハロゲン化アルキル亜鉛;ふっ化亜鉛、塩化亜鉛、臭化亜鉛、よう化亜鉛等のハロゲン化亜鉛等があげられる。 As the compound represented by the general formula (5) of the component (b1), as a compound in which M 3 is a zinc atom, dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc Dialkyl zinc such as diisobutyl zinc and di-n-hexyl zinc; diaryl zinc such as diphenyl zinc, dinaphthyl zinc and bis (pentafluorophenyl) zinc; dialkenyl zinc such as diallyl zinc; bis (cyclopentadienyl) zinc; Methyl zinc, ethyl zinc chloride, n-propyl zinc chloride, isopropyl zinc chloride, n-butyl zinc chloride, isobutyl zinc chloride, n-hexyl zinc chloride, methyl zinc bromide, ethyl zinc bromide, n-propyl zinc bromide, Isopropyl zinc bromide, n-butyl zinc bromide, isobutyl zinc bromide, n-hexyl zinc bromide, yo Alkyl zinc halides such as methyl zinc iodide, ethyl zinc iodide, n-propyl zinc iodide, isopropyl zinc iodide, n-butyl zinc iodide, isobutyl zinc iodide, n-hexyl zinc iodide; zinc fluoride, Examples thereof include zinc halides such as zinc chloride, zinc bromide and zinc iodide.

成分(b1)の一般式(5)で表される化合物として好ましくは、ジアルキル亜鉛であり、さらに好ましくは、ジメチル亜鉛、ジエチル亜鉛、ジ−n−プロピル亜鉛、ジイソプロピル亜鉛、ジ−n−ブチル亜鉛、ジイソブチル亜鉛、またはジ−n−ヘキシル亜鉛であり、特に好ましくはジメチル亜鉛またはジエチル亜鉛である。   The compound represented by the general formula (5) of the component (b1) is preferably dialkyl zinc, more preferably dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc. Diisobutylzinc or di-n-hexylzinc, particularly preferably dimethylzinc or diethylzinc.

成分(b2)の一般式(6)で表される化合物としては、アミン、ホスフィン、アルコール、チオール、フェノール、チオフェノール、ナフトール、ナフチルチオール、カルボン酸化合物などがあげられる。   Examples of the compound represented by the general formula (6) of the component (b2) include amines, phosphines, alcohols, thiols, phenols, thiophenols, naphthols, naphthylthiols, and carboxylic acid compounds.

アミンとしては、ジ(フルオロメチル)アミン、ビス(ジフルオロメチル)アミン、ビス(トリフルオロメチル)アミン、ビス(2,2,2−トリフルオロエチル)アミン、ビス(2,2,3,3,3−ペンタフルオロプロピル)アミン、ビス(2,2,2−トリフルオロ−1−トリフルオロメチルエチル)アミン、ビス(1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル)アミン、ビス(2−フルオロフェニル)アミン、ビス(3−フルオロフェニル)アミン、ビス(4−フルオロフェニル)アミン、ビス(2,6−ジフルオロフェニル)アミン、ビス(3,5−ジフルオロフェニル)アミン、ビス(2,4,6−トリフルオロフェニル)アミン、ビス(3,4,5−トリフルオロフェニル)アミン、ビス(ペンタフルオロフェニル)アミン、ビス(2−(トリフルオロメチル)フェニル)アミン、ビス(3−(トリフルオロメチル)フェニル)アミン、ビス(4−(トリフルオロメチル)フェニル)アミン、ビス(2,6−ジ(トリフルオロメチル)フェニル)アミン、ビス(3,5−ジ(トリフルオロメチル)フェニル)アミン、ビス(2,4,6−トリ(トリフルオロメチル)フェニル)アミン、ビス(2−シアノフェニル)アミン、(3−シアノフェニル)アミン、ビス(4−シアノフェニル)アミン、ビス(2−ニトロフェニル)アミン、ビス(3−ニトロフェニル)アミン、ビス(4−ニトロフェニル)アミン、ビス(1H,1H−パーフルオロブチル)アミン、ビス(1H,1H−パーフルオロペンチル)アミン、ビス(1H,1H−パーフルオロヘキシル)アミン、ビス(1H,1H−パーフルオロオクチル)アミン、ビス(1H,1H−パーフルオロドデシル)アミン、ビス(1H,1H−パーフルオロペンタデシル)アミン、ビス(1H,1H−パーフルオロエイコシル)アミンなどをあげることができる。また、これらのアミンのフルオロをクロロ、ブロモまたはヨードに変更したアミンをあげることができる。   Examples of the amine include di (fluoromethyl) amine, bis (difluoromethyl) amine, bis (trifluoromethyl) amine, bis (2,2,2-trifluoroethyl) amine, bis (2,2,3,3, 3-pentafluoropropyl) amine, bis (2,2,2-trifluoro-1-trifluoromethylethyl) amine, bis (1,1-bis (trifluoromethyl) -2,2,2-trifluoroethyl ) Amine, bis (2-fluorophenyl) amine, bis (3-fluorophenyl) amine, bis (4-fluorophenyl) amine, bis (2,6-difluorophenyl) amine, bis (3,5-difluorophenyl) Amine, bis (2,4,6-trifluorophenyl) amine, bis (3,4,5-trifluorophenyl) amine, bis (penta Fluorophenyl) amine, bis (2- (trifluoromethyl) phenyl) amine, bis (3- (trifluoromethyl) phenyl) amine, bis (4- (trifluoromethyl) phenyl) amine, bis (2,6-di) (Trifluoromethyl) phenyl) amine, bis (3,5-di (trifluoromethyl) phenyl) amine, bis (2,4,6-tri (trifluoromethyl) phenyl) amine, bis (2-cyanophenyl) Amine, (3-cyanophenyl) amine, bis (4-cyanophenyl) amine, bis (2-nitrophenyl) amine, bis (3-nitrophenyl) amine, bis (4-nitrophenyl) amine, bis (1H, 1H-perfluorobutyl) amine, bis (1H, 1H-perfluoropentyl) amine, bis (1H, 1H-per Fluorohexyl) amine, bis (1H, 1H-perfluorooctyl) amine, bis (1H, 1H-perfluorododecyl) amine, bis (1H, 1H-perfluoropentadecyl) amine, bis (1H, 1H-perfluoroeico) Syl) amine and the like. Further, amines in which the fluoro of these amines is changed to chloro, bromo or iodo can be mentioned.

ホスフィンとしては、上記アミンの窒素原子をリン原子に変更した化合物をあげることができる。それらのホスフィンは、上記アミン中のアミンをホスフィンに置き換えることによって表される化合物である。   Examples of the phosphine include compounds in which the nitrogen atom of the amine is changed to a phosphorus atom. Those phosphines are compounds represented by replacing the amine in the amine with phosphine.

アルコールとしては、フルオロメタノール、ジフルオロメタノール、トリフルオロメタノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロプロパノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール、1H,1H−パーフルオロブタノール、1H,1H−パーフルオロペンタノール、1H,1H−パーフルオロヘキサノール、1H,1H−パーフルオロオクタノール、1H,1H−パーフルオロドデカノール、1H,1H−パーフルオロペンタデカノール、1H,1H−パーフルオロエイコサノールなどをあげることができる。また、これらのアルコールのフルオロをクロロ、ブロモまたはヨードに変更したアルコールをあげることができる。   Examples of the alcohol include fluoromethanol, difluoromethanol, trifluoromethanol, 2,2,2-trifluoroethanol, 2,2,3,3,3-pentafluoropropanol, 2,2,2-trifluoro-1-trifluoro Fluoromethylethanol, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethanol, 1H, 1H-perfluorobutanol, 1H, 1H-perfluoropentanol, 1H, 1H-perfluorohexanol, Examples thereof include 1H, 1H-perfluorooctanol, 1H, 1H-perfluorododecanol, 1H, 1H-perfluoropentadecanol, 1H, 1H-perfluoroeicosanol and the like. Moreover, the alcohol which changed fluoro of these alcohol into chloro, bromo, or iodo can be mention | raise | lifted.

チオールとしては、上記アルコールの酸素原子を硫黄原子に変更した化合物をあげることができる。それらのチオールは、上記アルコール中のノールをンチオールに置き換えることによって表される化合物である。   Examples of the thiol include compounds in which the oxygen atom of the alcohol is changed to a sulfur atom. Those thiols are compounds represented by substituting the thiols in the alcohol with thiols.

フェノールとしては、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,4−ジフルオロフェノール、2,6−ジフルオロフェノール、3,4−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、2,3,5,6−テトラフルオロフェノール、ペンタフルオロフェノール、2,3,5,6−テトラフルオロ−4−トリフルオロメチルフェノール、2,3,5,6−テトラフルオロ−4−ペンタフルオロフェニルフェノールなどをあげることができる。また、これらのフェノールのフルオロをクロロ、ブロモまたはヨードに変更したフェノールをあげることができる。   As phenol, 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2,4-difluorophenol, 2,6-difluorophenol, 3,4-difluorophenol, 3,5-difluorophenol, 2,4 , 6-trifluorophenol, 3,4,5-trifluorophenol, 2,3,5,6-tetrafluorophenol, pentafluorophenol, 2,3,5,6-tetrafluoro-4-trifluoromethylphenol 2,3,5,6-tetrafluoro-4-pentafluorophenylphenol and the like. Moreover, the phenol which changed fluoro of these phenol into chloro, bromo, or iodo can be mention | raise | lifted.

チオフェノールとしては、上記フェノールの酸素原子を硫黄原子に変更した化合物をあげることができる。それらのチオフェノールは、上記フェノール中のフェノールをチオフェノールに置き換えることによって表される化合物である。   Examples of the thiophenol include compounds in which the oxygen atom of the phenol is changed to a sulfur atom. Those thiophenols are compounds represented by replacing the phenol in the phenol with thiophenol.

ナフトールとしては、パーフルオロ−1−ナフトール、パーフルオロ−2−ナフトール、4,5,6,7,8−ペンタフルオロ−2−ナフトール、2−(トリフルオロメチル)フェノール、3−(トリフルオロメチル)フェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノール、3,5−ビス(トリフルオロメチル)フェノール、2,4,6−トリス(トリフルオロメチル)フェノール、2−シアノフェノール、3−シアノフェノール、4−シアノフェノール、2−ニトロフェノール、3−ニトロフェノール、4−ニトロフェノールなどをあげることができる。また、これらのナフトールのフルオロをクロロ、ブロモまたはヨードに変更したナフトールをあげることができる。   As naphthol, perfluoro-1-naphthol, perfluoro-2-naphthol, 4,5,6,7,8-pentafluoro-2-naphthol, 2- (trifluoromethyl) phenol, 3- (trifluoromethyl) ) Phenol, 4- (trifluoromethyl) phenol, 2,6-bis (trifluoromethyl) phenol, 3,5-bis (trifluoromethyl) phenol, 2,4,6-tris (trifluoromethyl) phenol, Examples include 2-cyanophenol, 3-cyanophenol, 4-cyanophenol, 2-nitrophenol, 3-nitrophenol, and 4-nitrophenol. Moreover, the naphthol which changed fluoro of these naphthol into chloro, bromo, or iodo can be mention | raise | lifted.

ナフチルチオールとしては、上記ナフトールの酸素原子を硫黄原子に変更した化合物をあげることができる。それらのナフチオールは、上記ナフトール中のナフトールをナフチルチオールに置き換えることによって表される化合物である。   Examples of naphthyl thiol include compounds in which the oxygen atom of the naphthol is changed to a sulfur atom. Those naphthols are compounds represented by replacing naphthol in the naphthol with naphthylthiol.

カルボン酸化合物としては、例えば、ペンタフルオロベンゾイックアシッド、パーフルオロエタノイックアシッド、パーフルオロプロパノイックアシッド、パーフルオロブタノイックアシッド、パーフルオロペンタノイックアシッド、パーフルオロヘキサノイックアシッド、パーフルオロヘプタノイックアシッド、パーフルオロオクタノイックアシッド、パーフルオロノナノイックアシッド、パーフルオロデカノイックアシッド、パーフルオロウンデカノイックアシッド、パーフルオロドデカノイックアシッドなどをあげることができる。   Examples of carboxylic acid compounds include pentafluorobenzoic acid, perfluoroethanolic acid, perfluoropropanoic acid, perfluorobutanoic acid, perfluoropentanoic acid, perfluorohexanoic acid, perfluoro. Examples include heptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid.

成分(b2)の一般式(6)で表される化合物として好ましくは、アミン、アルコールまたはフェノール化合物であり、アミンとして好ましくは、ビス(トリフルオロメチル)アミン、ビス(2,2,2−トリフルオロエチル)アミン、ビス(2,2,3,3,3−ペンタフルオロプロピル)アミン、ビス(2,2,2−トリフルオロ−1−トリフルオロメチルエチル)アミン、ビス(1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチル)アミンまたはビス(ペンタフルオロフェニル)アミンであり、アルコールとして好ましくは、トリフルオロメタノール、2,2,2−トリフルオロエタノール、2,2,3,3,3−ペンタフルオロプロパノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノールまたは1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノールであり、フェノールとして好ましくは、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,6−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノール、2−(トリフルオロメチル)フェノール、3−(トリフルオロメチル)フェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノール、3,5−ビス(トリフルオロメチル)フェノール、2,4,6−トリス(トリフルオロメチル)フェノールまたは3,4,5−トリス(トリフルオロメチル)フェノールである。   The compound represented by the general formula (6) of the component (b2) is preferably an amine, alcohol or phenol compound, and the amine is preferably bis (trifluoromethyl) amine, bis (2,2,2-trimethyl). Fluoroethyl) amine, bis (2,2,3,3,3-pentafluoropropyl) amine, bis (2,2,2-trifluoro-1-trifluoromethylethyl) amine, bis (1,1-bis (Trifluoromethyl) -2,2,2-trifluoroethyl) amine or bis (pentafluorophenyl) amine, and the alcohol is preferably trifluoromethanol, 2,2,2-trifluoroethanol, 2,2 , 3,3,3-pentafluoropropanol, 2,2,2-trifluoro-1-trifluoromethylethanol Is 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethanol, preferably 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2,6-difluorophenol as phenol 3,5-difluorophenol, 2,4,6-trifluorophenol, 3,4,5-trifluorophenol, pentafluorophenol, 2- (trifluoromethyl) phenol, 3- (trifluoromethyl) phenol, 4- (trifluoromethyl) phenol, 2,6-bis (trifluoromethyl) phenol, 3,5-bis (trifluoromethyl) phenol, 2,4,6-tris (trifluoromethyl) phenol or 3,4 , 5-tris (trifluoromethyl) phenol.

成分(b2)の一般式(6)で表される化合物としてより好ましくは、ビス(トリフルオロメチル)アミン、ビス(ペンタフルオロフェニル)アミン、トリフルオロメタノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,6−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノール、4−(トリフルオロメチル)フェノール、2,6−ビス(トリフルオロメチル)フェノールまたは2,4,6−トリス(トリフルオロメチル)フェノールであり、さらに好ましくは、3,5−ジフルオロフェノール、3,4,5−トリフルオロフェノール、ペンタフルオロフェノールまたは1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノールである。   More preferably, the compound represented by the general formula (6) of the component (b2) is bis (trifluoromethyl) amine, bis (pentafluorophenyl) amine, trifluoromethanol, 2,2,2-trifluoro-1 -Trifluoromethylethanol, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethanol, 2-fluorophenol, 3-fluorophenol, 4-fluorophenol, 2,6-difluorophenol, 3 , 5-difluorophenol, 2,4,6-trifluorophenol, 3,4,5-trifluorophenol, pentafluorophenol, 4- (trifluoromethyl) phenol, 2,6-bis (trifluoromethyl) phenol Or 2,4,6-tris (trifluoromethyl) phenol More preferably 3,5-difluorophenol, 3,4,5-fluorophenol, pentafluorophenol or 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethanol.

成分(b3)の一般式(7)で表される化合物としては、水、硫化水素、アミン、アニリン化合物などをあげることができる。   Examples of the compound represented by the general formula (7) of the component (b3) include water, hydrogen sulfide, amine, aniline compound and the like.

アミンとしては、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、イソブチルアミン、n−ペンチルアミン、ネオペンチルアミン、イソペンチルアミン、n−ヘキシルアミン、n−オクチルアミン、n−デシルアミン、n−ドデシルアミン、n−ペンタデシルアミン、n−エイコシルアミン等のアルキルアミン;ベンジルアミン、(2−メチルフェニル)メチルアミン、(3−メチルフェニル)メチルアミン、(4−メチルフェニル)メチルアミン、(2,3−ジメチルフェニル)メチルアミン、(2,4−ジメチルフェニル)メチルアミン、(2,5−ジメチルフェニル)メチルアミン、(2,6−ジメチルフェニル)メチルアミン、(3,4−ジメチルフェニル)メチルアミン、(3,5−ジメチルフェニル)メチルアミン、(2,3,4−トリメチルフェニル)メチルアミン、(2,3,5−トリメチルフェニル)メチルアミン、(2,3,6−トリメチルフェニル)メチルアミン、(3,4,5−トリメチルフェニル)メチルアミン、(2,4,6−トリメチルフェニル)メチルアミン、(2,3,4,5−テトラメチルフェニル)メチルアミン、(2,3,4,6−テトラメチルフェニル)メチルアミン、(2,3,5,6−テトラメチルフェニル)メチルアミン、(ペンタメチルフェニル)メチルアミン、(エチルフェニル)メチルアミン、(n−プロピルフェニル)メチルアミン、(イソプロピルフェニル)メチルアミン、(n−ブチルフェニル)メチルアミン、(sec−ブチルフェニル)メチルアミン、(tert−ブチルフェニル)メチルアミン、(n−ペンチルフェニル)メチルアミン、(ネオペンチルフェニル)メチルアミン、(n−ヘキシルフェニル)メチルアミン、(n−オクチルフェニル)メチルアミン、(n−デシルフェニル)メチルアミン、(n−テトラデシルフェニル)メチルアミン、ナフチルメチルアミン、アントラセニルメチルアミン等のアラルキルアミン;アリルアミン;シクロペンタジエニルアミンなどがあげられる。   Examples of the amine include methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, tert-butylamine, isobutylamine, n-pentylamine, neopentylamine, isopentylamine, n-hexylamine, alkylamines such as n-octylamine, n-decylamine, n-dodecylamine, n-pentadecylamine, n-eicosylamine; benzylamine, (2-methylphenyl) methylamine, (3-methylphenyl) methylamine , (4-methylphenyl) methylamine, (2,3-dimethylphenyl) methylamine, (2,4-dimethylphenyl) methylamine, (2,5-dimethylphenyl) methylamine, (2,6-dimethylphenyl) ) Methylamine, (3, -Dimethylphenyl) methylamine, (3,5-dimethylphenyl) methylamine, (2,3,4-trimethylphenyl) methylamine, (2,3,5-trimethylphenyl) methylamine, (2,3,6) -Trimethylphenyl) methylamine, (3,4,5-trimethylphenyl) methylamine, (2,4,6-trimethylphenyl) methylamine, (2,3,4,5-tetramethylphenyl) methylamine, ( 2,3,4,6-tetramethylphenyl) methylamine, (2,3,5,6-tetramethylphenyl) methylamine, (pentamethylphenyl) methylamine, (ethylphenyl) methylamine, (n-propyl) Phenyl) methylamine, (isopropylphenyl) methylamine, (n-butylphenyl) methylamine, (s c-butylphenyl) methylamine, (tert-butylphenyl) methylamine, (n-pentylphenyl) methylamine, (neopentylphenyl) methylamine, (n-hexylphenyl) methylamine, (n-octylphenyl) methyl Aralkylamines such as amine, (n-decylphenyl) methylamine, (n-tetradecylphenyl) methylamine, naphthylmethylamine, anthracenylmethylamine; allylamine; cyclopentadienylamine and the like.

また、アミンとしては、フルオロメチルアミン、ジフルオロメチルアミン、トリフルオロメチルアミン、2,2,2−トリフルオロエチルアミン、2,2,3,3,3−ペンタフルオロプロピルアミン、2,2,2−トリフルオロ−1−トリフルオロメチルエチルアミン、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエチルアミン、パーフルオロプロピルアミン、パーフルオロブチルアミン、パーフルオロペンチルアミン、パーフルオロヘキシルアミン、パーフルオロオクチルアミン、パーフルオロドデシルアミン、パーフルオロペンタデシルアミン、パーフルオロエイコシルアミンなどのハロゲン化アルキルアミンなどがあげられる。また、これらのアミンのフルオロをクロロ、ブロモまたはヨードに変更したアミンをあげることができる。   Examples of the amine include fluoromethylamine, difluoromethylamine, trifluoromethylamine, 2,2,2-trifluoroethylamine, 2,2,3,3,3-pentafluoropropylamine, 2,2,2- Trifluoro-1-trifluoromethylethylamine, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethylamine, perfluoropropylamine, perfluorobutylamine, perfluoropentylamine, perfluorohexylamine, Examples thereof include halogenated alkylamines such as perfluorooctylamine, perfluorododecylamine, perfluoropentadecylamine, and perfluoroeicosylamine. Further, amines in which the fluoro of these amines is changed to chloro, bromo or iodo can be mentioned.

アニリン化合物としては、アニリン、ナフチルアミン、アントラセニルアミン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、2,3−ジメチルアニリン、2,4−ジメチルアニリン、2,5−ジメチルアニリン、2,6−ジメチルアニリン、3,4−ジメチルアニリン、3,5−ジメチルアニリン、2,3,4−トリメチルアニリン、2,3,5−トリメチルアニリン、2,3,6−トリメチルアニリン、2,4,6−トリメチルアニリン、3,4,5−トリメチルアニリン、2,3,4,5−テトラメチルアニリン、2,3,4,6−テトラメチルアニリン、2,3,5,6−テトラメチルアニリン、ペンタメチルアニリン、2−エチルアニリン、3−エチルアニリン、4−エチルアニリン、2,3−ジエチルアニリン、2,4−ジエチルアニリン、2,5−ジエチルアニリン、2,6−ジエチルアニリン、3,4−ジエチルアニリン、3,5−ジエチルアニリン、2,3,4−トリエチルアニリン、2,3,5−トリエチルアニリン、2,3,6−トリエチルアニリン、2,4,6−トリエチルアニリン、3,4,5−トリエチルアニリン、2,3,4,5−テトラエチルアニリン、2,3,4,6−テトラエチルアニリン、2,3,5,6−テトラエチルアニリン、ペンタエチルアニリンなどをあげることができる。また、これらのアニリン化合物のエチルをn−プロピル、イソプロピル、n−ブチル、sec−ブチル、tert−ブチル、n−ペンチル、ネオペンチル、n−ヘキシル、n−オクチル、n−デシル、n−ドデシル、n−テトラデシルなどに変更したアニリン化合物などがあげられる。   Examples of aniline compounds include aniline, naphthylamine, anthracenylamine, 2-methylaniline, 3-methylaniline, 4-methylaniline, 2,3-dimethylaniline, 2,4-dimethylaniline, 2,5-dimethylaniline, 2 , 6-dimethylaniline, 3,4-dimethylaniline, 3,5-dimethylaniline, 2,3,4-trimethylaniline, 2,3,5-trimethylaniline, 2,3,6-trimethylaniline, 2,4 , 6-trimethylaniline, 3,4,5-trimethylaniline, 2,3,4,5-tetramethylaniline, 2,3,4,6-tetramethylaniline, 2,3,5,6-tetramethylaniline , Pentamethylaniline, 2-ethylaniline, 3-ethylaniline, 4-ethylaniline, 2,3-diethylaniline 2,4-diethylaniline, 2,5-diethylaniline, 2,6-diethylaniline, 3,4-diethylaniline, 3,5-diethylaniline, 2,3,4-triethylaniline, 2,3,5 -Triethylaniline, 2,3,6-triethylaniline, 2,4,6-triethylaniline, 3,4,5-triethylaniline, 2,3,4,5-tetraethylaniline, 2,3,4,6- Examples thereof include tetraethylaniline, 2,3,5,6-tetraethylaniline, pentaethylaniline and the like. Moreover, the ethyl of these aniline compounds is n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n -An aniline compound changed to tetradecyl and the like.

また、アニリン化合物としては、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ジ(トリフルオロメチル)アニリン、3,5−ジ(トリフルオロメチル)アニリン、2,4,6−トリ(トリフルオロメチル)アニリン、3,4,5−トリ(トリフルオロメチル)アニリンなどをあげることができる。また、これらのアニリン化合物のフルオロをクロロ、ブロモ、ヨードなどに変更したアニリン化合物をあげることができる。   Examples of aniline compounds include 2-fluoroaniline, 3-fluoroaniline, 4-fluoroaniline, 2,6-difluoroaniline, 3,5-difluoroaniline, 2,4,6-trifluoroaniline, 3,4, 5-trifluoroaniline, pentafluoroaniline, 2- (trifluoromethyl) aniline, 3- (trifluoromethyl) aniline, 4- (trifluoromethyl) aniline, 2,6-di (trifluoromethyl) aniline, 3 , 5-di (trifluoromethyl) aniline, 2,4,6-tri (trifluoromethyl) aniline, 3,4,5-tri (trifluoromethyl) aniline, and the like. Moreover, the aniline compound which changed fluoro of these aniline compounds into chloro, bromo, iodo etc. can be mention | raise | lifted.

成分(b3)の一般式(7)で表される化合物として好ましくは、水、硫化水素、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン、イソブチルアミン、n−オクチルアミン、アニリン、2,6−ジメチルアニリン、2,4,6−トリメチルアニリン、ナフチルアミン、アントラセニルアミン、ベンジルアミン、トリフルオロメチルアミン、ペンタフルオロエチルアミン、パーフルオロプロピルアミン、パーフルオロブチルアミン、パーフルオロペンチルアミン、パーフルオロヘキシルアミン、パーフルオロオクチルアミン、パーフルオロドデシルアミン、パーフルオロペンタデシルアミン、パーフルオロエイコシルアミン、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ビス(トリフルオロメチル)アニリン、3,5−ビス(トリフルオロメチル)アニリン、2,4,6−トリス(トリフルオロメチル)アニリン、または3,4,5−トリス(トリフルオロメチル)アニリンであり、特に好ましくは、水、トリフルオロメチルアミン、パーフルオロブチルアミン、パーフルオロオクチルアミン、パーフルオロペンタデシルアミン、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、3,4,5−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ビス(トリフルオロメチル)アニリン、3,5−ビス(トリフルオロメチル)アニリン、2,4,6−トリス(トリフルオロメチル)アニリン、または3,4,5−トリス(トリフルオロメチル)アニリンであり、もっとも好ましくは水またはペンタフルオロアニリンである。   The compound represented by the general formula (7) of the component (b3) is preferably water, hydrogen sulfide, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, sec-butylamine, tert-butylamine, isobutyl. Amine, n-octylamine, aniline, 2,6-dimethylaniline, 2,4,6-trimethylaniline, naphthylamine, anthracenylamine, benzylamine, trifluoromethylamine, pentafluoroethylamine, perfluoropropylamine, perfluoro Butylamine, perfluoropentylamine, perfluorohexylamine, perfluorooctylamine, perfluorododecylamine, perfluoropentadecylamine, perfluoroeicosylamine, 2-fluoroanily 3-fluoroaniline, 4-fluoroaniline, 2,6-difluoroaniline, 3,5-difluoroaniline, 2,4,6-trifluoroaniline, 3,4,5-trifluoroaniline, pentafluoroaniline, 2 -(Trifluoromethyl) aniline, 3- (trifluoromethyl) aniline, 4- (trifluoromethyl) aniline, 2,6-bis (trifluoromethyl) aniline, 3,5-bis (trifluoromethyl) aniline, 2,4,6-tris (trifluoromethyl) aniline or 3,4,5-tris (trifluoromethyl) aniline, particularly preferably water, trifluoromethylamine, perfluorobutylamine, perfluorooctylamine , Perfluoropentadecylamine, 2-fluoroaniline, 3-fur Roaniline, 4-fluoroaniline, 2,6-difluoroaniline, 3,5-difluoroaniline, 2,4,6-trifluoroaniline, 3,4,5-trifluoroaniline, pentafluoroaniline, 2- (trifluoro Methyl) aniline, 3- (trifluoromethyl) aniline, 4- (trifluoromethyl) aniline, 2,6-bis (trifluoromethyl) aniline, 3,5-bis (trifluoromethyl) aniline, 2,4, 6-Tris (trifluoromethyl) aniline or 3,4,5-tris (trifluoromethyl) aniline, most preferably water or pentafluoroaniline.

成分(b4)の粒子状担体としては、重合用触媒調製用の溶媒あるいは重合溶媒に不溶な固体状物質が好適に用いられ、多孔質の物質がより好適に用いられ、無機物質または有機ポリマーが更に好適に用いられ、無機物質が特に好適に用いられる。   As the particulate carrier of component (b4), a solvent for preparing a polymerization catalyst or a solid substance insoluble in the polymerization solvent is preferably used, a porous substance is more preferably used, and an inorganic substance or an organic polymer is used. More preferably, inorganic substances are particularly preferably used.

成分(b4)の粒子状担体は、粒径の整ったものであることが好ましく、成分(b4)の粒子状担体の粒径の体積基準の幾何標準偏差は、好ましくは2.5以下であり、より好ましくは2.0以下であり、更に好ましくは1.7以下である。   The particulate carrier of component (b4) is preferably of a uniform particle size, and the volume standard geometric standard deviation of the particle size of the particulate carrier of component (b4) is preferably 2.5 or less. More preferably, it is 2.0 or less, More preferably, it is 1.7 or less.

成分(b4)の粒子状担体の無機物質としては、無機酸化物、粘土、粘土鉱物などをあげることができる。また、これらを複数混合して用いてもよい。   Examples of the inorganic substance of the particulate carrier of the component (b4) include inorganic oxides, clays, clay minerals and the like. A plurality of these may be mixed and used.

無機酸化物としては、SiO2、Al23、MgO、ZrO2、TiO2、B23、CaO、ZnO、BaO、ThO2、SiO2−MgO、SiO2−Al23、SiO2−TiO2、SiO2−V25、SiO2−Cr23、SiO2−TiO2−MgO、ならびに、これら2種以上の混合物をあげることができる。これらの無機酸化物の中では、SiO2および/またはAl23が好ましく、特にSiO2(シリカ)が好ましい。なお、上記無機酸化物は少量のNa2CO3、K2CO3、CaCO3、MgCO3、Na2SO4、Al2(SO43、BaSO4、KNO3、Mg(NO32、Al(NO33、Na2O、K2O、Li2O等の炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有してもよい。 As the inorganic oxide, SiO 2, Al 2 O 3 , MgO, ZrO 2, TiO 2, B 2 O 3, CaO, ZnO, BaO, ThO 2, SiO 2 -MgO, SiO 2 -Al 2 O 3, SiO 2 -TiO 2, SiO 2 -V 2 O 5, SiO 2 -Cr 2 O 3, SiO 2 -TiO 2 -MgO, and, can be mentioned mixtures of two or more of these. Among these inorganic oxides, SiO 2 and / or Al 2 O 3 are preferable, and SiO 2 (silica) is particularly preferable. The inorganic oxide is a small amount of Na 2 CO 3 , K 2 CO 3 , CaCO 3 , MgCO 3 , Na 2 SO 4 , Al 2 (SO 4 ) 3 , BaSO 4 , KNO 3 , Mg (NO 3 ) 2. Carbonic acid salts such as Al (NO 3 ) 3 , Na 2 O, K 2 O, and Li 2 O, sulfates, nitrates, and oxide components may be contained.

また、無機酸化物には通常、表面に水酸基が生成し存在しているが、無機酸化物として、表面水酸基の活性水素を種々の置換基で置換した改質無機酸化物を使用してもよい。改質無機酸化物としては、例えば、トリメチルクロロシラン、tert−ブチルジメチルクロロシラン等のトリアルキルクロロシラン;トリフェニルクロロシラン等のトリアリールクロロシラン;ジメチルジクロロシラン等のジアルキルジクロロシラン;ジフェニルジクロロシラン等のジアリールジクロロシラン;メチルトリクロロシラン等のアルキルトリクロロシラン;フェニルトリクロロシラン等のアリールトリクロロシラン;トリメチルメトキシシラン等のトリアルキルアルコキシシラン;トリフェニルメトキシシラン等のトリアリールアルコシキシラン;ジメチルジメトキシシラン等のジアルキルジアルコキシシラン;ジフェニルジメトキシシラン等のジアリールジアルコキシシラン;メチルトリメトキシシラン等のアルキルトリアルコキシシラン;フェニルトリメトキシシラン等のアリールトリアルコキシシラン;テトラメトキシシラン等のテトラアルコキシシラン;1,1,1,3,3,3−ヘキサメチルジシラザン等のアルキルジシラザン;テトラクロロシラン;メタノール、エタノール等のアルコール;フェノール;ジブチルマグネシウム、ブチルエチルマグネシウム、ブチルオクチルマグネシウム等のジアルキルマグネシウム;ブチルリチウム等のアルキルリチウム等と接触された無機酸化物をあげることができる。   In addition, a hydroxyl group is usually generated and present on the surface of the inorganic oxide, but as the inorganic oxide, modified inorganic oxides in which active hydrogen of the surface hydroxyl group is substituted with various substituents may be used. . Examples of the modified inorganic oxide include trialkylchlorosilanes such as trimethylchlorosilane and tert-butyldimethylchlorosilane; triarylchlorosilanes such as triphenylchlorosilane; dialkyldichlorosilanes such as dimethyldichlorosilane; diaryldichlorosilanes such as diphenyldichlorosilane. Alkyltrichlorosilanes such as methyltrichlorosilane; aryltrichlorosilanes such as phenyltrichlorosilane; trialkylalkoxysilanes such as trimethylmethoxysilane; triarylalkoxysilanes such as triphenylmethoxysilane; dialkyldialkoxysilanes such as dimethyldimethoxysilane; ; Diaryl dialkoxysilanes such as diphenyldimethoxysilane; Alkyltria such as methyltrimethoxysilane Coxysilane; aryltrialkoxysilane such as phenyltrimethoxysilane; tetraalkoxysilane such as tetramethoxysilane; alkyldisilazane such as 1,1,1,3,3,3-hexamethyldisilazane; tetrachlorosilane; methanol, ethanol Examples thereof include: alcohols such as phenol; dialkylmagnesium such as dibutylmagnesium, butylethylmagnesium and butyloctylmagnesium; and inorganic oxides contacted with alkyllithium such as butyllithium.

更に、トリアルキルアルミニウムとの接触後、ジエチルアミンおよびジフェニルアミン等のジアルキルアミン、メタノールおよびエタノール等のアルコール、フェノールと接触された無機酸化物を例示することができる。   Furthermore, after contact with a trialkylaluminum, an inorganic oxide contacted with a dialkylamine such as diethylamine and diphenylamine, an alcohol such as methanol and ethanol, or phenol.

また、無機酸化物は水酸基同士が水素結合することにより無機酸化物自体の強度が高まっていることがある。その場合、仮に表面水酸基の活性水素全てについて種々の置換基で置換してしまうと、粒子強度の低下等を招く場合がある。よって、無機酸化物の表面水酸基の活性水素は必ずしも全て置換する必要はなく、表面水酸基の置換率は適宜決めればよい。表面水酸基の置換率を変化させる方法は特に限定されない。該方法としては、例えば、接触に使用する化合物の使用量を変化させる方法を例示することができる。   In addition, the strength of the inorganic oxide itself may increase due to hydrogen bonding between hydroxyl groups. In that case, if all the active hydrogens of the surface hydroxyl group are substituted with various substituents, the particle strength may be lowered. Therefore, it is not always necessary to substitute all the active hydrogens on the surface hydroxyl groups of the inorganic oxide, and the substitution rate of the surface hydroxyl groups may be determined as appropriate. The method for changing the substitution rate of the surface hydroxyl group is not particularly limited. As this method, the method of changing the usage-amount of the compound used for a contact can be illustrated, for example.

粘土または粘土鉱物としては、カオリン、ベントナイト、木節粘土、ガイロメ粘土、アロフェン、ヒシンゲル石、バイロフィライト、タルク、ウンモ群、スメクタイト、モンモリロナイト群、ヘクトライト、ラポナイト、サポナイト、バーミキュライト、リョクデイ石群、パリゴルスカイト、カオリナイト、ナクライト、ディッカイト、ハロイサイトなどをあげることができる。これらの中で好ましくは、スメクタイト、モンモリロナイト、ヘクトライト、ラポナイト、サポナイトであり、更に好ましくはモンモリロナイト、ヘクトライトである。   Clay or clay minerals include kaolin, bentonite, kibushi clay, gyrome clay, allophane, hysinger gel, bayophyllite, talc, unmo group, smectite, montmorillonite group, hectorite, laponite, saponite, vermiculite, ryokdeite group, Examples include palygorskite, kaolinite, nacrite, dickite and halloysite. Among these, preferred are smectite, montmorillonite, hectorite, laponite and saponite, and more preferred are montmorillonite and hectorite.

無機物質としては、無機酸化物が好適に用いられる。無機物質は、乾燥し実質的に水分が除去されていることが好ましく、加熱処理により乾燥させたものが好ましい。加熱処理は、通常、目視で水分を確認できない無機物質について温度100〜1,500℃で、好ましくは100〜1,000℃で、さらに好ましくは200〜800℃で実施される。加熱時間は、好ましくは10分間〜50時間、より好ましくは1時間〜30時間である。加熱乾燥の方法としては、加熱中に乾燥した不活性ガス(例えば、窒素またはアルゴン等)を一定の流速で流通させて乾燥する方法、減圧下で加熱減圧する方法等をあげることができる。   An inorganic oxide is preferably used as the inorganic substance. The inorganic substance is preferably dried to substantially remove moisture, and is preferably dried by heat treatment. The heat treatment is usually performed at a temperature of 100 to 1,500 ° C., preferably 100 to 1,000 ° C., more preferably 200 to 800 ° C. for an inorganic substance whose moisture cannot be visually confirmed. The heating time is preferably 10 minutes to 50 hours, more preferably 1 hour to 30 hours. Examples of the heat drying method include a method in which an inert gas (for example, nitrogen or argon) dried during heating is circulated and dried at a constant flow rate, a method in which heat is reduced under reduced pressure, and the like.

無機物質の平均粒子径は、通常1〜5000μmであり、好ましくは、5〜1000μmであり、より好ましくは10〜500μmであり、更に好ましくは10〜100μmである。細孔容量は、好ましくは0.1ml/g以上であり、より好ましくは0.3〜10ml/gである。比表面積は、好ましくは10〜1000m2/gであり、より好ましくは100〜500m2/gである。 The average particle diameter of the inorganic substance is usually 1 to 5000 μm, preferably 5 to 1000 μm, more preferably 10 to 500 μm, and further preferably 10 to 100 μm. The pore volume is preferably 0.1 ml / g or more, more preferably 0.3 to 10 ml / g. The specific surface area is preferably 10 to 1000 m 2 / g, more preferably 100 to 500 m 2 / g.

成分(b4)の粒子状担体の有機ポリマーとしては、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基を有する重合体が好ましい。   The organic polymer of the particulate carrier of component (b4) is preferably a polymer having a functional group having active hydrogen or a non-proton donating Lewis basic functional group.

活性水素を有する官能基としては、1級アミノ基、2級アミノ基、イミノ基、アミド基、ヒドラジド基、アミジノ基、ヒドロキシ基、ヒドロペルオキシ基、カルボキシル基、ホルミル基、カルバモイル基、スルホン酸基、スルフィン酸基、スルフェン酸基、チオール基、チオホルミル基、ピロリル基、イミダゾリル基、ピペリジル基、インダゾリル基、カルバゾリル基等があげられる。好ましくは、1級アミノ基、2級アミノ基、イミノ基、アミド基、イミド基、ヒドロキシ基、ホルミル基、カルボキシル基、スルホン酸基、チオール基である。特に好ましくは、1級アミノ基、2級アミノ基、アミド基またはヒドロキシ基である。なお、これらの基はハロゲン原子や炭素数1〜20のハイドロカルビル基で置換されていてもよい。   As functional groups having active hydrogen, primary amino group, secondary amino group, imino group, amide group, hydrazide group, amidino group, hydroxy group, hydroperoxy group, carboxyl group, formyl group, carbamoyl group, sulfonic acid group Sulfinic acid group, sulfenic acid group, thiol group, thioformyl group, pyrrolyl group, imidazolyl group, piperidyl group, indazolyl group, carbazolyl group and the like. Preferred are primary amino group, secondary amino group, imino group, amide group, imide group, hydroxy group, formyl group, carboxyl group, sulfonic acid group and thiol group. Particularly preferred are a primary amino group, a secondary amino group, an amide group or a hydroxy group. These groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.

非プロトン供与性のルイス塩基性官能基は、活性水素原子を有しないルイス塩基部分を有する官能基であり、ピリジル基、N−置換イミダゾリル基、N−置換インダゾリル基、ニトリル基、アジド基、N−置換イミノ基、N,N−置換アミノ基、N,N−置換アミノオキシ基、N,N,N−置換ヒドラジノ基、ニトロソ基、ニトロ基、ニトロオキシ基、フリル基、カルボニル基、チオカルボニル基、アルコキシ基、アルキルオキシカルボニル基、N,N−置換カルバモイル基、チオアルコキシ基、置換スルフィニル基、置換スルホニル基、置換スルホン酸基等があげられる。好ましくは、複素環基であり、さらに好ましくは、酸素原子および/または窒素原子を環内に有する芳香族複素環基である。特に好ましくは、ピリジル基、N−置換イミダゾリル基、N−置換インダゾリル基であり、最も好ましくはピリジル基である。なお、これらの基はハロゲン原子や炭素数1〜20のハイドロカルビル基で置換されていてもよい。   The non-proton-donating Lewis basic functional group is a functional group having a Lewis base portion that does not have an active hydrogen atom, and includes pyridyl group, N-substituted imidazolyl group, N-substituted indazolyl group, nitrile group, azide group, N -Substituted imino group, N, N-substituted amino group, N, N-substituted aminooxy group, N, N, N-substituted hydrazino group, nitroso group, nitro group, nitrooxy group, furyl group, carbonyl group, thiocarbonyl group , Alkoxy groups, alkyloxycarbonyl groups, N, N-substituted carbamoyl groups, thioalkoxy groups, substituted sulfinyl groups, substituted sulfonyl groups, substituted sulfonic acid groups, and the like. Preferred is a heterocyclic group, and more preferred is an aromatic heterocyclic group having an oxygen atom and / or a nitrogen atom in the ring. Particularly preferred are a pyridyl group, an N-substituted imidazolyl group, and an N-substituted indazolyl group, and most preferred is a pyridyl group. These groups may be substituted with a halogen atom or a hydrocarbyl group having 1 to 20 carbon atoms.

有機ポリマーにおいて、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基の含有量は、有機ポリマーを構成する重合体単位グラムあたりの官能基のモル量として、好ましくは0.01〜50mmol/gであり、より好ましくは0.1〜20mmol/gである。   In the organic polymer, the content of the functional group having active hydrogen or the non-proton-donating Lewis basic functional group is preferably 0.01 to as the molar amount of the functional group per gram of polymer unit constituting the organic polymer. 50 mmol / g, more preferably 0.1 to 20 mmol / g.

上記の活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基を有する重合体の製造方法としては、例えば、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基と1個以上の重合性不飽和基とを有するモノマーを単独重合させる方法、該モノマーと重合性不飽和基を有する他のモノマーとを共重合させる方法をあげることができる。このとき更に重合性不飽和基を2個以上有する架橋重合性モノマーをも一緒に共重合することが好ましい。   Examples of the method for producing a polymer having a functional group having active hydrogen or a non-proton-donating Lewis basic functional group include, for example, a functional group having active hydrogen or a non-proton-donating Lewis basic functional group and 1 Examples thereof include a method of homopolymerizing a monomer having one or more polymerizable unsaturated groups, and a method of copolymerizing the monomer and another monomer having a polymerizable unsaturated group. At this time, it is preferable to copolymerize together a crosslinkable monomer having two or more polymerizable unsaturated groups.

上記の重合性不飽和基としては、ビニル基、アリル基等のアルケニル基;エチン基等のアルキニル基等をあげることができる。   Examples of the polymerizable unsaturated group include alkenyl groups such as vinyl group and allyl group; alkynyl groups such as ethyne group.

活性水素を有する官能基と1個以上の重合性不飽和基を有するモノマーとしては、ビニル基含有1級アミン、ビニル基含有2級アミン、ビニル基含有アミド化合物、ビニル基含有ヒドロキシ化合物などをあげることができる。該モノマーの具体例としては、N−(1−エテニル)アミン、N−(2−プロペニル)アミン、N−(1−エテニル)−N−メチルアミン、N−(2−プロペニル)−N−メチルアミン、1−エテニルアミド、2−プロペニルアミド、N−メチル−(1−エテニル)アミド、N−メチル−(2−プロペニル)アミド、ビニルアルコール、2−プロペン−1−オール、3−ブテン−1−オールなどがあげられる。   Examples of monomers having a functional group having active hydrogen and one or more polymerizable unsaturated groups include vinyl group-containing primary amines, vinyl group-containing secondary amines, vinyl group-containing amide compounds, vinyl group-containing hydroxy compounds, and the like. be able to. Specific examples of the monomer include N- (1-ethenyl) amine, N- (2-propenyl) amine, N- (1-ethenyl) -N-methylamine, N- (2-propenyl) -N-methyl. Amine, 1-ethenylamide, 2-propenylamide, N-methyl- (1-ethenyl) amide, N-methyl- (2-propenyl) amide, vinyl alcohol, 2-propen-1-ol, 3-butene-1- For example, all.

活性水素原子を有しないルイス塩基部分を有する官能基と1個以上の重合性不飽和基を有するモノマーとしては、ビニルピリジン、ビニル(N−置換)イミダゾール、ビニル(N−置換)インダゾールなどをあげることができる。   Examples of the monomer having a functional group having a Lewis base having no active hydrogen atom and one or more polymerizable unsaturated groups include vinylpyridine, vinyl (N-substituted) imidazole, vinyl (N-substituted) indazole and the like. be able to.

重合性不飽和基を有する他のモノマーとしては、例えば、エチレン、α−オレフィン、芳香族ビニル化合物、環状オレフィンなどをあげることができる。該モノマーの具体例としては、エチレン、プロピレン、1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、スチレン、ノルボルネン、ジシクロペンタジエンである。これらのモノマーは2種以上を用いてもよい。好ましくは、エチレン、スチレンである。また、重合性不飽和基を2個以上有する架橋重合性モノマーとしては、ジビニルベンゼン等をあげることができる。   Examples of other monomers having a polymerizable unsaturated group include ethylene, α-olefin, aromatic vinyl compound, and cyclic olefin. Specific examples of the monomer include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, styrene, norbornene, and dicyclopentadiene. Two or more of these monomers may be used. Preferably, they are ethylene and styrene. Examples of the crosslinkable monomer having two or more polymerizable unsaturated groups include divinylbenzene.

有機ポリマーの平均粒子径は、通常1〜5000μmであり、好ましくは5〜1000μmであり、より好ましくは10〜500μmである。細孔容量は、好ましくは0.1ml/g以上であり、より好ましくは0.3〜10ml/gである。比表面積は、好ましくは10〜1000m2/gであり、より好ましくは50〜500m2/gである。 The average particle diameter of the organic polymer is usually 1 to 5000 μm, preferably 5 to 1000 μm, and more preferably 10 to 500 μm. The pore volume is preferably 0.1 ml / g or more, more preferably 0.3 to 10 ml / g. The specific surface area is preferably 10 to 1000 m 2 / g, more preferably 50 to 500 m 2 / g.

有機ポリマーは、乾燥され、実質的に水分が除去されていることが好ましく、加熱処理により乾燥されたものが好ましい。加熱処理の温度は、目視で水分を確認できない有機ポリマーについては、通常30〜400℃であり、好ましくは50〜200℃であり、更に好ましくは70〜150℃である。加熱時間は、好ましくは10分間〜50時間であり、より好ましくは1時間〜30時間である。加熱乾燥の方法としては、加熱中に、乾燥した不活性ガス(例えば、窒素またはアルゴン等)を一定の流速で流通させて乾燥する方法、減圧下で加熱乾燥する方法等をあげることができる。   The organic polymer is preferably dried and substantially free of moisture, and is preferably dried by heat treatment. The temperature of the heat treatment is usually 30 to 400 ° C., preferably 50 to 200 ° C., more preferably 70 to 150 ° C. for an organic polymer whose moisture cannot be visually confirmed. The heating time is preferably 10 minutes to 50 hours, more preferably 1 hour to 30 hours. Examples of the heat drying method include a method in which a dry inert gas (for example, nitrogen or argon) is circulated and dried at a constant flow rate during heating, a method in which heat is dried under reduced pressure, and the like.

助触媒成分(B)は、成分(b1)、成分(b2)、成分(b3)および成分(b4)を接触させて形成されるものである。成分(b1)、成分(b2)、成分(b3)および成分(b4))の接触順序としては、次の順序があげられる。
<1> 成分(b1)と成分(b2)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触される。
<2> 成分(b1)と成分(b2)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触される。
<3> 成分(b1)と成分(b3)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b4)とが接触される。
<4> 成分(b1)と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触される。
<5> 成分(b1)と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b3)とが接触される。
<6> 成分(b1)と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b2)とが接触される。
<7> 成分(b2)と成分(b3)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b4)とが接触される。
<8> 成分(b2)と成分(b3)とが接触され、該接触による接触物と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触される。
<9> 成分(b2)と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b3)とが接触される。
<10> 成分(b2)と成分(b4)とが接触され、該接触による接触物と成分(b3)とが接触され、該接触による接触物と成分(b1)とが接触される。
<11> 成分(b3)と成分(b4)とが接触され、該接触による接触物と成分(b1)とが接触され、該接触による接触物と成分(b2)とが接触される。
<12> 成分(b3)と成分(b4)とが接触され、該接触による接触物と成分(b2)とが接触され、該接触による接触物と成分(b1)とが接触される。
The promoter component (B) is formed by bringing the component (b1), the component (b2), the component (b3), and the component (b4) into contact with each other. The contact order of the component (b1), the component (b2), the component (b3) and the component (b4)) includes the following order.
<1> The component (b1) and the component (b2) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b3), and the contact product resulting from the contact is brought into contact with the component (b4).
<2> The component (b1) and the component (b2) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b4), and the contact product resulting from the contact is brought into contact with the component (b3).
<3> The component (b1) and the component (b3) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b2), and the contact product resulting from the contact is brought into contact with the component (b4).
<4> The component (b1) and the component (b3) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b4), and the contact product resulting from the contact is brought into contact with the component (b2).
<5> The component (b1) and the component (b4) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b2), and the contact product resulting from the contact is brought into contact with the component (b3).
<6> The component (b1) and the component (b4) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b3), and the contact product resulting from the contact is brought into contact with the component (b2).
<7> The component (b2) and the component (b3) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b1), and the contact product resulting from the contact is brought into contact with the component (b4).
<8> The component (b2) and the component (b3) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b4), and the contact product resulting from the contact is brought into contact with the component (b1).
<9> The component (b2) and the component (b4) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b1), and the contact product resulting from the contact is brought into contact with the component (b3).
<10> The component (b2) and the component (b4) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b3), and the contact product resulting from the contact is brought into contact with the component (b1).
<11> The component (b3) and the component (b4) are brought into contact with each other, the contact product resulting from the contact is contacted with the component (b1), and the contact product resulting from the contact is brought into contact with the component (b2).
<12> The component (b3) and the component (b4) are brought into contact with each other, the contact with the contact is brought into contact with the component (b2), and the contact with the contact is brought into contact with the component (b1).

成分(b1)、成分(b2)、成分(b3)および成分(b4)との接触は、不活性気体雰囲気下で実施されることが好ましい。接触温度は、通常−100〜300℃であり、好ましくは−80〜200℃である。接触時間は、通常1分間〜200時間であり、好ましくは10分間〜100時間である。また、接触には溶媒が用いられていてもよく、用いられることなくこれらの化合物が直接接触されていてもよい。   The contact with the component (b1), the component (b2), the component (b3) and the component (b4) is preferably carried out in an inert gas atmosphere. The contact temperature is usually −100 to 300 ° C., preferably −80 to 200 ° C. The contact time is usually 1 minute to 200 hours, preferably 10 minutes to 100 hours. Further, a solvent may be used for the contact, and these compounds may be directly contacted without being used.

溶媒が使用される場合、成分(b1)、成分(b2)、成分(b3)および成分(b4)、およびそれらの接触物と反応しないものが用いられる。しかしながら、上述のように、段階的に各成分が接触される場合には、ある段階においてある成分と反応する溶媒であっても、該溶媒が他の段階において各成分と反応しない溶媒であれば、該溶媒は他の段階で用いられることができる。つまり、各段階における溶媒は相互に、同じかまたは異なる。該溶媒としては、例えば、脂肪族炭化水素溶媒、芳香族炭化水素溶媒等の非極性溶媒;ハロゲン化物溶媒、エーテル系溶媒、アルコール系溶媒、フェノール系溶媒、カルボニル系溶媒、リン酸誘導体、ニトリル系溶媒、ニトロ化合物、アミン系溶媒、硫黄化合物等の極性溶媒をあげることができる。具体例としては、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、2,2,4−トリメチルペンタン、シクロヘキサン等の脂肪族炭化水素溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素溶媒;ジクロロメタン、ジフルオロメタン、クロロホルム、1,2−ジクロロエタン、1,2−ジブロモエタン、1,1,2−トリクロロ−1,2,2−トリフルオロエタン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン等のハロゲン化物溶媒;ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチル−エーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン等のエーテル系溶媒;メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコール、グリセリン等のアルコール系溶媒;フェノール、p−クレゾール等のフェノール系溶媒;アセトン、エチルメチルケトン、シクロヘキサノン、無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等のカルボニル系溶媒;ヘキサメチルリン酸トリアミド、リン酸トリエチル等のリン酸誘導体;アセトニトリル、プロピオニトリル、スクシノニトリル、ベンゾニトリル等のニトリル系溶媒;ニトロメタン、ニトロベンゼン等のニトロ化合物;ピリジン、ピペリジン、モルホリン等のアミン系溶媒;ジメチルスルホキシド、スルホラン等の硫黄化合物をあげることができる。   When a solvent is used, a component that does not react with the component (b1), the component (b2), the component (b3), the component (b4), and their contacts is used. However, as described above, when each component is contacted step by step, even if the solvent reacts with a component at a certain stage, the solvent does not react with each component at another stage. The solvent can be used in other stages. That is, the solvents in each stage are the same or different from each other. Examples of the solvent include nonpolar solvents such as aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents; halide solvents, ether solvents, alcohol solvents, phenol solvents, carbonyl solvents, phosphoric acid derivatives, nitrile solvents. Examples include polar solvents such as solvents, nitro compounds, amine solvents, and sulfur compounds. Specific examples include aliphatic hydrocarbon solvents such as butane, pentane, hexane, heptane, octane, 2,2,4-trimethylpentane, and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; dichloromethane, difluoromethane , Halogenated solvents such as chloroform, 1,2-dichloroethane, 1,2-dibromoethane, 1,1,2-trichloro-1,2,2-trifluoroethane, tetrachloroethylene, chlorobenzene, bromobenzene, o-dichlorobenzene Dimethyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, methyl tert-butyl ether, anisole, 1,4-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) ether, tetrahydrofuran Ether solvents such as tetrahydropyran; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, cyclohexanol, benzyl alcohol, Alcohol solvents such as ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, diethylene glycol, triethylene glycol, and glycerol; phenol solvents such as phenol and p-cresol; acetone, ethyl methyl ketone, cyclohexanone, acetic anhydride Carbonyl solvents such as ethyl acetate, butyl acetate, ethylene carbonate, propylene carbonate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone; Phosphoric acid derivatives such as oxamethylphosphoric triamide and triethyl phosphate; nitrile solvents such as acetonitrile, propionitrile, succinonitrile and benzonitrile; nitro compounds such as nitromethane and nitrobenzene; amine solvents such as pyridine, piperidine and morpholine; Examples thereof include sulfur compounds such as dimethyl sulfoxide and sulfolane.

成分(b1)、成分(b2)および成分(b3)を接触させて形成される接触物(c)と、成分(b4)とが接触される場合、つまり上記の<1>、<3>、<7>の各方法において、接触物(c)を製造する場合の溶媒(s1)としては、上記の脂肪族炭化水素溶媒、芳香族炭化水素溶媒またはエーテル系溶媒が好ましい。   When the contact (c) formed by bringing the component (b1), the component (b2) and the component (b3) into contact with the component (b4), that is, the above <1>, <3>, In each method of <7>, as the solvent (s1) for producing the contact product (c), the above aliphatic hydrocarbon solvent, aromatic hydrocarbon solvent or ether solvent is preferable.

一方、接触物(c)と成分(b4)とが接触される場合の溶媒(s2)としては、極性溶媒が好ましい。溶媒の極性を表す指標としては、ET N値(C.Reichardt,“Solvents and Solvents Effects in Organic Chemistry”, 2nd ed., VCH Verlag (1988).)等が知られており、0.8≧ET N≧0.1なる範囲を満足する溶媒が特に好ましい。 On the other hand, the solvent (s2) when the contact product (c) and the component (b4) are contacted is preferably a polar solvent. As an index representing the polarity of the solvent, E T N value (C.Reichardt, "Solvents and Solvents Effects in Organic Chemistry", 2nd ed., VCH Verlag (1988).) And the like are known, 0.8 ≧ A solvent satisfying the range of E T N ≧ 0.1 is particularly preferable.

かかる極性溶媒としては、例えば、ジクロロメタン、ジクロロジフルオロメタンクロロホルム、1,2−ジクロロエタン、1,2−ジブロモエタン、1,1,2−トリクロロ−1,2,2−トリフルオロエタン、テトラクロロエチレン、クロロベンゼン、ブロモベンゼン、o−ジクロロベンゼン、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコール、アセトン、エチルメチルケトン、シクロヘキサノン、無水酢酸、酢酸エチル、酢酸ブチル、炭酸エチレン、炭酸プロピレン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ヘキサメチルリン酸トリアミド、リン酸トリエチル、アセトニトリル、プロピオニトリル、スクシノニトリル、ベンゾニトリル、ニトロメタン、ニトロベンゼン、エチレンジアミン、ピリジン、ピペリジン、モルホリン、ジメチルスルホキシド、スルホランなどをあげることができる。   Examples of the polar solvent include dichloromethane, dichlorodifluoromethane chloroform, 1,2-dichloroethane, 1,2-dibromoethane, 1,1,2-trichloro-1,2,2-trifluoroethane, tetrachloroethylene, chlorobenzene, Bromobenzene, o-dichlorobenzene, dimethyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, methyl-tert-butyl ether, anisole, 1,4-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl) Ether, tetrahydrofuran, tetrahydropyran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol Cyclohexanol, benzyl alcohol, ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, diethylene glycol, triethylene glycol, acetone, ethyl methyl ketone, cyclohexanone, acetic anhydride, ethyl acetate, butyl acetate, ethylene carbonate, propylene carbonate N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, hexamethylphosphoric triamide, triethyl phosphate, acetonitrile, propionitrile, succinonitrile, benzonitrile, nitromethane, nitrobenzene, Examples thereof include ethylenediamine, pyridine, piperidine, morpholine, dimethyl sulfoxide, sulfolane and the like.

溶媒(s2)として更に好ましくは、ジメチルエーテル、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、アニソール、1,4−ジオキサン、1,2−ジメトキシエタン、ビス(2−メトキシエチル)エーテル、テトラヒドロフラン、テトラヒドロピラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、2−メトキシエタノール、2−エトキシエタノール、ジエチレングリコール、トリエチレングリコールであり、特に好ましくは、ジ−n−ブチルエーテル、メチル−tert−ブチルエーテル、1,4−ジオキサン、テトラヒドロフラン、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、3−メチル−1−ブタノール、シクロヘキサノールであり、最も好ましくは、テトラヒドロフラン、メタノール、エタノール、1−プロパノール、2−プロパノールである。   More preferably, the solvent (s2) is dimethyl ether, diethyl ether, diisopropyl ether, di-n-butyl ether, methyl-tert-butyl ether, anisole, 1,4-dioxane, 1,2-dimethoxyethane, bis (2-methoxyethyl). ) Ether, tetrahydrofuran, tetrahydropyran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, cyclohexanol, benzyl alcohol, Ethylene glycol, propylene glycol, 2-methoxyethanol, 2-ethoxyethanol, diethylene glycol, triethylene glycol, particularly preferably di-n-butyl ether, methyl- ert-butyl ether, 1,4-dioxane, tetrahydrofuran, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 3-methyl-1-butanol, cyclohexanol Most preferred are tetrahydrofuran, methanol, ethanol, 1-propanol, and 2-propanol.

前記溶媒(s2)としては、これら極性溶媒と炭化水素溶媒との混合溶媒が用いられることができる。炭化水素溶媒としては、脂肪族炭化水素溶媒や芳香族炭化水素溶媒として例示した化合物が用いられる。極性溶媒と炭化水素溶媒との混合溶媒としては、例えば、ヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、ヘキサン/1−プロパノール混合溶媒、ヘキサン/2−プロパノール混合溶媒、ヘプタン/メタノール混合溶媒、ヘプタン/エタノール混合溶媒、ヘプタン/1−プロパノール混合溶媒、ヘプタン/2−プロパノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒、トルエン/1−プロパノール混合溶媒、トルエン/2−プロパノール混合溶媒、キシレン/メタノール混合溶媒、キシレン/エタノール混合溶媒、キシレン/1−プロパノール混合溶媒、キシレン/2−プロパノール混合溶媒などをあげることができる。好ましくは、ヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、ヘプタン/メタノール混合溶媒、ヘプタン/エタノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒、キシレン/メタノール混合溶媒、キシレン/エタノール混合溶媒である。更に好ましくは、ヘキサン/メタノール混合溶媒、ヘキサン/エタノール混合溶媒、トルエン/メタノール混合溶媒、トルエン/エタノール混合溶媒である。最も好ましくはトルエン/エタノール混合溶媒である。また、トルエン/エタノール混合溶媒における、エタノール分率の好ましい範囲は10〜50体積%であり、更に好ましくは15〜30体積%である。   As the solvent (s2), a mixed solvent of these polar solvents and hydrocarbon solvents can be used. As the hydrocarbon solvent, compounds exemplified as aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents are used. Examples of the mixed solvent of the polar solvent and the hydrocarbon solvent include hexane / methanol mixed solvent, hexane / ethanol mixed solvent, hexane / 1-propanol mixed solvent, hexane / 2-propanol mixed solvent, heptane / methanol mixed solvent, heptane. / Ethanol mixed solvent, heptane / 1-propanol mixed solvent, heptane / 2-propanol mixed solvent, toluene / methanol mixed solvent, toluene / ethanol mixed solvent, toluene / 1-propanol mixed solvent, toluene / 2-propanol mixed solvent, xylene / Methanol mixed solvent, xylene / ethanol mixed solvent, xylene / 1-propanol mixed solvent, xylene / 2-propanol mixed solvent and the like. Preferably, hexane / methanol mixed solvent, hexane / ethanol mixed solvent, heptane / methanol mixed solvent, heptane / ethanol mixed solvent, toluene / methanol mixed solvent, toluene / ethanol mixed solvent, xylene / methanol mixed solvent, xylene / ethanol mixed solvent It is. More preferred are a hexane / methanol mixed solvent, a hexane / ethanol mixed solvent, a toluene / methanol mixed solvent, and a toluene / ethanol mixed solvent. Most preferred is a toluene / ethanol mixed solvent. Moreover, the preferable range of the ethanol fraction in a toluene / ethanol mixed solvent is 10-50 volume%, More preferably, it is 15-30 volume%.

成分(b1)、成分(b2)および成分(b3)とが接触されてなる接触物(c)と、成分(b4)とが接触される場合、つまり上記の<1>、<3>、<7>の各方法において、溶媒(s1)および溶媒(s2)として、共に炭化水素溶媒を用いることもできる。この場合、成分(b1)、成分(b2)および成分(b3)が接触された後、得られた接触物(c)と成分(b4)とが接触されるまでの時間は短い方が好ましい。時間として好ましくは0〜5時間であり、更に好ましくは0〜3時間であり、最も好ましくは0〜1時間である。また、接触物(c)と成分(b4)とが接触される温度は、通常−100℃〜40℃であり、好ましくは−20℃〜20℃であり、最も好ましくは−10℃〜10℃である。   When the contact (c) obtained by contacting the component (b1), the component (b2), and the component (b3) and the component (b4) are contacted, that is, the above <1>, <3>, < In each of the methods 7>, a hydrocarbon solvent may be used as the solvent (s1) and the solvent (s2). In this case, after the component (b1), the component (b2) and the component (b3) are contacted, it is preferable that the time until the obtained contact product (c) and the component (b4) are contacted is short. The time is preferably 0 to 5 hours, more preferably 0 to 3 hours, and most preferably 0 to 1 hour. Moreover, the temperature at which the contact (c) and the component (b4) are contacted is usually −100 ° C. to 40 ° C., preferably −20 ° C. to 20 ° C., and most preferably −10 ° C. to 10 ° C. It is.

上記の<2>、<5>、<6>、<8>、<9>、<10>、<11>、<12>の場合、上記の非極性溶媒、極性溶媒いずれも使用されることができる。好ましくは、非極性溶媒である。なぜならば、成分(b1)と成分(b3)との接触物や、成分(b1)と成分(b2)との接触物と成分(b3)とが接触されてなる接触物は、一般的に非極性溶媒に対し溶解性が低いので、これら接触物が生成する時に反応系内に成分(b4)が存在する場合、該接触物が成分(b4)の表面に析出し、より固定化されやすい、と考えられるからである。   In the case of <2>, <5>, <6>, <8>, <9>, <10>, <11>, <12> above, any of the above nonpolar solvents and polar solvents should be used. Can do. Preferably, it is a nonpolar solvent. This is because a contact object between component (b1) and component (b3), or a contact object between component (b1) and component (b2) and component (b3) is generally non-contact. Since the solubility in the polar solvent is low, when the component (b4) is present in the reaction system when these contact products are formed, the contact product precipitates on the surface of the component (b4) and is more easily immobilized. Because it is considered.

成分(b1)の使用量1モルあたりの成分(b2)および成分(b3)の使用量としては、下記の関係式(IV)を満足することが好ましい。
|M3の原子価−成分(b2)のモル量−2×成分(b3)のモル量|≦1 (IV)
また、成分(b1)の使用量1モルあたりの成分(b2)の使用量は、好ましくは0.01〜1.99モルであり、より好ましくは0.1〜1.8モルであり、更に好ましくは0.2〜1.5モルであり、最も好ましくは0.3〜1モルである。成分(b1)の使用量1モルあたりの成分(b3)の好ましい使用量、より好ましい使用量、更に好ましい使用量、最も好ましい使用量は、M3の原子価、上記の成分(b1)の使用量1モルあたりの成分(b2)の使用量、および上記関係式(IV)によってそれぞれ算出される。
The amount of component (b2) and component (b3) used per mole of component (b1) is preferably satisfied by the following relational formula (IV).
| Valence of M 3 -molar amount of component (b2) -2 × molar amount of component (b3) | ≦ 1 (IV)
Moreover, the usage-amount of the component (b2) per 1 mol of usage-amount of a component (b1) becomes like this. Preferably it is 0.01-1.99 mol, More preferably, it is 0.1-1.8 mol, Furthermore, Preferably it is 0.2-1.5 mol, Most preferably, it is 0.3-1 mol. Use amount of component (b1) Preferred use amount, more preferred use amount, more preferred use amount, and most preferred use amount of component (b3) per mole are the valence of M 3 and the use of the above component (b1). It is calculated by the amount of component (b2) used per 1 mol and the above relational expression (IV).

成分(b1)および成分(b2)の使用量は、助触媒成分(B)に含まれる成分(b1)に由来する金属原子が、助触媒成分(B)1gあたりに含まれる金属原子のモル数として、好ましくは0.1mmol以上となる量であり、より好ましくは0.5〜20mmolとなる量である。   The amount of component (b1) and component (b2) used is the number of moles of metal atoms contained per 1 g of promoter component (B) by the amount of metal atoms derived from component (b1) contained in promoter component (B). The amount is preferably 0.1 mmol or more, and more preferably 0.5 to 20 mmol.

反応をより速く進行させるため、上記のような接触の後に、より高い温度での加熱工程を付加してもよい。加熱工程では、より高温とするために、沸点の高い溶媒を使用することが好ましく、加熱工程を行う際に、接触で用いた溶媒を他のより沸点の高い溶媒に置き換えてもよい。   In order to advance the reaction faster, a heating step at a higher temperature may be added after the contact as described above. In the heating step, it is preferable to use a solvent having a high boiling point in order to obtain a higher temperature. In performing the heating step, the solvent used in the contact may be replaced with another solvent having a higher boiling point.

助触媒成分(B)は、このような接触の結果、原料である成分(b1)、成分(b2)、成分(b3)および/または成分(b4)が未反応物として残存していてもよいが、予め未反応物を除去する洗浄処理を行った方が好ましい。その際の溶媒は、接触時の溶媒と同じでも異なっていてもよい。このような洗浄処理は不活性気体雰囲気下で実施するのが好ましい。接触温度は、通常−100〜300℃であり、好ましくは−80〜200℃である。接触時間は、通常1分間〜200時間であり、好ましくは10分間〜100時間である。   As a result of such contact, the cocatalyst component (B) may be the raw material component (b1), component (b2), component (b3) and / or component (b4) remaining as an unreacted substance. However, it is preferable to perform a washing treatment to remove unreacted substances in advance. The solvent at that time may be the same as or different from the solvent at the time of contact. Such cleaning treatment is preferably carried out in an inert gas atmosphere. The contact temperature is usually −100 to 300 ° C., preferably −80 to 200 ° C. The contact time is usually 1 minute to 200 hours, preferably 10 minutes to 100 hours.

また、このような接触や洗浄処理の後、生成物から溶媒を留去し、その後0℃以上の温度で減圧下1時間〜24時間乾燥を行うことが好ましい。より好ましくは0℃〜200℃の温度で1時間〜24時間であり、更に好ましくは10℃〜200℃の温度で1時間〜24時間であり、特に好ましくは10℃〜160℃の温度で2時間〜18時間であり、最も好ましくは15℃〜160℃の温度で4時間〜18時間である。   Moreover, after such a contact or washing treatment, it is preferable to distill off the solvent from the product, and then to dry under reduced pressure for 1 to 24 hours at a temperature of 0 ° C. or higher. More preferably, it is 1 hour to 24 hours at a temperature of 0 ° C. to 200 ° C., more preferably 1 hour to 24 hours at a temperature of 10 ° C. to 200 ° C., and particularly preferably 2 at a temperature of 10 ° C. to 160 ° C. Time to 18 hours, most preferably 4 to 18 hours at a temperature of 15 ° C to 160 ° C.

遷移金属化合物(A1)と遷移金属化合物(A2)の合計の使用量は、助触媒成分(B)1gあたり、通常、1〜10000μmol/gであり、好ましくは10〜1000μmol/gであり、より好ましくは20〜500μmol/gである。   The total amount of the transition metal compound (A1) and the transition metal compound (A2) used is usually 1 to 10000 μmol / g, preferably 10 to 1000 μmol / g, per 1 g of the promoter component (B). Preferably it is 20-500 micromol / g.

重合用触媒の調製において、遷移金属化合物(A1)、遷移金属化合物(A2)および助触媒成分(B)に加え、有機アルミニウム化合物(C)を接触させてもよい。有機アルミニウム化合物(C)の使用量は、遷移金属化合物(A1)と遷移金属化合物(A2)の合計のモル数1モルあたりの有機アルミニウム化合物(C)のアルミニウム原子のモル数として、好ましくは、0.1〜1000であり、より好ましくは0.5〜500であり、更に好ましくは1〜100である。   In the preparation of the polymerization catalyst, the organoaluminum compound (C) may be contacted in addition to the transition metal compound (A1), the transition metal compound (A2) and the promoter component (B). The amount of the organoaluminum compound (C) used is preferably as the number of moles of aluminum atoms in the organoaluminum compound (C) per mole of the total number of moles of the transition metal compound (A1) and the transition metal compound (A2), It is 0.1-1000, More preferably, it is 0.5-500, More preferably, it is 1-100.

有機アルミニウム化合物(C)としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジ−n−プロピルアルミニウムクロライド、ジ−n−ブチルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、ジ−n−ヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、n−プロピルアルミニウムジクロライド、n−ブチルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、n−ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジ−n−プロピルアルミニウムハイドライド、ジ−n−ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジ−n−ヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;メチル(ジメトキシ)アルミニウム、メチル(ジエトキシ)アルミニウム、メチル(ジ−tert−ブトキシ)アルミニウム等のアルキル(ジアルコキシ)アルミニウム;ジメチル(メトキシ)アルミニウム、ジメチル(エトキシ)アルミニウム、メチル(tert−ブトキシ)アルミニウム等のジアルキル(アルコキシ)アルミニウム;メチル(ジフェノキシ)アルミニウム、メチルビス(2,6−ジイソプロピルフェノキシ)アルミニウム、メチルビス(2,6−ジフェニルフェノキシ)アルミニウム等のアルキル(ジアリールオキシ)アルミニウム;ジメチル(フェノキシ)アルミニウム、ジメチル(2,6−ジイソプロピルフェノキシ)アルミニウム、ジメチル(2,6−ジフェニルフェノキシ)アルミニウム等のジアルキル(アリールオキシ)アルミニウム等をあげることができる。これらの有機アルミニウム化合物は、一種類のみを用いても、二種類以上を組み合わせて用いてもよい。   Examples of the organoaluminum compound (C) include trialkylaluminum, triethylaluminum, tri-n-propylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum and the like. Aluminum: Dialkylaluminum chloride, diethylaluminum chloride, di-n-propylaluminum chloride, di-n-butylaluminum chloride, diisobutylaluminum chloride, di-n-hexylaluminum chloride, etc .; methylaluminum dichloride, ethylaluminum dichloride , N-propylaluminum dichloride, n-butylaluminum dichloride, isobutyl Alkyl aluminum dichlorides such as rualuminum dichloride and n-hexylaluminum dichloride; dimethylaluminum hydride, diethylaluminum hydride, di-n-propylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, di-n-hexylaluminum hydride Dialkylaluminum hydrides such as methyl (dimethoxy) aluminum, methyl (diethoxy) aluminum, alkyl (dialkoxy) aluminum such as methyl (di-tert-butoxy) aluminum; dimethyl (methoxy) aluminum, dimethyl (ethoxy) aluminum, methyl ( dialkyl (alkoxy) al such as tert-butoxy) aluminum Aluminum; alkyl (diaryloxy) aluminum such as methyl (diphenoxy) aluminum, methyl bis (2,6-diisopropylphenoxy) aluminum, methyl bis (2,6-diphenylphenoxy) aluminum; dimethyl (phenoxy) aluminum, dimethyl (2,6- Examples thereof include dialkyl (aryloxy) aluminum such as diisopropylphenoxy) aluminum and dimethyl (2,6-diphenylphenoxy) aluminum. These organoaluminum compounds may be used alone or in combination of two or more.

有機アルミニウム化合物(C)として好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−n−ヘキシルアルミニウム、トリ−n−オクチルアルミニウムであり、更に好ましくは、トリイソブチルアルミニウム、トリ−n−オクチルアルミニウムである。   The organoaluminum compound (C) is preferably trialkylaluminum, more preferably trimethylaluminum, triethylaluminum, tri-n-butylaluminum, triisobutylaluminum, tri-n-hexylaluminum, tri-n-octylaluminum. More preferred are triisobutylaluminum and tri-n-octylaluminum.

また、重合用触媒の調製において、遷移金属化合物(A1)、遷移金属化合物(A2)および助触媒成分(B)に加え、電子供与性化合物(D)を接触させてもよい。電子供与性化合物(D)の使用量は、遷移金属化合物(A1)と遷移金属化合物(A2)の合計のモル数1モルあたりの電子供与性化合物(D)のモル数として、好ましくは0.01〜100であり、より好ましくは0.1〜50であり、更に好ましくは0.25〜5である。   In the preparation of the polymerization catalyst, the electron donating compound (D) may be contacted in addition to the transition metal compound (A1), the transition metal compound (A2) and the promoter component (B). The amount of the electron-donating compound (D) used is preferably 0.1 as the number of moles of the electron-donating compound (D) per mole of the total number of moles of the transition metal compound (A1) and the transition metal compound (A2). It is 01-100, More preferably, it is 0.1-50, More preferably, it is 0.25-5.

電子供与性化合物(D)としては、トリエチルアミン、トリノルマルオクチルアミンをあげることができる。   Examples of the electron donating compound (D) include triethylamine and trinormaloctylamine.

遷移金属化合物(A1)と遷移金属化合物(A2)と助触媒成分(B)と、必要に応じて、有機アルミニウム化合物(C)と電子供与性化合物(D)との接触は、不活性気体雰囲気下で実施されることが好ましい。接触温度は通常−100〜300℃であり、好ましくは−80〜200℃である。接触時間は通常1分間〜200時間であり、好ましくは30分間〜100時間である。また、接触は、各成分が重合反応槽に別々に投入されて、重合反応器内で行われてもよい。   The transition metal compound (A1), the transition metal compound (A2), the promoter component (B), and, if necessary, the contact between the organoaluminum compound (C) and the electron donating compound (D) is performed in an inert gas atmosphere. It is preferably carried out below. The contact temperature is usually −100 to 300 ° C., preferably −80 to 200 ° C. The contact time is usually 1 minute to 200 hours, preferably 30 minutes to 100 hours. In addition, the contact may be performed in the polymerization reactor with each component separately charged into the polymerization reaction tank.

本発明のエチレン−α−オレフィン共重合体の製造方法としては、気相重合法、スラリー重合法、バルク重合法などにより、エチレンとα−オレフィンとを共重合する方法があげられる。好ましくは、気相重合法であり、より好ましくは連続気相重合法である。該重合法に用いられる気相重合反応装置としては、通常、流動層型反応槽を有する装置であり、好ましくは、拡大部を有する流動層型反応槽を有する装置である。反応槽内に撹拌翼が設置されていてもよい。   Examples of the method for producing the ethylene-α-olefin copolymer of the present invention include a method of copolymerizing ethylene and α-olefin by a gas phase polymerization method, a slurry polymerization method, a bulk polymerization method or the like. A gas phase polymerization method is preferable, and a continuous gas phase polymerization method is more preferable. The gas phase polymerization reaction apparatus used in the polymerization method is usually an apparatus having a fluidized bed type reaction tank, and preferably an apparatus having a fluidized bed type reaction tank having an enlarged portion. A stirring blade may be installed in the reaction vessel.

重合用触媒、各触媒成分を重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。   As a method for supplying the polymerization catalyst and each catalyst component to the polymerization reaction tank, a method for supplying the catalyst in a moisture-free state using an inert gas such as nitrogen or argon, hydrogen, ethylene, etc. A method of dissolving or diluting and supplying in a solution or slurry state is used.

エチレンとα−オレフィンを気相重合する場合、重合温度としては、通常、エチレン−α−オレフィン共重合体が溶融する温度未満であり、好ましくは0〜150℃であり、より好ましくは30〜100℃である。重合反応槽には、不活性ガスを導入してもよく、分子量調節剤として水素を導入してもよい。また、有機アルミニウム化合物(C)、電子供与性化合物(D)を導入してもよい。   In the case of vapor phase polymerization of ethylene and α-olefin, the polymerization temperature is usually less than the temperature at which the ethylene-α-olefin copolymer melts, preferably 0 to 150 ° C, more preferably 30 to 100. ° C. An inert gas may be introduced into the polymerization reaction tank, and hydrogen may be introduced as a molecular weight regulator. Further, an organoaluminum compound (C) and an electron donating compound (D) may be introduced.

重合に用いるα−オレフィンとしては、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ドデセン、4−メチル−1−ペンテン、4−メチル−1−ヘキセンなどの炭素数3〜20のα−オレフィンがあげられる。これらは単独で用いられていてもよく、2種以上を併用されていてもよい。好ましくは1−ブテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテンである。エチレンとα−オレフィンとの組み合せとしては、エチレン/1−ブテン、エチレン/1−ヘキセン、エチレン/4−メチル−1−ペンテン、エチレン/1−オクテン、エチレン/1−ブテン/1−ヘキセン、エチレン/1−ブテン/4−メチル−1−ペンテン、エチレン/1−ブテン/1−オクテン、エチレン/1−ヘキセン/1−オクテン等があげられ、好ましくはエチレン/1−ヘキセン、エチレン/4−メチル−1−ペンテン、エチレン/1−ブテン/1−ヘキセン、エチレン/1−ブテン/1−オクテン、エチレン/1−ヘキセン/1−オクテンである。   The α-olefin used for the polymerization is propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene, 4-methyl-1-pentene. And α-olefins having 3 to 20 carbon atoms such as 4-methyl-1-hexene. These may be used independently and may use 2 or more types together. 1-butene, 1-hexene, 4-methyl-1-pentene and 1-octene are preferred. Examples of combinations of ethylene and α-olefin include ethylene / 1-butene, ethylene / 1-hexene, ethylene / 4-methyl-1-pentene, ethylene / 1-octene, ethylene / 1-butene / 1-hexene, ethylene / 1 / butene / 4-methyl-1-pentene, ethylene / 1-butene / 1-octene, ethylene / 1-hexene / 1-octene, etc., preferably ethylene / 1-hexene, ethylene / 4-methyl -1-pentene, ethylene / 1-butene / 1-hexene, ethylene / 1-butene / 1-octene, and ethylene / 1-hexene / 1-octene.

また、エチレンとα−オレフィンとの共重合においては、必要に応じて、他の単量体を重合反応槽に導入し、本発明の効果を損なわない範囲において、該他の単量体を共重合させてもよい。該他の単量体としては、ジオレフィン、環状オレフィン、アルケニル芳香族炭化水素、α,β−不飽和カルボン酸等をあげることができる。   In the copolymerization of ethylene and α-olefin, if necessary, another monomer is introduced into the polymerization reaction vessel, and the other monomer is copolymerized within a range not impairing the effects of the present invention. It may be polymerized. Examples of the other monomers include diolefins, cyclic olefins, alkenyl aromatic hydrocarbons, α, β-unsaturated carboxylic acids, and the like.

これらの具体例としては、例えば、1,5−ヘキサジエン、1,4−ヘキサジエン、1,4−ペンタジエン、1,7−オクタジエン、1,8−ノナジエン、1,9−デカジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン、5−エチリデン−2−ノルボルネン、ジシクロペンタジエン、5−ビニル−2−ノルボルネン、5−メチル−2−ノルボルネン、ノルボルナジエン、5−メチレン−2−ノルボルネン、1,5−シクロオクタジエン、5,8−エンドメチレンヘキサヒドロナフタレン、1,3−ブタジエン、イソプレン、1,3−ヘキサジエン、1,3−オクタジエン、1,3−シクロオクタジエン、1,3−シクロヘキサジエン等のジオレフィン;シクロペンテン、シクロヘキセン、ノルボルネン、5−メチルノルボルネン、5−エチルノルボルネン、5−ブチルノルボルネン、5−フェニルノルボルネン、5−ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8−メチルテトラシクロドデセン、8−エチルテトラシクロドデセン、5−アセチルノルボルネン、5−アセチルオキシノルボルネン、5−メトキシカルボニルノルボルネン、5−エトキシカルボニルノルボルネン、5−メチル−5−メトキシカルボニルノルボルネン、5−シアノノルボルネン、8−メトキシカルボニルテトラシクロドデセン、8−メチル−8−テトラシクロドデセン、8−シアノテトラシクロドデセン等の環状オレフィン;スチレン、2−フェニルプロピレン、2−フェニルブテン、3−フェニルプロピレン等のアルケニルベンゼン、p−メチルスチレン、m−メチルスチレン、o−メチルスチレン、p−エチルスチレン、m−エチルスチレン、o−エチルスチレン、2,4−ジメチルスチレン、2,5−ジメチルスチレン、3,4−ジメチルスチレン、3,5−ジメチルスチレン、3−メチル−5−エチルスチレン、p−第3級ブチルスチレン、p−第2級ブチルスチレン等のアルキルスチレン、ジビニルベンゼン等のビスアルケニルベンゼン、1−ビニルナフタレン等のアルケニルナフタレン等のアルケニル芳香族炭化水素;アクリル酸、メタクリル酸、フマル酸、無水マレイン酸、イタコン酸、無水イタコン酸、ビシクロ(2,2,1)−5−ヘプテン−2,3−ジカルボン酸等のα,β−不飽和カルボン酸;α,β−不飽和カルボン酸のナトリウム、カリウム、リチウム、亜鉛、マグネシウム、カルシウム等の金属塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸イソプロピル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸イソブチル等のα,β−不飽和カルボン酸アルキルエステル;マレイン酸、イタコン酸等の不飽和ジカルボン酸;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニル等のビニルエステル;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステル等の不飽和カルボン酸グリシジルエステル等があげられる。   Specific examples thereof include 1,5-hexadiene, 1,4-hexadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4-methyl-1 , 4-hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-2 -Norbornene, norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydronaphthalene, 1,3-butadiene, isoprene, 1,3-hexadiene, 1,3-octadiene , 1,3-cyclooctadiene, 1,3-cyclohexadiene and other diolefins; cyclopentene, Chlohexene, norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, tetracyclododecene, tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclo Hexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene, 5-methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene Cyclic olefins such as 5-cyanonorbornene, 8-methoxycarbonyltetracyclododecene, 8-methyl-8-tetracyclododecene, 8-cyanotetracyclododecene; Alkenylbenzene such as tylene, 2-phenylpropylene, 2-phenylbutene, 3-phenylpropylene, p-methylstyrene, m-methylstyrene, o-methylstyrene, p-ethylstyrene, m-ethylstyrene, o-ethylstyrene 2,4-dimethylstyrene, 2,5-dimethylstyrene, 3,4-dimethylstyrene, 3,5-dimethylstyrene, 3-methyl-5-ethylstyrene, p-tertiary butylstyrene, p-second Alkyl styrene such as grade butyl styrene, bisalkenyl benzene such as divinylbenzene, alkenyl aromatic hydrocarbon such as alkenyl naphthalene such as 1-vinylnaphthalene; acrylic acid, methacrylic acid, fumaric acid, maleic anhydride, itaconic acid, itaconic anhydride Acid, bicyclo (2,2,1) -5-heptene-2, Α, β-unsaturated carboxylic acids such as 3-dicarboxylic acids; metal salts of α, β-unsaturated carboxylic acids such as sodium, potassium, lithium, zinc, magnesium, calcium; methyl acrylate, ethyl acrylate, acrylic acid α such as n-propyl, isopropyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate , Β-unsaturated carboxylic acid alkyl esters; unsaturated dicarboxylic acids such as maleic acid and itaconic acid; vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl trifluoroacetate, etc. Vinyl ester; acrylic acid Rishijiru, glycidyl methacrylate, and unsaturated carboxylic acid glycidyl ester of itaconic acid monoglycidyl ester.

本発明のエチレン−α−オレフィン共重合体の製造方法としては、遷移金属化合物(A1)と遷移金属化合物(A2)と助触媒成分(B)と、必要に応じて、更に、有機アルミニウム化合物(C)と電子供与性化合物(D)とを用いて、少量のオレフィンを重合(以下、予備重合と称する。)して得られた予備重合固体成分を、重合用触媒成分または重合用触媒として用いて、エチレンとα−オレフィンとを共重合する方法が好ましい。   As the method for producing the ethylene-α-olefin copolymer of the present invention, a transition metal compound (A1), a transition metal compound (A2), a promoter component (B), and, if necessary, an organoaluminum compound ( A prepolymerized solid component obtained by polymerizing a small amount of olefin (hereinafter referred to as prepolymerization) using C) and an electron donating compound (D) is used as a polymerization catalyst component or a polymerization catalyst. Thus, a method of copolymerizing ethylene and α-olefin is preferable.

予備重合で用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、シクロペンテン、シクロヘキセンなどをあげることができる。これらは1種または2種以上組み合わせて用いることができる。好ましくは、エチレンのみ、あるいはエチレンとα−オレフィンとを併用して、更に好ましくは、エチレンのみ、あるいは1−ブテン、1−ヘキセンおよび1−オクテンから選ばれる少なくとも1種のα−オレフィンとエチレンとを併用して用いられる。   Examples of the olefin used in the prepolymerization include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4-methyl-1-pentene, cyclopentene and cyclohexene. These can be used alone or in combination of two or more. Preferably, ethylene alone, or a combination of ethylene and α-olefin, more preferably ethylene alone, or at least one α-olefin selected from 1-butene, 1-hexene and 1-octene, and ethylene Is used in combination.

予備重合固体成分中の予備重合された重合体の含有量は、助触媒成分(B)1g当たり、好ましくは0.01〜1000gであり、より好ましくは0.05〜500gであり、更に好ましくは0.1〜200gである。   The content of the prepolymerized polymer in the prepolymerized solid component is preferably 0.01 to 1000 g, more preferably 0.05 to 500 g, and still more preferably, per 1 g of the promoter component (B). 0.1 to 200 g.

予備重合方法としては、連続重合法でもバッチ重合法でもよく、例えば、バッチ式スラリー重合法、連続式スラリー重合法、連続気相重合法である。予備重合を行う重合反応槽に、遷移金属化合物(A1)と遷移金属化合物(A2)と助触媒成分(B)と、必要に応じて、有機アルミニウム化合物(C)と電子供与性化合物(D)とを投入する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で投入する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で投入する方法が用いられる。   The preliminary polymerization method may be a continuous polymerization method or a batch polymerization method, and examples thereof include a batch type slurry polymerization method, a continuous slurry polymerization method, and a continuous gas phase polymerization method. In a polymerization reaction tank for performing prepolymerization, a transition metal compound (A1), a transition metal compound (A2), a promoter component (B), and, if necessary, an organoaluminum compound (C) and an electron donating compound (D) As a method of charging, normally, an inert gas such as nitrogen or argon, hydrogen, ethylene or the like is used in a moisture-free state, each component is dissolved or diluted in a solvent, and a solution or slurry A method of charging in a state is used.

予備重合をスラリー重合法で行う場合、溶媒としては、通常、飽和脂肪族炭化水素化合物が用いられ、例えば、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサン、ヘプタン等があげられる。これらは単独あるいは2種以上組み合わせて用いられる。飽和脂肪族炭化水素化合物としては、常圧における沸点が100℃以下のものが好ましく、常圧における沸点が90℃以下のものがより好ましく、プロパン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ノルマルヘキサン、シクロヘキサンが更に好ましい。   When the prepolymerization is performed by a slurry polymerization method, a saturated aliphatic hydrocarbon compound is usually used as the solvent, and examples thereof include propane, normal butane, isobutane, normal pentane, isopentane, normal hexane, cyclohexane, heptane and the like. . These may be used alone or in combination of two or more. The saturated aliphatic hydrocarbon compound preferably has a boiling point of 100 ° C. or less at normal pressure, more preferably 90 ° C. or less at normal pressure, and propane, normal butane, isobutane, normal pentane, isopentane, normal hexane. More preferred is cyclohexane.

また、予備重合をスラリー重合法で行う場合、スラリー濃度としては、溶媒1リットル当たりの助触媒成分(B)の量が、通常0.1〜600gであり、好ましくは0.5〜300gである。予備重合温度は、通常−20〜100℃であり、好ましくは0〜80℃である。予備重合中、重合温度は適宜変更してもよい。また、予備重合中の気相部でのオレフィン類の分圧は、通常0.001〜2MPaであり、好ましくは0.01〜1MPaである。予備重合時間は、通常2分間〜15時間である。   Moreover, when prepolymerization is performed by the slurry polymerization method, as the slurry concentration, the amount of the promoter component (B) per liter of the solvent is usually 0.1 to 600 g, preferably 0.5 to 300 g. . The prepolymerization temperature is usually -20 to 100 ° C, preferably 0 to 80 ° C. During the prepolymerization, the polymerization temperature may be appropriately changed. Moreover, the partial pressure of olefins in the gas phase part during the prepolymerization is usually 0.001 to 2 MPa, preferably 0.01 to 1 MPa. The prepolymerization time is usually 2 minutes to 15 hours.

予備重合された予備重合固体触媒成分を重合反応槽に供給する方法としては、通常、窒素、アルゴン等の不活性ガス、水素、エチレン等を用いて、水分のない状態で供給する方法、各成分を溶媒に溶解または稀釈して、溶液またはスラリー状態で供給する方法が用いられる。   As a method of supplying the prepolymerized prepolymerized solid catalyst component to the polymerization reaction tank, a method of supplying an inert gas such as nitrogen or argon, hydrogen, ethylene or the like in a state free from moisture, each component Is dissolved or diluted in a solvent and supplied in a solution or slurry state.

本発明のカレンダー成形用エチレン−α−オレフィン共重合体は、必要に応じて、公知の添加剤やポリオレフィンとともに、カレンダー成形することができる。該添加剤としては、例えば、酸化防止剤、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラー、離型剤があげられる。公知のポリオレフィンとしては、例えば、高密度ポリエチレン、低密度ポリエチレン、極低密度ポリエチレン、超低密度ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸エステル共重合体、ポリオレフィンゴムがあげられる。   The calendar-forming ethylene-α-olefin copolymer of the present invention can be calendered together with known additives and polyolefins as necessary. Examples of the additive include antioxidants, weathering agents, lubricants, antiblocking agents, antistatic agents, antifogging agents, dripping agents, pigments, fillers, and release agents. Known polyolefins include, for example, high density polyethylene, low density polyethylene, very low density polyethylene, very low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer. Examples thereof include a polymer, an ethylene-methacrylic acid copolymer, an ethylene-methacrylic acid ester copolymer, and a polyolefin rubber.

エチレン−α−オレフィン共重合体、または該共重合体と添加剤や他のポリオレフィンを含む組成物を、カレンダーロール上で加熱溶解したり、タンブラーブレンダーやヘンシェルミキサーなどでドライブレンドした後単軸押出機や多軸押出機などで溶融混練したり、ニーダーやバンバリーミキサーなどで溶融混練したりしたものを、カレンダー加工に用いる。   Single-screw extrusion after ethylene-α-olefin copolymer or a composition containing the copolymer and additives and other polyolefins is heated and melted on a calender roll or dry blended with a tumbler blender or Henschel mixer A material that has been melt-kneaded by a machine or a multi-screw extruder, or melt-kneaded by a kneader or a Banbury mixer is used for calendering.

カレンダー加工に用いられる加工機としては、公知のカレンダー加工機が用いられ、通常、押出機やバンバリーミキサーなどで溶融混練された溶融樹脂組成物を受けロールに移し、次いで適量ずつ供給ロールに移し、更に2〜6本のカレンダーロールに移し、これを次第にシート状に展延し、取り出しロールや冷却・延伸ロールを経て巻き取ることができる装置からなる。カレンダーロールには、4〜6本の逆L型、水平型、Z型、複合型等があり、ロール温度は、用いる樹脂組成物の融点にもよるが、通常、120〜180℃である。   As a processing machine used for calendering, a known calendering machine is used, and usually the molten resin composition melt-kneaded by an extruder or a Banbury mixer is transferred to a receiving roll, and then transferred to a supply roll by an appropriate amount. Further, it is transferred to 2 to 6 calender rolls, and is gradually spread into a sheet shape, and is composed of an apparatus that can be wound up through a take-out roll or a cooling / stretching roll. The calender roll includes 4 to 6 reverse L-type, horizontal type, Z-type, and composite type, and the roll temperature is usually 120 to 180 ° C. although it depends on the melting point of the resin composition to be used.

本発明のカレンダー成形体としては、防水シート、止水シート、デスクマット、床材、壁紙、合せガラスの中間膜、太陽電池の中間膜、ターポリン、防水布、かばん布、プレキシブルコンテナー、帆布、レインコート、長靴、防水ズボン、防水エプロン、などが挙げられる。   Examples of the calendar molded body of the present invention include a waterproof sheet, a waterproof sheet, a desk mat, a flooring material, a wallpaper, a laminated glass interlayer film, a solar cell interlayer film, a tarpaulin, a waterproof cloth, a bag cloth, a flexible container, a canvas, Examples include raincoats, boots, waterproof pants, and waterproof apron.

本発明におけるカレンダー成形体は、前記したエチレン−α−オレフィン共重合体または該共重合体を含む組成物からなる単一組成の成形体であってもよく、他の樹脂、金属、布、不織布等と貼り合せた多層成形体であってもよい。   The calender molded product in the present invention may be a molded product of a single composition comprising the above-described ethylene-α-olefin copolymer or a composition containing the copolymer, and may be other resin, metal, cloth, non-woven fabric. It may be a multilayer molded body bonded to the above.

以下、実施例および比較例により本発明を説明する。
実施例および比較例での物性は、次の方法に従って測定した。
Hereinafter, the present invention will be described with reference to examples and comparative examples.
The physical properties in Examples and Comparative Examples were measured according to the following methods.

(1)密度(d、単位:Kg/m3
JIS K7112−1980のうち、A法に規定された方法に従って測定した。なお、試料には、JIS K6760−1995に記載のアニーリングを行った。
(1) Density (d, unit: Kg / m 3 )
It measured according to the method prescribed | regulated to A method among JISK7112-1980. The sample was annealed according to JIS K6760-1995.

(2)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1995に規定された方法において、荷重21.18N、温度190℃の条件で、A法により測定した。
(2) Melt flow rate (MFR, unit: g / 10 minutes)
In the method defined in JIS K7210-1995, measurement was performed by the A method under the conditions of a load of 21.18 N and a temperature of 190 ° C.

(3)メルトフローレート比(MFRR)
JIS K7210−1995に規定された方法において、試験荷重211.82N、測定温度190℃の条件で測定されるメルトフローレート(H−MFR)と、JIS K7210−1995に規定された方法において、荷重21.18Nおよび温度190℃の条件で測定されるメルトフローレート(MFR)とを測定し、H−MFRをMFRで除した値を求めた。
(3) Melt flow rate ratio (MFRR)
In the method specified in JIS K7210-1995, the test load is 211.82N, the melt flow rate (H-MFR) measured at a measurement temperature of 190 ° C., and the method specified in JIS K7210-1995 is the load 21 The melt flow rate (MFR) measured under the conditions of .18 N and a temperature of 190 ° C. was measured, and a value obtained by dividing H-MFR by MFR was obtained.

(4)分子量分布(Mw/Mn、Mz/Mw)
ゲル・パーミエイション・クロマトグラフ(GPC)法を用いて、下記の条件(1)〜(8)により、z平均分子量(Mz)、重量平均分子量(Mw)と数平均分子量(Mn)を測定し、Mw/MnとMz/Mwを求めた。クロマトグラム上のベースラインは、試料溶出ピークが出現するよりも十分に保持時間が短い安定した水平な領域の点と、溶媒溶出ピークが観測されたよりも十分に保持時間が長い安定した水平な領域の点とを結んでできる直線とした。
(1)装置:Waters製Waters150C
(2)分離カラム:TOSOH TSKgelGMH6−HT
(3)測定温度:140℃
(4)キャリア:オルトジクロロベンゼン
(5)流量:1.0mL/分
(6)注入量:500μL
(7)検出器:示差屈折
(8)分子量標準物質:標準ポリスチレン
(4) Molecular weight distribution (Mw / Mn, Mz / Mw)
Using gel permeation chromatograph (GPC) method, measure z-average molecular weight (Mz), weight-average molecular weight (Mw) and number-average molecular weight (Mn) under the following conditions (1) to (8) Mw / Mn and Mz / Mw were obtained. The baseline on the chromatogram is a stable horizontal region with a sufficiently long retention time than the appearance of the sample elution peak and a stable horizontal region with a sufficiently long retention time than the solvent elution peak was observed. A straight line formed by connecting the points.
(1) Equipment: Waters 150C manufactured by Waters
(2) Separation column: TOSOH TSKgelGMH6-HT
(3) Measurement temperature: 140 ° C
(4) Carrier: Orthodichlorobenzene
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 500 μL
(7) Detector: Differential refraction
(8) Molecular weight reference material: Standard polystyrene

(5)DSC融解ピーク数
エチレン−α−オレフィン共重合体を、150℃の熱プレス機により10MPaの圧力で5分間プレスした後、30℃の冷却プレス機で5分間冷却して、厚さ約100μmのシートに成形し、該シートから約10mgの試料を切り出し、アルミニウムパンに封入した。次に、試料を封入したアルミニウムパンを、示差走査熱量計(パーキンエルマー社製の示差走査型熱量計DSC−7型)にて、(1)150℃で5分間保持し、(2)5℃/分で150℃から20℃まで降温し、(3)20℃で2分間保持し、(4)5℃/分で20℃から150℃まで昇温して、(4)での融解曲線を測定した。得られた融解曲線より、25℃から融解終了温度(融解曲線が高温側のベースラインに戻る温度)までの範囲に存在する融解ピークの数を求めた。
(5) Number of DSC melting peaks The ethylene-α-olefin copolymer was pressed for 5 minutes at a pressure of 10 MPa with a hot press at 150 ° C. and then cooled for 5 minutes with a cooling press at 30 ° C. The sheet was molded into a 100 μm sheet, and a sample of about 10 mg was cut out from the sheet and sealed in an aluminum pan. Next, the aluminum pan in which the sample was sealed was held at a differential scanning calorimeter (differential scanning calorimeter DSC-7 manufactured by Perkin Elmer Co., Ltd.) (1) at 150 ° C. for 5 minutes, and (2) 5 ° C. (3) Hold at 20 ° C. for 2 minutes, (4) Increase the temperature from 20 ° C. to 150 ° C. at 5 ° C./minute, and calculate the melting curve in (4) It was measured. From the obtained melting curve, the number of melting peaks existing in the range from 25 ° C. to the melting end temperature (the temperature at which the melting curve returns to the high-temperature side baseline) was determined.

(6)流動の活性化エネルギー(Ea、単位:kJ/mol)
粘弾性測定装置(Rheometrics社製Rheometrics Mechanical Spectrometer RMS−800)を用いて、下記測定条件で130℃、150℃、170℃および190℃での溶融複素粘度−角周波数曲線を測定し、次に、得られた溶融複素粘度−角周波数曲線から、Rheometrics社製計算ソフトウェア Rhios V.4.4.4を用いて、190℃での溶融複素粘度−角周波数曲線のマスターカーブを作成し、活性化エネルギー(Ea)を求めた。
<測定条件>
ジオメトリー:パラレルプレート
プレート直径:25mm
プレート間隔:1.5〜2mm
ストレイン :5%
角周波数 :0.1〜100rad/秒
測定雰囲気 :窒素
(6) Flow activation energy (Ea, unit: kJ / mol)
Using a viscoelasticity measuring device (Rheometrics Mechanical Spectrometer RMS-800 manufactured by Rheometrics), a melt complex viscosity-angular frequency curve at 130 ° C., 150 ° C., 170 ° C. and 190 ° C. was measured under the following measurement conditions. From the obtained melt complex viscosity-angular frequency curve, calculation software Rhios V. Using 4.4.4, a master curve of a melt complex viscosity-angular frequency curve at 190 ° C. was created, and activation energy (Ea) was determined.
<Measurement conditions>
Geometry: Parallel plate Plate diameter: 25mm
Plate spacing: 1.5-2mm
Strain: 5%
Angular frequency: 0.1 to 100 rad / sec Measurement atmosphere: Nitrogen

(7)溶融複素粘度(η*、単位:Pa・sec)
(6)の流動の活性化エネルギーの測定において、温度190℃、角周波数100rad/秒で測定された溶融複素粘度を求めた。該溶融複素粘度が低いほど、カレンダー成形時の混練負荷に優れる。
(7) Melt complex viscosity (η *, unit: Pa · sec)
In the measurement of the flow activation energy of (6), the melt complex viscosity measured at a temperature of 190 ° C. and an angular frequency of 100 rad / sec was determined. The lower the melt complex viscosity, the better the kneading load during calendar molding.

(8)短鎖分岐数(NSCB、単位:1/1000C)
エチレン−α−オレフィン共重合体中の短鎖分岐数は、赤外吸収スペクトルから求めた。尚、測定ならびに計算は、文献(Die Makromoleculare Chemie, 177, 449 (1976) McRae, M. A., Madams, W. F. )記載の方法に従い、α−オレフィン由来の特性吸収を利用して実施した。赤外吸収スペクトルは、赤外分光光度計(日本分光工業社製 FT−IR7300)を用いて測定した。
(8) Number of short chain branches (N SCB , unit: 1 / 1000C)
The number of short chain branches in the ethylene-α-olefin copolymer was determined from an infrared absorption spectrum. Measurement and calculation were carried out by utilizing characteristic absorption derived from α-olefin according to the method described in the literature (Die Makromoleculare Chemie, 177, 449 (1976) McRae, MA, Madams, WF). The infrared absorption spectrum was measured using an infrared spectrophotometer (FT-IR7300 manufactured by JASCO Corporation).

(9)g*
前記式(III)によってg*を求めた。
なお、[η]は、エチレン−α−オレフィン共重合体の相対粘度(ηrel)を、熱劣化防止剤としてブチルヒドロキシトルエン(BHT)を0.5重量%含むテトラリン100mlに、エチレン−α−オレフィン共重合体100mgを135℃で溶解してサンプル溶液を調製し、ウベローデ型粘度計を用いて前記サンプル溶液と熱劣化防止剤としてBHTを0.5重量%のみを含むテトラリンからなるブランク溶液との降下時間から算出し、式(III−I)によって求め、[η]GPCは、(4)のエチレン−α−オレフィン共重合体の分子量分布の測定から、式(III−II)によって求め、gSCB*は、(7)のエチレン−α−オレフィン共重合体の短鎖分岐数の測定から式(III−III)によって求めた。
(9) g *
G * was determined by the formula (III).
[Η] represents the relative viscosity (ηrel) of the ethylene-α-olefin copolymer in 100 ml of tetralin containing 0.5% by weight of butylhydroxytoluene (BHT) as a thermal degradation inhibitor, and ethylene-α-olefin. A sample solution was prepared by dissolving 100 mg of the copolymer at 135 ° C., and using a Ubbelohde viscometer, the sample solution and a blank solution composed of tetralin containing only 0.5% by weight of BHT as a thermal degradation inhibitor Calculated from the fall time and determined by the formula (III-I), [η] GPC is determined by the formula (III-II) from the measurement of the molecular weight distribution of the ethylene-α-olefin copolymer of (4), g SCB * was calculated | required by Formula (III-III) from the measurement of the number of short chain branches of the ethylene-alpha-olefin copolymer of (7).

(10)メルトテンション(MT、単位:cN)
東洋精機製作所製メルトテンションテスターを用い、190℃の温度および0.32g/分の押出速度で、直径2.095mm、長さ8mmのオリフィスからエチレン−α−オレフィン共重合体を溶融押出し、該押出された溶融したエチレン−α−オレフィン共重合体を引取ロールにより6.3(m/分)/分の引取上昇速度でフィラメント状に引取り、引取る際の張力を測定した。引取開始からフィラメント状のエチレン−α−オレフィン共重合体が切断するまでの間の最大張力をメルトテンションとした。
この値が高いほど、カレンダー成形時のロールからの剥離性が向上し、成形しやすくなる。MTが12cN以上であれば、広幅の成形体であっても剥離しやすく、成形が容易である。
(10) Melt tension (MT, unit: cN)
Using a melt tension tester manufactured by Toyo Seiki Seisakusho, an ethylene-α-olefin copolymer was melt-extruded from an orifice having a diameter of 2.095 mm and a length of 8 mm at a temperature of 190 ° C. and an extrusion speed of 0.32 g / min. The melted ethylene-α-olefin copolymer was drawn into a filament by a take-up roll at a take-up rate of 6.3 (m / min) / min, and the tension during take-up was measured. The maximum tension from the start of take-up until the filamentous ethylene-α-olefin copolymer was cut was defined as the melt tension.
The higher this value, the better the peelability from the roll during calendar molding and the easier it is to mold. If MT is 12 cN or more, even if it is a wide molded object, it will be easy to peel and shaping | molding will be easy.

(11)最高引取速度(MTV、単位:m/分)
(10)のメルトテンションの測定において、フィラメント状のエチレン−α−オレフィン共重合体が切断する際の引取速度を最高引取速度とした。この値が高いほど、押出成形時に成形体がちぎれにくく、引き取り性に優れる。
(11) Maximum take-up speed (MTV, unit: m / min)
In the measurement of the melt tension of (10), the take-up speed when the filamentous ethylene-α-olefin copolymer was cut was defined as the maximum take-up speed. The higher this value is, the more difficult the molded body is torn during extrusion molding, and the better the take-up property is.

(12)衝撃強度(単位:kJ/m2
衝撃強度の測定は、ASTM D1822−61Tに従い、S型ダンベル形状で、23℃で行った。試料片は、150℃の熱プレスにより成型し、温度23℃、湿度50%の恒温室に24時間以上保管した後、測定に用いた。
(12) Impact strength (unit: kJ / m 2 )
The measurement of impact strength was performed at 23 ° C. in an S-type dumbbell shape according to ASTM D1822-61T. The sample piece was molded by hot pressing at 150 ° C., stored in a temperature-controlled room at 23 ° C. and 50% humidity for 24 hours or more, and then used for measurement.

(13)冷キシレン可溶部(単位:重量%)
還流冷却管を取り付けた200mLの平底フラスコ内に、エチレン系共重合体試料約0.5gとキシレン100mLとを投入し、30分間還流させた。還流後、平底フラスコを約25℃の大気中にて20分間静置し、続けて25℃に調整した水浴中で1時間静置した。静置後、平底フラスコ内の溶液を濾紙(No.50クロマト用)にて濾過した。得られた濾液を下記条件(1)〜(7)で液体クロマトグラフ分析を行い、溶液中に溶解している共重合体量を算出し、試料重量から冷キシレン溶解成分割合を求めた。
(1)装置:日本分光株式会社製デガッサDG−2080−53
(2)カラム:SHODEX GPC KF−801
(3)カラムオーブン:日本分光株式会社製CO−2065Plus、設定30℃
(4)溶離液:テトラヒドロフラン(液体クロマトグラフ用)
(5)流量:1.0mL/分
(6)注入量:110μL
(7)検出器:示差屈折計
本値が小さいほど、抗ブロッキング性に優れる。
(13) Cold xylene soluble part (unit: wt%)
In a 200 mL flat bottom flask equipped with a reflux condenser, about 0.5 g of an ethylene copolymer sample and 100 mL of xylene were charged and refluxed for 30 minutes. After refluxing, the flat bottom flask was allowed to stand in an atmosphere of about 25 ° C. for 20 minutes, and then left in a water bath adjusted to 25 ° C. for 1 hour. After standing, the solution in the flat bottom flask was filtered with a filter paper (for No. 50 chromatography). The obtained filtrate was subjected to liquid chromatographic analysis under the following conditions (1) to (7), the amount of the copolymer dissolved in the solution was calculated, and the cold xylene-dissolved component ratio was determined from the sample weight.
(1) Apparatus: Degasser DG-2080-53 manufactured by JASCO Corporation
(2) Column: SHODEX GPC KF-801
(3) Column oven: CO-2065Plus manufactured by JASCO Corporation, setting 30 ° C
(4) Eluent: Tetrahydrofuran (for liquid chromatograph)
(5) Flow rate: 1.0 mL / min
(6) Injection volume: 110 μL
(7) Detector: differential refractometer The smaller this value, the better the anti-blocking property.

実施例1
(1)固体触媒成分の調製
窒素置換した撹拌機を備えた反応器に、窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;50%体積平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)2.8kgとトルエン24kgとを入れて、撹拌した。その後、5℃に冷却した後、1,1,1,3,3,3−ヘキサメチルジシラザン0.9kgとトルエン1.4kgとの混合溶液を反応器の温度を5℃に保ちながら30分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に95℃に昇温し、95℃で3時間撹拌し、ろ過した。得られた固体生成物をトルエン20.8kgで6回、洗浄を行った。その後、トルエン7.1kgを加えスラリーとし、一晩静置した。
Example 1
(1) Preparation of solid catalyst component In a reactor equipped with a nitrogen-replaced stirrer, silica heat-treated at 300 ° C. under nitrogen flow (Sypolol 948 manufactured by Devison; 50% volume average particle size = 55 μm; pore volume = 1.67 ml / g; specific surface area = 325 m 2 / g) 2.8 kg and 24 kg of toluene were added and stirred. Thereafter, after cooling to 5 ° C., a mixed solution of 0.9 kg of 1,1,1,3,3,3-hexamethyldisilazane and 1.4 kg of toluene was maintained for 30 minutes while maintaining the reactor temperature at 5 ° C. It was dripped at. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 95 ° C., stirred at 95 ° C. for 3 hours, and filtered. The obtained solid product was washed 6 times with 20.8 kg of toluene. Thereafter, 7.1 kg of toluene was added to form a slurry, which was allowed to stand overnight.

上記で得られたスラリーに、ジエチル亜鉛のヘキサン溶液(ジエチル亜鉛濃度:50重量%)1.73kgとヘキサン1.02kgとを投入し、撹拌した。その後、5℃に冷却した後、3,4,5−トリフルオロフェノール0.78kgとトルエン1.44kgとの混合溶液を、反応器の温度を5℃に保ちながら60分間で滴下した。滴下終了後、5℃で1時間撹拌し、次に40℃に昇温し、40℃で1時間撹拌した。その後、22℃に冷却し、H2O0.11kgを反応器の温度を22℃に保ちながら1.5時間で滴下した。滴下終了後、22℃で1.5時間撹拌し、次に40℃に昇温し、40℃で2時間撹拌し、更に80℃に昇温し、80℃で2時間撹拌した。撹拌後、室温にて、残量16Lまで上澄み液を抜き出し、トルエン11.6kgを投入し、次に、95℃に昇温し、4時間撹拌した。撹拌後、室温にて、上澄み液を抜き出し、固体生成物を得た。得られた固体生成物をトルエン20.8kgで4回、ヘキサン24リットルで3回、洗浄を行った。その後、乾燥することにより、固体触媒成分を得た。 To the slurry obtained above, 1.73 kg of diethylzinc in hexane (diethylzinc concentration: 50% by weight) and 1.02 kg of hexane were added and stirred. Then, after cooling to 5 ° C., a mixed solution of 0.78 kg of 3,4,5-trifluorophenol and 1.44 kg of toluene was added dropwise over 60 minutes while maintaining the temperature of the reactor at 5 ° C. After completion of dropping, the mixture was stirred at 5 ° C. for 1 hour, then heated to 40 ° C. and stirred at 40 ° C. for 1 hour. Then cooled to 22 ° C., was added dropwise for 1.5 hours while maintaining the H 2 O0.11kg the temperature of the reactor 22 ° C.. After completion of dropping, the mixture was stirred at 22 ° C. for 1.5 hours, then heated to 40 ° C., stirred at 40 ° C. for 2 hours, further heated to 80 ° C., and stirred at 80 ° C. for 2 hours. After stirring, at room temperature, the supernatant was withdrawn to a residual amount of 16 L, charged with 11.6 kg of toluene, then heated to 95 ° C. and stirred for 4 hours. After stirring, the supernatant liquid was extracted at room temperature to obtain a solid product. The obtained solid product was washed 4 times with 20.8 kg of toluene and 3 times with 24 liters of hexane. Then, the solid catalyst component was obtained by drying.

(2)予備重合触媒成分の調製
予め窒素置換した内容積5リットルの撹拌機付きオートクレーブに、ブタン836gを投入した後、オートクレーブを50℃まで昇温して、次にエチレンを28g仕込み、系内が安定させた。次に、別途50mlのフラスコに窒素雰囲気下でジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]0.25gと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]0.52gと、トリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を4.3mLを混合して50℃で4時間撹拌混合した溶液をオートクレーブに投入した。その後さらに、実施例1(1)で得られた固体触媒成分10.3gを投入して重合を開始した。水素濃度が0.2%であるエチレンと水素の混合ガスを連続供給しながら50℃で100分の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて乾燥し、固体触媒成分1g当り15.9gのポリエチレンを含有する予備重合触媒成分を得た。
(2) Preparation of prepolymerization catalyst component 836 g of butane was charged into an autoclave equipped with a stirrer with an internal volume of 5 liters previously purged with nitrogen, then the autoclave was heated to 50 ° C., and then 28 g of ethylene was charged. Stabilized. Next, 0.25 g of diphenylmethylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride [corresponding to transition metal compound (A2)] in a 50 ml flask under a nitrogen atmosphere, and racemic-ethylenebis (1-indenyl) ) 0.52 g of zirconium diphenoxide [corresponding to transition metal compound (A1)] and 4.3 mL of a hexane solution of triisobutylaluminum having a triisobutylaluminum concentration of 1 mmol / mL are mixed and stirred at 50 ° C. for 4 hours. The solution was put into an autoclave. Thereafter, 10.3 g of the solid catalyst component obtained in Example 1 (1) was added to initiate polymerization. While continuously supplying a mixed gas of ethylene and hydrogen having a hydrogen concentration of 0.2%, prepolymerization was carried out at 50 ° C. for 100 minutes. After the polymerization was completed, ethylene, butane, hydrogen and the like were purged and the remaining solid was dried at room temperature to obtain a prepolymerized catalyst component containing 15.9 g of polyethylene per 1 g of the solid catalyst component.

(3)重合
減圧乾燥後アルゴンで置換した5リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.037MPaになるように加え、1−ヘキセン200mL、ブタンを1065g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=2.05mol%であった。これにトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘプタン溶液を2.0mL投入した。次に実施例1(2)で得られた予備重合触媒成分358mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.44mol%)を連続的に供給しながら、70℃で160分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体156gを得た。得られた共重合体の物性を表1に示した。
(3) Polymerization The inside of a 5 liter autoclave equipped with a stirrer was vacuum-dried after drying under reduced pressure, and hydrogen was added so that the partial pressure became 0.037 MPa, and 200 mL of 1-hexene and 1065 g of butane were charged. After the temperature was raised to 70 ° C., ethylene was introduced so that the partial pressure was 1.6 MPa to stabilize the system. As a result of gas chromatography, the gas composition in the system was hydrogen = 2.05 mol%. To this, 2.0 mL of a heptane solution of triisobutylaluminum having a triisobutylaluminum concentration of 1 mmol / mL was added. Next, 358 mg of the prepolymerized catalyst component obtained in Example 1 (2) was added. During the polymerization, the polymerization was carried out at 70 ° C. for 160 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.44 mol%) so as to keep the total pressure and the hydrogen concentration in the gas constant. Thereafter, butane, ethylene, and hydrogen were purged to obtain 156 g of an ethylene-1-hexene copolymer. Table 1 shows the physical properties of the obtained copolymer.

実施例2
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.015MPaになるように加え、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=0.99mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.2mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.3mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分21.8mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.20mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体215gを得た。得られた共重合体の物性を表1に示した。
Example 2
(1) Polymerization The inside of an autoclave with a stirrer with an internal volume of 3 liters, which was dried under reduced pressure and replaced with argon, was evacuated, hydrogen was added so that the partial pressure became 0.015 MPa, 180 ml of 1-hexene, butane as a polymerization solvent Was heated to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 0.99 mol%. To this was added 0.9 ml of a hexane solution of triisobutylaluminum adjusted to a concentration of 1 mol / l as the organoaluminum compound (C). Next, 0.2 ml of a toluene solution of racemic-ethylenebis (1-indenyl) zirconium diphenoxide [corresponding to a transition metal compound (A1)] adjusted to a concentration of 2 μmol / ml and a concentration adjusted to 0.1 μmol / ml 0.3 ml of a toluene solution of diphenylmethylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride [corresponding to the transition metal compound (A2)] was added, and then the solid obtained in Example 1 (1) above. 21.8 mg of the catalyst component was added. During the polymerization, the polymerization was carried out at 70 ° C. for 60 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.20 mol%) so that the total pressure and the hydrogen concentration in the gas were kept constant. Thereafter, butane, ethylene, and hydrogen were purged to obtain 215 g of an ethylene-1-hexene copolymer. Table 1 shows the physical properties of the obtained copolymer.

実施例3
(1)予備重合触媒成分の調製
予め窒素置換した内容積5リットルの撹拌機付きオートクレーブに、ブタン833gを投入した後、オートクレーブを50℃まで昇温して、ジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]0.26gと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]0.50gを粉体で投入し、50℃で75分間撹拌を行った。次にエチレンを28g仕込み、系内が安定した後、上記実施例1(1)で得られた固体触媒成分10.6gを投入し、続いて、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘプタン溶液を4.2mLを投入して重合を開始した。水素濃度が0.2%であるエチレンと水素の混合ガスを連続供給しながら50℃で130分の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて乾燥し、固体状助触媒成分1g当り17.5gのポリエチレンを含有する予備重合触媒成分を得た。
Example 3
(1) Preparation of prepolymerization catalyst component After adding 833 g of butane to an autoclave equipped with a stirrer with an internal volume of 5 liters previously purged with nitrogen, the autoclave was heated to 50 ° C. and diphenylmethylene (cyclopentadienyl) ( 9-fluorenyl) zirconium dichloride [equivalent to transition metal compound (A2)] 0.26 g and racemic-ethylenebis (1-indenyl) zirconium diphenoxide [equivalent to transition metal compound (A1)] 0.50 g in powder form The mixture was added and stirred at 50 ° C. for 75 minutes. Next, 28 g of ethylene was charged, and after the system was stabilized, 10.6 g of the solid catalyst component obtained in Example 1 (1) was added. Subsequently, the concentration of triisobutylaluminum as the organoaluminum compound (C) was increased. Polymerization was initiated by adding 4.2 mL of a heptane solution of triisobutylaluminum at 1 mmol / mL. Prepolymerization was carried out at 50 ° C. for 130 minutes while continuously supplying a mixed gas of ethylene and hydrogen having a hydrogen concentration of 0.2%. After the polymerization was completed, ethylene, butane, hydrogen and the like were purged and the remaining solid was dried at room temperature to obtain a prepolymerized catalyst component containing 17.5 g of polyethylene per 1 g of the solid promoter component.

(2)重合
減圧乾燥後アルゴンで置換した5リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.055MPaになるように加え、1−ヘキセン200ml、ブタンを1066g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=3.14mol%であった。これに、トリエチルアミン濃度が0.1mmol/mLであるトリエチルアミンのトルエン溶液1.0mLを投入し、次に有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を2.0mL投入した。次に実施例9の(1)で調製した予備重合触媒成分を401mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.49mol%)を連続的に供給しながら、70℃で210分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体171gを得た。得られた共重合体の物性を表1に示した。
(2) Polymerization The inside of a 5 liter autoclave equipped with a stirrer was vacuum-dried after drying under reduced pressure, hydrogen was added so that the partial pressure became 0.055 MPa, and 200 ml of 1-hexene and 1066 g of butane were charged. After the temperature was raised to 70 ° C., ethylene was introduced so that the partial pressure was 1.6 MPa to stabilize the system. As a result of gas chromatography, the gas composition in the system was hydrogen = 3.14 mol%. To this, 1.0 mL of a toluene solution of triethylamine having a triethylamine concentration of 0.1 mmol / mL was added, and then a hexane solution of triisobutylaluminum having a triisobutylaluminum concentration of 1 mmol / mL was used as the organoaluminum compound (C). 2.0 mL was added. Next, 401 mg of the prepolymerized catalyst component prepared in Example 9 (1) was added. During the polymerization, the polymerization was carried out at 70 ° C. for 210 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.49 mol%) so as to keep the total pressure and the hydrogen concentration in the gas constant. Thereafter, butane, ethylene, and hydrogen were purged to obtain 171 g of an ethylene-1-hexene copolymer. Table 1 shows the physical properties of the obtained copolymer.

実施例4
(1)重合
減圧乾燥後アルゴンで置換した5リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.029MPaになるように加え、1−ヘキセン200ml、ブタンを1065g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=1.58mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を2.0mL投入した。次に実施例3の(1)で調製した予備重合触媒成分を374mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.20mol%)を連続的に供給しながら、70℃で220分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体106gを得た。得られた共重合体の物性を表1に示した。
Example 4
(1) Polymerization The inside of a 5 liter autoclave equipped with a stirrer was vacuum-dried after drying under reduced pressure, and hydrogen was added so that the partial pressure became 0.029 MPa, and 200 ml of 1-hexene and 1065 g of butane were charged. After the temperature was raised to 70 ° C., ethylene was introduced so that the partial pressure was 1.6 MPa to stabilize the system. As a result of gas chromatography, the gas composition in the system was hydrogen = 1.58 mol%. To this, 2.0 mL of a hexane solution of triisobutylaluminum having a triisobutylaluminum concentration of 1 mmol / mL as the organoaluminum compound (C) was added. Next, 374 mg of the prepolymerized catalyst component prepared in Example 3 (1) was added. During the polymerization, the polymerization was carried out at 70 ° C. for 220 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.20 mol%) so that the total pressure and the hydrogen concentration in the gas were kept constant. Thereafter, butane, ethylene and hydrogen were purged to obtain 106 g of an ethylene-1-hexene copolymer. Table 1 shows the physical properties of the obtained copolymer.

実施例5
(1)予備重合触媒成分の調製
予め窒素置換した内容積5リットルの撹拌機付きオートクレーブに、ブタン833gを投入した後、オートクレーブを50℃まで昇温して、次にエチレンを28g仕込み、系内が安定させた。次に、別途50mlのフラスコに窒素雰囲気下でジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]57mgと、ラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]0.67gと、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を4.1mLを混合して50℃で4時間撹拌混合した溶液をオートクレーブに投入した。続いて実施例1で調製した固体触媒成分10.4gを投入して重合を開始した。水素濃度が0.2%であるエチレンと水素の混合ガスを連続供給しながら50℃で80分の予備重合を実施した。重合終了後、エチレン、ブタン、水素などをパージして残った固体を室温にて乾燥し、固体触媒成分1g当り17.5gのポリエチレンを含有する予備重合触媒成分を得た。
(2)重合
減圧乾燥後アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.015MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=0.93mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に実施例11(1)で得られた予備重合触媒成分を363mg投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.23mol%)を連続的に供給しながら、70℃で60分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体214gを得た。得られた共重合体の物性を表1に示した。
Example 5
(1) Preparation of prepolymerization catalyst component After adding 833 g of butane to an autoclave equipped with a stirrer with an internal volume of 5 liters previously purged with nitrogen, the autoclave was heated to 50 ° C., and then 28 g of ethylene was charged. Stabilized. Next, 57 mg of diphenylmethylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride [corresponding to the transition metal compound (A2)] and racemic-ethylenebis (1-indenyl) zirconium in a 50 ml flask under a nitrogen atmosphere. Diphenoxide [corresponding to the transition metal compound (A1)] 0.67 g and 4.1 mL of triisobutylaluminum hexane solution having a triisobutylaluminum concentration of 1 mmol / mL as the organoaluminum compound (C) were mixed at 50 ° C. The solution stirred and mixed for 4 hours was put into an autoclave. Subsequently, 10.4 g of the solid catalyst component prepared in Example 1 was added to initiate polymerization. Prepolymerization was carried out at 50 ° C. for 80 minutes while continuously supplying a mixed gas of ethylene and hydrogen having a hydrogen concentration of 0.2%. After the polymerization was completed, ethylene, butane, hydrogen and the like were purged and the remaining solid was dried at room temperature to obtain a prepolymerized catalyst component containing 17.5 g of polyethylene per 1 g of the solid catalyst component.
(2) Polymerization The inside of a 3 liter autoclave equipped with a stirrer was dried under reduced pressure and purged with argon, hydrogen was added so that the partial pressure became 0.015 MPa, and 180 ml of 1-hexene and 650 g of butane were charged. After the temperature was raised to 70 ° C., ethylene was introduced so that the partial pressure was 1.6 MPa to stabilize the system. As a result of gas chromatography, the gas composition in the system was hydrogen = 0.93 mol%. To this was added 0.9 mL of a hexane solution of triisobutylaluminum having a triisobutylaluminum concentration of 1 mmol / mL as the organoaluminum compound (C). Next, 363 mg of the prepolymerized catalyst component obtained in Example 11 (1) was added. The polymerization was carried out at 70 ° C. for 60 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.23 mol%) so that the total pressure and the hydrogen concentration in the gas were kept constant. Thereafter, butane, ethylene and hydrogen were purged to obtain 214 g of an ethylene-1-hexene copolymer. Table 1 shows the physical properties of the obtained copolymer.

実施例6
(1)重合
減圧乾燥後アルゴンで置換した3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.025MPaになるように加え、1−ヘキセン180ml、ブタンを650g仕込み、系内の温度を70℃まで昇温した後、エチレンを、その分圧が1.6MPaになるように導入し、系内を安定させた。ガスクロマトグラフィーの結果、系内のガス組成は、水素=2.26mol%であった。これに、有機アルミニウム化合物(C)としてトリイソブチルアルミニウム濃度が1mmol/mLであるトリイソブチルアルミニウムのヘキサン溶液を0.9mL投入した。次に実施例5(1)で得られた予備重合触媒成分を364mg投入した。重合中は、エチレン/水素混合ガス(水素=0.21mol%)を連続的に供給しながら、70℃で60分重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体172gを得た。得られた共重合体の物性を表1に示した。
Example 6
(1) Polymerization The inside of a 3 liter autoclave equipped with a stirrer that was dried under reduced pressure and replaced with argon was evacuated, hydrogen was added so that the partial pressure was 0.025 MPa, and 180 ml of 1-hexene and 650 g of butane were charged. After the temperature was raised to 70 ° C., ethylene was introduced so that the partial pressure was 1.6 MPa to stabilize the system. As a result of gas chromatography, the gas composition in the system was hydrogen = 2.26 mol%. To this was added 0.9 mL of a hexane solution of triisobutylaluminum having a triisobutylaluminum concentration of 1 mmol / mL as the organoaluminum compound (C). Next, 364 mg of the prepolymerized catalyst component obtained in Example 5 (1) was added. During the polymerization, polymerization was carried out at 70 ° C. for 60 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.21 mol%). Thereafter, butane, ethylene and hydrogen were purged to obtain 172 g of an ethylene-1-hexene copolymer. Table 1 shows the physical properties of the obtained copolymer.

実施例7
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.025MPaになるように加え、1−ブテンを55g、重合溶媒としてブタンを695g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.08mol%、1−ブテン=2.48mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシド[遷移金属化合物(A1)に相当]のトルエン溶液 0.5mlと、濃度を0.1μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 0.25mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分10.0mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.33mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ブテン共重合体112gを得た。得られた共重合体の物性を表1に示した。
Example 7
(1) Polymerization The inside of an autoclave with a stirrer with an internal volume of 3 liters, which was dried under reduced pressure and replaced with argon, was evacuated, hydrogen was added so that the partial pressure became 0.025 MPa, 55 g of 1-butene, butane as a polymerization solvent Was heated to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was as follows: hydrogen = 1.08 mol% and 1-butene = 2.48 mol%. To this was added 0.9 ml of a hexane solution of triisobutylaluminum adjusted to a concentration of 1 mol / l as the organoaluminum compound (C). Next, 0.5 ml of a toluene solution of racemic-ethylenebis (1-indenyl) zirconium diphenoxide [corresponding to a transition metal compound (A1)] adjusted to a concentration of 2 μmol / ml and a concentration adjusted to 0.1 μmol / ml 0.25 ml of a toluene solution of diphenylmethylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride [corresponding to the transition metal compound (A2)] was added, and then the solid obtained in Example 1 (1) above. 10.0 mg of the catalyst component was added. The polymerization was carried out at 70 ° C. for 60 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.33 mol%) so that the total pressure and the hydrogen concentration in the gas were kept constant during the polymerization. Thereafter, butane, ethylene and hydrogen were purged to obtain 112 g of an ethylene-1-butene copolymer. Table 1 shows the physical properties of the obtained copolymer.

比較例1
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.08MPaになるように加え、1−ブテンを31g、重合溶媒としてブタンを720g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=4.57mol%、1−ブテン=1.83mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を0.2μmol/mlに調整したラセミ−ジメチルシリレンビス(1−インデニル)ジルコニウムジクロライド[遷移金属化合物(A1)に相当]のトルエン溶液0.75mlと濃度を2μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液0.75mlを投入し、続いて上記実施例1(1)得られた固体触媒成分11.8mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=1.24mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ブテン共重合体38gを得た。得られた共重合体の物性を表2に示した。
Comparative Example 1
(1) Polymerization The inside of an autoclave with a stirrer with an internal volume of 3 liters, which was dried under reduced pressure and replaced with argon, was evacuated, hydrogen was added so that the partial pressure became 0.08 MPa, 31 g of 1-butene, butane as a polymerization solvent 720 g was charged and the temperature was raised to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was as follows: hydrogen = 4.57 mol%, 1-butene = 1.83 mol%. To this was added 0.9 ml of a hexane solution of triisobutylaluminum adjusted to a concentration of 1 mol / l as the organoaluminum compound (C). Next, 0.75 ml of a toluene solution of racemic dimethylsilylene bis (1-indenyl) zirconium dichloride [corresponding to a transition metal compound (A1)] adjusted to a concentration of 0.2 μmol / ml and a concentration of 2 μmol / ml were adjusted. 0.75 ml of a toluene solution of diphenylmethylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride [corresponding to transition metal compound (A2)] was added, and then the solid catalyst component obtained in Example 1 (1) above 11.8 mg was charged. During the polymerization, the polymerization was carried out at 70 ° C. for 60 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 1.24 mol%) so that the total pressure and the hydrogen concentration in the gas were kept constant. Thereafter, butane, ethylene, and hydrogen were purged to obtain 38 g of an ethylene-1-butene copolymer. The physical properties of the obtained copolymer are shown in Table 2.

比較例2
(1)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、水素をその分圧が0.025MPaになるように加え、1−ブテンを56g、重合溶媒としてブタンを695g仕込み、70℃まで昇温した。その後、エチレンを、その分圧が1.6MPaになるように加え系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=1.10mol%、1−ブテン=2.96mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、濃度を2μmol/mlに調整したラセミ−エチレンビス(1−インデニル)ジルコニウムジフェノキシドのトルエン溶液0.25mlを投入し、続いて上記実施例1(1)で得られた固体触媒成分3.4mgを投入した。重合中は全圧、およびガス中の水素濃度を一定に維持するように、エチレン/水素混合ガス(水素=0.32mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ブテン共重合体65gを得た。得られた共重合体の物性を表2に示した。
Comparative Example 2
(1) Polymerization The inside of an autoclave with a stirrer with an internal volume of 3 liters, which was substituted with argon after drying under reduced pressure, was evacuated, hydrogen was added so that the partial pressure became 0.025 MPa, 56 g of 1-butene, butane as a polymerization solvent Was heated to 70 ° C. Thereafter, ethylene was added so that the partial pressure became 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 1.10 mol% and 1-butene = 2.96 mol%. To this was added 0.9 ml of a hexane solution of triisobutylaluminum adjusted to a concentration of 1 mol / l as the organoaluminum compound (C). Next, 0.25 ml of a toluene solution of racemic-ethylenebis (1-indenyl) zirconium diphenoxide adjusted to a concentration of 2 μmol / ml was added, and then the solid catalyst component 3 obtained in Example 1 (1) above was added. 4 mg was charged. The polymerization was carried out at 70 ° C. for 60 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.32 mol%) so that the total pressure and the hydrogen concentration in the gas were kept constant. Thereafter, butane, ethylene and hydrogen were purged to obtain 65 g of an ethylene-1-butene copolymer. The physical properties of the obtained copolymer are shown in Table 2.

比較例3
(1)固体触媒成分(S)の調製
窒素置換した攪拌機付きの反応器に、成分(b)固体状担体として窒素流通下で300℃において加熱処理したシリカ(デビソン社製 Sylopol948;平均粒子径=55μm;細孔容量=1.67ml/g;比表面積=325m2/g)9.68kgを入れた。トルエンを100リットル加えた後、2℃に冷却した。これにメチルアルモキサンのトルエン溶液(2.9M)26.3リットルを一時間かけて滴下した。5℃にて30分間攪拌した後、90分間かけて95℃まで加熱し、4時間攪拌を行った。その後40℃へ冷却した後、40分間静置し、固体成分を沈降させ、上層のスラリー部分を取り除いた。洗浄操作として、これに、トルエン100リットルを加え、10分間攪拌した後、攪拌を停止して静置し固体成分を沈降させ、同様に上層のスラリー部分を取り除いた。以上の洗浄操作を計3回繰り返した。さらに、トルエン100リットルを加え、攪拌を行った後、攪拌を止めると同時にろ過を行った。この操作をもう1回繰り返した後、ヘキサン110リットルを加え、同様の方法にてろ過を行った。この操作をもう一度繰り返した。その後、窒素流通下70℃で7時間乾燥を行うことにより、固体触媒成分12.6kgを得た。元素分析の結果、Al=4.4mmol/gであった。
Comparative Example 3
(1) Preparation of solid catalyst component (S) In a reactor equipped with a stirrer substituted with nitrogen, component (b) silica heat-treated at 300 ° C. under a nitrogen flow as a solid carrier (Sypolol 948 manufactured by Devison; average particle size = 55 μm; pore volume = 1.67 ml / g; specific surface area = 325 m 2 / g) 9.68 kg was added. After adding 100 liters of toluene, it was cooled to 2 ° C. To this, 26.3 liters of a toluene solution of methylalumoxane (2.9M) was added dropwise over 1 hour. After stirring at 5 ° C. for 30 minutes, the mixture was heated to 95 ° C. over 90 minutes and stirred for 4 hours. After cooling to 40 ° C., the mixture was allowed to stand for 40 minutes to allow the solid component to settle, and the upper slurry portion was removed. As a washing operation, 100 liters of toluene was added thereto, and the mixture was stirred for 10 minutes. Then, the stirring was stopped and the mixture was allowed to stand to settle the solid component. Similarly, the upper slurry portion was removed. The above washing operation was repeated 3 times in total. Furthermore, after adding 100 liters of toluene and stirring, it filtered simultaneously with stopping stirring. After repeating this operation once more, 110 liters of hexane was added, and filtration was performed in the same manner. This operation was repeated once more. Then, 12.6 kg of solid catalyst components were obtained by performing drying at 70 degreeC under nitrogen distribution for 7 hours. As a result of elemental analysis, it was Al = 4.4 mmol / g.

(2)スラリー状触媒成分(Cat−1)の調製
窒素置換した100mlのガラス製フラスコに上記(1)で調製した固体触媒成分(S)を200mg加えた。次に、濃度を2μmol/mlに調整したジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド[遷移金属化合物(A1)に相当]のトルエン溶液 12.5mlと、濃度を2μmol/mlに調整したジフェニルメチレン(シクロペンタジエニル)(9−フルオレニル)ジルコニウムジクロライド[遷移金属化合物(A2)に相当]のトルエン溶液 1mlを投入し、室温で5分間反応させた。その後、上澄み液をデカンテーションにより除いた後、ヘキサンで2回洗浄し、6mlのヘキサンスラリーとした。
(2) Preparation of slurry catalyst component (Cat-1) 200 mg of the solid catalyst component (S) prepared in (1) above was added to a nitrogen-substituted 100 ml glass flask. Next, 12.5 ml of a toluene solution of dimethylsilanediylbis (cyclopentadienyl) zirconium dichloride [corresponding to a transition metal compound (A1)] adjusted to a concentration of 2 μmol / ml, and diphenyl adjusted to a concentration of 2 μmol / ml 1 ml of a toluene solution of methylene (cyclopentadienyl) (9-fluorenyl) zirconium dichloride [corresponding to the transition metal compound (A2)] was added and reacted at room temperature for 5 minutes. Thereafter, the supernatant was removed by decantation and then washed twice with hexane to obtain 6 ml of hexane slurry.

(3)重合
減圧乾燥後アルゴンで置換した内容積3リットルの撹拌機付きオートクレーブ内を真空にし、1−ヘキセンを180ml、重合溶媒としてブタンを650g仕込み、70℃まで昇温した。その後、エチレン/水素混合ガス(水素=0.33mol%)を、混合ガスの分圧が1.6MPaになるように加え、系内を安定させた。ガスクロマトグラフィー分析の結果、系内のガス組成は、水素=0.15mol%であった。これに、有機アルミニウム化合物(C)として濃度を1mol/lに調整したトリイソブチルアルミニウムのヘキサン溶液 0.9mlを投入した。次に、上記(2)で調製したスラリー状触媒成分(Cat-1)を6ml投入した。重合中は、エチレン/水素混合ガス(水素=0.33mol%)を連続的に供給しながら、70℃で60分間重合した。その後、ブタン、エチレン、水素をパージして、エチレン−1−ヘキセン共重合体71gを得た。得られた共重合体の物性を表2に示した。
(3) Polymerization The inside of an autoclave with a stirrer with an internal volume of 3 liters, which was substituted with argon after drying under reduced pressure, was evacuated, charged with 180 ml of 1-hexene and 650 g of butane as a polymerization solvent, and heated to 70 ° C. Thereafter, an ethylene / hydrogen mixed gas (hydrogen = 0.33 mol%) was added so that the partial pressure of the mixed gas was 1.6 MPa, and the inside of the system was stabilized. As a result of gas chromatography analysis, the gas composition in the system was hydrogen = 0.15 mol%. To this was added 0.9 ml of a hexane solution of triisobutylaluminum adjusted to a concentration of 1 mol / l as the organoaluminum compound (C). Next, 6 ml of the slurry catalyst component (Cat-1) prepared in the above (2) was added. During the polymerization, polymerization was performed at 70 ° C. for 60 minutes while continuously supplying an ethylene / hydrogen mixed gas (hydrogen = 0.33 mol%). Thereafter, butane, ethylene, and hydrogen were purged to obtain 71 g of an ethylene-1-hexene copolymer. The physical properties of the obtained copolymer are shown in Table 2.

Figure 2010275446
Figure 2010275446

Figure 2010275446
(注1):150℃で測定
Figure 2010275446
(Note 1): Measured at 150 ° C

Claims (3)

エチレンに基づく単量体単位と炭素数3〜20のα−オレフィンに基づく単量体単位を有し、密度(d)が860〜950kg/m3であり、メルトフローレート(MFR)が0.01〜5(g/10分)であり、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4〜30であり、Z平均分子量(Mz)と重量平均分子量(Mw)との比(Mz/Mw)が2〜5であり、下記式(I)で求められるg*が0.79〜0.95である、カレンダー成形用エチレン−α−オレフィン共重合体。
g*=[η]/([η]GPC×gSCB*) (I)
[式中、[η]は、エチレン−α−オレフィン共重合体の極限粘度(単位:dl/g)を表し、下記式(I−I)によって定義され、[η]GPCは、下記式(I−II)によって定義され、gSCB*は、下記式(I−III)によって定義される。
[η]=23.3×log(ηrel) (I−I)
(式中、ηrelは、エチレン−α−オレフィン共重合体の相対粘度を表す。)
[η]GPC=0.00046×Mv0.725 (I−II)
(式中、Mvは、エチレン−α−オレフィン共重合体の粘度平均分子量を表す。)
SCB*=(1−A)1.725 (I−III)
(式中、Aは、エチレン−α−オレフィン共重合体中の短鎖分岐の含量測定から求めることができる。)]
It has a monomer unit based on ethylene and a monomer unit based on an α-olefin having 3 to 20 carbon atoms, has a density (d) of 860 to 950 kg / m 3 , and a melt flow rate (MFR) of 0.00. 01 to 5 (g / 10 min), the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 4 to 30, the Z average molecular weight (Mz) and the weight average molecular weight (Mw) ratio (Mz / Mw) is 2-5, g * calculated | required by following formula (I) is 0.79-0.95, the ethylene-alpha-olefin copolymer for calendar moldings .
g * = [η] / ([η] GPC × g SCB *) (I)
[In the formula, [η] represents the intrinsic viscosity (unit: dl / g) of the ethylene-α-olefin copolymer, and is defined by the following formula (I-I), and [η] GPC is represented by the following formula ( G SCB * is defined by the following formula (I-III).
[Η] = 23.3 × log (ηrel) (II)
(In the formula, ηrel represents the relative viscosity of the ethylene-α-olefin copolymer.)
[Η] GPC = 0.00046 × Mv 0.725 (I-II)
(In the formula, Mv represents the viscosity average molecular weight of the ethylene-α-olefin copolymer.)
g SCB * = (1-A) 1.725 (I-III)
(In the formula, A can be obtained from the measurement of the content of short chain branches in the ethylene-α-olefin copolymer.)]
流動の活性化エネルギー(Ea)が60kJ/mol以上である請求項1に記載のカレンダー成形用エチレン−α−オレフィン共重合体。   The ethylene-α-olefin copolymer for calendering according to claim 1, wherein the activation energy (Ea) of flow is 60 kJ / mol or more. 請求項1または2に記載のカレンダー成形用エチレン−α−オレフィン共重合体を用いて得られるカレンダー成形体。   A calendered molding obtained by using the calendar-forming ethylene-α-olefin copolymer according to claim 1 or 2.
JP2009130160A 2009-05-29 2009-05-29 Ethylene-α-olefin copolymer for calendar molding and calendar molded body Active JP5182224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009130160A JP5182224B2 (en) 2009-05-29 2009-05-29 Ethylene-α-olefin copolymer for calendar molding and calendar molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130160A JP5182224B2 (en) 2009-05-29 2009-05-29 Ethylene-α-olefin copolymer for calendar molding and calendar molded body

Publications (2)

Publication Number Publication Date
JP2010275446A true JP2010275446A (en) 2010-12-09
JP5182224B2 JP5182224B2 (en) 2013-04-17

Family

ID=43422706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130160A Active JP5182224B2 (en) 2009-05-29 2009-05-29 Ethylene-α-olefin copolymer for calendar molding and calendar molded body

Country Status (1)

Country Link
JP (1) JP5182224B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122495A1 (en) * 2014-02-14 2015-08-20 三井化学株式会社 ETHYLENE/α-OLEFIN/NON-CONJUGATED POLYENE COPOLYMER, PRODUCTION METHOD THEREFOR, AND USE THEREFOR
JP2018090784A (en) * 2016-12-02 2018-06-14 ウォンプン コーポレーションWonpoong Corporation Polyolefin-based tarpaulin for actual photograph printing and method for producing the same
US10603058B2 (en) 2013-03-11 2020-03-31 Northgate Technologies, Inc. Unfocused electrohydraulic lithotripter
US11534187B2 (en) 2004-09-20 2022-12-27 P Tech, Llc Acoustic therapy device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228629A (en) * 1994-02-18 1995-08-29 Mitsui Petrochem Ind Ltd Ethylenic polymer and its production, solid titanium catalyst component for polymerizing ethylene and catalyst for polymerizating ethylene
JPH07238114A (en) * 1994-03-02 1995-09-12 Mitsui Petrochem Ind Ltd Ethylene polymer, solid titanium catalyst component for ethylene polymerization, catalyst for ethylene polymerization containing the same component, and preparation of ethylene polymer using the same catalyst
JPH0859706A (en) * 1994-08-26 1996-03-05 Tosoh Corp Production of ethylene/alpha-olefin copolymer
JPH10182718A (en) * 1996-12-20 1998-07-07 Fina Technol Inc Yield improving type catalyst belonging to support type metallocene catalyst
WO2002072649A1 (en) * 2001-03-12 2002-09-19 Idemitsu Petrochemical Co., Ltd. Process for producing polyolefin resin composition and polypropylene composition
JP2005206777A (en) * 2003-12-25 2005-08-04 Tosoh Corp Ethylenic polymer and production method therefor
JP2007051283A (en) * 2005-07-21 2007-03-01 Sumitomo Chemical Co Ltd Resin composition, waterproof sheet and method for producing the same
WO2009069822A1 (en) * 2007-11-30 2009-06-04 Sumitomo Chemical Company, Limited Catalyst for polymerization of olefin, and process for production of olefin polymer
WO2009069823A1 (en) * 2007-11-30 2009-06-04 Sumitomo Chemical Company, Limited Ethylene-α-olefin copolymer and molded article
JP2010276128A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Tube
JP2011514928A (en) * 2008-03-13 2011-05-12 ダウ グローバル テクノロジーズ エルエルシー Long chain branching (LCB), block, or interconnected ethylene copolymers in combination with one other polymer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07228629A (en) * 1994-02-18 1995-08-29 Mitsui Petrochem Ind Ltd Ethylenic polymer and its production, solid titanium catalyst component for polymerizing ethylene and catalyst for polymerizating ethylene
JPH07238114A (en) * 1994-03-02 1995-09-12 Mitsui Petrochem Ind Ltd Ethylene polymer, solid titanium catalyst component for ethylene polymerization, catalyst for ethylene polymerization containing the same component, and preparation of ethylene polymer using the same catalyst
JPH0859706A (en) * 1994-08-26 1996-03-05 Tosoh Corp Production of ethylene/alpha-olefin copolymer
JPH10182718A (en) * 1996-12-20 1998-07-07 Fina Technol Inc Yield improving type catalyst belonging to support type metallocene catalyst
WO2002072649A1 (en) * 2001-03-12 2002-09-19 Idemitsu Petrochemical Co., Ltd. Process for producing polyolefin resin composition and polypropylene composition
JP2005206777A (en) * 2003-12-25 2005-08-04 Tosoh Corp Ethylenic polymer and production method therefor
JP2007051283A (en) * 2005-07-21 2007-03-01 Sumitomo Chemical Co Ltd Resin composition, waterproof sheet and method for producing the same
WO2009069822A1 (en) * 2007-11-30 2009-06-04 Sumitomo Chemical Company, Limited Catalyst for polymerization of olefin, and process for production of olefin polymer
WO2009069823A1 (en) * 2007-11-30 2009-06-04 Sumitomo Chemical Company, Limited Ethylene-α-olefin copolymer and molded article
JP2011514928A (en) * 2008-03-13 2011-05-12 ダウ グローバル テクノロジーズ エルエルシー Long chain branching (LCB), block, or interconnected ethylene copolymers in combination with one other polymer
JP2010276128A (en) * 2009-05-29 2010-12-09 Sumitomo Chemical Co Ltd Tube

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11534187B2 (en) 2004-09-20 2022-12-27 P Tech, Llc Acoustic therapy device
US10603058B2 (en) 2013-03-11 2020-03-31 Northgate Technologies, Inc. Unfocused electrohydraulic lithotripter
WO2015122495A1 (en) * 2014-02-14 2015-08-20 三井化学株式会社 ETHYLENE/α-OLEFIN/NON-CONJUGATED POLYENE COPOLYMER, PRODUCTION METHOD THEREFOR, AND USE THEREFOR
CN106062019A (en) * 2014-02-14 2016-10-26 三井化学株式会社 Ethylene/alpha-olefin/non-conjugated polyene copolymer, production method therefor, and use therefor
JPWO2015122495A1 (en) * 2014-02-14 2017-03-30 三井化学株式会社 Ethylene / α-olefin / non-conjugated polyene copolymer, production method and use thereof
US10131726B2 (en) 2014-02-14 2018-11-20 Mitsui Chemicals, Inc. Ethylene/α-olefin/non-conjugated polyene copolymer, and production process and use thereof
CN106062019B (en) * 2014-02-14 2019-02-26 三井化学株式会社 Ethylene/alpha-olefin/unconjugated polyene copolymer, its manufacturing method and purposes
US10435494B2 (en) 2014-02-14 2019-10-08 Mitsui Chemicals, Inc. Ethylene/α-olefin/non-conjugated polyene copolymer, and production process and use thereof
JP2018090784A (en) * 2016-12-02 2018-06-14 ウォンプン コーポレーションWonpoong Corporation Polyolefin-based tarpaulin for actual photograph printing and method for producing the same

Also Published As

Publication number Publication date
JP5182224B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
JP5407301B2 (en) Ethylene-α-olefin copolymer and molded product
JP5407300B2 (en) Ethylene-α-olefin copolymer and molded product
JP5407299B2 (en) Ethylene-α-olefin copolymer and molded product
US8809462B2 (en) Ethylene-α-olefin copolymer, molded article, catalyst for copolymerization, and method for producing an ethylene-α-olefin copolymer
US20110136994A1 (en) Olefin polymerization catalyst and production process of olefin polymer
US8436101B2 (en) Ethylene-α-olefin copolymer and molded object thereof
JP5392015B2 (en) Ethylene-α-olefin copolymer and molded product
JP5182224B2 (en) Ethylene-α-olefin copolymer for calendar molding and calendar molded body
WO2010137732A1 (en) ETHYLENE-α-OLEFIN COPOLYMER AND MOLDED ARTICLE
JP5720117B2 (en) Hollow molded food container
WO2010137719A1 (en) Resin composition for crosslinking/foam molding, crosslinked molded foam, member for footwear, and footwear
JP2011006676A (en) ETHYLENE-α-OLEFIN COPOLYMER FOR FILM, FILM AND FOOD PACKAGING FILM
JP2011006675A (en) ETHYLENE-α-OLEFIN COPOLYMER AND MOLDED ARTICLE
JP2010275444A (en) Catalyst for olefin polymerization and method of production of olefin polymer
JP2010276128A (en) Tube
JP2011006677A (en) ETHYLENE-α-OLEFIN COPOLYMER FOR EXTRUSION LAMINATION AND LAMINATE THEREOF
JP2011132402A (en) ETHYLENE-alpha-OLEFIN COPOLYMER FOR FOAMING, RESIN COMPOSITION FOR FOAMING, AND FOAM
JP2011132401A (en) ETHYLENE-alpha-OLEFIN COPOLYMER FOR FOAMING, RESIN COMPOSITION FOR FOAMING, AND FOAM
JP2011006678A (en) Resin composition for cross-linked foaming and cross-linked foam body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5182224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350