JP2010274409A - Small diameter drill for machining machinable ceramics - Google Patents

Small diameter drill for machining machinable ceramics Download PDF

Info

Publication number
JP2010274409A
JP2010274409A JP2009145804A JP2009145804A JP2010274409A JP 2010274409 A JP2010274409 A JP 2010274409A JP 2009145804 A JP2009145804 A JP 2009145804A JP 2009145804 A JP2009145804 A JP 2009145804A JP 2010274409 A JP2010274409 A JP 2010274409A
Authority
JP
Japan
Prior art keywords
cutting edge
drill
diameter
tip
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009145804A
Other languages
Japanese (ja)
Inventor
Haruki Kino
晴喜 木野
Noritoshi Kudo
典寿 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2009145804A priority Critical patent/JP2010274409A/en
Publication of JP2010274409A publication Critical patent/JP2010274409A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small diameter drill for machining machinable ceramics, having a diameter of 2 mm or less, maintaining sharpness of a tip cutting edge and high hole accuracy of a workpiece and preventing a breakage accident by optimizing the shape and material of the tip cutting edge of the drill and suppressing the progress of wear. <P>SOLUTION: The tip cutting edge of the small diameter drill for drilling a hole with a diameter or 2 mm or less in machinable ceramics, includes a center side cutting edge and a peripheral side cutting edge, and the tip angle of a rotation locus is 120-140° in the center side cutting edge, and 70-100° in the peripheral side cutting edge. The projection length of the peripheral side cutting edge is in a range of 5-30% of the diameter. A helix angle is 25-35°, and the circumferential length of a margin part is in a range of 15-30% of the diameter of the small diameter drill. A space between a preceding margin part connected to a leading edge, and a succeeding margin part connected to a heel, is preferably formed in the cut-off shape of a cylinder part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、マシナブルセラミックスの加工用小径ドリルに関し、マシナブルセラミックスの穿孔に最適な小径ドリル、特にドリルの先端部切れ刃の新規な形状を有する小径ドリルを提供するものである。  The present invention relates to a small-diameter drill for machining machinable ceramics, and provides a small-diameter drill most suitable for drilling machinable ceramics, particularly a small-diameter drill having a novel shape of the cutting edge of the drill.

本発明の小径ドリルでの穴あけ加工として対象とするマシナブルセラミックスとは、セラミックス中に、雲母やジルコニア微結晶などを分散させ、へき開性もしくは耐クラック性を持たせたセラミックスである。この特性により、以前では困難であったセラミックスの機械加工が容易に可能となる。そのため加工が容易である点や、セラミックスが有する電気絶縁性、高熱伝導性または低熱伝導性、耐食性などの特徴を生かし、碍子、保護管、基板、化学装置用ノズル、プローブカードなどに使用されている。加工容易性を生かした製品では、量産品の原型模型をマシナブルセラミックスで試作する例も知られている。これらのマシナブルセラミックスは、必要に応じて穿孔、旋削、フライス削りなどの機械加工が必要である。本発明は、特に半導体装置の検査工程用プローブカードに用いられるマシナブルセラミックスなどを対象として、直径が2mm以下、望ましくは0.5mm以下の小径の穴あけ加工を行う小径ドリルに関する。  Machinable ceramics that are targeted for drilling with the small-diameter drill of the present invention are ceramics in which mica, zirconia microcrystals, and the like are dispersed in ceramics to provide cleavage or crack resistance. This property allows easy machining of ceramics, which was previously difficult. For this reason, it is used for insulators, protective tubes, substrates, nozzles for chemical equipment, probe cards, etc., taking advantage of the features of ceramics, such as electrical insulation, high thermal conductivity or low thermal conductivity, and corrosion resistance. Yes. For products that take advantage of ease of processing, examples of making prototypes of mass-produced prototypes with machinable ceramics are also known. These machinable ceramics require machining such as drilling, turning, and milling as necessary. The present invention relates to a small-diameter drill that performs drilling with a small diameter of 2 mm or less, preferably 0.5 mm or less, particularly for machinable ceramics used in a probe card for an inspection process of a semiconductor device.

以下、最も小径のドリルが必要とされる一例として、プローブカードの穴あけ加工を例にとって説明する。半導体の集積回路の製造工程において、ウェハ上に回路が完成した段階で、ウェハを個々のチップに切り離す前に、通電テストを行う。このとき、プローブカードと呼ばれる検査治具を用いて行う。プローブカードには、絶縁体としてマシナブルセラミックスが用いられ、多数の穿孔された小径の穴(具体的に例示すると、直径12インチ程度のマシナブルセラミックスの円板に、直径が0.1mm程度の小径の穴が、40000個程度穿孔される)に先端が針状のプローブが差し込まれる。  Hereinafter, as an example in which the drill with the smallest diameter is required, drilling of a probe card will be described as an example. In a semiconductor integrated circuit manufacturing process, when a circuit is completed on a wafer, an energization test is performed before the wafer is separated into individual chips. At this time, an inspection jig called a probe card is used. The probe card uses machinable ceramics as an insulator, and has a large number of perforated small-diameter holes (specifically, a machinable ceramic disc having a diameter of about 12 inches and a diameter of about 0.1 mm). A probe having a needle-like tip is inserted into about 40,000 small-diameter holes.

現在使用されているプローブカードのマシナブルセラミックスを穴あけ加工する小径ドリルは、主に超硬素材が多く、ドリル形状としても特別な物は用いられておらず、昔から汎用形状のものが使用されている。また本発明では、ドリルの直径が2mm以下のものを小径と言う。  Small-diameter drills for drilling machineable ceramics for probe cards currently in use are mainly made of carbide, and no special drills have been used. ing. In the present invention, a drill having a diameter of 2 mm or less is referred to as a small diameter.

ドリル先端部切れ刃の形状に特徴のある例を挙げると、特許文献1、及び特許文献2には、切れ刃外周側に面取り刃を設けたものが開示されている。これらのドリルは、高硬度材や鋳鉄の穴あけ加工において、加工穴周囲のこばカケを防止して長寿命化を図る事を目的としており、切れ刃にネガランドやホーニングを設けている。  As an example having a feature in the shape of the cutting edge of the drill tip, Patent Document 1 and Patent Document 2 disclose a chamfered blade provided on the outer peripheral side of the cutting blade. These drills have a purpose of preventing the occurrence of dust around the drilled holes and extending their life in drilling high-hardness materials and cast iron, and are provided with negative lands and honing on the cutting edges.

特開2005−103738号公報JP 2005-103738 A 特開平7−80714号公報Japanese Patent Laid-Open No. 7-80714

特許文献1や2に記載のドリルは、ネガランドやホーニングによって刃先のチッピングや、こばカケを防止する事はできるが、切削抵抗が増大するという問題があった。特に本発明が対象とするマシナブルセラミックスは直径2mm以下の小径であり、切削抵抗が高くなると折損する可能性が高いため、前記の公知のドリルを適用する事は困難である。  The drills described in Patent Documents 1 and 2 have a problem that cutting resistance increases although chipping of the cutting edge and chipping can be prevented by negative land and honing. In particular, the machinable ceramics targeted by the present invention have a small diameter of 2 mm or less, and since the possibility of breakage is high when the cutting resistance is high, it is difficult to apply the known drill.

マシナブルセラミックスの主用途の一つであるプローブカードは、接触時に圧力を発生させるスプリング機構を持ったものなどが主流になっており、プローブの径や間隔は数十〜百マイクロメートル程度と高密度化しており、1つのマシナブルセラミックスのディスクにおいて数百個〜数万個程のプローブが差し込まれる。通電テストではプローブカードをテスト装置に接続し、測定をされるチップ上の端子にテストパターンに従って電圧をかけ、出力を測定して期待値と比較する事でチップの良否を判定する。その際、チップ上の端子にプローブを正確にあてる事が必要であり、マシナブルセラミックスに穿孔された穴の精度が非常に重要となる。例えば、最近のプローブカードに用いられるマシナブルセラミックスに要求される穴精度は、穴径精度がレンジで5μm以下、表面と裏面の穴の真直度はレンジで10μm以下、内面の最大面粗さRzは1μm以下であり、非常に高精度で管理されている。近い将来の目標は、穴径精度はレンジで2μm以下、表面と裏面の穴の真直度はレンジで5μm以下とされており、ドリルに要求される性能と精度は更に高くなる見込みである。  Probe cards, one of the main uses of machinable ceramics, are mainly those with a spring mechanism that generates pressure when in contact. Probe diameters and intervals are as high as several tens to hundreds of micrometers. The density is increased, and hundreds to tens of thousands of probes are inserted in one machinable ceramic disk. In the energization test, the probe card is connected to a test device, a voltage is applied to the terminals on the chip to be measured according to the test pattern, the output is measured, and the quality of the chip is determined by comparing with the expected value. At that time, it is necessary to accurately apply the probe to the terminal on the chip, and the accuracy of the hole drilled in the machinable ceramic is very important. For example, the hole accuracy required for machinable ceramics used in recent probe cards is that the hole diameter accuracy is 5 μm or less in the range, the straightness of the holes on the front and back surfaces is 10 μm or less in the range, and the maximum surface roughness Rz on the inner surface Is 1 μm or less, and is managed with very high accuracy. In the near future, the hole diameter accuracy is 2 μm or less in the range, and the straightness of the holes on the front and back surfaces is 5 μm or less in the range, and the performance and accuracy required for the drill are expected to be higher.

現在、前記プローブカードに用いられるマシナブルセラミックスとしては、主にZrO2−ZrSiO4−SiNを主要成分としたものなどが用いられている。本発明者はこのマシナブルセラミックスを対象に超硬合金製の従来の一般的な小径ドリルを用いて上記マシナブルセラミックスに穴あけ加工を行い、ドリルの損傷状態を調査した。使用した超硬製の小径ドリルは、材質が超微粒子の超硬合金、ドリル直径が0.12mmである。従来の一般的な小径ドリルでマシナブルセラミックスを穿孔した後、小径ドリルの損傷状態の調査を行った結果、ドリルの先端部切れ刃にノコギリ刃の様なギザギザ状の摩耗が発生し、加工穴数の増加により穴精度が低下する事が分かった。  Currently, as the machinable ceramics used for the probe card, those mainly composed of ZrO2-ZrSiO4-SiN are used. The present inventor drilled the machinable ceramic using the conventional general small diameter drill made of cemented carbide for the machinable ceramic, and investigated the damage state of the drill. The cemented carbide small-diameter drill used is a cemented carbide alloy of ultrafine particles, and the drill diameter is 0.12 mm. After drilling machinable ceramics with a conventional general small-diameter drill, we investigated the damage condition of the small-diameter drill, and as a result, the tip of the drill had a jagged wear like a saw blade, resulting in a machined hole. It was found that the hole accuracy decreased as the number increased.

この現象の原因をマシナブルセラミックスの組織とドリルの刃先との関係から考察したモデルを図16に示す。図16はマシナブルセラミックスの切削過程を示す説明図である。図16において、マシナブルセラミックス41はセラミックスの結晶粒42とセラミックスの結晶粒界43から構成されており、雲母やジルコニア微結晶などはセラミックスの結晶粒界43の中に分散されている。切削加工中において、先端部切れ刃の逃げ面44及び先端部切れ刃のすくい面45から構成される先端部切れ刃6がマシナブルセラミックス41に接触すると、先端部切れ刃6とマシナブルセラミックス41の接触点近傍で応力が集中するため、クラックが発生する。ここでセラミックスの結晶粒界43に分散されている雲母やジルコニア微結晶はへき開性があり、結晶の特定方向に対して割れやすい性質を持つ。そのため、先端部切れ刃6とマシナブルセラミックス41の接触点近傍における応力により、セラミックスの結晶粒界43を境にしてセラミックスの結晶粒42がはく離する。この事により、クラックはわずかな大きさにとどまるため、クラックの内部への大幅な進行は防止される。  FIG. 16 shows a model in which the cause of this phenomenon is considered from the relationship between the structure of machinable ceramics and the cutting edge of a drill. FIG. 16 is an explanatory view showing a cutting process of machinable ceramics. In FIG. 16, a machinable ceramic 41 is composed of ceramic crystal grains 42 and ceramic crystal grain boundaries 43, and mica and zirconia microcrystals are dispersed in the ceramic crystal grain boundaries 43. During the cutting process, when the tip end cutting edge 6 composed of the flank 44 of the tip end cutting edge and the rake face 45 of the tip end cutting edge contacts the machinable ceramic 41, the tip end cutting edge 6 and the machinable ceramic 41 Since stress concentrates near the contact point, cracks occur. Here, mica and zirconia microcrystals dispersed in the crystal grain boundaries 43 of the ceramic have a cleavage property and have a property of being easily broken in a specific direction of the crystal. Therefore, the ceramic crystal grains 42 are separated at the boundary of the ceramic crystal grain boundaries 43 due to the stress in the vicinity of the contact point between the tip end cutting edge 6 and the machinable ceramic 41. As a result, the crack remains only a small size, so that a large progression to the inside of the crack is prevented.

その結果、マシナブルセラミックスの切り屑47は一般の鋼材に見られる切削切り屑とは異なり、非常に細かい粒子となる。また、マシナブルセラミックス41の加工面は、それぞれ粒径が異なる細かい粒子がはく離した形状となるため、ギザギザ状の形状を持った面となる。そのため、その加工面に接触するドリルの先端部切れ刃の逃げ面44には図5に示すようにノコギリ刃の様なギザギザ状の摩耗が発生する。そのために、ドリルの摩耗進行は一般の鋼材をドリル加工する場合と比べ不安定になると共に、ドリル基材の摩耗が早く進みやすい。本発明の目的は、このような特殊な摩耗進行が発生する被削材に対して、安定して長寿命なドリルを提案することである。  As a result, the machinable ceramic chips 47 are very fine particles, unlike the cutting chips found in general steel materials. Further, the machined surface of the machinable ceramic 41 has a jagged shape because fine particles with different particle sizes are separated from each other. For this reason, the flank 44 of the cutting edge of the drill that comes into contact with the machined surface is subject to jagged wear like a saw blade as shown in FIG. For this reason, the progress of wear of the drill becomes unstable as compared with the case of drilling a general steel material, and the wear of the drill base material tends to progress quickly. An object of the present invention is to propose a drill having a stable and long life for a work material in which such special wear progress occurs.

本発明が対象とするドリルはマシニングセンターにて高速で回転するため、被削材のマシナブルセラミックスと摩擦が生じる事でドリルの先端部切れ刃の摩耗が進行する。特にプローブカードに用いられるマシナブルセラミックスの熱伝導率は極めて低く、切削を行う際に発生する切削熱は、先端部に伝達して吸収されてしまう。これらの現象によって、小径ドリルの先端部から外周側にかけて著しく摩耗が進行し、特にドリルの外周コーナ部は切削速度が最も早く摩耗が進行しやすくなる。この外周コーナ部の摩耗が進行して外周コーナ部が丸くなってしまうと、図6に表すようにそれまで摩耗が進行しなかったマージンへの摩耗が著しく進行しはじめる。その結果、マージンにおける摩耗領域でのドリルの直径が小さくなってしまう。すると、マシナブルセラミックスに開けた穴径精度が、規格値から外れてしまう事になる。このように、ドリルの損傷状態の調査から、穴精度を高精度に維持するためには先端部の摩耗の進行を抑制する事が極めて重要である事がわかった。マージンの摩耗が進行すると、外周コーナ部のガイド性が低下するために、ドリルは不安定な切削となり、穴の真直度が悪くなるといった問題も生じていた。なお、本発明でいう穴精度とは以下の実施例にも示すように、ワークの表面での穴径精度、真直度としてワーク表面側及び裏面側の穴のX方向、それに直角なY方向のそれぞれの位置ずれの程度をいう。  Since the drill targeted by the present invention rotates at a high speed at the machining center, wear of the cutting edge of the drill advances due to friction with the machinable ceramics of the work material. In particular, the thermal conductivity of machinable ceramics used in probe cards is extremely low, and the cutting heat generated when cutting is transmitted to the tip and absorbed. Due to these phenomena, wear progresses remarkably from the tip of the small-diameter drill to the outer peripheral side, and in particular, the outer peripheral corner portion of the drill has the fastest cutting speed and is likely to progress. When the wear at the outer peripheral corner progresses and the outer peripheral corner becomes round, as shown in FIG. 6, the wear to the margin where the wear has not progressed until then begins to progress remarkably. As a result, the diameter of the drill in the wear area at the margin is reduced. Then, the hole diameter accuracy opened in the machinable ceramic will be out of the standard value. As described above, from the investigation of the damaged state of the drill, it was found that it is extremely important to suppress the progress of wear of the tip portion in order to maintain the hole accuracy with high accuracy. As the wear of the margin progresses, the guide performance of the outer peripheral corner portion deteriorates, so that the drill becomes unstable cutting and the straightness of the hole is deteriorated. As shown in the following examples, the hole accuracy referred to in the present invention is the hole diameter accuracy on the surface of the workpiece, the straightness in the X direction of the holes on the workpiece surface side and the back surface side, and the Y direction perpendicular to it. The degree of each misalignment.

また、先端部切れ刃の鋭利さが失われる事で切削抵抗が増大し、ドリルがいきなり折損するといった問題も発生していた。現在主に使用されているプローブカードで例示すると、現在のプローブカードの主流は、直径12インチ程度のマシナブルセラミックスの円板が用いられており、これに40000穴程度の小径の穴あけ加工を行う。従来の一般的なドリルの寿命を考慮した場合、ドリル1本で200穴〜500穴の穴あけ加工を行い、新品のドリルに交換する。ところが、従来の一般的なドリルの問題点の一つは、前述のようにドリルの寿命に達する前に、いきなりマシナブルセラミックスの中で折損を起こす事であり、このような折損事故では数十万円もするマシナブルセラミックスの素材が無駄になるばかりではなく、加工工数の無駄が発生してしまうのである。  Further, the sharpness of the cutting edge of the tip portion is lost, so that the cutting resistance increases and the drill suddenly breaks. In the case of a probe card that is mainly used at present, the current mainstream of the probe card is a machineable ceramic disc having a diameter of about 12 inches, and a small-diameter drilling process of about 40,000 holes is performed on the disc. . When considering the life of a conventional general drill, drilling 200 to 500 holes with a single drill and replacing it with a new one. However, one of the problems with conventional drills is that breakage occurs in machinable ceramics suddenly before the end of the drill life as described above. Not only are the materials of machinable ceramics that cost 10,000 yen wasted, but also the processing man-hours are wasted.

したがって、本発明の目的をより具体的に示すと、ドリルの先端部切れ刃を形状と材質で最適化してドリルの摩耗の進行を抑制する事で、先端部切れ刃の鋭利さを保ちつつ、ワークの穴精度を高精度に維持し、折損事故も防止できるマシナブルセラミックス加工用小径ドリルを提供することである。  Therefore, more specifically showing the purpose of the present invention, by optimizing the tip cutting edge of the drill with the shape and material to suppress the progress of wear of the drill, while maintaining the sharpness of the tip cutting edge, The aim is to provide a small-diameter drill for machining ceramics that maintains the hole accuracy of the workpiece with high accuracy and prevents breakage accidents.

本発明は、マシナブルセラミックスなどに小径の穴あけ加工を行うドリルとして、ドリル基材、耐摩耗に最適な先端部切れ刃の形状、および先端部切れ刃への硬質皮膜の材質を検討した結果として生まれたものである。すなわち本発明は、マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°であり、外周側切れ刃のドリル径方向への投影長さが直径の5%〜30%の範囲である事を特徴とするマシナブルセラミックス加工用小径ドリルである。  As a result of examining the drill base material, the shape of the tip cutting edge optimal for wear resistance, and the material of the hard coating on the tip cutting edge as a drill that drills small diameters in machinable ceramics etc. It was born. That is, the present invention is a small-diameter drill for drilling a small diameter of 2 mm or less in machinable ceramics, and the cutting edge of the small-diameter drill is composed of a center-side cutting edge and an outer peripheral-side cutting edge. The angle of the tip angle on the rotation locus viewed from the direction perpendicular to the axis of the center is 120 ° to 140 ° of the tip angle of the center side cutting edge, and 70 ° to 100 ° of the tip angle of the outer peripheral side cutting edge. A small diameter drill for machining ceramics, characterized in that the projected length of the outer peripheral cutting edge in the drill radial direction is in the range of 5% to 30% of the diameter.

本発明の他の発明は、中心側切れ刃および外周側切れ刃の先端角の角度と外周側切れ刃のドリル径方向への投影長さの条件に加えて、ドリルの先端部切れ刃以外の工具軸直角断面で見たときの、マージン部の形状を最適化したものである。すなわち、本発明の他の発明は、マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°、外周側切れ刃のドリル径方向への投影長さが直径の5%〜30%の範囲であり、前記小径ドリルのねじれ角が25°〜35°、前記小径ドリルのリーディングエッジに接続された先行マージン部と、ヒールに接続された後方マージン部を有し、先端部切れ刃以外の工具軸直角断面で見たときに、該マージン部の円周長さは、前記小径ドリルの直径の15%〜30%の範囲であり、前記先行マージン部と前記後方マージン部の間は円筒部が削除されている形状であることを特徴とするマシナブルセラミックス加工用小径ドリルである。本明細書でいうマージン部の円周長さとは、言い換えればマージン幅を示す。  Other inventions of the present invention, in addition to the conditions of the tip angle of the center side cutting edge and the outer peripheral side cutting edge and the projection length of the outer peripheral side cutting edge in the radial direction of the drill, This is an optimized shape of the margin when viewed in a cross section perpendicular to the tool axis. That is, another invention of the present invention is a small diameter drill for drilling a small diameter of 2 mm or less in machinable ceramics, and the cutting edge of the small diameter drill is composed of a center side cutting edge and an outer peripheral side cutting edge. The angle of the tip angle in the rotation locus viewed from the direction perpendicular to the axis of the drill is such that the tip angle of the center side cutting edge is 120 ° to 140 °, and the tip angle of the outer peripheral side cutting edge is The projection length of the outer peripheral cutting edge in the radial direction of the drill is in the range of 5% to 30% of the diameter, the twist angle of the small diameter drill is 25 ° to 35 °, and the leading of the small diameter drill It has a leading margin part connected to the edge and a rear margin part connected to the heel, and the circumferential length of the margin part when viewed in a cross section perpendicular to the tool axis other than the cutting edge at the tip is the small diameter 15% to 30% of the diameter of the drill Is enclosed between the said preceding margin portion of the rear margin is small drill machinable ceramics processing, characterized in that a shape of the cylindrical portion has been removed. In this specification, the circumferential length of the margin portion indicates the margin width in other words.

本発明のマシナブルセラミックス加工用小径ドリルは、ドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃により形成されていることが望ましい。前記硬質皮膜は、例えば、ダイヤモンド、ダイヤモンドライクカーボン(以下DLC)、または金属元素としてアルミニウム、チタン、クロム、シリコンから選択される1種または2種以上の元素から成る窒化物、炭化物、炭窒化物、炭酸窒化物などが推奨される。具体的にいえば、ダイヤモンド、DLC、CrSiN系、TiSiN系、AlCrSiN系、TiAlN系の硬質皮膜が推奨される。  In the small-diameter drill for machining machinable ceramics of the present invention, it is desirable that the base material of the drill is a cemented carbide and is formed by a tip cutting edge coated with a hard film. The hard coating is, for example, diamond, diamond-like carbon (hereinafter DLC), or a nitride, carbide, or carbonitride composed of one or more elements selected from aluminum, titanium, chromium, and silicon as a metal element. Carbonic nitride is recommended. Specifically, diamond, DLC, CrSiN, TiSiN, AlCrSiN, and TiAlN hard coatings are recommended.

本発明のマシナブルセラミックス加工用小径ドリルは、少なくともドリルの先端部切れ刃の基材が立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成されている事が望ましい。  In the small-diameter drill for machining machinable ceramics according to the present invention, it is desirable that at least the base material of the cutting edge of the drill is made of either cubic boron nitride (CBN) or polycrystalline diamond.

本発明によれば、マシナブルセラミックスへの小径ドリルを用いた穴あけ加工において、外周コーナ部の摩耗進行を大幅に抑制する事が可能となる。
本発明によればマシナブルセラミックスを対象にした小径穴あけ加工でも、長時間に渡って安定した高い穴精度を維持できるドリルを提案する事ができる。
さらに、特にドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃とするか、少なくともドリルの先端部切れ刃の基材を立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成すれば、先端部切れ刃の形状による外周コーナ部の摩耗進行を大幅に抑制する効果に加え、先端部切れ刃の鋭利さが確保される。特に本発明のドリルを適用するマシナブルセラミックスの用途としては、半導体の集積回路の製造工程において用いられるプローブカードの穴あけ加工が最適である。
ADVANTAGE OF THE INVENTION According to this invention, in the drilling process using the small diameter drill to machinable ceramics, it becomes possible to suppress significantly the wear progress of an outer periphery corner part.
According to the present invention, it is possible to propose a drill that can maintain a stable and high hole accuracy over a long period of time even in small-diameter drilling for machinable ceramics.
Further, in particular, the base material of the drill is a cemented carbide and the tip part cutting edge coated with a hard coating is used, or at least the base part of the tip part cutting edge of the drill is cubic boron nitride (CBN) or polycrystalline diamond If it forms by either of these, in addition to the effect which suppresses the abrasion progress of the outer periphery corner part by the shape of a front-end | tip part cutting edge, the sharpness of a front-end | tip part cutting edge is ensured. Particularly, the use of the machinable ceramics to which the drill of the present invention is applied is most suitable for drilling a probe card used in the manufacturing process of a semiconductor integrated circuit.

本発明の一実施例であるマシナブルセラミックス加工用小径ドリルの軸心に対して垂直方向からみた正面図である。It is the front view seen from the perpendicular direction with respect to the axial center of the small diameter drill for machining ceramics which is one Example of this invention. 図1のドリル部の拡大図である。It is an enlarged view of the drill part of FIG. 図1をドリルの回転方向に90°回転させた時の左側面図を示す。The left view when FIG. 1 is rotated 90 degrees in the rotation direction of a drill is shown. 図2の回転軌跡を表す図である。It is a figure showing the rotation locus | trajectory of FIG. 従来の一般的な小径ドリルの逃げ面摩耗の摩耗形態を表す模式図である。It is a schematic diagram showing the wear form of the flank wear of the conventional general small diameter drill. 従来の一般的な小径ドリルのマージン摩耗の摩耗形態を表す模式図である。It is a schematic diagram showing the wear mode of margin wear of the conventional general small diameter drill. 先端角の角度の違いによるチゼルエッジ長さの比較を表す図であり、(a)は先端角が大きくチゼルエッジ長さの短いものを示し、(b)は先端角が小さくチゼルエッジ長さの長いものを示す。It is a figure showing the comparison of the chisel edge length by the difference of the angle of a tip angle, (a) shows a thing with a big tip angle and a short chisel edge length, (b) shows a thing with a small tip angle and a long chisel edge length. Show. 本発明の他の一例であるマシナブルセラミックス加工用小径ドリルの先行マージン部と後方マージン部を有するドリル部の拡大図である。It is an enlarged view of the drill part which has the front margin part and the back margin part of the small diameter drill for machining ceramics which is another example of this invention. 本発明の他の一例であるマシナブルセラミックス加工用小径ドリルの図8のA−A断面図を表す図である。It is a figure showing the AA sectional view of Drawing 8 of the small diameter drill for machinable ceramics which is other examples of the present invention. 従来の一般的な小径ドリルの最大摩耗幅を示す説明図である。It is explanatory drawing which shows the maximum wear width of the conventional general small diameter drill. 従来の一般的な小径ドリルの最大マージン摩耗幅を示す説明図である。It is explanatory drawing which shows the maximum margin wear width of the conventional common small diameter drill. 本発明例の中心側最大摩耗幅および外周側最大摩耗幅を示す説明図である。It is explanatory drawing which shows the center side maximum wear width and outer periphery side maximum wear width of the example of this invention. 本発明例の最大マージン摩耗幅を示す説明図である。It is explanatory drawing which shows the maximum margin wear width of the example of this invention. 実施例の被削材の穴あけを示す概略説明図である。It is a schematic explanatory drawing which shows the drilling of the workpiece material of an Example. 真直度の測定方法を示す説明図である。It is explanatory drawing which shows the measuring method of straightness. マシナブルセラミックスの切削過程を示す説明図である。It is explanatory drawing which shows the cutting process of machinable ceramics. 先端部切れ刃の鋭利さが失われた時におけるマシナブルセラミックスの切削過程を示す説明図である。It is explanatory drawing which shows the cutting process of machinable ceramics when the sharpness of a front-end | tip part cutting blade is lost.

以下、本発明を実施するための形態を図1〜図9に基づいて説明する。図1は、本発明の一実施例であるマシナブルセラミックス加工用小径ドリルの正面図である。図2は図1のドリル部1の拡大図であり、ドリルの先端部切れ刃6は、中心側切れ刃8と外周側切れ刃9から構成されている。図3は図1をドリルの回転方向に90°回転させた時の左側面図を示す。図4は図2の回転軌跡を表す図である。図5は従来の一般的な小径ドリルの逃げ面摩耗の摩耗形態を表す模式図である。図6は従来の一般的な小径ドリルのマージン摩耗の摩耗形態を表す模式図である。図7は先端角の角度の違いによるチゼルエッジ長さ20の比較を表す図であり、(a)は先端角が大きくチゼルエッジ19の短いものを示し、(b)は先端角が小さくチゼルエッジ19の長いものを示す。図8は本発明の他の一例であるマシナブルセラミックス加工用小径ドリルの先行マージン部22と後方マージン部24を有するドリル部1の拡大図である。図9は図8のA−A断面図を表す図であり、断面部分を斜線で示す。  Hereinafter, embodiments for carrying out the present invention will be described with reference to FIGS. FIG. 1 is a front view of a small-diameter drill for machining ceramics that is an embodiment of the present invention. FIG. 2 is an enlarged view of the drill portion 1 of FIG. 1, and the tip end cutting edge 6 of the drill is composed of a center side cutting edge 8 and an outer peripheral side cutting edge 9. FIG. 3 shows a left side view when FIG. 1 is rotated 90 ° in the rotation direction of the drill. FIG. 4 is a diagram illustrating the rotation trajectory of FIG. FIG. 5 is a schematic diagram showing a wear form of flank wear of a conventional general small diameter drill. FIG. 6 is a schematic view showing a wear form of margin wear of a conventional general small diameter drill. FIG. 7 is a diagram showing a comparison of the chisel edge length 20 according to the difference in the angle of the tip angle. FIG. 7A shows a case where the tip angle is large and the chisel edge 19 is short, and FIG. Show things. FIG. 8 is an enlarged view of a drill portion 1 having a leading margin portion 22 and a rear margin portion 24 of a small diameter drill for machining machinable ceramics which is another example of the present invention. FIG. 9 is a diagram showing a cross-sectional view taken along the line AA of FIG.

本発明のマシナブルセラミックス加工用小径ドリルは、図1に示すように、直径Dを有するドリル部1と首部2が首下長さ3を構成し、シャンク部4と繋がっている。また、ドリル部1には切り屑排出のための溝7が設けられている。図2及び図4に示すように、ドリルの先端部切れ刃6は、中心側切れ刃8と外周側切れ刃9から構成されている。  In the small-diameter drill for machining machinable ceramics of the present invention, as shown in FIG. 1, a drill part 1 having a diameter D and a neck part 2 constitute a neck length 3 and are connected to a shank part 4. The drill portion 1 is provided with a groove 7 for discharging chips. As shown in FIGS. 2 and 4, the tip end cutting edge 6 of the drill is composed of a center side cutting edge 8 and an outer peripheral side cutting edge 9.

被削材となるマシナブルセラミックスは、セラミックス中に雲母やジルコニア微結晶などを分散させたセラミックスである。切削時に生ずる加工面は細かい粒子がはく離したようなギザギザ状の形状を持った面となる。図5は従来の一般的な小径ドリルの逃げ面摩耗の摩耗形態を表す模式図であり、従来の一般的なドリルの先端部切れ刃の逃げ面44には図5に示すようにノコギリ刃の様なギザギザ状の逃げ面摩耗17が発生する。図6は従来の一般的な小径ドリルのマージン摩耗18の摩耗形態を表す模式図であり、従来の一般的なドリルのマージン13には図6に示すような形態のマージン摩耗18が発生する。さらにマシナブルセラミックスは熱伝導率が低いため切り屑に熱が殆ど逃げずにドリルの先端部5に熱が貯まってしまう。これによりドリルの先端部5では逃げ面摩耗17が進行しやすく、さらに切削速度が最も早い外周コーナ部10の摩耗が進行して、図6に表すようにマージン摩耗18が著しく進行し、ドリルの直径が小さくなり穴径精度が、規格値から外れてしまうといった問題を抱えている。さらに、図6に示すように先端部切れ刃6の逃げ面摩耗17が進行した場合、先端部切れ刃6の鋭利さは大きく失われる事となる。図17は先端部切れ刃の鋭利さが失われた時におけるマシナブルセラミックスの切削過程を示す説明図である。図17に示すように、先端部切れ刃6の鋭利さが失われた場合、鋭利さが失われた先端部切れ刃46とマシナブルセラミックス41の接触面積が増加する。その結果、切削時に鋭利さが失われた先端部切れ刃46とマシナブルセラミックス41の接触領域にかかる応力が分散してしまう。するとクラックの進行方向が複数となり、マシナブルセラミックスの切削過程は、鋭利である時の先端部切れ刃6の切削過程と比べて異なったものとなる。その結果、加工穴のX方向、それに垂直なY方向におけるそれぞれの位置ずれの程度の悪化や、切削抵抗の増加によりドリルが折損するという問題が発生する。このような状態は、特に先端部5の摩耗進行が進むにつれて発生しやすくなるため、摩耗進行を抑制する事が重要である。よって、マシナブルセラミックス加工用小径ドリルとしては、摩耗進行を抑制し、なおかつ切れ味と食い付き性を確保した本発明のような先端部5の形状にする事が望ましい。  Machinable ceramics used as work materials are ceramics in which mica or zirconia microcrystals are dispersed in ceramics. The machined surface generated during cutting is a surface having a jagged shape such that fine particles are peeled off. FIG. 5 is a schematic diagram showing the wear pattern of the flank wear of a conventional general small diameter drill. The flank 44 of the tip of the conventional general drill has a saw blade as shown in FIG. Such jagged flank wear 17 occurs. FIG. 6 is a schematic diagram showing a wear form of margin wear 18 of a conventional general small-diameter drill, and margin wear 18 of the form shown in FIG. Furthermore, since machinable ceramics have low thermal conductivity, heat hardly accumulates in the chips and heat is accumulated at the tip 5 of the drill. As a result, the flank wear 17 easily progresses at the tip 5 of the drill, and the wear of the outer peripheral corner portion 10 with the fastest cutting speed progresses. As shown in FIG. There is a problem that the diameter becomes small and the hole diameter accuracy deviates from the standard value. Furthermore, when the flank wear 17 of the tip end cutting edge 6 proceeds as shown in FIG. 6, the sharpness of the tip end cutting edge 6 is greatly lost. FIG. 17 is an explanatory view showing the cutting process of the machinable ceramic when the sharpness of the tip end cutting edge is lost. As shown in FIG. 17, when the sharpness of the tip end cutting edge 6 is lost, the contact area between the tip end cutting edge 46 and the machinable ceramic 41 where the sharpness is lost increases. As a result, the stress applied to the contact area between the tip end cutting edge 46 and the machinable ceramics 41 whose sharpness has been lost during cutting is dispersed. Then, there are a plurality of crack propagation directions, and the cutting process of the machinable ceramics is different from the cutting process of the tip end cutting edge 6 when it is sharp. As a result, there arises a problem that the drill breaks due to the deterioration of the degree of positional deviation in the X direction of the machining hole and the Y direction perpendicular thereto or an increase in cutting resistance. Such a state is likely to occur especially as the wear progresses at the tip 5, so it is important to suppress the wear progress. Therefore, it is desirable for the small diameter drill for machining machinable ceramics to have the shape of the tip portion 5 as in the present invention that suppresses the progress of wear and ensures sharpness and biting property.

本発明のマシナブルセラミックス加工用小径ドリルは、マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、図2及び図4に示すように前記小径ドリルの先端部切れ刃6は、中心側切れ刃8と外周側切れ刃9から構成されており、ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角14が120°〜140°、前記外周側切れ刃の先端角15が70°〜100°であり、外周側切れ刃9のドリル径方向への投影長さ16が直径Dの5%〜30%の範囲である事を特徴としている。  The small-diameter drill for machining machinable ceramics according to the present invention is a small-diameter drill for drilling small-diameter holes with a diameter of 2 mm or less in machinable ceramics. As shown in FIGS. The center side cutting edge 8 and the outer peripheral side cutting edge 9 are configured, and the angle of the tip angle in the rotation locus viewed from the direction perpendicular to the axis of the drill is the tip angle 14 of the center side cutting edge. 120 ° to 140 °, the tip angle 15 of the outer peripheral cutting edge is 70 ° to 100 °, and the projection length 16 of the outer peripheral cutting edge 9 in the radial direction of the drill is in the range of 5% to 30% of the diameter D. It is characterized by being.

本発明のマシナブルセラミックス加工用小径ドリルは、図4に示すように中心側切れ刃の先端角14は120°〜140°で設ける。これによって、マシナブルセラミックスを穴あけ加工する際、先端部5が被削材に充分に食い付き、先端部5が被削材に対して真っ直ぐに切削する事ができるようになる。中心側切れ刃の先端角14が120°未満の場合、先端部5の剛性が低下すると共に、熱伝導率の低いマシナブルセラミックスを穴あけ加工する際に発生する切削熱の影響を受けやすくなる。そのため切削熱を先端部5から逃がす事ができずに摩耗が進行しやすくなってしまう。更に中心側切れ刃の先端角14が120°未満の場合、製造上の問題が生じる。図7は先端角の角度の違いによるチゼルエッジ長さの比較を表す図である。例えば、図7(a)、(b)に表すように図7(b)の先端角の小さいものは、図7(a)の先端角が大きいものと比較すると、先端部5のチゼルエッジ19が長くなってしまう。言い換えれば、先端角の角度の違いにより図7(b)に示すようにチゼルエッジ19が長くなってしまう。つまり平面に投影した時にドリルの先端部5の投影した切れ刃の長さ21が短くなり、被削材への食い付き性が下がる事で、加工穴の真直度が悪くなるといった問題が生じる。また、中心側切れ刃の先端角14が140°を超える場合、被削材に先端部5が食い付きにくくなるため、先端部5が不安定になり、加工穴の真直度が低下してしまう。また、中心側切れ刃の先端角14が125°〜135°の範囲がより好ましい。これらの事は以下に示す実施例から明らかになった。  The small-diameter drill for machining machinable ceramics according to the present invention is provided such that the tip angle 14 of the center-side cutting edge is 120 ° to 140 ° as shown in FIG. As a result, when drilling the machinable ceramics, the tip portion 5 sufficiently bites the work material, and the tip portion 5 can be cut straight with respect to the work material. When the tip angle 14 of the center-side cutting edge is less than 120 °, the rigidity of the tip portion 5 is lowered, and it is easily affected by cutting heat generated when drilling a machinable ceramic having low thermal conductivity. For this reason, the cutting heat cannot be released from the distal end portion 5 and wear easily proceeds. Further, when the tip angle 14 of the center side cutting edge is less than 120 °, a manufacturing problem occurs. FIG. 7 is a diagram showing a comparison of chisel edge lengths depending on a difference in tip angle. For example, as shown in FIGS. 7A and 7B, the small tip angle in FIG. 7B is smaller in the chisel edge 19 of the tip 5 than the one having a large tip angle in FIG. It will be long. In other words, the chisel edge 19 becomes long as shown in FIG. In other words, the length 21 of the projected cutting edge of the tip 5 of the drill is shortened when projected onto a flat surface, and the biting property to the work material is lowered, resulting in a problem that the straightness of the processed hole is deteriorated. In addition, when the tip angle 14 of the center-side cutting edge exceeds 140 °, the tip portion 5 becomes difficult to bite against the work material, so that the tip portion 5 becomes unstable and the straightness of the machining hole is reduced. . The tip angle 14 of the center side cutting edge is more preferably in the range of 125 ° to 135 °. These things became clear from the Example shown below.

本発明のマシナブルセラミックス加工用小径ドリルは、図4に示すように外周側切れ刃の先端角15を70°〜100°で設ける。これにより、外周側切れ刃9とリーディングエッジ12とが成す角度が外周側切れ刃9を設けない場合に比べ大きくなり、外周コーナ部10の摩耗進行を抑制する事ができるため、長時間に渡って高精度な穴あけ加工が可能になる。  The small diameter drill for machining machinable ceramics according to the present invention is provided with a tip angle 15 of the outer peripheral cutting edge of 70 ° to 100 ° as shown in FIG. As a result, the angle formed by the outer peripheral cutting edge 9 and the leading edge 12 becomes larger than when the outer peripheral cutting edge 9 is not provided, and the progress of wear of the outer peripheral corner portion 10 can be suppressed. High-precision drilling.

従来の一般的なドリルの場合、先端部切れ刃6の先端角を小さくすると先端部切れ刃6とリーディングエッジ12とがなす角度が大きくなる事で外周コーナ部10の剛性が上がり、外周コーナ部10の耐摩耗性は向上するが、図7(b)に示すように平面に投影した時にドリルの先端部5の投影した切れ刃の長さ21が短くなり、被削材への食い付き性が下がる事で穴の真直度が悪くなる。一方では、先端部切れ刃6の先端角を大きくすると、先端部切れ刃6の切れ味は向上するが、先端部切れ刃6とリーディングエッジ12とが成す角度が小さくなるために外周コーナ部10の剛性が下がり、摩耗進行が早くなってしまう。そこで本発明では、切れ味と耐摩耗性を両立して向上させるために、ドリルの先端部切れ刃6に中心側切れ刃8と外周側切れ刃9を設け、前記外周側切れ刃の先端角15を70°〜100°の範囲で設ける。  In the case of a conventional general drill, if the tip angle of the tip end cutting edge 6 is reduced, the angle formed by the tip end cutting edge 6 and the leading edge 12 is increased, thereby increasing the rigidity of the outer peripheral corner portion 10 and the outer peripheral corner portion. Although the wear resistance of No. 10 is improved, as shown in FIG. 7B, the length 21 of the projected cutting edge of the drill tip 5 is shortened when projected onto a flat surface, and the biting property to the work material is reduced. The straightness of the hole is worsened by lowering. On the other hand, when the tip angle of the tip end cutting edge 6 is increased, the sharpness of the tip end cutting edge 6 is improved, but since the angle formed by the tip end cutting edge 6 and the leading edge 12 is reduced, the outer corner portion 10 Rigidity decreases and wear progresses faster. Therefore, in the present invention, in order to improve both the sharpness and the wear resistance, a center side cutting edge 8 and an outer peripheral side cutting edge 9 are provided on the tip end cutting edge 6 of the drill, and a tip angle 15 of the outer peripheral side cutting edge is provided. Is provided in the range of 70 ° to 100 °.

外周側切れ刃の先端角15が70°未満の場合、穴あけ加工する際に外周コーナ部10のガイド性は向上するが、中心側切れ刃8と外周側切れ刃9の成す角部11の角度が小さくなってしまい、カケやチッピングが発生する可能性が高くなると共に、この角部11の摩耗進行が容易になってしまうため、穴あけ加工精度を悪化させてしまう。外周側切れ刃の先端角15の適正範囲についても以下の実施例から明らかになったものである。また、外周側切れ刃の先端角15が100°を超える場合、外周コーナ部10の角度が小さくなってしまい、熱伝導率の低いマシナブルセラミックスを穴あけ加工する際に発生する切削熱を、外周コーナ部10から逃がす事ができずに摩耗が進行し、外周コーナ部10が丸くなってしまう。これによってマージン摩耗18が進行し、先端部5の直径が小さくなりやすくなる、その結果、加工した穴径が小さくなるほか、外周コーナ部10のガイド性が低下する事によって、ドリルが不安定になり、長時間に渡る高精度な穴あけ加工が困難になってしまう。好ましくは、外周側切れ刃の先端角15が80°〜90°の範囲が良く、この場合には外周コーナ部10のガイド性が安定しマージン摩耗18が抑制され、更に長時間に渡って高精度な穴あけ加工が可能となる。  When the tip angle 15 of the outer peripheral cutting edge is less than 70 °, the guide performance of the outer peripheral corner portion 10 is improved when drilling, but the angle of the corner portion 11 formed by the center cutting edge 8 and the outer peripheral cutting edge 9 is improved. As a result, the possibility of occurrence of chipping and chipping increases, and the wear of the corner portion 11 becomes easy to progress, so that the drilling accuracy is deteriorated. The appropriate range of the tip angle 15 of the outer peripheral cutting edge is also clarified from the following examples. Further, when the tip angle 15 of the outer peripheral cutting edge exceeds 100 °, the angle of the outer peripheral corner portion 10 becomes smaller, and the cutting heat generated when drilling machining machinable ceramics having low thermal conductivity is reduced. The corner part 10 cannot be escaped and wear progresses, and the outer corner part 10 becomes round. As a result, the margin wear 18 progresses, and the diameter of the tip portion 5 is likely to be reduced. As a result, the diameter of the processed hole is reduced, and the guide performance of the outer peripheral corner portion 10 is lowered, so that the drill becomes unstable. Therefore, high-precision drilling over a long time becomes difficult. Preferably, the tip angle 15 of the outer peripheral cutting edge is in the range of 80 ° to 90 °. In this case, the guide performance of the outer peripheral corner portion 10 is stabilized, the margin wear 18 is suppressed, and the tip angle 15 is increased for a long time. Accurate drilling is possible.

本発明のマシナブルセラミックス加工用小径ドリルは、図4に示すように外周側切れ刃9のドリル径方向への投影長さ16を直径の5%〜30%の範囲で設ける。これにより、外周コーナ部10の摩耗を抑制するとともに、穴精度を向上して加工できるようになる。外周側切れ刃9のドリル径方向への投影長さ16が直径の5%未満の場合、外周側切れ刃9の外周コーナ部10の摩耗抑制効果が低下し、外周コーナ部10の摩耗が進行してしまうため、長時間に渡って高精度な穴あけ加工が維持できないといった問題が発生する。また、外周側切れ刃9のドリル径方向への投影長さ16が直径の30%を超える場合、ドリルの先端部5の摩耗が進行しやすくなる。これにより先端部5の食い付き性が低下して穴あけ加工精度が悪くなってしまう。好ましくは、外周側切れ刃9のドリル径方向への投影長さ16が直径の15%〜20%の範囲が良く、この条件であれば、摩耗の進行が抑制され長時間に渡って高精度な穴あけ加工が可能となる。  In the small diameter drill for machining machinable ceramics of the present invention, as shown in FIG. 4, the projection length 16 of the outer peripheral cutting edge 9 in the drill radial direction is provided in the range of 5% to 30% of the diameter. As a result, the outer corner portion 10 can be prevented from being worn and processed with improved hole accuracy. When the projected length 16 of the outer peripheral side cutting edge 9 in the radial direction of the drill is less than 5% of the diameter, the effect of suppressing the wear of the outer peripheral corner part 10 of the outer peripheral side cutting edge 9 decreases, and the wear of the outer peripheral corner part 10 progresses. Therefore, there arises a problem that high-precision drilling cannot be maintained for a long time. Moreover, when the projection length 16 of the outer peripheral side cutting edge 9 in the drill radial direction exceeds 30% of the diameter, wear of the tip portion 5 of the drill easily proceeds. As a result, the biting property of the tip 5 is lowered and the drilling accuracy is deteriorated. Preferably, the projection length 16 of the outer peripheral cutting edge 9 in the radial direction of the drill is in the range of 15% to 20% of the diameter. Under these conditions, the progress of wear is suppressed and high accuracy is achieved over a long period of time. Drilling is possible.

本発明のマシナブルセラミックス加工用小径ドリルは、先端部切れ刃6以外の工具軸直角断面で見たときに、ドリルはリーディングエッジ12に接続する先行マージン部22と、ヒールに接続された後方マージン部24を有し、前記先行マージン部22と前記後方マージン部24の間は円筒部が削除されている、円筒削除部23を有する形状である事が好ましい。  The small diameter drill for machining machinable ceramics according to the present invention has a leading margin 22 connected to the leading edge 12 and a rear margin connected to the heel when viewed in a cross section perpendicular to the tool axis other than the cutting edge 6 at the tip. It is preferable that a shape having a cylindrical deletion portion 23 is provided in which a cylindrical portion is deleted between the leading margin portion 22 and the rear margin portion 24.

図8に本発明のドリル部の拡大図を、図9に図8のA−A断面図を示し、断面部分を斜線で示す。また本発明例図8の回転軌跡は図4で表す事ができる。図9に示すように、先行マージン部22と後方マージン部24を設けることによって、外周コーナ部10のガイド性を高める事ができ、穴あけ加工精度を更に向上する事が可能となる。ここでもし、先行マージン部22と後方マージン部24の間の円筒部が削除されていない場合、すなわち円筒削除部23を有さない形状においては、マージン部が被削材に接触する面積が大きくなるため切削トルクが大きくなる。小径ドリルはドリル自体の剛性が低く、切削トルクの影響を受けやすいため、寿命が低下してしまう恐れがある。このことから先行マージン部22と後方マージン部24のそれぞれの円周長さを、前記小径ドリルの直径の15%〜30%の範囲に設ける。好ましくは、前記小径ドリルの直径の20%〜25%の範囲が良い。前記15%未満の場合は、切削トルクは軽減出来るが、外周コーナ部10のガイド性を高める効果が低くなる。30%を超える場合は、マージン部が被削材に接触する面積が大きくなるため穴あけ加工精度が高くなるが、切削トルクが急激に増加するため、ドリルが折損を起こす可能性が高くなる。  FIG. 8 is an enlarged view of the drill portion of the present invention, FIG. 9 is a cross-sectional view taken along the line AA of FIG. Further, the rotation locus of FIG. 8 of the present invention can be represented by FIG. As shown in FIG. 9, by providing the leading margin portion 22 and the rear margin portion 24, the guide performance of the outer peripheral corner portion 10 can be improved, and the drilling accuracy can be further improved. Here, when the cylindrical portion between the leading margin portion 22 and the rear margin portion 24 is not deleted, that is, in the shape without the cylindrical deleting portion 23, the area where the margin portion contacts the work material is large. Therefore, cutting torque becomes large. Small-diameter drills have low rigidity and are susceptible to cutting torque, so the life may be shortened. Therefore, the circumferential lengths of the leading margin portion 22 and the rear margin portion 24 are set in a range of 15% to 30% of the diameter of the small diameter drill. Preferably, the range of 20% to 25% of the diameter of the small diameter drill is good. If it is less than 15%, the cutting torque can be reduced, but the effect of improving the guide performance of the outer peripheral corner portion 10 is reduced. If it exceeds 30%, the area where the margin portion comes into contact with the work material increases, so that the drilling accuracy increases. However, the cutting torque increases rapidly, so the possibility that the drill breaks increases.

本発明のマシナブルセラミックス加工用小径ドリルは、前記小径ドリルのねじれ角が25°〜35°の範囲であることが好ましい。このことにより、先端部切れ刃6の剛性低下を防ぎつつ、マシナブルセラミックス特有の非常に細かい切り屑に対する切り屑排出性を確保する事が可能になる。25°未満では先端部切れ刃6の剛性は上がるものの、切り屑排出性が低下するため、切削加工中に切り屑が詰まり折損を起こす可能性が高くなる。またドリルのねじれ角が35°よりも大きい場合、先端部切れ刃6の剛性低下が著しく、刃先の鋭利さを維持する事が困難となる。  In the small diameter drill for machining machinable ceramics according to the present invention, it is preferable that the twist angle of the small diameter drill is in a range of 25 ° to 35 °. As a result, it is possible to ensure the chip discharge performance for very fine chips unique to the machinable ceramics while preventing the rigidity of the tip end cutting edge 6 from being lowered. If the angle is less than 25 °, the rigidity of the tip end cutting edge 6 is increased, but the chip dischargeability is reduced, so that the possibility of clogging and breakage during cutting is increased. When the twist angle of the drill is larger than 35 °, the rigidity of the tip end cutting edge 6 is remarkably lowered, and it becomes difficult to maintain the sharpness of the cutting edge.

本発明のマシナブルセラミックス加工用小径ドリルは、ドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃6により形成されている事が望ましい。例えば、前記硬質皮膜は、ダイヤモンド、DLC、または金属元素としてアルミニウム、チタン、クロム、シリコンから選択される1種または2種以上の元素から成る窒化物、炭化物、炭窒化物、炭酸窒化物などが推奨される。具体的にいえば、ダイヤモンド、DLC、CrSiN系、TiSiN系、AlCrSiN系、TiAlN系などの皮膜である。  In the small-diameter drill for machining machinable ceramics of the present invention, it is desirable that the base material of the drill is a cemented carbide and is formed by a tip cutting edge 6 coated with a hard coating. For example, the hard coating may be diamond, DLC, or a nitride, carbide, carbonitride, carbonitride, or the like composed of one or more elements selected from aluminum, titanium, chromium, and silicon as a metal element. Recommended. Specifically, it is a film of diamond, DLC, CrSiN, TiSiN, AlCrSiN, TiAlN or the like.

本発明のマシナブルセラミックス加工用小径ドリルは、少なくともドリルの先端部切れ刃6の基材が立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成されていることが望ましい。これによりドリルの切削抵抗および先端部切れ刃6の摩耗を抑制し、長時間にわたる高精度な穴あけ加工が可能となる。
以下、本発明を下記の実施例により詳細に説明するが、それらにより本発明が限定されるものではない。
In the small-diameter drill for machining machinable ceramics according to the present invention, it is desirable that at least the base material of the cutting edge 6 of the drill is made of either cubic boron nitride (CBN) or polycrystalline diamond. Thereby, the cutting resistance of the drill and the wear of the tip end cutting edge 6 are suppressed, and high-precision drilling over a long period of time becomes possible.
Hereinafter, the present invention will be described in detail with reference to the following examples, but the present invention is not limited thereto.

以下の表中にある各実施例では、本発明例、従来例、比較例を区分として示し、試料番号は本発明、従来例、比較例ごとに、連続の通し番号で記載した。
(実施例1)
実施例1は、代表的な従来例である先端部に外周側切れ刃を有さない刃形状に対して、本発明の形状を有する外周側切れ刃を有する刃形状との切削結果を比較したものである。本発明例1及び従来例1ともに、直径0.12mm、首下長さ1.8mm、心厚35%、溝長0.6mm、シャンク径3mmに設けた状態に仕様を統一した。前記仕様以外は、マージン13を有した二枚刃のドリルで、外周側切れ刃を有する本発明例1については中心側切れ刃の先端角を140°、外周側切れ刃の先端角を80°、投影長さを直径Dの15%(0.018mm)、ねじれ角を30°とし、外周側切れ刃を有さない従来例1については先端部切れ刃の先端角を140°に設けた工具をそれぞれ作製し、切削試験を行った。また、本発明例1及び従来例1はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものである。
In each example shown in the following table, the present invention example, the conventional example, and the comparative example are shown as classifications, and the sample numbers are indicated by consecutive serial numbers for each of the present invention, the conventional example, and the comparative example.
Example 1
Example 1 compared the cutting result with the blade shape which has the outer peripheral side cutting edge which has the shape of this invention with respect to the blade shape which does not have an outer peripheral side cutting edge in the front-end | tip part which is a typical conventional example. Is. In both the present invention example 1 and the conventional example 1, the specifications were unified so that the diameter was 0.12 mm, the neck length was 1.8 mm, the core thickness was 35%, the groove length was 0.6 mm, and the shank diameter was 3 mm. Except for the above specifications, a double-edged drill having a margin 13 and a front-end angle of the center-side cutting edge of 140 ° and a front-end angle of the outer-side cutting edge of the invention example 1 having the outer peripheral cutting edge of 80 °. A tool in which the projection length is 15% (0.018 mm) of the diameter D, the twist angle is 30 °, and the tip angle of the tip end cutting edge is 140 ° in the conventional example 1 having no outer peripheral cutting edge. Each was manufactured and the cutting test was done. In addition, in Invention Example 1 and Conventional Example 1, the base material of the drill is a cemented carbide, and the tip of the drill is subjected to DLC coating as a surface treatment.

被削材(ワークとも言う。)はZrO2−ZrSiO4−SiN系のマシナブルセラミックス(幅30mm、奥行き30mm、厚さ1.7mm)を用いた。
ガイド穴あけ用として、ボールエンドミルにより下穴を開け、その後前述したドリルにて穴深さ1.8mmまでステップ加工により深穴を穴あけ加工する方法で行った。ガイド穴形成時の切削条件は、切削速度6.2m/min、1回転送り0.005mm/rev、ステップ量0.011mm/回、加工穴深さ0.066mmとし、冷却方法はエアブローを用いて行った。ドリルの切削条件は、切削速度6.2m/min、1回転送り0.005mm/rev、ステップ量0.06mm/回、加工穴深さ1.8mmとし、冷却方法はエアブローを用いて行った。穴あけ加工数は、穴間隔0.27mmにて1列50穴の4列とし、200穴行った。
As the work material (also referred to as a workpiece), ZrO2-ZrSiO4-SiN based machinable ceramics (width 30 mm, depth 30 mm, thickness 1.7 mm) were used.
For the guide hole drilling, a pilot hole was drilled by a ball end mill, and then a deep hole was drilled by a step process up to a hole depth of 1.8 mm with the drill described above. The cutting conditions at the time of forming the guide hole are a cutting speed of 6.2 m / min, a one-turn feed of 0.005 mm / rev, a step amount of 0.011 mm / time, a processing hole depth of 0.066 mm, and a cooling method using air blow. went. The cutting conditions of the drill were a cutting speed of 6.2 m / min, a one-turn feed of 0.005 mm / rev, a step amount of 0.06 mm / time, a processing hole depth of 1.8 mm, and a cooling method using air blow. The number of drilling operations was set to four rows of one row and 50 holes at a hole interval of 0.27 mm, and 200 holes were made.

評価方法として、ドリルの摩耗の測定は、走査型電子顕微鏡を用い、2500倍で測定した。測定箇所は、外周側切れ刃を有さないドリルの場合、図10に示すように、先端部切れ刃の逃げ面44における摩耗の最大幅を最大摩耗幅25とし、また図11に示すように、マージン13において工具軸方向で測定した時の摩耗の最大幅を最大マージン摩耗幅26とした。
外周側切れ刃を有するドリルの場合、図12に示すように、中心側切れ刃逃げ面及び外周側切れ刃逃げ面における摩耗の最大幅を中心側最大摩耗幅27、外周側最大摩耗幅28とし、また図13に示すように、マージン13において工具軸方向で測定した時の摩耗の最大幅を最大マージン摩耗幅26とした。
As an evaluation method, the wear of the drill was measured at 2500 times using a scanning electron microscope. In the case of a drill that does not have an outer peripheral cutting edge, as shown in FIG. 10, the measurement location is the maximum wear width 25 at the flank 44 of the tip cutting edge, and as shown in FIG. The maximum width of wear when measured in the tool axis direction at the margin 13 was defined as the maximum margin wear width 26.
In the case of a drill having an outer peripheral cutting edge, as shown in FIG. 12, the maximum wear width on the central cutting edge flank and the outer peripheral cutting edge flank is defined as a central maximum wear width 27 and an outer peripheral maximum wear width 28. As shown in FIG. 13, the maximum width of wear when measured in the tool axis direction at the margin 13 was defined as the maximum margin wear width 26.

加工穴の穴径精度及び真直度の測定にはCNC画像測定機を用いた。穴径精度の測定方法としては測定対象となる加工穴34を画像処理によって360ポイントに等分割し、その360ポイントでの近似円における穴径を測定する事により穴径精度を測定した。穴径精度の測定結果は1〜200穴目までの測定した穴径の最大穴径と最小穴径の差とした。  A CNC image measuring machine was used to measure the hole diameter accuracy and straightness of the processed holes. As a method for measuring the hole diameter accuracy, the hole 34 to be measured was equally divided into 360 points by image processing, and the hole diameter accuracy was measured by measuring the hole diameter in an approximate circle at the 360 points. The measurement result of the hole diameter accuracy was the difference between the maximum hole diameter and the minimum hole diameter of the hole diameters measured from the 1st to 200th holes.

真直度の測定方法は、図14および図15を用いて説明する。図14は実施例の被削材の穴あけを示す概略説明図である。図15は真直度の測定方法を示す説明図である。測定方法としては、図14より、1穴目29における、穴径精度の測定時に求めた近似円の中心を原点30とした。同様に50穴目32の近似円の中心を求め、1穴目29の原点30と50穴目の穴中心33を結んだ直線を基準軸31とした。
そして測定対象となる加工穴中心35の、各加工穴の理論的中心位置38(穴間隔0.27mmごとの位置)から、基準軸31に対して垂直方向のずれ量をX方向ずれ量36として測定し、前記加工穴中心35が理論的中心位置38に対して右側と左側のX方向ずれ量36の右側のX方向ずれ量最大値と左側のX方向ずれ量最大値との幅をX方向ずれ量最大幅39とした。また、理論的中心位置38(穴間隔0.27mmごとの位置)から、各加工穴中心の基準軸31方向のずれ量をY方向ずれ量37として測定し、加工穴中心35が理論的中心位置38に対して上側と下側のY方向ずれ量37の上側のY方向ずれ量最大値と下側のY方向ずれ量最大値との幅をY方向ずれ量最大幅40とした。真直度の測定結果として、1〜200穴目までのワーク表面側及び裏面側の各ずれ量を測定した時のX方向ずれ量最大幅39及びY方向ずれ量最大幅40を測定結果とした。
The straightness measurement method will be described with reference to FIGS. FIG. 14 is a schematic explanatory view showing drilling of the work material of the embodiment. FIG. 15 is an explanatory diagram showing a method for measuring straightness. As the measuring method, the origin 30 is the center of the approximate circle obtained at the time of measuring the hole diameter accuracy in the first hole 29 from FIG. Similarly, the center of the approximate circle of the 50th hole 32 was obtained, and a straight line connecting the origin 30 of the first hole 29 and the hole center 33 of the 50th hole was used as the reference axis 31.
The amount of deviation in the direction perpendicular to the reference axis 31 from the theoretical center position 38 (position at every hole interval of 0.27 mm) of the machining hole center 35 to be measured is defined as the X direction deviation amount 36. Measured, and the width of the maximum X-direction deviation amount and the left-side maximum X-direction deviation amount of the right and left X-direction deviation amounts 36 with respect to the theoretical center position 38 is measured in the X direction. The maximum deviation amount width was 39. Further, from the theoretical center position 38 (position at every hole interval of 0.27 mm), the deviation amount of each machining hole center in the direction of the reference axis 31 is measured as the Y-direction deviation quantity 37, and the machining hole center 35 is the theoretical center position. 38, the width between the upper Y-direction deviation maximum value and the lower Y-direction deviation maximum value of the upper and lower Y-direction deviation amounts 37 is defined as the Y-direction deviation maximum width 40. As the measurement results of straightness, the X direction displacement maximum width 39 and the Y direction displacement maximum width 40 when the displacement amounts on the front surface side and back surface side of the first to 200th holes were measured were measured results.

実施例1では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は最大マージン摩耗幅26を測定し、最大マージン摩耗幅26が5μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。
各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表1に示す。
In Example 1, as the evaluation of the wear of the drill after drilling 200 holes and the hole diameter accuracy and straightness of the drilled hole, the maximum margin wear width 26 is measured for the drill wear, and the maximum margin wear width 26 is 5 μm or less. The diameter accuracy was 5 μm or less, and the straightness was 10 μm or less for both the maximum X direction displacement width 39 and the maximum Y displacement width 40.
Table 1 shows the specifications of each sample and the evaluation results of drill wear, hole diameter accuracy, and straightness.

Figure 2010274409
Figure 2010274409

表1より、本発明例1は最大マージン摩耗幅26が5μm以下の3.5μm、穴径精度が5μm以下の4.8μmで、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下となり良好であった。一方、外周側切れ刃9を有さない従来例1では、最大マージン摩耗幅26が5μmを越えて9.1μm、穴径精度が9.4μmと5μmを大きく超えており、真直度もX方向ずれ量最大幅39は12μm、Y方向ずれ量最大幅40は15μmと、どちらも良好となる真直度の範囲である10μmを超えていた。
上記結果から、マシナブルセラミックス加工用小径ドリルには外周側切れ刃9を有している事が好ましく、外周側切れ刃9を有さない場合には穴径精度の測定結果、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは外周側切れ刃9を有さないドリルでは先端部切れ刃6とリーディングエッジ12とが成す角度が、外周側切れ刃9を有しているドリルにおける外周側切れ刃9とリーディングエッジ12とが成す角度に比べ小さくなり、外周コーナ部の摩耗が進行しやすくなるためである。
As shown in Table 1, the first margin of the present invention is 3.5 μm with a maximum margin wear width 26 of 5 μm or less, and 4.8 μm with a hole diameter accuracy of 5 μm or less, and the straightness is the maximum width in the X direction deviation 39 and the maximum deviation in the Y direction. Both of them were good, with a large value of 40 μm or less. On the other hand, in the conventional example 1 which does not have the outer peripheral side cutting edge 9, the maximum margin wear width 26 exceeds 9.1 μm over 5 μm, the hole diameter accuracy greatly exceeds 9.4 μm and 5 μm, and the straightness is also in the X direction. The maximum deviation amount width 39 was 12 μm, and the maximum Y-direction deviation amount width 40 was 15 μm, both exceeding 10 μm, which is a straightness range in which both are satisfactory.
From the above results, it is preferable that the small diameter drill for machining machinable ceramics has the outer peripheral side cutting edge 9. When the outer peripheral side cutting edge 9 is not provided, the measurement result of the hole diameter accuracy, the X direction deviation amount It can be seen that the maximum width 39 and the maximum Y-direction deviation amount width 40 are increased. This is because the angle between the leading edge cutting edge 6 and the leading edge 12 in a drill having no outer peripheral cutting edge 9 is such that the outer peripheral cutting edge 9 and the leading edge 12 in a drill having the outer peripheral cutting edge 9 This is because the wear of the outer peripheral corner portion is likely to proceed with a smaller angle than the angle formed by.

(実施例2)
本発明例2〜16及び比較例1〜6として、中心側切れ刃の先端角をそれぞれ変化させた以外は、マージン13を有した二枚刃のドリルで、外周側切れ刃の先端角を80°で一定とし、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、ねじれ角30°として実施例1と同仕様の工具を作製し、切削試験を行った。中心側切れ刃の先端角は、本発明例2〜6、本発明例7〜11及び本発明例12〜16においてはそれぞれ140°、135°、130°、125°、120°とし、比較例1、2、比較例3、4及び比較例5、6においてはそれぞれ150°、110°とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例2〜6及び比較例1、2はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例7〜11及び比較例3、4はドリルの基材を超硬合金とし、表面処理として基材の表面から最下層がTiAlNで最上層がTiSiNの硬質皮膜を、ドリルの先端部切れ刃に施したものとした。本発明例12〜16及び比較例5、6はドリルの基材を超硬合金とし、表面処理として基材の表面から最下層がTiAlNで最上層がAlCrSiNの硬質皮膜を、ドリルの先端部切れ刃に施したものとした。表中の表記には最上層の成分で示した。
実施例2では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は中心側最大摩耗幅27を測定し、中心側最大摩耗幅27が10μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表2に示す。
(Example 2)
As invention examples 2 to 16 and comparative examples 1 to 6, except that the tip angle of the center side cutting edge was changed respectively, the tip angle of the outer peripheral side cutting edge was set to 80 with a two-edged drill having a margin 13. A tool having the same specifications as in Example 1 was prepared with a projected angle of 15 ° (0.018 mm) of the diameter D and a twist angle of 30 °, and the cutting test was performed. The tip angle of the center-side cutting edge is 140 °, 135 °, 130 °, 125 °, 120 ° in the inventive examples 2-6, the inventive examples 7-11 and the inventive examples 12-16, respectively. In 1, 2, Comparative Examples 3, 4 and Comparative Examples 5 and 6, they were set to 150 ° and 110 °, respectively. The cutting conditions and the work material were the same as in Example 1. Inventive Examples 2 to 6 and Comparative Examples 1 and 2 are made of cemented carbide as the base material of the drill, and DLC coating is applied to the cutting edge of the drill as a surface treatment. Inventive Examples 7 to 11 and In Comparative Examples 3 and 4, the base material of the drill was made of a cemented carbide, and as a surface treatment, a hard coating having a lowermost layer of TiAlN and an uppermost layer of TiSiN was applied to the cutting edge of the drill from the surface of the base material. . Invention Examples 12 to 16 and Comparative Examples 5 and 6 are made of cemented carbide as the base material of the drill, and as a surface treatment, a hard coating of TiAlN as the lowermost layer and AlCrSiN as the uppermost layer is cut from the surface of the base material. The blade was applied. In the notation in the table, the uppermost component is shown.
In Example 2, as the evaluation of the wear of the drill after drilling 200 holes and the hole diameter accuracy and straightness of the drill hole, the center wear maximum width 27 is measured for the drill wear, and the center maximum wear width 27 is 10 μm or less. The hole diameter accuracy is 5 μm or less and the straightness is 10 μm or less for both the maximum X-direction displacement amount width 39 and the maximum Y-direction displacement amount width 40. Table 2 shows the specifications of each sample and the evaluation results of wear, hole diameter accuracy, and straightness of the drill.

Figure 2010274409
Figure 2010274409

表2より、本発明例2〜16は中心側最大摩耗幅27が10μm以下、穴径精度の測定結果が5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が10μm以下で、良好であった。さらにDLCコーティングを施したものでは本発明例3〜5が中心側最大摩耗幅27は8μm以下、穴径精度の測定結果が3.5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が9μm以下で、特に良好であった。基材の表面から最下層がTiAlNで最上層がTiSiNの硬質皮膜を施したものでは、本発明例8〜10が中心側最大摩耗幅27が8μm以下、穴径精度の測定結果が4.5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が9μm以下で、特に良好であった。基材の表面から最下層がTiAlNで最上層がAlCrSiNの硬質皮膜を施したものでは、本発明例13〜15が中心側最大摩耗幅27が8μm以下、穴径精度の測定結果が5μm以下、X方向ずれ量最大幅39及びY方向ずれ量最大幅40が9μm以下で、特に良好であった。  From Table 2, Examples 2 to 16 of the present invention have a center side maximum wear width 27 of 10 μm or less, a hole diameter accuracy measurement result of 5 μm or less, an X-direction displacement maximum width 39 and a Y-direction displacement maximum width 40 of 10 μm or less. ,It was good. Further, in the case of DLC coating, Examples 3 to 5 of the present invention have a center side maximum wear width 27 of 8 μm or less, a hole diameter accuracy measurement result of 3.5 μm or less, a maximum X-direction displacement amount 39 and a maximum Y-direction displacement amount. Large 40 was 9 μm or less, which was particularly good. In the case where the hardest layer is TiAlN and the uppermost layer is TiSiN from the surface of the base material, Examples 8 to 10 of the present invention have a center side maximum wear width 27 of 8 μm or less, and the hole diameter accuracy measurement result is 4.5 μm. Hereinafter, the maximum X-direction deviation amount width 39 and the maximum Y-direction deviation amount width 40 were 9 μm or less, which was particularly favorable. In the case where the lowermost layer is TiAlN and the uppermost layer is AlCrSiN from the surface of the base material, the inventive examples 13 to 15 have a center side maximum wear width 27 of 8 μm or less, and the hole diameter accuracy measurement result is 5 μm or less, The maximum X-direction displacement amount width 39 and the Y-direction displacement amount maximum width 40 were 9 μm or less, which was particularly favorable.

一方、比較例1は、200穴切削時点で中心側最大摩耗幅27が8.5μmと10μm以下ではあったが、穴径精度が5.3μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39及びY方向ずれ量最大幅40が11μmであった。比較例2は200穴切削時点で中心側最大摩耗幅27が6.3μmと10μm以下ではあったが、穴径精度が5.1μmと5μmを超え、真直度もX方向ずれ量最大幅39は11μm、Y方向ずれ量最大幅40は12μmと良好となる真直度の範囲である10μmを超えていた。同様に比較例3は、200穴切削時点で中心側最大摩耗幅27が8.7μmと10μm以下ではあったが、穴径精度が5.4μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39が12μm、Y方向ずれ量最大幅40が13μmであった。比較例4は200穴切削時点で中心側最大摩耗幅27が6.5μmと10μm以下ではあったが、穴径精度が5.3μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39及びY方向ずれ量最大幅40は12μmとなり、良好となる真直度の範囲である10μmを超えていた。比較例5は、200穴切削時点で中心側最大摩耗幅27が8.7μmと10μm以下ではあったが、穴径精度が5.5μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39及びY方向ずれ量最大幅40が13μmであった。比較例6は200穴切削時点で中心側最大摩耗幅27が6.8μmと10μm以下ではあったが、穴径精度が5.4μmと5μmを大きく超え、真直度もX方向ずれ量最大幅39は12μm、Y方向ずれ量最大幅40は13μmと良好となる真直度の範囲である10μmを超えていた。  On the other hand, in Comparative Example 1, the center side maximum wear width 27 at the time of 200 hole cutting was 8.5 μm and 10 μm or less, but the hole diameter accuracy greatly exceeded 5.3 μm and 5 μm, and the straightness was also the amount of deviation in the X direction. The maximum width 39 and the maximum Y-direction displacement amount width 40 were 11 μm. In Comparative Example 2, the center side maximum wear width 27 was 6.3 μm and 10 μm or less at the time of 200-hole cutting, but the hole diameter accuracy exceeded 5.1 μm and 5 μm, and the straightness also had a maximum X-direction deviation amount width 39 of The maximum width 40 of 11 μm and Y-direction displacement amount exceeded 12 μm, which is 10 μm, which is a range of straightness that is good. Similarly, in Comparative Example 3, the center side maximum wear width 27 at the time of 200 hole cutting was 8.7 μm and 10 μm or less, but the hole diameter accuracy greatly exceeded 5.4 μm and 5 μm, and the straightness was also the amount of deviation in the X direction. The maximum width 39 was 12 μm, and the maximum Y direction displacement amount width 40 was 13 μm. In Comparative Example 4, the center-side maximum wear width 27 was 6.5 μm and 10 μm or less at the time of 200-hole cutting, but the hole diameter accuracy greatly exceeded 5.3 μm and 5 μm, and the straightness was also the maximum X-direction deviation amount width 39. In addition, the maximum width 40 in the Y-direction deviation amount was 12 μm, which exceeded 10 μm, which is a range of good straightness. In Comparative Example 5, the center side maximum wear width 27 at the time of 200 hole cutting was 8.7 μm and 10 μm or less, but the hole diameter accuracy greatly exceeded 5.5 μm and 5 μm, and the straightness was also the maximum width in the X direction deviation amount. 39 and the maximum width 40 in the Y direction deviation were 13 μm. In Comparative Example 6, the center side maximum wear width 27 was 6.8 μm and 10 μm or less at the time of 200-hole cutting, but the hole diameter accuracy greatly exceeded 5.4 μm and 5 μm, and the straightness was also the maximum X-direction deviation amount width 39. Was 12 μm, and the maximum width 40 in the Y direction deviation was 13 μm, which exceeded 10 μm, which is a straightness range that is good.

上記結果から、中心側切れ刃の先端角は120°〜140°の範囲にある事が好ましく、中心側切れ刃の先端角が上記範囲から外れている場合には、穴径精度が悪くなり、真直度のX方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは被削材への食い付きが不安定になり加工穴の真直度が悪くなった事を示す。  From the above results, the tip angle of the center side cutting edge is preferably in the range of 120 ° to 140 °, and when the tip angle of the center side cutting edge is out of the above range, the hole diameter accuracy is deteriorated, It can be seen that the straightness maximum deviation amount width 39 and the maximum deviation amount width 40 in the Y direction increase. This indicates that the biting on the work material has become unstable and the straightness of the machined hole has deteriorated.

(実施例3)
本発明例17〜24及び比較例7〜10として、外周側切れ刃の先端角をそれぞれ変化させた以外は、マージン13を有した二枚刃のドリルで、中心側切れ刃の先端角を130°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、ねじれ角30°として一定とし、実施例1と同仕様の工具を作製し、切削試験を行った。外周側切れ刃の先端角は、本発明例17〜20及び本発明例21〜24において70°、80°、90°、100°とし、比較例5、6及び比較例7、8においてはそれぞれ60°、110°とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例17〜20及び比較例7、8はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例21〜24及び比較例9、10はドリルの先端部切れ刃の基材をCBNとし、表面処理は無処理のものとした。
実施例3では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は最大マージン摩耗幅26を測定し、最大マージン摩耗幅26が5μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表3に示す。
(Example 3)
As the inventive examples 17 to 24 and the comparative examples 7 to 10, except that the tip angle of the outer peripheral cutting edge was changed, respectively, the tip angle of the center cutting edge was set to 130 with a two-edged drill having a margin 13. A tool having the same specifications as in Example 1 was prepared and a cutting test was performed with the projection length of the outer peripheral cutting edge being constant at 15% (0.018 mm) of the diameter D and a twist angle of 30 °. The tip angle of the outer peripheral cutting edge is 70 °, 80 °, 90 °, 100 ° in Invention Examples 17 to 20 and Invention Examples 21 to 24, and in Comparative Examples 5 and 6 and Comparative Examples 7 and 8, respectively. The angles were 60 ° and 110 °. The cutting conditions and the work material were the same as in Example 1. Inventive Examples 17 to 20 and Comparative Examples 7 and 8 were made of cemented carbide as the base material of the drill, and DLC coating was applied to the cutting edge of the drill as a surface treatment. Inventive Examples 21 to 24 and In Comparative Examples 9 and 10, the base material of the cutting edge of the drill was CBN, and the surface treatment was untreated.
In Example 3, as the evaluation of the wear of the drill after drilling 200 holes, the hole diameter accuracy and straightness of the drilled hole, the maximum margin wear width 26 is measured for the drill wear, and the maximum margin wear width 26 is 5 μm or less. The diameter accuracy was 5 μm or less, and the straightness was 10 μm or less for both the maximum X direction displacement width 39 and the maximum Y displacement width 40. Table 3 shows the specifications of each sample and the evaluation results of drill wear, hole diameter accuracy, and straightness.

Figure 2010274409
Figure 2010274409

表3より、本発明例17〜24は最大マージン摩耗幅26が5μm以下、穴径精度が5μm以下、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下となり良好であった。さらにドリルの基材を超硬合金とし、DLCコーティングを施したものでは本発明例18及び本発明例19が最大マージン摩耗幅26は4μm以下、穴径精度が3.5μm以下、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに8μm以下となり、特に良好であった。ドリルの先端部切れ刃の基材をCBNとし、表面処理が無処理のものでは本発明例22及び本発明例23が最大マージン摩耗幅26は3.5μm以下、穴径精度が3.5μm以下、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに9μm以下となり、特に良好であった。  According to Table 3, Examples 17 to 24 of the present invention have a maximum margin wear width 26 of 5 μm or less, a hole diameter accuracy of 5 μm or less, and straightness is 10 μm or less for both X-direction displacement maximum width 39 and Y-direction displacement maximum width 40. Met. Further, in the case where the base material of the drill is made of cemented carbide and DLC coating is applied, the maximum margin wear width 26 is 4 μm or less, the hole diameter accuracy is 3.5 μm or less, and the straightness is X Both the maximum direction deviation amount width 39 and the maximum Y direction deviation amount width 40 were 8 μm or less, which was particularly favorable. When the base material of the cutting edge of the drill is CBN and the surface treatment is untreated, the present invention example 22 and the present invention example 23 have a maximum margin wear width 26 of 3.5 μm or less and a hole diameter accuracy of 3.5 μm or less. The straightness was 9 μm or less for both the maximum X-direction displacement amount width 39 and the maximum Y-direction displacement amount width 40, which was particularly good.

一方、外周側切れ刃の先端角が60°の比較例7は最大マージン摩耗幅26が5.5μm、穴径精度が5.2μm、真直度はX方向ずれ量最大幅39は13μm、Y方向ずれ量最大幅40は12μmで、ともに良好となる真直度の範囲である10μmを超えていた。また外周側切れ刃の先端角が110°の比較例8は最大マージン摩耗幅26が5.3μmと5μmを越え、穴径精度が5.1μm、真直度はX方向ずれ量最大幅39が12μm、Y方向ずれ量最大幅40は11μmで、ともに良好となる真直度の範囲である10μmを超えていた。同様に比較例9は、最大マージン摩耗幅26が5.2μm、穴径精度が5.1μm、真直度はX方向ずれ量最大幅39は11μm、Y方向ずれ量最大幅40は12μmで、ともに良好となる真直度の範囲である10μmを超えていた。また比較例10は最大マージン摩耗幅26が5.1μmと5μmを越え、穴径精度が5.0μm、真直度はX方向ずれ量最大幅39が10μm、Y方向ずれ量最大幅40は11μmで、Y方向ずれ量最大幅40のみだが、良好となる真直度の範囲である10μmを超えていた。  On the other hand, in Comparative Example 7 in which the tip angle of the outer peripheral cutting edge is 60 °, the maximum margin wear width 26 is 5.5 μm, the hole diameter accuracy is 5.2 μm, and the straightness is the X-direction displacement maximum width 39 is 13 μm. The maximum deviation amount width 40 was 12 μm, which exceeded 10 μm, which is a straightness range in which both are good. Further, in Comparative Example 8 in which the tip angle of the outer peripheral cutting edge is 110 °, the maximum margin wear width 26 exceeds 5.3 μm and 5 μm, the hole diameter accuracy is 5.1 μm, and the straightness is the maximum X-direction deviation amount width of 12 μm. The maximum width 40 in the Y-direction deviation amount was 11 μm, which exceeded 10 μm, which is the range of straightness where both are good. Similarly, in Comparative Example 9, the maximum margin wear width 26 is 5.2 μm, the hole diameter accuracy is 5.1 μm, the straightness is the X-direction displacement maximum width 39 is 11 μm, and the Y-direction displacement maximum width 40 is 12 μm. It exceeded 10 μm which is a range of straightness to be good. In Comparative Example 10, the maximum margin wear width 26 exceeds 5.1 μm and 5 μm, the hole diameter accuracy is 5.0 μm, and the straightness is 10 μm in the maximum X-direction displacement 39 and 11 μm in the maximum Y-direction displacement 40 μm. Only the maximum amount of deviation in the Y direction is 40, but it exceeded 10 μm, which is a range of straightness that is good.

上記結果から、外周側切れ刃の先端角は70°〜100°の範囲にある事が好ましく、外周側切れ刃の先端角が上記範囲から外れている場合には、穴径精度の測定結果と、真直度のX方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは外周側切れ刃の先端角が小さいと中心側切れ刃8と外周側切れ刃9の成す角部の剛性が低くなり、また外周側切れ刃の先端角が大きいと外周コーナ部の剛性が低くなる。このことにより角部及び外周コーナ部の摩耗が進行しやすくなりガイド性の低下によりドリルが不安定となり加工穴の真直度が悪くなったことを示す。  From the above results, the tip angle of the outer peripheral cutting edge is preferably in the range of 70 ° to 100 °. When the tip angle of the outer peripheral cutting edge is out of the above range, the hole diameter accuracy measurement result and It can be seen that the straight X-direction maximum deviation amount width 39 and the Y-direction maximum deviation amount width 40 increase. This is because when the tip angle of the outer peripheral cutting edge is small, the rigidity of the corner portion formed by the center cutting edge 8 and the outer peripheral cutting blade 9 is lowered, and when the tip angle of the outer peripheral cutting edge is large, the rigidity of the outer peripheral corner portion is reduced. Lower. This indicates that wear of the corners and outer peripheral corners is likely to proceed, the drill becomes unstable due to a decrease in guide properties, and the straightness of the processed hole is deteriorated.

(実施例4)
本発明例25〜36及び比較例11〜14として、外周側切れ刃の投影長さをそれぞれ変化させた以外は、マージン13を有した二枚刃のドリルで、中心側切れ刃の先端角を130°、外周側切れ刃の先端角を80°、ねじれ角30°として一定とし、実施例1と同仕様の工具を作製し、切削試験を行った。外周側切れ刃の投影長さは、本発明例25〜30及び本発明例31〜36において直径Dの5%(0.006mm)、直径Dの10%(0.012mm)、直径Dの15%(0.018mm)、直径Dの20%(0.024mm)、直径Dの25%(0.030mm)、直径Dの30%(0.036mm)とし、比較例11,12及び比較例13、14においてはそれぞれ直径Dの2%(0.0024mm)、直径Dの35%(0.042mm)とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例25〜30及び比較例11、12はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例31〜36及び比較例13、14はドリルの基材を超硬合金とし、表面処理を無処理のものとした。
実施例4では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は外周側最大摩耗幅28を測定し、外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表4に示す。
Example 4
As the inventive examples 25 to 36 and the comparative examples 11 to 14, the tip angle of the center side cutting edge was changed with a double-edged drill having a margin 13 except that the projected length of the outer peripheral side cutting edge was changed. A tool having the same specifications as in Example 1 was prepared and a cutting test was performed with 130 °, the tip angle of the outer peripheral cutting edge being constant at 80 °, and the twist angle of 30 °. The projected length of the outer peripheral cutting edge is 5% (0.006 mm) of the diameter D, 10% (0.012 mm) of the diameter D, and 15 of the diameter D in the inventive examples 25 to 30 and the inventive examples 31 to 36. % (0.018 mm), 20% of diameter D (0.024 mm), 25% of diameter D (0.030 mm), 30% of diameter D (0.036 mm), Comparative Examples 11, 12 and Comparative Example 13 , 14, respectively, 2% (0.0024 mm) of the diameter D and 35% (0.042 mm) of the diameter D. The cutting conditions and the work material were the same as in Example 1. Inventive Examples 25 to 30 and Comparative Examples 11 and 12 were made of cemented carbide as the base material of the drill, and DLC coating was applied to the cutting edge of the drill as a surface treatment. Inventive Examples 31 to 36 and In Comparative Examples 13 and 14, the base material of the drill was cemented carbide, and the surface treatment was untreated.
In Example 4, as the evaluation of the wear of the drill after drilling 200 holes and the hole diameter accuracy and straightness of the drill hole, the wear of the drill is measured by the outer peripheral maximum wear width 28, and the outer peripheral maximum wear width 28 is 15 μm or less. The hole diameter accuracy is 5 μm or less and the straightness is 10 μm or less for both the maximum X-direction displacement amount width 39 and the maximum Y-direction displacement amount width 40. Table 4 shows the specifications of each sample and the evaluation results of wear, hole diameter accuracy, and straightness of the drill.

Figure 2010274409
Figure 2010274409

表4より、本発明例25〜36は外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに10μm以下であった。さらにDLCコーティングを施したものでは本発明例27及び28が、外周側最大摩耗幅28は12μm以下、穴径精度が3.5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに8μm以下と特に良好であった。無処理のものでは本発明例33及び34が、外周側最大摩耗幅28は13μm以下、穴径精度が4μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに9μm以下と特に良好であった。  From Table 4, the inventive examples 25 to 36 have an outer peripheral side maximum wear width 28 of 15 μm or less, a hole diameter accuracy of 5 μm or less, and straightness of both the X-direction displacement maximum width 39 and the Y-direction displacement maximum width 40 of 10 μm or less. Met. Further, in the case of DLC coating, Examples 27 and 28 of the present invention were such that the maximum outer wear width 28 was 12 μm or less, the hole diameter accuracy was 3.5 μm or less, the straightness was the maximum X-direction displacement 39 and the Y-direction displacement. Both maximum widths 40 were particularly good at 8 μm or less. In the case of the non-processed example, the present invention examples 33 and 34 are such that the outer peripheral side maximum wear width 28 is 13 μm or less, the hole diameter accuracy is 4 μm or less, and the straightness is both the X-direction displacement maximum width 39 and the Y-direction displacement maximum width 40. It was particularly good at 9 μm or less.

一方、外周側切れ刃の投影長さが直径Dの2%(0.0024mm)の比較例11は外周側最大摩耗幅28が17.2μmと15μmを大きく超え、穴径精度が8.2μm、真直度がX方向ずれ量最大幅39は14μm、Y方向ずれ量最大幅40は13μmとどちらも良好となる真直度の範囲である10μmを超えていた。また、外周側切れ刃の投影長さ16が直径Dの35%(0.042mm)の比較例12は外周側最大摩耗幅28が16.4μmと15μmを超え、穴径精度が5.3μm、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は11μmとどちらも良好となる真直度の範囲である10μmを超えていた。同様に比較例13は外周側最大摩耗幅28が17.9μmと15μmを大きく超え、穴径精度が8.6μm、真直度がX方向ずれ量最大幅39は14μm、Y方向ずれ量最大幅40は15μmとどちらも良好となる真直度の範囲である10μmを超えていた。また、比較例14は外周側最大摩耗幅28が17.1μmと15μmを超え、穴径精度が6.1μm、真直度がX方向ずれ量最大幅39は12μm、Y方向ずれ量最大幅40は13μmとどちらも良好となる真直度の範囲である10μmを超えていた。  On the other hand, in Comparative Example 11 in which the projected length of the outer peripheral cutting edge is 2% (0.0024 mm) of the diameter D, the outer peripheral maximum wear width 28 greatly exceeds 17.2 μm and 15 μm, and the hole diameter accuracy is 8.2 μm. The straightness was 14 μm for the maximum width 39 in the X-direction displacement and the maximum width 40 for the Y-direction displacement 13 μm, which exceeded 10 μm, which is a straightness range in which both are good. Further, in Comparative Example 12 in which the projection length 16 of the outer peripheral side cutting edge is 35% (0.042 mm) of the diameter D, the outer peripheral side maximum wear width 28 exceeds 16.4 μm and 15 μm, and the hole diameter accuracy is 5.3 μm, The straightness of the maximum deviation amount width 39 in the X direction and the maximum deviation amount width 40 in the Y direction was 11 μm, both exceeding 10 μm, which is a straightness range in which both are good. Similarly, in Comparative Example 13, the outer peripheral side maximum wear width 28 greatly exceeds 17.9 μm and 15 μm, the hole diameter accuracy is 8.6 μm, the straightness is X direction displacement maximum width 39 is 14 μm, and Y direction displacement maximum width 40. Was over 15 μm and 10 μm, which is a range of straightness in which both are good. Further, in Comparative Example 14, the outer peripheral side maximum wear width 28 exceeds 17.1 μm and 15 μm, the hole diameter accuracy is 6.1 μm, the straightness is X direction displacement maximum width 39 is 12 μm, and Y direction displacement maximum width 40 is 13 μm and both exceeded 10 μm, which is a range of straightness where both are good.

上記結果から、外周側切れ刃の投影長さは直径Dの5%〜30%の範囲にある事が好ましく、外周側切れ刃の投影長さが上記範囲から外れている場合には穴径精度の測定結果と、真直度のX方向ずれ量最大幅39及びY方向ずれ量最大幅40が大きくなる事が分かる。これは外周側切れ刃の投影長さが短いと、の外周コーナ部の摩耗抑制効果が低下し、外周コーナ部の摩耗が進行したことを示す。また外周側切れ刃の投影長さが長いと、先端部の食い付き性が低下して穴あけ加工精度が悪くなり、先端部の剛性が低くなり摩耗が早く進行したことを示す。  From the above results, the projected length of the outer peripheral cutting edge is preferably in the range of 5% to 30% of the diameter D. When the projected length of the outer peripheral cutting edge is out of the above range, the hole diameter accuracy is It can be seen that the measurement results and the straight X-direction displacement maximum width 39 and the Y-direction displacement maximum width 40 of the straightness increase. This indicates that when the projected length of the outer peripheral cutting edge is short, the effect of suppressing the wear of the outer peripheral corner portion decreases, and the wear of the outer peripheral corner portion proceeds. In addition, if the projected length of the outer peripheral cutting edge is long, the biting property of the tip portion is lowered, the drilling accuracy is deteriorated, the rigidity of the tip portion is lowered, and wear progresses quickly.

(実施例5)
本発明例37〜39として、二枚刃のドリルで、中心側切れ刃の先端角を130°、ねじれ角30°、外周側切れ刃の先端角を80°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)に設け、本発明例37はマージン13のみとし、マージン部の円周長さ(マージン幅)をドリルの直径の20%とし、本発明例38及び39は、先行マージン部22と後方マージン部24を有し、先行マージン部と後方マージン部の間は円筒部が削除されている形状とした。また、本発明例37〜39の各マージン部の円周長さをドリルの直径の20%とした以外は、実施例1と同仕様の工具を作製し、切削試験を行った。切削条件及び被削材は実施例1と同様で行った。また、本発明例37、38はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとした。本発明例39はドリルの先端部切れ刃の基材をCBNとし、表面処理は無処理のものとした。
実施例5では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下のものを良好とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表5に示す。
(Example 5)
As Examples 37-39 of the present invention, with a double-edged drill, the tip angle of the center-side cutting edge is 130 °, the twist angle is 30 °, the tip angle of the outer-side cutting edge is 80 °, and the projected length of the outer-side cutting edge Is set to 15% (0.018 mm) of the diameter D, the present invention example 37 includes only the margin 13, the circumferential length (margin width) of the margin portion is set to 20% of the diameter of the drill, and the present invention examples 38 and 39 Has a leading margin portion 22 and a rear margin portion 24, and a cylindrical portion is deleted between the leading margin portion and the rear margin portion. Further, a tool having the same specifications as in Example 1 was prepared, and a cutting test was performed, except that the circumferential length of each marginal portion of Examples 37 to 39 of the present invention was set to 20% of the diameter of the drill. The cutting conditions and the work material were the same as in Example 1. In Examples 37 and 38 of the present invention, the base material of the drill was a cemented carbide, and the cutting edge of the drill was subjected to DLC coating as a surface treatment. In Invention Example 39, the base material of the cutting edge of the drill was CBN, and the surface treatment was untreated.
In Example 5, as the evaluation of the wear of the drill after drilling 200 holes and the hole diameter accuracy and straightness of the drilled hole, the maximum wear width 28 on the outer peripheral side is 15 μm or less, the hole diameter accuracy is 5 μm or less, and the straightness However, both the X-direction deviation maximum width 39 and the Y-direction deviation maximum width 40 were 10 μm or less. Table 5 shows the specifications of each sample and the evaluation results of wear and hole diameter accuracy and straightness of the drill.

Figure 2010274409
Figure 2010274409

表5より、本発明例37〜39は外周側最大摩耗幅28が15μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに10μm以下の範囲にあり、良好であった。本発明例37は外周側最大摩耗幅28が11.6μm、穴径精度が3.2μm、真直度がX方向ずれ量最大幅39は8μm、Y方向ずれ量最大幅40は7μmであった。本発明例38は外周側最大摩耗幅28が10.8μm、穴径精度が2.9μm、真直度がX方向ずれ量最大幅39は6μm、Y方向ずれ量最大幅40は7μmとなり、先行マージン部と後方マージン部を設けたドリルではガイド性が高められ食い付きが安定したことにより、さらに良好な穴径精度を示した。またドリルの先端部切れ刃の基材をCBNとし、表面処理が無処理の本発明例39は外周側最大摩耗幅28が9.7μm、穴径精度が2.7μm、真直度がX方向ずれ量最大幅39は6μm、Y方向ずれ量最大幅40は6μmとなり、基材が超硬合金でDLCコーティングを施した本発明例38と同様に良好な結果を示した。
上記結果から、先行マージン部と後方マージン部を設ける事によって、外周コーナ部のガイド性を高める事ができ、穴あけ加工精度を更に向上した事を示す。
Table 5 shows that Examples 37 to 39 of the present invention have a maximum outer wear width 28 of 15 μm or less, a hole diameter accuracy of 5 μm or less, and straightness of both the X-direction displacement maximum width 39 and the Y-direction displacement maximum width 40 of 10 μm or less. It was in the range of and was good. In Invention Example 37, the outer peripheral side maximum wear width 28 was 11.6 μm, the hole diameter accuracy was 3.2 μm, the straightness was X direction displacement maximum width 39 was 8 μm, and Y direction displacement maximum width 40 was 7 μm. In the inventive example 38, the outer peripheral side maximum wear width 28 is 10.8 μm, the hole diameter accuracy is 2.9 μm, the straightness is X direction displacement maximum width 39 is 6 μm, Y direction displacement maximum width 40 is 7 μm, leading margin The drill with the back and rear margins showed better hole diameter accuracy due to improved guideability and stable biting. In addition, the base material of the cutting edge of the drill is CBN, and the surface treatment of the present invention example 39 is an outer peripheral maximum wear width 28 of 9.7 μm, a hole diameter accuracy of 2.7 μm, and a straightness deviating in the X direction. The maximum amount width 39 was 6 μm, and the maximum Y direction displacement amount width 40 was 6 μm. The results were as good as in Example 38 of the present invention, in which the base material was cemented carbide and DLC coating was applied.
From the above results, it is shown that by providing the leading margin portion and the rear margin portion, the guide performance of the outer peripheral corner portion can be improved, and the drilling accuracy is further improved.

(実施例6)
本発明例40〜51として、二枚刃のドリルで、先行マージン部と後方マージン部の円周長さ(マージン幅)をそれぞれ変化させた以外は、先行マージン部22と後方マージン部24を有し、中心側切れ刃の先端角を130°、外周側切れ刃の先端角を80°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、ねじれ角30°として実施例1と同仕様の工具を作製し、切削試験を行った。先行マージン部と後方マージン部の円周長さ(マージン幅)は共に同一とし、本発明例40〜45及び本発明例46〜51において、ドリルの直径の12%、15%、20%、25%、30%、35%とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例40〜45はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとし、本発明例46〜51はドリルの先端部切れ刃の基材を多結晶ダイヤモンドとし、表面処理は無処理のものとした。
実施例6では200穴加工後の加工穴の穴径精度、真直度の評価として、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下を良好とした。各試料の仕様及び穴径精度、真直度の評価結果を表6に示す。
(Example 6)
As Examples 40 to 51 of the present invention, the leading margin portion 22 and the trailing margin portion 24 are provided except that the circumferential lengths (margin widths) of the leading margin portion and the trailing margin portion are respectively changed by a double-edged drill. The tip angle of the center side cutting edge is 130 °, the tip angle of the outer periphery side cutting edge is 80 °, the projected length of the outer periphery side cutting edge is 15% (0.018 mm) of the diameter D, and the helix angle is 30 °. A tool having the same specifications as in Example 1 was produced and a cutting test was performed. The circumferential lengths (margin widths) of the leading margin portion and the rear margin portion are the same. In the inventive examples 40 to 45 and the inventive examples 46 to 51, 12%, 15%, 20%, 25 of the diameter of the drill. %, 30%, and 35%. The cutting conditions and the work material were the same as in Example 1. Inventive Examples 40 to 45 are made of cemented carbide as the base material of the drill, and DLC coating is applied to the cutting edge of the drill as a surface treatment. Inventive Examples 46 to 51 are cutting edges of the drill. The base material was polycrystalline diamond, and the surface treatment was untreated.
In Example 6, as an evaluation of the hole diameter accuracy and straightness of 200 holes after processing 200 holes, the hole diameter accuracy is 5 μm or less, and the straightness is 10 μm or less for both the X-direction displacement maximum width 39 and the Y-direction displacement maximum width 40. Was good. Table 6 shows the evaluation results of the specifications, hole diameter accuracy, and straightness of each sample.

Figure 2010274409
Figure 2010274409

表6より、ドリルの基材を超硬合金とし、DLCコーティングを施したものでは、本発明例41〜44が穴径精度は3μm以下で、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに8μm以下の範囲にあり、良好であった。さらに本発明例42、43は穴径精度が3μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は7μm以下と特に良好であった。本発明例40は穴径精度が3.3μm、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は8μmであった。本発明例45は穴径精度が3.0μm、真直度がX方向ずれ量最大幅39は8μm、Y方向ずれ量最大幅40は9μmであった。ドリルの先端部切れ刃の基材を多結晶ダイヤモンドとし、表面処理が無処理のものでは、本発明例47〜50が穴径精度は2μm以下で、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに7μm以下の範囲にあり、良好であった。さらに本発明例48、49は穴径精度が1.5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40は7μm以下と特に良好であった。本発明例46は穴径精度が1.7μm、真直度がX方向ずれ量最大幅39は7μm、Y方向ずれ量最大幅40は8μmであった。本発明例51は穴径精度が1.7μm、真直度はX方向ずれ量最大幅39及びY方向ずれ量最大幅40が8μmであった。
上記結果から、マージン幅を15%〜30%の範囲では安定した加工精度が得られる事を示す。
From Table 6, when the base material of the drill is cemented carbide and DLC coating is applied, the inventive examples 41 to 44 have a hole diameter accuracy of 3 μm or less, and the straightness is the maximum X-direction deviation amount width 39 and the Y-direction. The deviation maximum width 40 was both in the range of 8 μm or less, which was good. Furthermore, Examples 42 and 43 of the present invention had particularly good hole diameter accuracy of 3 μm or less, straightness of X-direction displacement maximum width 39 and Y-direction displacement maximum width 40 of 7 μm or less. In Invention Example 40, the hole diameter accuracy was 3.3 μm, the straightness was X direction displacement maximum width 39 and Y direction displacement maximum width 40 was 8 μm. In Invention Example 45, the hole diameter accuracy was 3.0 μm, the straightness was 8 μm in the maximum X-direction deviation amount width 39 and 9 μm in the maximum Y-direction deviation amount width 40. When the base material of the cutting edge of the drill is made of polycrystalline diamond and the surface treatment is not treated, Examples 47 to 50 of the present invention have a hole diameter accuracy of 2 μm or less, and the straightness is a maximum deviation amount width in the X direction 39 and The maximum Y-direction deviation amount width 40 was in the range of 7 μm or less, which was good. Furthermore, Examples 48 and 49 of the present invention had particularly good hole diameter accuracy of 1.5 μm or less, and straightness of X direction displacement maximum width 39 and Y direction displacement maximum width 40 of 7 μm or less. In Invention Example 46, the hole diameter accuracy was 1.7 μm, the straightness was 7 μm in the maximum X-direction deviation amount width 39, and the maximum Y-direction deviation amount width 40 was 8 μm. In Invention Example 51, the hole diameter accuracy was 1.7 μm, and the straightness was such that the X-direction displacement maximum width 39 and the Y-direction displacement maximum width 40 were 8 μm.
From the above results, it is shown that stable machining accuracy can be obtained when the margin width is in the range of 15% to 30%.

(実施例7)
本発明例52〜56として、ねじれ角をそれぞれ変化させた以外は、先行マージン部22と後方マージン部24を有した二枚刃のドリルで、中心側切れ刃の先端角を130°、外周側切れ刃の先端角を80°、外周側切れ刃の投影長さを直径Dの15%(0.018mm)、先行マージン部と後方マージン部の円周長さ(マージン幅)を共にドリルの直径の20%として実施例1と同仕様の工具を作製し、切削試験を行った。ねじれ角は本発明例52〜56において20°、25°、30°、35°、40°とした。切削条件及び被削材は実施例1と同様で行った。また、本発明例52〜56はドリルの基材を超硬合金とし、表面処理としてドリルの先端部切れ刃にDLCコーティングを施したものとした。
実施例7では、200穴加工後のドリルの摩耗及び加工穴の穴径精度、真直度の評価として、ドリルの摩耗は中心側最大摩耗幅27を測定し、中心側最大摩耗幅27が10μm以下、穴径精度が5μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40ともに10μm以下とした。各試料の仕様及びドリルの摩耗及び穴径精度、真直度の評価結果を表7に示す。
(Example 7)
As Examples 52-56 of the present invention, except that the twist angle was changed, a double-edged drill having a leading margin portion 22 and a rear margin portion 24, the tip angle of the center-side cutting edge was 130 °, the outer peripheral side The tip angle of the cutting edge is 80 °, the projected length of the outer cutting edge is 15% (0.018mm) of the diameter D, and the circumferential length (margin width) of the leading and rear margins is the diameter of the drill. A tool having the same specifications as in Example 1 was made as 20%, and a cutting test was performed. The twist angle was set to 20 °, 25 °, 30 °, 35 °, and 40 ° in Examples 52 to 56 of the present invention. The cutting conditions and the work material were the same as in Example 1. In Examples 52 to 56 of the present invention, the base material of the drill was a cemented carbide, and the cutting edge of the drill was subjected to DLC coating as a surface treatment.
In Example 7, as the evaluation of drill wear after drilling 200 holes and the hole diameter accuracy and straightness of the drill hole, the center wear maximum width 27 is measured for drill wear, and the center maximum wear width 27 is 10 μm or less. The hole diameter accuracy was 5 μm or less, and the straightness was 10 μm or less for both the maximum X-direction displacement amount width 39 and the maximum Y-direction displacement amount width 40. Table 7 shows the specifications of each sample and the evaluation results of drill wear, hole diameter accuracy, and straightness.

Figure 2010274409
Figure 2010274409

表7より、本発明例53〜55は穴径精度が3.5μm以下で、中心側最大摩耗幅27が8μm以下、真直度がX方向ずれ量最大幅39及びY方向ずれ量最大幅40がともに7μm以下の範囲にあり、良好であった。本発明例52では穴径精度が3.7μmで、中心側最大摩耗幅27が6.4μm、真直度がX方向ずれ量最大幅39が8μm、Y方向ずれ量最大幅40が7μmであった。これはねじれ角が小さく、先端部切れ刃の切れ味と切り屑排出性が低下する事により、切削抵抗の増大を招き、食い付き性が不安定になり加工穴の真直度が悪くなった事を示す。また、本発明例56では穴径精度が3.6μmで、中心側最大摩耗幅27が8.3μm、真直度がX方向ずれ量最大幅39が7μm、Y方向ずれ量最大幅40が8μmであった。これはねじれ角が大きい場合は、中心側切れ刃の剛性が低下し、刃先の鋭利さを維持する事が困難となるため、中心側切れ刃の摩耗の進行が早い事が原因となり、加工穴の真直度が悪くなったと考えられる。
上記結果から、ねじれ角が25°〜35°の範囲では安定した加工精度が得られる事を示す。
From Table 7, the invention examples 53 to 55 have a hole diameter accuracy of 3.5 μm or less, a center-side maximum wear width 27 of 8 μm or less, and straightness of X-direction displacement maximum width 39 and Y-direction displacement maximum width 40. Both were in the range of 7 μm or less and were good. In Example 52 of the present invention, the hole diameter accuracy was 3.7 μm, the center-side maximum wear width 27 was 6.4 μm, the straightness was the maximum X-direction deviation amount width 39 was 8 μm, and the maximum Y-direction deviation amount width 40 was 7 μm. . This is because the twist angle is small, the sharpness of the cutting edge of the tip part and the chip dischargeability are reduced, leading to an increase in cutting resistance, and the biting property becomes unstable and the straightness of the machined hole is deteriorated. Show. In Inventive Example 56, the hole diameter accuracy is 3.6 μm, the center-side maximum wear width 27 is 8.3 μm, the straightness is X-direction displacement maximum width 39 is 7 μm, and Y-direction displacement maximum width 40 is 8 μm. there were. This is because when the helix angle is large, the rigidity of the center-side cutting edge decreases and it becomes difficult to maintain the sharpness of the cutting edge. It is thought that the straightness of was deteriorated.
From the above results, it is shown that stable machining accuracy can be obtained when the twist angle is in the range of 25 ° to 35 °.

本発明マシナブルセラミックス加工用小径ドリルは、小径ドリルの先端部切れ刃が、中心側切れ刃と外周側切れ刃から構成されており、ドリルの先端部切れ刃を形状と材質で最適化して、摩耗の進行を抑制する事で先端部切れ刃の鋭利さを保ちつつ、ワークの穴精度を高精度に維持する事ができ、折損事故も防止できることが可能である。具体的な適用分野は、碍子、保護管、基板、化学装置用ノズルや特に半導体装置の検査工程用プローブカードなどに使用されているマシナブルセラミックスの穴あけ加工に適している。  In the small diameter drill for machining machinable ceramics according to the present invention, the tip end cutting edge of the small diameter drill is composed of a center side cutting edge and an outer peripheral side cutting edge, and the tip end cutting edge of the drill is optimized by shape and material, By suppressing the progress of wear, the hole accuracy of the workpiece can be maintained with high accuracy while maintaining the sharpness of the cutting edge of the tip, and breakage accidents can also be prevented. The specific application field is suitable for drilling of machinable ceramics used in insulators, protective tubes, substrates, nozzles for chemical devices, probe cards for inspection processes of semiconductor devices, and the like.

1 ドリル部
2 首部
3 首下長さ
4 シャンク部
5 先端部
6 先端部切れ刃
7 溝
8 中心側切れ刃
9 外周側切れ刃
10 外周コーナ部
11 角部
12 リーディングエッジ
13 マージン
14 中心側切れ刃の先端角
15 外周側切れ刃の先端角
16 投影長さ
17 逃げ面摩耗
18 マージン摩耗
19 チゼルエッジ
20 チゼルエッジ長さ
21 投影した切れ刃の長さ
22 先行マージン部
23 円筒削除部
24 後方マージン部
25 最大摩耗幅
26 最大マージン摩耗幅
27 中心側最大摩耗幅
28 外周側最大摩耗幅
29 1穴目
30 原点
31 基準軸
32 50穴目
33 50穴目の穴中心
34 測定対象となる加工穴
35 測定対象となる加工穴中心
36 X方向ずれ量
37 Y方向ずれ量
38 理論的中心位置
39 X方向ずれ量最大幅
40 Y方向ずれ量最大幅
41 マシナブルセラミックス
42 セラミックスの結晶粒
43 セラミックスの結晶粒界
44 先端部切れ刃の逃げ面
45 先端部切れ刃のすくい面
46 鋭利さが失われた先端部切れ刃
47 マシナブルセラミックスの切り屑
D 直径
DESCRIPTION OF SYMBOLS 1 Drill part 2 Neck part 3 Neck length 4 Shank part 5 Tip part 6 Tip part cutting edge 7 Groove 8 Center side cutting edge 9 Outer peripheral side cutting edge 10 Outer periphery corner part 11 Corner | angular part 12 Leading edge 13 Margin 14 Center side cutting edge Tip angle 15 of the outer peripheral cutting edge 16 Projected length 17 Flank wear 18 Margin wear 19 Chisel edge 20 Chisel edge length 21 Projected cutting edge length 22 Leading margin portion 23 Cylindrical deletion portion 24 Rear margin portion 25 Maximum Wear width 26 Maximum margin wear width 27 Center side maximum wear width 28 Outer peripheral side maximum wear width 29 1st hole 30 Origin 31 Reference shaft 32 50th hole 33 50th hole center 34 Measurement hole 35 to be measured Center of machining hole 36 X direction deviation 37 Y direction deviation 38 Theoretical center position 39 X direction deviation maximum width 40 Y direction deviation maximum width 41 Chip D diameter of Ceramics 42 ceramics grains 43 ceramic grain boundaries 44 tip cutting edge of the flank face 45 tip cutting edge of the rake face 46 sharpness is lost tip cutting edge 47 Machinable Ceramics

Claims (4)

マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、前記小径ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°であり、外周側切れ刃のドリル径方向への投影長さが前記小径ドリルの直径の5%〜30%の範囲であることを特徴とするマシナブルセラミックス加工用小径ドリル。  A small-diameter drill that drills a small diameter of 2 mm or less in machinable ceramics, and the tip cutting edge of the small-diameter drill is composed of a center-side cutting edge and an outer peripheral-side cutting edge, and the axis of the small-diameter drill The angle of the tip angle in the rotation trajectory seen from the vertical direction is such that the tip angle of the center side cutting edge is 120 ° to 140 °, and the tip angle of the outer peripheral side cutting edge is 70 ° to 100 °, A small diameter drill for machining ceramics, characterized in that the projected length of the outer peripheral cutting edge in the drill radial direction is in the range of 5% to 30% of the diameter of the small diameter drill. マシナブルセラミックスに直径2mm以下の小径の穴あけ加工を行う小径ドリルであり、前記小径ドリルの先端部切れ刃は、中心側切れ刃と外周側切れ刃から構成されており、前記小径ドリルの軸心に対して垂直方向から見た回転軌跡での先端角の角度は、前記中心側切れ刃の先端角が120°〜140°、前記外周側切れ刃の先端角が70°〜100°であり、外周側切れ刃のドリル径方向への投影長さが前記小径ドリルの直径の5%〜30%の範囲であり、前記小径ドリルのねじれ角が25°〜35°、前記小径ドリルのリーディングエッジに接続された先行マージン部と、ヒールに接続された後方マージン部を有し、先端部切れ刃以外の工具軸直角断面で見たときに、該マージン部の円周長さは、前記小径ドリルの直径の15%〜30%の範囲であり、前記先行マージン部と前記後方マージン部の間は円筒部が削除されている形状であることを特徴とするマシナブルセラミックス加工用小径ドリル。  A small-diameter drill that drills a small diameter of 2 mm or less in machinable ceramics, and the tip cutting edge of the small-diameter drill is composed of a center-side cutting edge and an outer peripheral-side cutting edge, and the axis of the small-diameter drill The angle of the tip angle in the rotation trajectory seen from the vertical direction is such that the tip angle of the center side cutting edge is 120 ° to 140 °, and the tip angle of the outer peripheral side cutting edge is 70 ° to 100 °, The projected length of the outer peripheral side cutting edge in the radial direction of the drill is in the range of 5% to 30% of the diameter of the small diameter drill, the twist angle of the small diameter drill is 25 ° to 35 °, and the leading edge of the small diameter drill is It has a connected leading margin part and a rear margin part connected to the heel, and the circumferential length of the margin part when viewed in a cross section perpendicular to the tool axis other than the cutting edge of the tip part is that of the small diameter drill. 15% to 30% of the diameter A circumference, machinable ceramics machining diameter drill, characterized in that between the leading margin portion and the rear margin has a shape that a cylindrical portion is removed. ドリルの基材が超硬合金であり、硬質皮膜を被覆した先端部切れ刃により形成されている事を特徴とする請求項1または請求項2に記載のマシナブルセラミックス加工用小径ドリル。  3. The small diameter drill for machining machinable ceramics according to claim 1 or 2, wherein the base material of the drill is a cemented carbide and is formed by a tip cutting edge coated with a hard film. 少なくともドリルの先端部切れ刃の基材が立方晶窒化硼素(CBN)、または多結晶ダイヤモンドのいずれかにより形成されている事を特徴とする請求項1または請求項2に記載のマシナブルセラミックス加工用小径ドリル。  The machinable ceramic processing according to claim 1 or 2, wherein at least the base material of the cutting edge of the drill is made of either cubic boron nitride (CBN) or polycrystalline diamond. For small diameter drills.
JP2009145804A 2009-05-29 2009-05-29 Small diameter drill for machining machinable ceramics Pending JP2010274409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009145804A JP2010274409A (en) 2009-05-29 2009-05-29 Small diameter drill for machining machinable ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145804A JP2010274409A (en) 2009-05-29 2009-05-29 Small diameter drill for machining machinable ceramics

Publications (1)

Publication Number Publication Date
JP2010274409A true JP2010274409A (en) 2010-12-09

Family

ID=43421837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145804A Pending JP2010274409A (en) 2009-05-29 2009-05-29 Small diameter drill for machining machinable ceramics

Country Status (1)

Country Link
JP (1) JP2010274409A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058027A (en) * 2012-09-19 2014-04-03 Nippon Choko Kk Drill
US20150283624A1 (en) * 2012-10-25 2015-10-08 Sumitomo Electric Hardmetal Corp. Small-diameter drill
EP3444059A4 (en) * 2016-04-15 2019-12-18 Mitsubishi Hitachi Tool Engineering, Ltd. Small-diameter drill bit
EP3682993A4 (en) * 2017-09-14 2021-06-16 Mitsubishi Hitachi Tool Engineering, Ltd. Small-diameter drill and small-diameter drill manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058027A (en) * 2012-09-19 2014-04-03 Nippon Choko Kk Drill
US20150283624A1 (en) * 2012-10-25 2015-10-08 Sumitomo Electric Hardmetal Corp. Small-diameter drill
US9522428B2 (en) * 2012-10-25 2016-12-20 Sumitomo Electric Hardmetal Corp. Small-diameter drill
EP3444059A4 (en) * 2016-04-15 2019-12-18 Mitsubishi Hitachi Tool Engineering, Ltd. Small-diameter drill bit
US11413690B2 (en) 2016-04-15 2022-08-16 Moldino Tool Engineering, Ltd. Small-diameter drill bit
EP3682993A4 (en) * 2017-09-14 2021-06-16 Mitsubishi Hitachi Tool Engineering, Ltd. Small-diameter drill and small-diameter drill manufacturing method
US11090738B2 (en) 2017-09-14 2021-08-17 Moldino Tool Engineering, Ltd. Small-diameter drill and small-diameter drill manufacturing method

Similar Documents

Publication Publication Date Title
CN111163890B (en) Diamond coated rotary cutting tool
EP3444059A1 (en) Small-diameter drill bit
JP6253533B2 (en) Cutting tool manufacturing method
JP6828824B2 (en) Manufacturing method of small diameter drill and small diameter drill
JP2011073129A (en) Boring drill
JP2010274409A (en) Small diameter drill for machining machinable ceramics
JP5974695B2 (en) Drill and method for manufacturing drill tip
JP2010162677A5 (en)
JP2008183657A (en) Single crystal diamond multi-cutting tool and its manufacturing method
KR102466297B1 (en) ball end mill
WO2021066046A1 (en) Rotary cutting tool
WO2019073752A1 (en) Rotary cutting tool
JP2008062369A (en) Method of producing tip to be mounted on boring tool, method of producing boring tool, and boring tool
JP6015527B2 (en) End mill
JP6179165B2 (en) Radius end mill
JP6212863B2 (en) Radius end mill
JP3639227B2 (en) Drilling tools for brittle materials
JP2006088242A (en) Drilling tool
KR20110023709A (en) Rotary cutting tool
JP2003251512A (en) Diamond tool and hole drilling method by use of the same
JP5939687B2 (en) Cutting tools
JP2002137108A (en) Drilling method for brittle material and drilling tool used therefor
JP6080304B2 (en) Cutting tools
US11491559B2 (en) End mill
JP2002292521A (en) Tap