JP2010274406A - Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine - Google Patents

Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine Download PDF

Info

Publication number
JP2010274406A
JP2010274406A JP2009132162A JP2009132162A JP2010274406A JP 2010274406 A JP2010274406 A JP 2010274406A JP 2009132162 A JP2009132162 A JP 2009132162A JP 2009132162 A JP2009132162 A JP 2009132162A JP 2010274406 A JP2010274406 A JP 2010274406A
Authority
JP
Japan
Prior art keywords
driving force
grindstone
poured
current
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009132162A
Other languages
Japanese (ja)
Inventor
Tomokazu Yamashita
友和 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009132162A priority Critical patent/JP2010274406A/en
Publication of JP2010274406A publication Critical patent/JP2010274406A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring a projection amount of abrasive grains in a grinding wheel, more easily measuring the projection amount of the abrasive grains of the grinding wheel without grinding a workpiece, and also to provide a grinding machine performing dressing at appropriate timing, based on the projection amount of the obtained abrasive grains, and a method for measuring the surface roughness of a rotor more easily without being limited by the projection amount of the abrasive grains of the grinding wheel. <P>SOLUTION: A driving force detection means DS measuring the driving force rotatively driving the rotor is used, fluid is poured to the surface of the rotatively driven rotor, and the surface roughness of the rotor is obtained based on the difference of the driving force detected by using the driving force detection means in the case where the fluid is poured and in the case where the fluid is not poured, or on the driving force detected by using the driving force detection means in the case where the fluid is poured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、回転体の表面の微細な凹凸による表面粗さの測定方法、砥石における砥粒の突き出し量の測定方法、及び研削盤に関する。   The present invention relates to a method for measuring surface roughness due to fine irregularities on the surface of a rotating body, a method for measuring the amount of protrusion of abrasive grains on a grindstone, and a grinding machine.

従来より、回転駆動される砥石をワークに接触させてワークを研削する研削盤が知られている。砥石Tは図2(A)に示すように、結合剤等からなるベース部Tbに、微細な砥粒Trが混在している構造を有しており、ベース部Tbの表面から突出している砥粒Trにて研削が行われる。
砥石Tの研削性能を大きく左右するのは、主に図2(A)に示す砥粒Trの突き出し量Haであり、砥粒Trが摩耗して突き出し量Haが小さくなると研削性能が低下するため、定期的にドレッシングを行って砥粒Trを削ることなくベース部Tbの表面を除去し、砥粒Trの突き出し量Haを初期化している。
なお、本明細書では、ベース部Tbの表面を除去して砥粒Trの突き出し量Haを大きくする(初期化する)ことを「ドレッシング」と記載するが、砥石Tの輪郭形状を整える、いわゆるツルーイングも、「ドレッシング」に含むものとする。
砥粒Trが摩耗して突き出し量Haが小さくなり研削性能が低下すると、加工時間の長時間化や、加工精度にも影響が及ぶため、適切な時期にドレッシングをする必要がある。しかし、砥粒Trの突き出し量Haは、例えば数十[μm]程度であり、直接的に測定するのは非常に困難であり、ドレッシング時期の判定は、非常に困難である。
そこで、従来では、過去の加工実績に基づいて、砥石の仕様と加工したワークの量からドレッシング時期を決定したり、作業者が実際の研削状態を確認してドレッシング時期を決定したり、研削盤の機外で(砥石Tを取り外して)砥石Tの表面を測定してドレッシング時期を決定したりしている。
また、例えば特許文献1に記載された従来技術では、砥石を駆動するモータの駆動電流を検出するセンサを設け、砥石でワークを研削した際のモータの電流を検出することで、モータの負荷を検出してドレッシング時期を決定する、研削盤のドレッシング装置が開示されている。
Conventionally, a grinding machine that grinds a workpiece by bringing a grindstone that is rotationally driven into contact with the workpiece is known. As shown in FIG. 2 (A), the grindstone T has a structure in which fine abrasive grains Tr are mixed in a base portion Tb made of a binder or the like and protrudes from the surface of the base portion Tb. Grinding is performed with the grains Tr.
The grinding performance of the grindstone T largely depends on the protrusion amount Ha of the abrasive grains Tr shown in FIG. 2A, and the grinding performance deteriorates when the abrasive grains Tr wear and the protrusion amount Ha decreases. The surface of the base portion Tb is removed without performing dressing periodically to remove the abrasive grains Tr, and the protruding amount Ha of the abrasive grains Tr is initialized.
In this specification, removing the surface of the base portion Tb to increase (initialize) the protruding amount Ha of the abrasive grains Tr is described as “dressing”, but the so-called contour shape of the grindstone T is adjusted. Truing is also included in “dressing”.
When the abrasive grains Tr are worn and the protruding amount Ha is reduced and the grinding performance is lowered, the processing time is prolonged and the processing accuracy is affected. Therefore, it is necessary to perform dressing at an appropriate time. However, the protrusion amount Ha of the abrasive grains Tr is, for example, about several tens [μm], and it is very difficult to directly measure, and the determination of the dressing time is very difficult.
Therefore, conventionally, based on the past processing results, the dressing time is determined from the specifications of the grindstone and the amount of the processed workpiece, the operator confirms the actual grinding state and determines the dressing time, The surface of the grinding wheel T is measured outside the machine (with the grinding wheel T removed) to determine the dressing time.
Moreover, in the prior art described in Patent Document 1, for example, a sensor that detects a drive current of a motor that drives a grindstone is provided, and the motor load is detected by detecting the current of the motor when a workpiece is ground with the grindstone. A dressing device for a grinding machine that detects and determines the dressing time is disclosed.

特開平5−77160号公報JP-A-5-77160

過去の加工実績や、作業者による研削状態の確認にてドレッシング時期を決定する従来の方法では、誤差が大きく、余裕を持たせるために比較的早期となるようにドレッシング時期が決定され、加工の中断回数の増加や、砥石の寿命の短縮化を招くので好ましくない。
また、機外で砥石Tの表面を測定する方法は、手間がかかるとともに測定にも時間がかかり、加工の中断時間が長くなるので好ましくない。
また、特許文献1に記載された従来技術では、実際に、砥石を用いて、実際のワークを研削しなければならない。
本発明は、このような点に鑑みて創案されたものであり、ワークを研削することなく、砥石の砥粒の突き出し量をより容易に測定することが可能な、砥石における砥粒の突き出し量の測定方法、及び、求めた砥粒の突き出し量に基づいて適切な時期にドレッシングを行うことができる研削盤、更に、砥石の砥粒の突き出し量に限定されず、より容易に回転体の表面粗さを測定する方法を提供することを課題とする。
In the conventional method of determining the dressing time by confirming the past machining results and the grinding state by the operator, the dressing time is determined so as to be relatively early in order to have a large error and allow a margin. This is not preferable because it increases the number of interruptions and shortens the life of the grindstone.
Further, the method of measuring the surface of the grindstone T outside the machine is not preferable because it takes time and time for measurement, and the processing interruption time becomes long.
Moreover, in the prior art described in Patent Document 1, an actual workpiece must actually be ground using a grindstone.
The present invention was devised in view of such points, and the amount of protrusion of abrasive grains in the grindstone that can more easily measure the amount of protrusion of abrasive grains of the grindstone without grinding the workpiece. And a grinding machine capable of performing dressing at an appropriate time based on the determined protruding amount of abrasive grains, and moreover, it is not limited to the protruding amount of abrasive grains of the grindstone, and more easily the surface of the rotating body It is an object of the present invention to provide a method for measuring roughness.

上記課題を解決するための手段として、本発明の第1発明は、請求項1に記載されたとおりの回転体の表面粗さの測定方法である。
請求項1に記載の回転体の表面粗さの測定方法は、回転体を回転駆動する駆動力を検出可能な駆動力検出手段と、制御手段と、を用い、前記制御手段にて、回転駆動される回転体の表面に液体を注ぎ、前記液体を注いでいる場合と注いでいない場合とにおける前記駆動力検出手段を用いて検出した駆動力の差、あるいは前記液体を注いでいる場合における前記駆動力検出手段を用いて検出した駆動力、に基づいて、前記回転体の表面粗さを求めるステップを有する、回転体の表面粗さの測定方法である。
As means for solving the above-mentioned problems, the first invention of the present invention is a method for measuring the surface roughness of a rotating body as described in claim 1.
The method for measuring the surface roughness of a rotating body according to claim 1 uses a driving force detecting means capable of detecting a driving force for rotationally driving the rotating body, and a control means, and the control means rotates the driving force. The liquid is poured onto the surface of the rotating body, the difference between the driving force detected by using the driving force detecting means when the liquid is poured and when the liquid is not poured, or when the liquid is poured It is a measuring method of the surface roughness of a rotating body which has a step which calculates | requires the surface roughness of the said rotating body based on the driving force detected using the driving force detection means.

また、本発明の第2発明は、請求項2に記載されたとおりの回転体の表面粗さの測定方法である。
請求項2に記載の回転体の表面粗さの測定方法は、請求項1に記載の回転体の表面粗さの測定方法であって、前記駆動力検出手段は、前記回転体を回転駆動する駆動モータの電力または電流の少なくとも一方を検出可能であり、記憶手段に、予め前記表面粗さに対応させて、前記液体を注いでいる場合と注いでいない場合とにおける電力または電流の少なくとも一方の差、あるいは前記液体を注いでいる場合における電力または電流の少なくとも一方、を測定した、表面粗さ−駆動力特性を記憶しておく。
そして前記制御手段にて、前記駆動力検出手段を用いて、前記駆動モータの電力または電流の少なくとも一方を、前記液体を前記回転体に注いでいる場合と注いでいない場合とのそれぞれにて測定する、あるいは前記液体を前記回転体に注いでいる場合に測定する、ステップと、測定した電力または電流の少なくとも一方の差、あるいは測定した電力または電流の少なくとも一方、と、前記表面粗さ−駆動力特性と、に基づいて前記回転体の表面粗さを求めるステップと、を有する回転体の表面粗さの測定方法である。
The second invention of the present invention is a method for measuring the surface roughness of a rotating body as described in claim 2.
The method for measuring the surface roughness of the rotating body according to claim 2 is the method for measuring the surface roughness of the rotating body according to claim 1, wherein the driving force detecting means rotationally drives the rotating body. At least one of the power or current of the drive motor can be detected, and at least one of the power and current in the case where the liquid is poured and the case where the liquid is not poured corresponding to the surface roughness in advance in the storage means. A surface roughness-driving force characteristic obtained by measuring a difference or at least one of electric power and current when the liquid is poured is stored.
Then, the control means uses the driving force detection means to measure at least one of the electric power or current of the driving motor when the liquid is poured into the rotating body and when the liquid is not poured. Or measuring when pouring the liquid into the rotating body, a difference between at least one of measured power or current, or at least one of measured power or current, and surface roughness-drive Determining the surface roughness of the rotating body based on force characteristics, and measuring the surface roughness of the rotating body.

また、本発明の第3発明は、請求項3に記載されたとおりの砥石における砥粒の突き出し量の測定方法である。
請求項3に記載の砥石における砥粒の突き出し量の測定方法は、砥石を回転駆動する駆動力を検出可能な駆動力検出手段と、制御手段と、を用い、前記砥石の表面に突出している砥粒の突き出し量を測定する、砥石における砥粒の突き出し量の測定方法であって、前記制御手段にて、回転駆動される前記砥石の表面に液体を注ぎ、前記液体を注いでいる場合と注いでいない場合とにおける前記駆動力検出手段を用いて検出した駆動力の差、あるいは前記液体を注いでいる場合における前記駆動力検出手段を用いて検出した駆動力、に基づいて、前記砥石の表面の砥粒の突き出し量を求めるステップを有する、砥石における砥粒の突き出し量の測定方法である。
A third invention of the present invention is a method for measuring an amount of protrusion of abrasive grains in a grindstone as described in claim 3.
The method for measuring the protrusion amount of the abrasive grains in the grindstone according to claim 3 uses a driving force detecting means capable of detecting a driving force for rotationally driving the grindstone, and a control means, and projects onto the surface of the grindstone. A method for measuring the amount of abrasive grain protruding in a grindstone for measuring the amount of abrasive grain protruding, wherein the control means pours liquid onto the surface of the grindstone that is rotationally driven, and pours the liquid. Based on the difference in driving force detected using the driving force detection means when not pouring or the driving force detected using the driving force detection means when pouring the liquid, It is a measuring method of the protrusion amount of the abrasive grain in a grindstone which has the step which calculates | requires the protrusion amount of the surface abrasive grain.

また、本発明の第4発明は、請求項4に記載されたとおりの砥石における砥粒の突き出し量の測定方法である。
請求項4に記載の砥石における砥粒の突き出し量の測定方法は、請求項3に記載の砥石における砥粒の突き出し量の測定方法であって、前記液体は、クーラントであり、前記駆動力検出手段は、前記砥石を回転駆動する駆動モータの電力または電流の少なくとも一方を検出可能であり、記憶手段に、予め砥粒の突き出し量に対応させて、前記クーラントを注いでいる場合と注いでいない場合とにおける電力または電流の少なくとも一方の差、あるいは前記クーラントを注いでいる場合における電力または電流の少なくとも一方、を測定した、突き出し量−駆動力特性を記憶しておく。
そして前記制御手段にて、前記駆動力検出手段を用いて、前記駆動モータの電力または電流の少なくとも一方を、前記クーラントを前記砥石に注いでいる場合と注いでいない場合とのそれぞれにて測定する、あるいは前記クーラントを前記砥石に注いでいる場合に測定する、ステップと、測定した電力または電流の少なくとも一方の差、あるいは測定した電力または電流の少なくとも一方、と、前記突き出し量−駆動力特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求めるステップと、を有する砥石における砥粒の突き出し量の測定方法である。
A fourth invention of the present invention is a method for measuring an amount of protrusion of abrasive grains in a grindstone as described in claim 4.
The method for measuring the protruding amount of abrasive grains in the grindstone according to claim 4 is the measuring method of the protruding amount of abrasive grains in the grindstone according to claim 3, wherein the liquid is a coolant, and the driving force detection The means is capable of detecting at least one of electric power or current of a driving motor that rotationally drives the grindstone, and is not poured when the coolant is poured into the storage means in advance corresponding to the protruding amount of the abrasive grains. A protrusion amount-driving force characteristic obtained by measuring a difference between at least one of the power and the current and the power or at least one when the coolant is poured is stored.
Then, the control means uses the driving force detection means to measure at least one of the electric power or current of the driving motor in each of the case where the coolant is poured into the grindstone and the case where the coolant is not poured. Or measuring when the coolant is poured into the grindstone, a difference between at least one of the measured power or current, or at least one of the measured power or current, and the protrusion amount-driving force characteristic And determining the protrusion amount of abrasive grains on the surface of the grindstone based on the above, and a method for measuring the protrusion amount of abrasive grains in the grindstone.

また、本発明の第5発明は、請求項5に記載されたとおりの研削盤である。
請求項5に記載の研削盤は、回転駆動される砥石と、前記砥石を回転駆動する駆動モータの電力または電流の少なくとも一方を検出可能な駆動力検出手段と、前記砥石をドレッシング可能なドレッシング手段と、制御手段と、を備えた研削盤である。
前記制御手段には、予め前記砥石の砥粒の突き出し量に対応させて、クーラントを前記砥石に注いでいる場合と注いでいない場合とにおける電力または電流の少なくとも一方の差、あるいはクーラントを前記砥石に注いでいる場合における電力または電流の少なくとも一方、を測定した、突き出し量−駆動力特性が記憶されている。
そして前記制御手段は、前記駆動力検出手段を用いて、前記駆動モータの電力または電流の少なくとも一方を、前記クーラントを前記砥石に注いでいる場合と注いでいない場合とのそれぞれにて測定し、あるいは前記クーラントを前記砥石に注いでいる場合に測定し、測定した電力または電流の少なくとも一方の差、あるいは測定した電力または電流の少なくとも一方、と、前記突き出し量−駆動力特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求め、求めた砥粒の突き出し量が所定突き出し量以下の場合、前記ドレッシング手段を用いて前記砥石をドレッシングする。
The fifth invention of the present invention is a grinding machine as set forth in claim 5.
The grinding machine according to claim 5 is a grindstone that is rotationally driven, a driving force detecting means that can detect at least one of electric power or current of a driving motor that rotationally drives the grindstone, and a dressing means that can dress the grindstone. And a control means.
The control means preliminarily corresponds to the protrusion amount of the abrasive grains of the grindstone, and the difference between at least one of electric power and current when the coolant is poured into the grindstone and when the coolant is not poured, or the coolant is the grindstone. The protrusion amount-driving force characteristic obtained by measuring at least one of the electric power and the current in the case where the electric power is poured is stored.
Then, the control means uses the driving force detection means to measure at least one of electric power or current of the driving motor in each of the case where the coolant is poured into the grindstone and the case where the coolant is not poured. Alternatively, measured when the coolant is poured into the grindstone, and based on the difference between at least one of the measured power or current, or at least one of the measured power or current, and the protrusion amount-driving force characteristic The protrusion amount of the abrasive grains on the surface of the grindstone is obtained, and when the obtained protrusion amount of the abrasive grains is equal to or less than the predetermined protrusion amount, the grindstone is dressed using the dressing means.

請求項1に記載の回転体の表面粗さの測定方法を用いれば、回転体の表面を傷つけることなく、より容易に表面粗さを測定することができる。   If the measuring method of the surface roughness of the rotating body according to claim 1 is used, the surface roughness can be measured more easily without damaging the surface of the rotating body.

また、請求項2に記載の回転体の表面粗さの測定方法によれば、回転体の表面を傷つけることなく、回転体の表面粗さを測定する方法を、比較的容易に実現することができる。   According to the method for measuring the surface roughness of the rotating body according to claim 2, it is possible to relatively easily realize the method for measuring the surface roughness of the rotating body without damaging the surface of the rotating body. it can.

また、請求項3に記載の砥石における砥粒の突き出し量の測定方法によれば、実際にワークを研削したり高精度な形状測定装置により直接砥粒の突き出し量を測定したりすることなく、より容易に砥石における砥粒の突き出し量を測定することができる。   Further, according to the method for measuring the protruding amount of abrasive grains in the grindstone according to claim 3, without actually grinding the workpiece or measuring the protruding amount of the abrasive grains directly with a highly accurate shape measuring device, The protruding amount of abrasive grains in the grindstone can be measured more easily.

また、請求項4に記載の砥石における砥粒の突き出し量の測定方法によれば、実際にワークを研削したり高精度な形状測定装置により直接砥粒の突き出し量を測定したりすることなく、砥石における砥粒の突き出し量を測定する方法を、比較的容易に実現することができる。また、駆動モータの電力または電流の少なくとも一方を検出する駆動力検出手段であれば、砥石を備えた研削盤の機上に容易に搭載可能である。   Further, according to the method for measuring the amount of protrusion of abrasive grains in the grindstone according to claim 4, without actually grinding the workpiece or measuring the amount of protrusion of abrasive grains directly with a highly accurate shape measuring device, A method for measuring the protruding amount of abrasive grains on the grindstone can be realized relatively easily. Further, any driving force detecting means for detecting at least one of the electric power or current of the driving motor can be easily mounted on a grinding machine equipped with a grindstone.

また、請求項5に記載の研削盤によれば、遅すぎず、且つ早すぎず、適切な時期に、適切なドレス量で砥石のドレッシングを行うことができるので、加工効率の低下や砥石寿命の低下、ドレスストーンの消費量やドレス時間を適切に抑制することができる研削盤を実現することができる。   Further, according to the grinding machine of claim 5, since the dressing of the grindstone can be performed with an appropriate dressing amount at an appropriate time without being too late and not too early, the processing efficiency is reduced and the grindstone life is shortened. It is possible to realize a grinding machine that can appropriately suppress the decrease in the consumption of dress stones and the dressing time.

本発明の研削盤1の一実施の形態を説明する平面図(A)、及び側面図(B)である。It is the top view (A) and side view (B) explaining one embodiment of the grinding machine 1 of the present invention. 砥石Tにおける砥粒Trの突き出し量Haを説明する図である。It is a figure explaining the protrusion amount Ha of the abrasive grain Tr in the grindstone T. 砥石Tにおける砥粒Trの突き出し量Haの測定方法を説明する図である。5 is a diagram for explaining a method for measuring the protrusion amount Ha of abrasive grains Tr on a grindstone T. FIG.

以下に本発明を実施するための形態を図面を用いて説明する。図1(A)は、本発明の研削盤1の一実施の形態における平面図の例を示しており、図1(B)は、研削盤1の右側面図の例を示している。なお、図1(B)では、主軸台(右)DRを備えた主軸装置(右)の記載を省略している。
また、X軸、Y軸、Z軸が記載されている全ての図面において、X軸とY軸とZ軸は互いに直交しており、Y軸は鉛直上向きを示しており、Z軸とX軸は水平方向を示している。そしてZ軸はワーク回転軸方向を示しており、X軸方向は砥石TがワークWに切り込む方向を示している。
EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated using drawing. FIG. 1A shows an example of a plan view in an embodiment of the grinding machine 1 of the present invention, and FIG. 1B shows an example of a right side view of the grinding machine 1. In FIG. 1B, the description of the spindle device (right) including the headstock (right) DR is omitted.
Moreover, in all drawings in which the X axis, the Y axis, and the Z axis are described, the X axis, the Y axis, and the Z axis are orthogonal to each other, the Y axis indicates a vertically upward direction, and the Z axis and the X axis Indicates the horizontal direction. The Z axis indicates the workpiece rotation axis direction, and the X axis direction indicates the direction in which the grindstone T cuts into the workpiece W.

●[研削盤1の全体構成(図1(A)、(B))]
図1(A)及び(B)に示すように、研削盤1は、ワーク回転軸WZ回りに回転しているワークWに対して、砥石回転軸TZ回りに回転している略円筒形状の砥石Tを相対移動させてワークWを研削する。なお、各可動体の位置等を検出して各駆動モータに制御信号を出力する制御手段(NC制御装置等)については、図示を省略する。なお、ワーク回転軸WZと砥石回転軸TZは、どちらもZ軸と平行である。
ワークWは、センタ部材CLを備えた主軸装置(左)と、センタ部材CRを備えた主軸装置(右)に両端(または両端近傍)が支持されている(センタ部材の代わりに少なくとも一方がチャックであってもよい)。
● [Overall configuration of grinding machine 1 (FIGS. 1A, 1B)]
As shown in FIGS. 1 (A) and 1 (B), the grinding machine 1 has a substantially cylindrical grindstone rotating about the grindstone rotation axis TZ with respect to the workpiece W rotating about the workpiece rotation axis WZ. The workpiece W is ground by moving T relatively. In addition, illustration is abbreviate | omitted about the control means (NC control apparatus etc.) which detects the position etc. of each movable body, and outputs a control signal to each drive motor. Both the workpiece rotation axis WZ and the grindstone rotation axis TZ are parallel to the Z axis.
The workpiece W is supported at both ends (or near both ends) by a spindle device (left) having a center member CL and a spindle device (right) having a center member CR (at least one chuck is used instead of the center member). May be).

主軸装置(左)は、基台BSに載置された主軸台(左)DLと、主軸台(左)DLに対してZ軸方向に往復移動可能な主軸ハウジング(左)HLと、主軸ハウジング(左)HL内でワーク回転軸WZ回りに回転可能に支持された主軸(左)SLとを備えている。また、主軸(左)SLの一端にはセンタ部材CLが設けられている。
主軸(左)SLには図示しない駆動モータが設けられており、制御手段は、センタ部材CLの先端をとおるワーク回転軸WZ回りに主軸(左)SLを、任意の角速度で任意の角度まで回転させることができる。
なお、主軸台(右)DRを備えた主軸装置(右)も同様であり、主軸装置(右)については説明を省略する。
制御手段は、主軸(左)SLと主軸(右)SRを同期させて回転させることができる。
The spindle device (left) includes a spindle base (left) DL mounted on a base BS, a spindle housing (left) HL that can reciprocate in the Z-axis direction with respect to the spindle base (left) DL, and a spindle housing (Left) A main shaft (left) SL supported rotatably around the workpiece rotation axis WZ in the HL. A center member CL is provided at one end of the main shaft (left) SL.
The main shaft (left) SL is provided with a drive motor (not shown), and the control means rotates the main shaft (left) SL around the work rotation axis WZ passing through the tip of the center member CL to an arbitrary angle at an arbitrary angular velocity. Can be made.
The same applies to the spindle device (right) including the headstock (right) DR, and the description of the spindle device (right) is omitted.
The control means can rotate the main shaft (left) SL and the main shaft (right) SR in synchronization.

また、基台BSには、Z軸駆動モータMXにて制御されるボールねじNXの回転角度に応じて、ガイドGXに沿ってZ軸方向の任意の位置に位置決めされる砥石スライドテーブル40が載置されている。制御手段はエンコーダ等の位置検出手段EXからの信号を検出しながらZ軸駆動モータMXに制御信号を出力する。
砥石スライドテーブル40には、X軸駆動モータMZにて制御されるボールねじNZの回転角度に応じて、ガイドGZに沿ってX軸方向の任意の位置に位置決めされる砥石進退テーブル41が載置されている。制御手段はエンコーダ等の位置検出手段EZからの信号を検出しながらX軸駆動モータMZに制御信号を出力する。
Also, on the base BS, a grindstone slide table 40 that is positioned at an arbitrary position in the Z-axis direction along the guide GX according to the rotation angle of the ball screw NX controlled by the Z-axis drive motor MX is mounted. Is placed. The control means outputs a control signal to the Z-axis drive motor MX while detecting a signal from the position detection means EX such as an encoder.
Mounted on the grindstone slide table 40 is a grindstone advance / retreat table 41 positioned at an arbitrary position in the X-axis direction along the guide GZ according to the rotation angle of the ball screw NZ controlled by the X-axis drive motor MZ. Has been. The control means outputs a control signal to the X-axis drive motor MZ while detecting a signal from the position detection means EZ such as an encoder.

砥石進退テーブル41には、砥石Tへの回転動力を発生させる砥石駆動モータMTが固定されている。また砥石駆動モータMTには、駆動力である電力を検出可能な駆動力検出手段DSが設けられている。
砥石駆動モータMTは駆動プーリ21に接続され、駆動プーリ21はベルト22を介して従動プーリ24に回転動力を伝達する。また従動プーリ24は、軸ホルダ25内にて砥石回転軸TZ回りに回転可能に支持された砥石軸部材の一端に接続されており、砥石軸部材の他端には略円板状の砥石Tが接続されている。
また、本実施の形態にて説明する研削盤1では、砥石Tの支持方法が片持ち式の例を示しているが、両持ち式で砥石Tを支持してもよい。
また、砥石Tは、少なくとも一部が開口した略箱状の砥石覆い12に収容されている。
A grindstone drive motor MT that generates rotational power to the grindstone T is fixed to the grindstone advance / retreat table 41. The grindstone driving motor MT is provided with driving force detecting means DS capable of detecting electric power as driving force.
The grindstone drive motor MT is connected to the drive pulley 21, and the drive pulley 21 transmits rotational power to the driven pulley 24 via the belt 22. The driven pulley 24 is connected to one end of a grindstone shaft member that is rotatably supported in the shaft holder 25 around the grindstone rotation axis TZ, and the other end of the grindstone shaft member has a substantially disc-shaped grindstone T. Is connected.
Moreover, in the grinding machine 1 demonstrated in this Embodiment, although the support method of the grindstone T has shown the example of the cantilever type, you may support the grindstone T by a double-support type.
The grindstone T is accommodated in a substantially box-shaped grindstone cover 12 having at least a part opened.

なお、図1(B)に示すように、砥石回転軸TZとワーク回転軸WZは仮想平面MF上に位置している。この状態で砥石TをワークWに対して相対的に近づけていき、ワークWと砥石Tとが接触した位置における砥石Tの側の点を砥石研削点TPとする。
また、研削盤1には、砥石研削点TPの近傍にクーラントを供給するクーラントノズルCNが設けられている。
また、図1(A)及び(B)の例に示す研削盤1では、砥石Tのドレッシングを行うドレッシング手段TRが、主軸ハウジング(左)HLに取り付けられている。
As shown in FIG. 1B, the grindstone rotation axis TZ and the workpiece rotation axis WZ are located on the virtual plane MF. In this state, the grindstone T is brought relatively close to the workpiece W, and a point on the grindstone T side at a position where the workpiece W and the grindstone T are in contact with each other is defined as a grindstone grinding point TP.
Further, the grinding machine 1 is provided with a coolant nozzle CN that supplies coolant in the vicinity of the grinding wheel grinding point TP.
In the grinding machine 1 shown in the examples of FIGS. 1A and 1B, the dressing means TR for dressing the grindstone T is attached to the spindle housing (left) HL.

●[砥石Tにおける砥粒Trの突き出し量Ha(図2(A))]
砥石Tは、例えば金属の円盤状のベース基盤に、結合剤等からなるベース部Tbに高硬度の砥粒Trが混在している円筒状の砥石部材が取り付けられた構成を有している。そして、図2(A)に示すように、ベース部Tbの表面から突出している砥粒Trにて研削が行われる。
砥石Tの研削性能は、砥粒Trの突き出し量Haが大きく影響し、砥粒Trの摩耗が進み、突き出し量Haが小さくなると(図2(C)参照)研削性能が低下するので、定期的にドレッシングを行い、砥粒Trを削ることなくベース部Tbの表面を除去して突き出し量Haを大きくする(初期化する)必要がある。
● [Protrusion amount Ha of the abrasive grains Tr on the grinding wheel T (FIG. 2A)]
The grindstone T has a configuration in which a cylindrical grindstone member in which high-hardness abrasive grains Tr are mixed is attached to a base portion Tb made of a binder or the like, for example, on a metal disc-shaped base base. And as shown to FIG. 2 (A), grinding is performed by the abrasive grain Tr which protrudes from the surface of the base part Tb.
The grinding performance of the grindstone T is greatly influenced by the protrusion amount Ha of the abrasive grains Tr. As the wear of the abrasive grains Tr progresses and the protrusion amount Ha decreases (see FIG. 2C), the grinding performance decreases. It is necessary to remove the surface of the base portion Tb without cutting the abrasive grains Tr and increase (initialize) the protruding amount Ha.

砥石Tのドレッシングの時期を見極めるには、砥粒Trの突き出し量Haを測定すればよいが、突き出し量Haは数十[μm]程度であり、しかも研削盤1に取り付けられている状態で突き出し量Haを正確に測定するのは非常に困難である。
そこで従来では、過去の加工実績からワークをn本加工する毎にドレッシングを行ったり、熟練作業者によるワークの加工状態からドレッシング時期を決定したりしていた。
しかし、この方法では誤差が大きく、余裕を持たせるために比較的早めにドレッシングを行う結果となり、加工の中断回数の増加や、砥石寿命の低下を招くので好ましくない。
また、特開平5−77160号公報に記載の砥石駆動モータの電流を計測する方法は、実際のワークを研削しなければならない。
本実施の形態にて説明する砥石Tにおける砥粒Trの突き出し量Haの測定方法では、実際のワークを研削することなく(砥石Tを摩耗させることなく)突き出し量Haを測定可能である。
To determine the timing of dressing of the grindstone T, the protrusion amount Ha of the abrasive grains Tr may be measured, but the protrusion amount Ha is about several tens [μm] and the protrusion is attached to the grinding machine 1. It is very difficult to accurately measure the quantity Ha.
Therefore, conventionally, dressing is performed every time n workpieces are processed based on past processing results, or the dressing time is determined from the processing state of the workpiece by a skilled worker.
However, this method is not preferable because the error is large and the dressing is performed relatively early in order to provide a margin, which increases the number of processing interruptions and decreases the life of the grinding wheel.
Moreover, the method of measuring the current of the grindstone drive motor described in Japanese Patent Application Laid-Open No. 5-77160 requires grinding an actual workpiece.
In the method for measuring the protrusion amount Ha of the abrasive grains Tr in the grindstone T described in the present embodiment, the protrusion amount Ha can be measured without grinding the actual workpiece (without wearing the grindstone T).

●[砥石Tにおける砥粒Trの突き出し量Haの測定方法(図2(B)、(C)、図3(A)〜(C))]
例えば図2(B)と図2(C)は、突き出し量Haの他の条件(砥石Tの径、回転速度等)が同じ場合の例を示しており、この場合、突き出し量Haが小さい図2(C)よりも、突き出し量Haが大きい図2(B)のほうが、砥石Tの表面の流体による、回転方向と反対の力である抗力が大きくなる(Fa>Fb)。更に、砥石Tの表面に気体でなく液体(この場合、クーラント)を注いだ場合、抗力は更に大きくなり、砥石Tを一定回転数に維持するために、砥石駆動モータMTの駆動力が増大する。
従って、砥石Tで実際のワークを研削しなくても、この駆動力を測定することで、突き出し量Haを求めることが可能となる。
なお、砥石駆動モータMTの駆動力は、砥石駆動モータMTの電力または電流を測定することで求めることができる。
以下、「駆動力の差を用いて突き出し量を測定する方法」と、「駆動力を用いて突き出し量を測定する方法」について説明する。
[Measurement method of protrusion amount Ha of abrasive grains Tr on the grindstone T (FIGS. 2B, 3C, 3A to 3C)]
For example, FIG. 2 (B) and FIG. 2 (C) show examples in which other conditions (the diameter of the grindstone T, the rotational speed, etc.) of the protrusion amount Ha are the same. In this case, the protrusion amount Ha is small. In FIG. 2 (B) where the protruding amount Ha is larger than 2 (C), the drag, which is the force opposite to the rotation direction, due to the fluid on the surface of the grindstone T becomes larger (Fa> Fb). Further, when a liquid (in this case, a coolant) is poured on the surface of the grindstone T, the drag is further increased, and the driving force of the grindstone drive motor MT is increased to maintain the grindstone T at a constant rotational speed. .
Therefore, even if the actual workpiece is not ground with the grindstone T, it is possible to obtain the protrusion amount Ha by measuring this driving force.
The driving force of the grindstone drive motor MT can be obtained by measuring the power or current of the grindstone drive motor MT.
Hereinafter, “a method for measuring the protrusion amount using the difference in driving force” and “a method for measuring the protrusion amount using the driving force” will be described.

[駆動力の差を用いて突き出し量を測定する方法]
次に、「駆動力の『差』」を用いて突き出し量を測定する手順を説明する。
予め、砥石仕様(砥粒の種類、砥石の径等)に対する、突き出し量Haと砥石駆動モータMTの電力の関係を示す換算表またはグラフ等(図3(C)参照。突き出し量−駆動力特性に相当)を作成する。駆動力検出手段DSを用いて、種々の突き出し量Ha(この場合、レーザ測定器等、種々の測定器を用いて突き出し量Haを測定することができる)に対して、砥石Tにクーラントを注いだ場合の電力と、注いでいない場合の電力との差を測定する。
例えば図3(B)は、砥石Tを一定回転数(例えば3000rpm)に維持してクーラントOFF(注がない)-->クーラントON(注ぐ)-->クーラントOFF(注がない)とした場合の駆動力(電力)の測定結果を示しており、実線は突き出し量Haが大きい場合(突き出し量=Ha1)の駆動力(電力)の測定結果を示しており、点線は突き出し量Haが小さい場合(突き出し量=Ha2)の駆動力(電力)の測定結果を示している。この場合、突き出し量=Ha1では電力の差はΔFa1であり、突き出し量=Ha2では電力の差はΔFa2であることを示している。
そして、種々の突き出し量に対する電力の差を測定し、図3(C)に示すグラフや換算表等を作成し、作成したグラフや換算表である「突き出し量−駆動力特性」を研削盤1の制御手段(記憶手段に相当)に記憶しておく。ここで、図3(C)に示す「突き出し量−駆動力特性」において、突き出し量がHmin(所定突き出し量に相当)以下の場合(あるいは駆動力差がΔFmin以下の場合)、砥石Tのドレッシングが必要であるとする。
[Method of measuring the amount of protrusion using the difference in driving force]
Next, a procedure for measuring the protrusion amount using “the difference in driving force” will be described.
A conversion table or a graph showing the relationship between the protrusion amount Ha and the power of the grindstone drive motor MT with respect to the grinding wheel specifications (type of abrasive grains, diameter of the wheel, etc.) in advance (see FIG. 3C. Protrusion amount-driving force characteristics). Equivalent). Using the driving force detection means DS, the coolant is poured onto the grindstone T with respect to various protrusion amounts Ha (in this case, the protrusion amount Ha can be measured using various measuring devices such as a laser measuring device). Measure the difference between the power when it is normal and the power when it is not poured.
For example, Fig. 3 (B) shows the case where the grinding wheel T is maintained at a constant rotation speed (eg, 3000 rpm) and the coolant is turned off (no pour)-> coolant is turned on (poured)-> the coolant is turned off (no pour). The solid line shows the measurement result of the driving force (electric power) when the protrusion amount Ha is large (protrusion amount = Ha1), and the dotted line shows the case where the protrusion amount Ha is small The measurement result of the driving force (power) of (projection amount = Ha2) is shown. In this case, the difference in power is ΔFa1 when the protrusion amount = Ha1, and the difference in power is ΔFa2 when the protrusion amount = Ha2.
And the difference of the electric power with respect to various protrusion amount is measured, the graph, the conversion table, etc. which are shown in FIG.3 (C) are created, and the "projection amount-driving force characteristic" which is the created graph and the conversion table is used for the grinding machine 1. Is stored in the control means (corresponding to storage means). Here, in the “protrusion amount-driving force characteristic” shown in FIG. 3C, when the protrusion amount is equal to or smaller than Hmin (corresponding to a predetermined protrusion amount) (or when the driving force difference is equal to or smaller than ΔFmin), dressing of the grindstone T is performed. Is necessary.

研削盤1には、図1(A)及び(B)に示すように、駆動力検出手段DSとクーラントノズルCNが設けられている。
制御手段は、所定タイミング(例えばワークをm本加工する毎)にて、砥粒Trの突き出し量の測定を開始する。
最初のステップでは、制御手段は、砥石Tを回転させて駆動力検出手段DSを用いて電力を測定しながら、クーラントノズルCNからのクーラントを吐出または停止させ、電力の差を測定する。
そして次のステップでは、制御手段は、測定した電力の差と、突き出し量−駆動力特性とに基づいて、砥粒の突き出し量を求める。
そして次のステップでは、制御手段は、求めた突き出し量がHminより大きければ特にドレッシングは必要ないと判断し、求めた突き出し量がHmin以下である場合、ドレッシングが必要であると判断し、ドレッシング手段TRに対して砥石Tを相対移動させて砥石Tをドレッシングして、砥粒Trの突き出し量Haを初期化する。
As shown in FIGS. 1A and 1B, the grinding machine 1 is provided with a driving force detection means DS and a coolant nozzle CN.
The control means starts measuring the protruding amount of the abrasive grains Tr at a predetermined timing (for example, every time m workpieces are processed).
In the first step, the control means rotates the grindstone T and measures power using the driving force detection means DS, while discharging or stopping the coolant from the coolant nozzle CN, and measures the difference in power.
In the next step, the control means obtains the protrusion amount of the abrasive grains based on the measured difference in power and the protrusion amount-driving force characteristic.
In the next step, the control means determines that dressing is not particularly necessary if the obtained protrusion amount is larger than Hmin, and determines that dressing is necessary if the obtained protrusion amount is equal to or less than Hmin. The grindstone T is moved relative to TR to dress the grindstone T, and the protrusion amount Ha of the abrasive grains Tr is initialized.

[駆動力を用いて突き出し量を測定する方法]
次に、「駆動力」を用いて突き出し量を測定する手順を説明する。
上記と同様に、予め、突き出し量−駆動力特性を作成するが、砥石Tにクーラントを注いだ場合の電力を測定し、注いでいない場合の電力は測定しない。
例えば図3(B)は、砥石Tを一定回転数(例えば3000rpm)に維持してクーラントOFF(注がない)-->クーラントON(注ぐ)-->クーラントOFF(注がない)とした場合の駆動力(電力)の測定結果を示しており、実線は突き出し量Haが大きい場合(突き出し量=Ha1)の駆動力(電力)の測定結果を示しており、点線は突き出し量Haが小さい場合(突き出し量=Ha2)の駆動力(電力)の測定結果を示している。この場合、突き出し量=Ha1では電力はFa1であり、突き出し量=Ha2では電力はFa2であることを示している。
そして、種々の突き出し量に対する電力を測定し、グラフや換算表等を作成し、作成したグラフや換算表である「突き出し量−駆動力特性」を研削盤1の制御手段(記憶手段に相当)に記憶しておく。ここで「突き出し量−駆動力特性」において、突き出し量がHmin(所定突き出し量に相当)以下の場合、砥石Tのドレッシングが必要であるとする。
[Method of measuring the amount of protrusion using the driving force]
Next, a procedure for measuring the protrusion amount using “driving force” will be described.
Similar to the above, the protrusion amount-driving force characteristic is created in advance, but the power when coolant is poured into the grindstone T is measured, and the power when not poured is not measured.
For example, Fig. 3 (B) shows the case where the grinding wheel T is maintained at a constant rotation speed (eg, 3000 rpm) and the coolant is turned off (no pour)-> coolant is turned on (poured)-> the coolant is turned off (no pour). The solid line shows the measurement result of the driving force (electric power) when the protrusion amount Ha is large (protrusion amount = Ha1), and the dotted line shows the case where the protrusion amount Ha is small The measurement result of the driving force (power) of (projection amount = Ha2) is shown. In this case, the electric power is Fa1 when the protrusion amount = Ha1, and the electric power is Fa2 when the protrusion amount = Ha2.
And the electric power with respect to various protrusion amount is measured, a graph, a conversion table, etc. are created, and the control means (equivalent to memory | storage means) of the grinding machine 1 is made into the produced graph and the conversion table "protrusion amount-driving force characteristic". Remember it. Here, in the “protrusion amount-driving force characteristic”, it is assumed that dressing of the grindstone T is necessary when the protrusion amount is equal to or less than Hmin (corresponding to a predetermined protrusion amount).

研削盤1には、図1(A)及び(B)に示すように、駆動力検出手段DSとクーラントノズルCNが設けられている。
制御手段は、所定タイミング(例えばワークをm本加工する毎)にて、砥粒Trの突き出し量の測定を開始する。
最初のステップでは、制御手段は、砥石Tを回転させて駆動力検出手段DSを用いて電力を測定しながら、クーラントノズルCNからクーラントを吐出させ、電力を測定する。
そして次のステップでは、制御手段は、測定した電力と、突き出し量−駆動力特性とに基づいて、砥粒の突き出し量を求める。
そして次のステップでは、制御手段は、求めた突き出し量がHminより大きければ特にドレッシングは必要ないと判断し、求めた突き出し量がHmin以下である場合、ドレッシングが必要であると判断し、ドレッシング手段TRに対して砥石Tを相対移動させて砥石Tをドレッシングして、砥粒Trの突き出し量Haを初期化する。
As shown in FIGS. 1A and 1B, the grinding machine 1 is provided with a driving force detection means DS and a coolant nozzle CN.
The control means starts measuring the protruding amount of the abrasive grains Tr at a predetermined timing (for example, every time m workpieces are processed).
In the first step, the control means measures the electric power by discharging the coolant from the coolant nozzle CN while measuring the electric power using the driving force detecting means DS by rotating the grindstone T.
In the next step, the control means obtains the protrusion amount of the abrasive grains based on the measured electric power and the protrusion amount-driving force characteristic.
In the next step, the control means determines that dressing is not particularly necessary if the obtained protrusion amount is larger than Hmin, and determines that dressing is necessary if the obtained protrusion amount is equal to or less than Hmin. The grindstone T is moved relative to TR to dress the grindstone T, and the protrusion amount Ha of the abrasive grains Tr is initialized.

上記の説明では、砥石Tの駆動力として砥石駆動モータMTの電力を用いたが、砥石駆動モータMTの電流を用いてもよく、駆動力として、電力または電流の少なくとも一方を用いることができる。
以上、本実施の形態にて説明した砥石Tにおける砥粒Trの突き出し量Haの測定方法を用いれば、実際のワークを研削することなく、機上で突き出し量Haをより正確に測定することが可能であり、砥石Tのドレッシングの回数を必要最低限にすることが可能となり、加工の中断回数を低減することができる。また、不良品を出すことなく限界直前まで砥石Tを使用することができるので、砥石寿命を延ばすことができる。
In the above description, the electric power of the grindstone drive motor MT is used as the driving force of the grindstone T. However, the current of the grindstone drive motor MT may be used, and at least one of electric power or current can be used as the driving force.
As described above, if the method for measuring the protrusion amount Ha of the abrasive grains Tr in the grindstone T described in the present embodiment is used, the protrusion amount Ha can be measured more accurately on the machine without grinding the actual workpiece. It is possible to minimize the number of dressings of the grindstone T, and the number of processing interruptions can be reduced. Moreover, since the grindstone T can be used until just before the limit without producing defective products, the grindstone life can be extended.

[回転体の表面粗さの測定への適用]
また、砥石Tにおける砥粒Trの突き出し量Haに限定されず、回転体の表面粗さの測定方法にも適用することができる。この場合、予め回転体の表面粗さに応じた「表面粗さ−駆動力特性」のグラフ等を作成し、測定対象の回転体の表面に液体を注いでいる場合と注いでいない場合とのそれぞれの駆動力の差(電力または電流の少なくとも一方の差)を測定し、測定した駆動力の差と「表面粗さ−駆動力特性」に基づいて、回転体の表面粗さを測定することができる。この場合、回転体の表面を傷つけることなく、表面粗さを測定することができる。
なお、液体を回転体に注いでいる場合の駆動力と注いでいない場合の駆動力の差を用いることなく、上記のように、液体を回転体に注いでいる場合の駆動力を用いて、回転体の表面粗さを測定することも可能である。
[Application to surface roughness measurement of rotating bodies]
Further, the present invention is not limited to the protrusion amount Ha of the abrasive grains Tr in the grindstone T, and can also be applied to a method for measuring the surface roughness of the rotating body. In this case, a graph of “surface roughness-driving force characteristics” or the like corresponding to the surface roughness of the rotating body is created in advance, and the liquid is poured or not poured onto the surface of the rotating body to be measured. Measure the difference in driving force (difference between at least one of electric power and current) and measure the surface roughness of the rotating body based on the measured driving force difference and the “surface roughness-driving force characteristics”. Can do. In this case, the surface roughness can be measured without damaging the surface of the rotating body.
In addition, without using the difference between the driving force when the liquid is poured into the rotating body and the driving force when the liquid is not poured, as described above, using the driving force when the liquid is poured into the rotating body, It is also possible to measure the surface roughness of the rotating body.

以上、本実施の形態の説明では、突き出し量(表面粗さ)−駆動力特性(図3(C)参照)を用いて、測定した駆動力の差(または駆動力)から、どの程度の表面粗さ(この場合、どの程度の長さの突き出し量)であるか、を求める例を説明したが、突き出し量(表面粗さ)−駆動力特性を用いずに、所定突き出し量(所定表面粗さ)以上であるか否か、のみを求めることも可能である。この場合、所定突き出し量(所定表面粗さ)となる駆動力差(または駆動力)を予め測定して記憶しておき、測定した駆動力差(または駆動力)が、駆動力閾値以上であるか否かを判定すればよい。例えば砥石Tにおける砥粒Trの突き出し量に対して、砥石Tのドレッシングが不要である突き出し量が最小の状態にて、その状態における駆動力差(または駆動力)を予め駆動力閾値として記憶しておく。そして、測定した駆動力差(または駆動力)が駆動力閾値未満である場合に突き出し量(表面粗さ)が所定突き出し量未満である(所定表面粗さ未満である)と求めることが可能であり、その場合は砥石Tのドレッシングを実行すればよい。なお、この駆動力閾値は、突き出し量(表面粗さ)−駆動力特性の一例でもある。   As described above, in the description of the present embodiment, how much surface is obtained from the difference (or driving force) of the driving force measured using the protrusion amount (surface roughness) -driving force characteristic (see FIG. 3C). Although an example in which the roughness (in this case, how long the protruding amount is) has been described, the predetermined protruding amount (predetermined surface roughness) is used without using the protruding amount (surface roughness) -driving force characteristic. It is also possible to obtain only whether or not it is above. In this case, a driving force difference (or driving force) that becomes a predetermined protrusion amount (predetermined surface roughness) is measured and stored in advance, and the measured driving force difference (or driving force) is equal to or greater than a driving force threshold. Or not. For example, with respect to the protrusion amount of the abrasive grains Tr on the grindstone T, the driving force difference (or driving force) in that state where the dressing amount of the grindstone T is not required is minimized and stored in advance as a driving force threshold value. Keep it. When the measured driving force difference (or driving force) is less than the driving force threshold, it is possible to determine that the protrusion amount (surface roughness) is less than the predetermined protrusion amount (less than the predetermined surface roughness). In that case, dressing of the grindstone T may be executed. This driving force threshold is also an example of the protrusion amount (surface roughness) -driving force characteristic.

本発明の砥石における砥粒の突き出し量の測定方法、砥石のドレッシング方法、及び回転体の表面粗さの測定方法は、本実施の形態で説明した処理、方法等に限定されず、本発明の要旨を変更しない範囲で種々の変更、追加、削除が可能である。
駆動力検出手段DS、及びドレッシング手段TRを設ける位置は、図1(A)及び(B)に示す位置に限定されず、研削盤1のどこに設けられていてもよい。
The method for measuring the protruding amount of abrasive grains, the dressing method for the grindstone, and the method for measuring the surface roughness of the rotating body in the grindstone of the present invention are not limited to the processing, method, etc. described in the present embodiment. Various changes, additions and deletions can be made without changing the gist.
The positions where the driving force detection means DS and the dressing means TR are provided are not limited to the positions shown in FIGS. 1A and 1B, and may be provided anywhere on the grinding machine 1.

1 研削盤
12 砥石覆い
25 軸ホルダ
40 砥石スライドテーブル
41 砥石進退テーブル
BS 基台
CL、CR センタ部材
CN クーラントノズル
DS 駆動力検出手段
Ha 突き出し量
MT 砥石駆動モータ
MX Z軸駆動モータ
MZ X軸駆動モータ
GX、GZ ガイド
SL、SR 主軸(左)、主軸(右)
T 砥石
Tb ベース部
TP 砥石研削点
TR ドレッシング手段
Tr 砥粒
TZ 砥石回転軸
W ワーク
WZ ワーク回転軸

DESCRIPTION OF SYMBOLS 1 Grinding machine 12 Wheel cover 25 Axis holder 40 Wheel slide table 41 Wheel advance / retreat table BS Base CL, CR Center member CN Coolant nozzle DS Driving force detection means Ha Extrusion amount MT Wheel driving motor MX Z axis driving motor MZ X axis driving motor GX, GZ Guide SL, SR Spindle (left), Spindle (right)
T Grinding wheel Tb Base part TP Grinding point TR Dressing means Tr Abrasive grain TZ Grinding wheel rotation axis W Work WZ Work rotation axis

Claims (5)

回転体を回転駆動する駆動力を検出可能な駆動力検出手段と、制御手段と、を用い、
前記制御手段にて、
回転駆動される回転体の表面に液体を注ぎ、前記液体を注いでいる場合と注いでいない場合とにおける前記駆動力検出手段を用いて検出した駆動力の差、あるいは前記液体を注いでいる場合における前記駆動力検出手段を用いて検出した駆動力、に基づいて、前記回転体の表面粗さを求めるステップを有する、
回転体の表面粗さの測定方法。
Using a driving force detection means capable of detecting a driving force for rotationally driving the rotating body, and a control means,
In the control means,
When a liquid is poured onto the surface of a rotating body that is rotationally driven, the difference in driving force detected using the driving force detecting means between when the liquid is poured and when the liquid is not poured, or when the liquid is poured Obtaining the surface roughness of the rotating body based on the driving force detected using the driving force detecting means in
Measuring method of surface roughness of rotating body.
請求項1に記載の回転体の表面粗さの測定方法であって、
前記駆動力検出手段は、前記回転体を回転駆動する駆動モータの電力または電流の少なくとも一方を検出可能であり、
記憶手段に、予め前記表面粗さに対応させて、前記液体を注いでいる場合と注いでいない場合とにおける電力または電流の少なくとも一方の差、あるいは前記液体を注いでいる場合における電力または電流の少なくとも一方、を測定した、表面粗さ−駆動力特性を記憶しておき、
前記制御手段にて、
前記駆動力検出手段を用いて、前記駆動モータの電力または電流の少なくとも一方を、前記液体を前記回転体に注いでいる場合と注いでいない場合とのそれぞれにて測定する、あるいは前記液体を前記回転体に注いでいる場合に測定する、ステップと、
測定した電力または電流の少なくとも一方の差、あるいは測定した電力または電流の少なくとも一方、と、前記表面粗さ−駆動力特性と、に基づいて前記回転体の表面粗さを求めるステップと、を有する、
回転体の表面粗さの測定方法。
It is a measuring method of the surface roughness of the rotary body according to claim 1,
The driving force detecting means can detect at least one of electric power or current of a driving motor that rotationally drives the rotating body,
In correspondence with the surface roughness, the difference between at least one of power and current when the liquid is poured and when not poured, or the power or current when the liquid is poured, is stored in the storage means in advance. Store at least one of the measured surface roughness-driving force characteristics,
In the control means,
Using the driving force detecting means, at least one of the electric power or current of the driving motor is measured when the liquid is poured into the rotating body and when the liquid is not poured, or the liquid is Measuring when pouring on a rotating body, steps,
Determining the surface roughness of the rotating body based on the difference between at least one of the measured power or current, or at least one of the measured power or current, and the surface roughness-driving force characteristic. ,
Measuring method of surface roughness of rotating body.
砥石を回転駆動する駆動力を検出可能な駆動力検出手段と、制御手段と、を用い、前記砥石の表面に突出している砥粒の突き出し量を測定する、砥石における砥粒の突き出し量の測定方法であって、
前記制御手段にて、
回転駆動される前記砥石の表面に液体を注ぎ、前記液体を注いでいる場合と注いでいない場合とにおける前記駆動力検出手段を用いて検出した駆動力の差、あるいは前記液体を注いでいる場合における前記駆動力検出手段を用いて検出した駆動力、に基づいて、前記砥石の表面の砥粒の突き出し量を求めるステップを有する、
砥石における砥粒の突き出し量の測定方法。
Using a driving force detection means capable of detecting a driving force for rotationally driving the grindstone, and a control means, the amount of protrusion of the abrasive grains protruding from the surface of the grindstone is measured. A method,
In the control means,
When a liquid is poured on the surface of the grindstone that is rotationally driven, the difference in driving force detected using the driving force detecting means between when the liquid is poured and when the liquid is not poured, or when the liquid is poured Based on the driving force detected using the driving force detecting means in the step of determining the protrusion amount of the abrasive grains on the surface of the grindstone,
A method for measuring the protruding amount of abrasive grains in a grindstone.
請求項3に記載の砥石における砥粒の突き出し量の測定方法であって、
前記液体は、クーラントであり、
前記駆動力検出手段は、前記砥石を回転駆動する駆動モータの電力または電流の少なくとも一方を検出可能であり、
記憶手段に、予め砥粒の突き出し量に対応させて、前記クーラントを注いでいる場合と注いでいない場合とにおける電力または電流の少なくとも一方の差、あるいは前記クーラントを注いでいる場合における電力または電流の少なくとも一方、を測定した、突き出し量−駆動力特性を記憶しておき、
前記制御手段にて、
前記駆動力検出手段を用いて、前記駆動モータの電力または電流の少なくとも一方を、前記クーラントを前記砥石に注いでいる場合と注いでいない場合とのそれぞれにて測定する、あるいは前記クーラントを前記砥石に注いでいる場合に測定する、ステップと、
測定した電力または電流の少なくとも一方の差、あるいは測定した電力または電流の少なくとも一方、と、前記突き出し量−駆動力特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求めるステップと、を有する、
砥石における砥粒の突き出し量の測定方法。
It is a measuring method of the protrusion amount of the abrasive grain in the whetstone according to claim 3,
The liquid is a coolant;
The driving force detection means can detect at least one of electric power or current of a driving motor that rotationally drives the grindstone,
In correspondence with the amount of protrusion of abrasive grains in the storage means, the difference between at least one of power and current when the coolant is poured and when not poured, or power or current when the coolant is poured Memorize the protrusion amount-driving force characteristic measured at least one of
In the control means,
Using the driving force detecting means, at least one of the electric power or current of the driving motor is measured when the coolant is poured into the grindstone and when the coolant is not poured, or the coolant is measured with the grindstone. Measuring when you are pouring into, steps,
Determining a protrusion amount of abrasive grains on the surface of the grindstone based on a difference between at least one of measured power or current, or at least one of measured power or current, and the protrusion amount-driving force characteristic; Having
A method for measuring the protruding amount of abrasive grains in a grindstone.
回転駆動される砥石と、
前記砥石を回転駆動する駆動モータの電力または電流の少なくとも一方を検出可能な駆動力検出手段と、
前記砥石をドレッシング可能なドレッシング手段と、
制御手段と、を備えた研削盤であって、
前記制御手段には、予め前記砥石の砥粒の突き出し量に対応させて、クーラントを前記砥石に注いでいる場合と注いでいない場合とにおける電力または電流の少なくとも一方の差、あるいはクーラントを前記砥石に注いでいる場合における電力または電流の少なくとも一方、を測定した、突き出し量−駆動力特性が記憶されており、
前記制御手段は、
前記駆動力検出手段を用いて、前記駆動モータの電力または電流の少なくとも一方を、前記クーラントを前記砥石に注いでいる場合と注いでいない場合とのそれぞれにて測定し、あるいは前記クーラントを前記砥石に注いでいる場合に測定し、
測定した電力または電流の少なくとも一方の差、あるいは測定した電力または電流の少なくとも一方、と、前記突き出し量−駆動力特性と、に基づいて前記砥石の表面の砥粒の突き出し量を求め、
求めた砥粒の突き出し量が所定突き出し量以下の場合、前記ドレッシング手段を用いて前記砥石をドレッシングする、
研削盤。

A grindstone that is driven to rotate;
Driving force detection means capable of detecting at least one of electric power or current of a driving motor that rotationally drives the grindstone;
Dressing means capable of dressing the grinding wheel;
A grinding machine comprising control means,
The control means preliminarily corresponds to the protrusion amount of the abrasive grains of the grindstone, and the difference between at least one of electric power and current when the coolant is poured into the grindstone and when the coolant is not poured, or the coolant is the grindstone. The protrusion amount-driving force characteristic obtained by measuring at least one of the electric power and the current in the case of pouring in is stored.
The control means includes
Using the driving force detecting means, at least one of the electric power or current of the driving motor is measured when the coolant is poured into the grindstone and when the coolant is not poured, or the coolant is fed into the grindstone. Measure if you are pouring into
Based on the difference between at least one of the measured power or current, or at least one of the measured power or current, and the protrusion amount-driving force characteristic, the protrusion amount of the abrasive grains on the surface of the grindstone is determined.
When the amount of protrusion of the determined abrasive is equal to or less than the predetermined protrusion amount, dressing the grindstone using the dressing means,
Grinder.

JP2009132162A 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine Pending JP2010274406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009132162A JP2010274406A (en) 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009132162A JP2010274406A (en) 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine

Publications (1)

Publication Number Publication Date
JP2010274406A true JP2010274406A (en) 2010-12-09

Family

ID=43421834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009132162A Pending JP2010274406A (en) 2009-06-01 2009-06-01 Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine

Country Status (1)

Country Link
JP (1) JP2010274406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069600A (en) * 2018-10-31 2020-05-07 株式会社ジェイテクト Machine tool
DE102019202533A1 (en) * 2019-02-25 2020-08-27 Elgan-Diamantwerkzeuge Gmbh & Co. Kg Method and device for the preparation of a fine machining tool and a fine machining tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020069600A (en) * 2018-10-31 2020-05-07 株式会社ジェイテクト Machine tool
CN111113149A (en) * 2018-10-31 2020-05-08 株式会社捷太格特 Machine tool
JP7305945B2 (en) 2018-10-31 2023-07-11 株式会社ジェイテクト Machine Tools
DE102019202533A1 (en) * 2019-02-25 2020-08-27 Elgan-Diamantwerkzeuge Gmbh & Co. Kg Method and device for the preparation of a fine machining tool and a fine machining tool

Similar Documents

Publication Publication Date Title
JPH07205023A (en) Confirming method for dressing of superfine particle grinding wheel in nc grinding device
JP6252270B2 (en) Truing method for grinding wheel of grinding machine and grinding machine
CN104029126B (en) For the configuration method deviateed for confirming dressing tool and the milling drum accordingly equipped
JP2009006447A (en) Grinding method for workpiece and machining device
CN102806513B (en) Polishing method with constant grinding amount
JP2007175815A (en) Correction method and correction device for grinding wheel
JP2010194623A (en) Thread grinding machine and thread groove grinding method
CN111823139A (en) Method for dressing grinding wheel and grinding wheel dressing device
JP2010274405A (en) Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine
JP5402546B2 (en) Cylindrical workpiece grinding method
JP2010274406A (en) Method for measuring surface roughness of rotor, method for measuring projection amount of abrasive grain in grinding wheel, and grinding machine
JP2007083351A (en) Grinder
JP2009078326A (en) Wafer chamfering device and wafer chamfering method
JP2010207984A (en) Device and method for chamfering
JP5428497B2 (en) Grinding wheel forming method
WO2014157490A1 (en) Method for truing rotary grindstone and grinding machine for implementing method for truing
JP4148166B2 (en) Contact detection device
JP7172636B2 (en) Machine tool maintenance support device and machine tool system
JP5326661B2 (en) Grinding wheel forming method
WO2023047437A1 (en) Processing estimation device
WO2024075284A1 (en) Contact dynamic stiffness calculation system, machining estimation device, and proccessing system
JP3777825B2 (en) Precision grinding machine and grinding wheel radius measurement method
JP2005059141A (en) Grinding method and controller of grinder
JPS63114877A (en) Grindstone processing device in numerically controlled grinder
JP5471055B2 (en) Grinding wheel forming method and grinding machine