JP2010274216A - Method of activating catalyst for producing chlorine, and method of producing chlorine - Google Patents

Method of activating catalyst for producing chlorine, and method of producing chlorine Download PDF

Info

Publication number
JP2010274216A
JP2010274216A JP2009130989A JP2009130989A JP2010274216A JP 2010274216 A JP2010274216 A JP 2010274216A JP 2009130989 A JP2009130989 A JP 2009130989A JP 2009130989 A JP2009130989 A JP 2009130989A JP 2010274216 A JP2010274216 A JP 2010274216A
Authority
JP
Japan
Prior art keywords
catalyst
chlorine
reaction
gas
producing chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009130989A
Other languages
Japanese (ja)
Inventor
Yohei Uchida
洋平 内田
Kohei Seki
航平 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2009130989A priority Critical patent/JP2010274216A/en
Priority to CN2010800198309A priority patent/CN102413927A/en
Priority to PCT/JP2010/058434 priority patent/WO2010137504A1/en
Publication of JP2010274216A publication Critical patent/JP2010274216A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/03Preparation from chlorides
    • C01B7/04Preparation of chlorine from hydrogen chloride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of activating a catalyst for producing chlorine, capable of effectively activating a catalyst for producing chlorine having deteriorated activity to suitably recover its catalytic activity. <P>SOLUTION: The method of activating a catalyst for producing chlorine, namely a method of activating a catalyst for producing chlorine to be used in a reaction wherein hydrogen chloride is oxidized with oxygen, is characterized by bringing the catalyst for producing chlorine having deteriorated activity to contact with an acidic liquid. The pH of the acidic liquid preferably is not higher than 5. The acidic liquid preferably is an aqueous solution of an inorganic acid dissolved therein. The catalyst for producing chlorine preferably includes ruthenium oxide. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、活性が低下した塩素製造用触媒を賦活する方法、およびこの方法で賦活した塩素製造用触媒を用いて塩素を製造する方法に関する。   The present invention relates to a method for activating a catalyst for chlorine production with reduced activity, and a method for producing chlorine using a catalyst for chlorine production activated by this method.

塩素は、塩化ビニルやホスゲンなどの原料として有用であり、従来より塩素製造用触媒の存在下で塩化水素を酸素で酸化する反応によって製造されている。ところが、上述した反応で用いる塩素製造用触媒は、例えば、定常または非定常の条件下で熱負荷を受けたりすると、触媒活性が低下することがあった。
そこで、活性が低下した塩素製造用触媒(以下「劣化触媒」と称することもある)を賦活する方法として、劣化触媒を実質的に酸素および/または不活性ガスのみからなるガスと接触させる方法(特許文献1)や、劣化触媒を一酸化炭素および/または水素を含有する還元性ガスと接触処理させる方法(特許文献2)が提案されている。
Chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and has been conventionally produced by a reaction in which hydrogen chloride is oxidized with oxygen in the presence of a catalyst for producing chlorine. However, the catalyst for chlorine production used in the reaction described above may have a reduced catalytic activity when subjected to a heat load, for example, under steady or unsteady conditions.
Therefore, as a method for activating a chlorine production catalyst (hereinafter also referred to as “deteriorated catalyst”) having a reduced activity, a method in which the deteriorated catalyst is brought into contact with a gas consisting essentially of oxygen and / or an inert gas ( Patent Document 1) and a method (Patent Document 2) in which a deteriorated catalyst is contacted with a reducing gas containing carbon monoxide and / or hydrogen have been proposed.

特開2007−7521号公報JP 2007-7521 A 特開2009−22917号公報JP 2009-22917 A

しかしながら、上述した従来の賦活方法で賦活した塩素製造用触媒では、充分に満足しうる触媒活性が得られないことがあった。   However, the catalyst for chlorine production activated by the above-described conventional activation method sometimes fails to obtain sufficiently satisfactory catalytic activity.

そこで、本発明の課題は、活性が低下した塩素製造用触媒を効果的に賦活し、その触媒活性を良好に回復することができる塩素製造用触媒の賦活方法と、該方法によって賦活した触媒を用いた塩素の製造方法とを提供することにある。   Then, the subject of this invention is activating the catalyst for chlorine production in which activity fell, and the activation method of the catalyst for chlorine production which can recover | recover the catalyst activity favorably, and the catalyst activated by this method It is in providing the manufacturing method of the used chlorine.

本発明者等は、前記課題を解決するべく鋭意検討を行った。その結果、活性が低下した触媒を酸性液に接触させるという簡便な方法によって、触媒活性を効果的に回復させることができることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above-mentioned problems. As a result, it has been found that the catalyst activity can be effectively recovered by a simple method in which the catalyst having decreased activity is brought into contact with the acidic liquid, and the present invention has been completed.

すなわち、本発明は以下の構成からなる。
(1)塩化水素を酸素で酸化する反応に使用される塩素製造用触媒の賦活方法であって、活性が低下した塩素製造用触媒を酸性液に接触させることを特徴とする塩素製造用触媒の賦活方法。
(2)前記酸性液のpHが5以下である前記(1)に記載の塩素製造用触媒の賦活方法。
(3)前記酸性液が、無機酸が溶解している水溶液である前記(1)又は(2)に記載の塩素製造用触媒の賦活方法。
(4)前記塩素製造用触媒が、酸化ルテニウムを含有する触媒である前記(1)〜(3)のいずれかに記載の塩素製造用触媒の賦活方法。
(5)触媒の存在下に塩化水素を酸素で酸化する塩素の製造方法であって、前記触媒として、前記(1)〜(4)のいずれかに記載の賦活方法により賦活した触媒を用いることを特徴とする塩素の製造方法。
That is, the present invention has the following configuration.
(1) A method for activating a catalyst for producing chlorine used in a reaction for oxidizing hydrogen chloride with oxygen, comprising contacting a catalyst for producing chlorine with reduced activity in contact with an acidic liquid. Activation method.
(2) The method for activating a catalyst for producing chlorine according to (1), wherein the acidic solution has a pH of 5 or less.
(3) The method for activating a catalyst for producing chlorine according to (1) or (2), wherein the acidic liquid is an aqueous solution in which an inorganic acid is dissolved.
(4) The method for activating a catalyst for chlorine production according to any one of (1) to (3), wherein the catalyst for chlorine production is a catalyst containing ruthenium oxide.
(5) A method for producing chlorine in which hydrogen chloride is oxidized with oxygen in the presence of a catalyst, and the catalyst activated by the activation method according to any one of (1) to (4) is used as the catalyst. A method for producing chlorine characterized by the following.

本発明によれば、活性が低下した塩素製造用触媒を効果的に賦活し、その触媒活性を良好に回復することができる。これにより、活性が低下した塩素製造用触媒を賦活して塩化水素を酸素で酸化する反応に再使用することが可能になり、触媒コストを低減できる点で有利に塩素を製造することができる、という効果も得られる。   ADVANTAGE OF THE INVENTION According to this invention, the catalyst for chlorine manufacture in which activity fell can be activated effectively, and the catalyst activity can be recovered | restored favorably. This makes it possible to activate the chlorine production catalyst with reduced activity and reuse it in the reaction of oxidizing hydrogen chloride with oxygen, and advantageously produce chlorine in that the catalyst cost can be reduced. The effect is also obtained.

本発明の塩素製造用触媒の賦活方法において、賦活の対象とする触媒は、塩化水素を酸素で酸化する反応(以下、単に「酸化反応」と称することもある)によって塩素を製造する際に使用される触媒(すなわち、塩素製造用触媒)であればよく、特に制限されないが、例えば、銅触媒、クロム触媒、ルテニウム触媒などが挙げられる。具体的には、銅触媒としては、一般にDeacon触媒と称される、塩化銅と塩化カリウムに第三成分として種々の化合物を添加してなる触媒が好ましく挙げられる。クロム触媒としては、特開昭61−136902号公報、特開昭61−275104号公報、特開昭62−113701号公報、特開昭62−270405号公報に示される如き、酸化クロムを含有する触媒が好ましく挙げられる。ルテニウム触媒としては、特開平9−67103号公報、特開平10−338502号公報、特開2000−281314号公報、特開2002−79093号公報、特開2002−292279号公報に示される如き、酸化ルテニウムを含有する触媒が好ましく挙げられる。   In the method for activating a catalyst for producing chlorine according to the present invention, the catalyst to be activated is used for producing chlorine by a reaction in which hydrogen chloride is oxidized with oxygen (hereinafter also referred to simply as “oxidation reaction”). The catalyst is not particularly limited, and examples thereof include a copper catalyst, a chromium catalyst, and a ruthenium catalyst. Specifically, preferred examples of the copper catalyst include a catalyst obtained by adding various compounds as a third component to copper chloride and potassium chloride, generally referred to as a Deacon catalyst. The chromium catalyst contains chromium oxide as disclosed in JP-A-61-136902, JP-A-61-275104, JP-A-62-1113701, and JP-A-62-270405. A catalyst is preferred. Examples of the ruthenium catalyst include oxidation as disclosed in JP-A-9-67103, JP-A-10-338502, JP-A-2000-281314, JP-A-2002-79093, and JP-A-2002-292279. Preferred is a catalyst containing ruthenium.

本発明の塩素製造用触媒の賦活方法において、賦活の対象とする塩素製造用触媒は、上述した触媒の中でも、ルテニウム触媒、特に酸化ルテニウムを含有する触媒であることが好ましい。酸化ルテニウムを含有する触媒は、例えば、実質的に酸化ルテニウムのみからなるものであってもよいし、酸化ルテニウムが、アルミナ、チタニア、シリカ、ジルコニア、酸化ニオブ、活性炭などの担体に担持されてなる担持酸化ルテニウムであってもよいし、酸化ルテニウムと、アルミナ、チタニア、シリカ、ジルコニア、酸化ニオブなどの他の酸化物とからなる複合酸化物であってもよい。   In the method for activating a catalyst for producing chlorine of the present invention, the catalyst for producing chlorine to be activated is preferably a ruthenium catalyst, particularly a catalyst containing ruthenium oxide, among the above-mentioned catalysts. The catalyst containing ruthenium oxide, for example, may be composed essentially of ruthenium oxide, or ruthenium oxide is supported on a support such as alumina, titania, silica, zirconia, niobium oxide, activated carbon or the like. It may be a supported ruthenium oxide or a complex oxide composed of ruthenium oxide and other oxides such as alumina, titania, silica, zirconia, niobium oxide and the like.

本発明の塩素製造用触媒の賦活方法において、賦活の対象とする触媒は、活性が低下した塩素製造用触媒(劣化触媒)であるが、その触媒活性がどの程度低下しているかや、どのような原因で低下したものであるかについては、特に制限されない。なお、塩化水素を酸素で酸化する反応(酸化反応)に使用した塩素製造用触媒の触媒活性が低下する原因は様々であるが、通常、酸化反応の反応時間(すなわち、触媒の使用時間)の経過とともに触媒活性は徐々に低下していく。また、これに加えて、例えば、i) 機器の不具合などにより反応温度の制御が困難になって、触媒が長時間、高温に曝された場合における熱負荷、ii)機器の不具合などにより酸素の供給が停止して、触媒が酸素不在下に長時間、塩化水素と接触した場合における触媒の被毒、iii)原料ガス中に硫黄分が含まれている場合(具体的には、例えば、酸化反応で生じたガスを濃硫酸で洗浄脱水した後、塩素を分離し、残ったガスを回収して、再度、酸化反応の原料ガスとして再利用する場合や、アミンをホスゲンと反応させてイソシアネートを生成させる際などに副生する、硫黄分含有不純物(ホスゲン由来の硫化カルボニル、硫化水素、二硫化炭素、酸化硫黄など)を含む塩化水素ガスを酸化反応の原料ガスとして利用する場合など)における触媒の被毒、iv)原料ガス中に微量の有機物が含まれ、これが酸化反応で完全に燃焼されなかった場合における触媒の被毒、v)反応管や配管等が原料ガスや生成水に腐食され、生じた金属が触媒に付着した場合における触媒の被毒、vi)担持触媒の担体成分が一部飛散し触媒の活性点を覆ってしまう場合における触媒の被毒などにより、触媒活性が低下することがある。   In the method for activating a catalyst for producing chlorine according to the present invention, the catalyst to be activated is a catalyst for producing chlorine (deteriorated catalyst) with reduced activity. There is no particular limitation as to whether it has been reduced for various reasons. There are various reasons why the catalytic activity of the catalyst for producing chlorine used in the reaction of oxidizing hydrogen chloride with oxygen (oxidation reaction) is reduced, but usually the reaction time of the oxidation reaction (that is, the catalyst use time) The catalyst activity gradually decreases with the passage of time. In addition to this, for example, i) it becomes difficult to control the reaction temperature due to equipment troubles, etc., and the heat load when the catalyst is exposed to high temperatures for a long time, ii) oxygen due to equipment troubles, etc. Catalyst poisoning when the supply is stopped and the catalyst is in contact with hydrogen chloride for a long time in the absence of oxygen, iii) When the source gas contains sulfur (specifically, for example, oxidation The gas generated in the reaction is washed with concentrated sulfuric acid and dehydrated, and then chlorine is separated. The remaining gas is recovered and reused as a raw material gas for the oxidation reaction. (For example, when hydrogen chloride gas containing sulfur-containing impurities (such as phosgene-derived carbonyl sulfide, hydrogen sulfide, carbon disulfide, sulfur oxide, etc.) used as a by-product during the generation of the gas is used as the source gas for the oxidation reaction) Poisoning of the catalyst, iv) poisoning of the catalyst when a small amount of organic substance is contained in the raw material gas and this is not completely burned by the oxidation reaction, and v) the reaction tube and piping are used as the raw material gas and generated water Catalyst poisoning when corroded and the resulting metal adheres to the catalyst, vi) catalyst poisoning when the carrier component of the supported catalyst partially scatters and covers the active point of the catalyst, etc. May decrease.

本発明の塩素製造用触媒の賦活方法においては、活性が低下した塩素製造用触媒(劣化触媒)を酸性液に接触させる。このように酸性液に接触させる接触処理を施すことにより、例えば熱負荷や触媒の被毒により活性が低下した塩素製造用触媒を効果的に賦活し、その触媒活性を良好に回復することができるのである。なお、かかる触媒活性の回復には、酸性液の接触処理により触媒表面の酸に可溶な不活性成分が除去されることが、一つの要因になっていると推察される。例えば、アルミナ担体を有する担持触媒が長時間熱負荷を受けるとアルミナが一部飛散して活性点を覆うことが分析により確認されているが、本発明の酸性液の接触処理によれば、活性点を覆っているアルミナが良好に除去されるものと推察される。   In the method for activating a catalyst for producing chlorine according to the present invention, a catalyst for producing chlorine (deteriorated catalyst) having reduced activity is brought into contact with an acidic solution. By performing the contact treatment in contact with the acidic liquid in this way, for example, a catalyst for chlorine production whose activity has been lowered due to heat load or catalyst poisoning can be effectively activated, and the catalytic activity can be recovered well. It is. In addition, it is speculated that the recovery of the catalyst activity is caused by the removal of the inert component soluble in the acid on the catalyst surface by the contact treatment with the acidic solution. For example, it has been confirmed by analysis that a supported catalyst having an alumina carrier is subjected to a heat load for a long time, and thus alumina partially scatters and covers the active sites. It is inferred that the alumina covering the dots is well removed.

前記酸性液は、例えば、塩化水素、硫酸、硝酸などの無機酸が溶解している水溶液であってもよいし、酢酸、プロピオン酸、酪酸、吉草酸などの有機酸が溶解している水溶液であってもよいし、あるいは、劣化触媒との接触時の温度下および圧力下において液体の状態である酸を単独で酸性液として用いることもできる。これらの中でも、後に水洗する場合における洗浄効率の点で、無機酸が溶解している水溶液であることが好ましい。なお、水溶液を酸性液として使用する場合には、溶媒として超純水の如き純度の高い水を使用することが好ましい。   The acidic liquid may be, for example, an aqueous solution in which an inorganic acid such as hydrogen chloride, sulfuric acid, or nitric acid is dissolved, or an aqueous solution in which an organic acid such as acetic acid, propionic acid, butyric acid, or valeric acid is dissolved. Alternatively, an acid that is in a liquid state under the temperature and pressure at the time of contact with the deteriorated catalyst may be used alone as the acidic liquid. Among these, an aqueous solution in which an inorganic acid is dissolved is preferable from the viewpoint of washing efficiency when washing with water later. In addition, when using aqueous solution as an acidic liquid, it is preferable to use highly purified water like ultrapure water as a solvent.

前記酸性液のpHは、好ましくは5以下、より好ましくは3以下である。酸性液のpHが5を超えて中性領域に近づくと、賦活効果が不充分となり、触媒活性を充分に回復することができないおそれがある。   The pH of the acidic solution is preferably 5 or less, more preferably 3 or less. When the pH of the acidic liquid exceeds 5 and approaches the neutral region, the activation effect becomes insufficient, and the catalytic activity may not be sufficiently recovered.

劣化触媒を酸性液に接触させる方法としては、特に制限はなく、例えば、固定床形式で行ってもよいし、バッチ回分式で行ってもよい。固定床形式で行う場合、酸性液の供給速度は、触媒の体積あたりの酸性液の体積供給速度(すなわち、LHSV)で表して、通常0.01〜100h-1程度であり、接触処理時間は、通常0.5〜100時間程度である。なお、固定床形式の場合、酸性液を循環させることもできる。他方、バッチ回分方式で行う場合、酸性液の使用量は、触媒1重量部に対して、通常1〜100重量部程度であり、接触処理時間は、通常0.5〜120時間程度である。また、いずれの形式で接触させる場合にも、接触処理温度は、通常0〜100℃、好ましくは10〜90℃であるのがよく、接触処理回数は通常1〜10回程度である。 There is no restriction | limiting in particular as a method of making a deterioration catalyst contact an acidic liquid, For example, you may carry out by a fixed bed form and may carry out by a batch batch type. When performed in a fixed bed format, the supply rate of the acidic liquid is usually about 0.01 to 100 h −1 in terms of the volume supply rate of the acidic liquid per volume of the catalyst (that is, LHSV), and the contact treatment time is Usually, it is about 0.5 to 100 hours. In the case of a fixed bed type, the acidic liquid can be circulated. On the other hand, when the batch batch method is used, the usage amount of the acidic liquid is usually about 1 to 100 parts by weight with respect to 1 part by weight of the catalyst, and the contact treatment time is usually about 0.5 to 120 hours. Moreover, when making it contact in any format, it is good that a contact processing temperature is 0-100 degreeC normally, Preferably it is 10-90 degreeC, and the frequency | count of a contact process is about 1-10 times normally.

本発明の塩素製造用触媒の賦活方法においては、劣化触媒を酸性液に接触させた後、さらに水洗を行うことが好ましい。水洗に使用する水の量は、先に接触させた酸性液の1重量倍以上とするのが好ましく、3重量倍以上とするのがより好ましい。水洗の回数には、特に制限はなく、通常1〜10回程度であるが、水洗後の排水のpHが水洗に用いた水と同等のpHになったことが確認されるまで行うことが好ましい。なお、水洗に使用する水も超純水の如き純度の高い水が好ましい。   In the method for activating a catalyst for producing chlorine according to the present invention, it is preferable to perform further washing with water after bringing the deteriorated catalyst into contact with the acidic liquid. The amount of water used for washing with water is preferably 1 times or more, more preferably 3 times or more, the amount of the acid solution previously contacted. There is no particular limitation on the number of times of washing with water, and it is usually about 1 to 10 times, but it is preferable to carry out until it is confirmed that the pH of the waste water after washing has reached the same pH as the water used for washing. . The water used for washing is preferably water having a high purity such as ultrapure water.

さらに、本発明の塩素製造用触媒の賦活方法においては、劣化触媒を酸性液に接触させた後に、もしくはその後洗浄した後に、乾燥を行ってもよい。乾燥の方法等については、特に制限されない。   Furthermore, in the method for activating the catalyst for producing chlorine according to the present invention, drying may be performed after the deteriorated catalyst is brought into contact with the acidic solution or after washing. The drying method is not particularly limited.

かくして賦活された塩素製造用触媒は、塩化水素を酸素で酸化する反応において優れた触媒活性を示すものであり、かかる酸化反応に再使用することができる。これにより、触媒コストを低減することができ、塩素をコスト的に有利に製造することができる。   The thus activated catalyst for chlorine production exhibits excellent catalytic activity in the reaction of oxidizing hydrogen chloride with oxygen, and can be reused in such an oxidation reaction. Thereby, catalyst cost can be reduced and chlorine can be produced advantageously in terms of cost.

本発明の塩素の製造方法は、上述した本発明の賦活方法により賦活した触媒の存在下に塩化水素を酸素で酸化する方法である。
賦活した触媒を用いて塩化水素を酸素で酸化する反応(酸化反応)は、通常、触媒が充填された固定床反応器または触媒を流動させた流動床反応器中に、塩化水素(塩化水素を含むガス)および酸素(酸素を含むガス)からなる原料ガスを供給しながら、気相条件下に連続式で行われる。その際、例えば特開2001−19405号公報に示される如く、塩化水素および酸素に加えて、水蒸気を供給すると、触媒層の温度分布を平滑化できて有利である。
The chlorine production method of the present invention is a method of oxidizing hydrogen chloride with oxygen in the presence of the catalyst activated by the activation method of the present invention described above.
The reaction of oxidizing hydrogen chloride with oxygen using an activated catalyst (oxidation reaction) is usually carried out in a fixed bed reactor filled with the catalyst or a fluidized bed reactor in which the catalyst is fluidized. Gas) and oxygen (gas containing oxygen) while supplying a raw material gas under a gas phase condition. In this case, for example, as disclosed in JP-A-2001-19405, it is advantageous to supply water vapor in addition to hydrogen chloride and oxygen because the temperature distribution of the catalyst layer can be smoothed.

前記塩化水素を含むガスとしては、特に制限はなく、例えば、水素と塩素との反応により生成するガスや、塩酸の加熱により発生するガスのほか、塩素化合物の熱分解反応や燃焼反応、ホスゲンによる有機化合物のカルボニル化反応、塩素による有機化合物の塩素化反応、クロロフルオロアルカンの製造等により発生する各種副生ガス、さらには焼却炉から発生する燃焼排ガスなど、塩化水素を含むあらゆるガスを使用することができる。   The gas containing hydrogen chloride is not particularly limited. For example, a gas generated by a reaction between hydrogen and chlorine, a gas generated by heating hydrochloric acid, a pyrolysis reaction or a combustion reaction of a chlorine compound, or phosgene. Use any gas containing hydrogen chloride, such as carbonylation reaction of organic compounds, chlorination reaction of organic compounds with chlorine, various by-products generated by the production of chlorofluoroalkanes, and combustion exhaust gas generated from incinerators. be able to.

前記塩化水素を含むガスを得る際の上述した各種反応については、具体的には、例えば、塩素化合物の熱分解反応として、1,2−ジクロロエタンから塩化ビニルが生成する反応、クロロジフルオロメタンからテトラフルオロエチレンが生成する反応などが挙げられ、ホスゲンによる有機化合物のカルボニル化反応として、アミンからイソシアネートが生成する反応、ヒドロキシ化合物から炭酸エステルが生成する反応などが挙げられ、塩素による有機化合物の塩素化反応として、プロピレンから塩化アリルが生成する反応、エタンから塩化エチルが生成する反応、ベンゼンからクロロベンゼンが生成する反応などが挙げられる。また、クロロフルオロアルカンの製造としては、例えば、四塩化炭素とフッ化水素との反応によるジクロロジフルオロメタンおよびトリクロロモノフルオロメタンの製造、メタンと塩素とフッ化水素との反応によるジクロロジフルオロメタンおよびトリクロロモノフルオロメタンの製造などが挙げられる。   Specific examples of the various reactions described above in obtaining the gas containing hydrogen chloride include, for example, a reaction in which vinyl chloride is generated from 1,2-dichloroethane, a tetrachloromethane from tetrachloromethane as a thermal decomposition reaction of a chlorine compound. Examples of the carbonylation reaction of organic compounds with phosgene include reactions that produce isocyanates from amines and reactions that produce carbonates from hydroxy compounds. Chlorination of organic compounds with chlorine Examples of the reaction include a reaction in which allyl chloride is produced from propylene, a reaction in which ethyl chloride is produced from ethane, and a reaction in which chlorobenzene is produced from benzene. Examples of the production of chlorofluoroalkane include the production of dichlorodifluoromethane and trichloromonofluoromethane by the reaction of carbon tetrachloride and hydrogen fluoride, and dichlorodifluoromethane and trichloro by the reaction of methane, chlorine and hydrogen fluoride. For example, production of monofluoromethane.

前記酸素を含むガスとしては、空気を使用してもよいし、純酸素を使用してもよい。なお、純酸素は、空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。   As the gas containing oxygen, air or pure oxygen may be used. Pure oxygen can be obtained by ordinary industrial methods such as air pressure swing method or deep cold separation.

前記酸化反応において、塩化水素(塩化水素を含むガス)と酸素(酸素を含むガス)との比率は、塩化水素を完全に塩素に酸化するためには理論上、塩化水素1モルに対し酸素1/4モルとする必要があるが、通常、この理論量の0.1〜10倍の酸素が使用される。   In the oxidation reaction, the ratio of hydrogen chloride (a gas containing hydrogen chloride) to oxygen (a gas containing oxygen) is theoretically set to 1 oxygen per mole of hydrogen chloride in order to completely oxidize hydrogen chloride to chlorine. / 4 mol is required, but usually 0.1 to 10 times the theoretical amount of oxygen is used.

前記酸化反応において、塩化水素を含むガスの供給速度は、触媒層の体積あたりのガスの体積供給速度(0℃、1気圧換算)、すなわちGHSVで表して、通常10〜20000h-1程度である。他方、酸素を含むガスの供給速度は、触媒層の体積あたりのガスの体積供給速度(0℃、1気圧換算)、すなわちGHSVで表して、通常10〜20000h-1程度である。
前記酸化反応における反応条件等は特に制限されないが、反応温度は、通常100〜500℃、好ましくは200〜400℃であり、反応圧力は、通常0.1〜5MPa程度である。
In the oxidation reaction, the supply rate of the gas containing hydrogen chloride is usually about 10 to 20000 h −1 in terms of the volume supply rate of the gas per volume of the catalyst layer (0 ° C., converted to 1 atm), that is, GHSV. . On the other hand, the supply rate of the gas containing oxygen is usually about 10 to 20000 h −1 in terms of the volume supply rate of the gas per volume of the catalyst layer (0 ° C., converted to 1 atm), that is, GHSV.
Reaction conditions and the like in the oxidation reaction are not particularly limited, but the reaction temperature is usually 100 to 500 ° C., preferably 200 to 400 ° C., and the reaction pressure is usually about 0.1 to 5 MPa.

本発明の塩素の製造方法においては、上述した本発明の賦活方法により賦活する賦活処理と、前記酸化反応とを繰り返し行うことが好ましい。例えば、前記酸化反応を固定床形式で行う場合には、触媒を充填した反応器中に塩化水素および酸素からなる原料ガスを供給しながら酸化反応を行い、運転の継続が困難になる程度に触媒の活性が低下したら、原料ガスの供給を停止し、次いで、触媒を反応器中に充填したままの状態で前記賦活処理を施した後、原料ガスの供給を再開して前記酸化反応を行い、以後、必要により賦活処理と酸化反応とを繰り返し行えばよい。他方、前記酸化反応を流動床形式で行う場合には、前記酸化反応を行いながら、反応器から触媒の一部を連続的または間歇的に抜き出し、別の容器内で前記賦活処理を施した後、反応器に戻すようにして、触媒を反応器と賦活処理用の容器の間で循環させることにより、触媒が賦活処理および酸化反応に交互に供されるようにすればよい。   In the chlorine production method of the present invention, it is preferable to repeatedly perform the activation treatment activated by the activation method of the present invention described above and the oxidation reaction. For example, when the oxidation reaction is performed in a fixed bed format, the oxidation reaction is carried out while supplying a raw material gas consisting of hydrogen chloride and oxygen into a reactor filled with the catalyst, and the catalyst is made to the extent that it is difficult to continue the operation. When the activity of the gas is reduced, the supply of the raw material gas is stopped, and then the activation treatment is performed in a state where the catalyst is filled in the reactor, and then the supply of the raw material gas is resumed to perform the oxidation reaction, Thereafter, the activation treatment and the oxidation reaction may be repeated as necessary. On the other hand, when the oxidation reaction is performed in a fluidized bed format, while performing the oxidation reaction, a part of the catalyst is continuously or intermittently extracted from the reactor, and the activation treatment is performed in another container. Then, the catalyst is returned to the reactor, and the catalyst is circulated between the reactor and the container for the activation treatment so that the catalyst is alternately supplied to the activation treatment and the oxidation reaction.

以下、実施例により本発明をより詳細に説明するが、本発明はかかる実施例により限定されるものではない。
なお、以下、ガスの供給速度(mL/分)は、特に断りのない限り、0℃、1気圧における換算値で示した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this Example.
Hereinafter, the gas supply rate (mL / min) is shown as a converted value at 0 ° C. and 1 atm unless otherwise specified.

(参考例1−活性が低下した触媒(劣化触媒)の調製)
まず、酸化チタン(堺化学(株)製「STR−60R」;100%ルチル型)50重量部、α−アルミナ(住友化学(株)製「AES−12」)100重量部、チタニアゾル(堺化学(株)製「CSB」;チタニア含有量38重量%)13.2重量部、およびメチルセルロース(信越化学(株)製「メトローズ65SH−4000」)2重量部を混合し、次いでイオン交換水を加えて混練した。この混練物を直径3.0mmφの円柱状に押出成形し、乾燥した後、長さ4〜6mm程度に破砕した。得られた成形体を、空気中800℃で3時間焼成し、酸化チタンとα−アルミナとの混合物からなる担体を得た。次に、この担体に、所定の担持率となる量の塩化ルテニウムの水溶液を含浸させ、乾燥した後、空気中250℃で2時間焼成することにより、酸化ルテニウムが2重量%の担持率で上記担体に担持されてなる青灰色の担持酸化ルテニウム触媒(新品触媒)を得た。
(Reference Example 1—Preparation of Catalyst with Reduced Activity (Deteriorated Catalyst))
First, 50 parts by weight of titanium oxide (“STR-60R” manufactured by Sakai Chemical Co., Ltd .; 100% rutile type), 100 parts by weight of α-alumina (“AES-12” manufactured by Sumitomo Chemical Co., Ltd.), titania sol (Sakai Chemical) "CSB" manufactured by Co., Ltd .; 13.2 parts by weight of titania content 38% by weight) and 2 parts by weight of methylcellulose ("Metroze 65SH-4000" manufactured by Shin-Etsu Chemical Co., Ltd.) were mixed, and then ion-exchanged water was added. And kneaded. This kneaded product was extruded into a cylindrical shape having a diameter of 3.0 mmφ, dried, and then crushed to a length of about 4 to 6 mm. The obtained molded body was fired in air at 800 ° C. for 3 hours to obtain a carrier made of a mixture of titanium oxide and α-alumina. Next, this carrier is impregnated with an aqueous solution of ruthenium chloride in an amount to give a predetermined loading rate, dried, and then fired in air at 250 ° C. for 2 hours, so that the ruthenium oxide has a loading rate of 2% by weight. A blue-gray-supported ruthenium oxide catalyst (new catalyst) supported on a carrier was obtained.

次いで、得られた担持酸化ルテニウム触媒(新品触媒)を反応器に充填し、該反応器に塩化水素および酸素を含む原料ガスを供給しながら、280〜390℃で長期間にわたって酸化反応を行うことにより、劣化触媒を調製した。   Next, the obtained supported ruthenium oxide catalyst (new catalyst) is charged into a reactor, and an oxidation reaction is carried out over a long period of time at 280 to 390 ° C. while supplying a raw material gas containing hydrogen chloride and oxygen to the reactor. Thus, a deteriorated catalyst was prepared.

(実施例1)
参考例1で得た劣化触媒5gと36%塩酸水溶液(和光純薬工業(株)製)45gとを容器に入れて混合し、25℃で24時間静置することにより両者を接触させた。その後、上澄み液をデカンテーションにより除去し、得られた固形物を150gのイオン交換水を用いて3回洗浄した後、60℃で恒量になるまで(2時間以上)乾燥して、本発明の賦活方法で賦活した触媒(賦活触媒)を得た。なお、ここで使用した36%塩酸水溶液のpHを測定したところ、−2.0であった。
次に、得られた賦活触媒を用いて塩化水素を酸素で酸化する反応を行ったときの触媒活性を、下記の方法で評価した。結果を表1に示す。
Example 1
5 g of the deteriorated catalyst obtained in Reference Example 1 and 45 g of a 36% hydrochloric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) were placed in a container, mixed, and allowed to stand at 25 ° C. for 24 hours to be brought into contact with each other. Thereafter, the supernatant liquid is removed by decantation, and the obtained solid is washed three times with 150 g of ion-exchanged water and then dried at 60 ° C. until a constant weight (2 hours or more). A catalyst activated by the activation method (activation catalyst) was obtained. In addition, it was -2.0 when pH of 36% hydrochloric acid aqueous solution used here was measured.
Next, the catalytic activity when a reaction for oxidizing hydrogen chloride with oxygen was performed using the obtained activated catalyst was evaluated by the following method. The results are shown in Table 1.

<触媒活性評価>
得られた触媒1gを、内径13mmのニッケル製反応管に充填し、さらに触媒層のガス入口側に予熱層として、α−アルミナ球(ニッカトー(株)製「SSA995」)12gを充填した。この反応管内に窒素ガスを80mL/分の速度で供給しながら、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1(重量比))を熱媒体とする塩浴に反応管を浸して、触媒層の温度を281〜282℃にした。次いで、窒素ガスの供給を停止した後、塩化水素ガスおよび酸素ガスを、塩化水素ガスは80mL/分(0.21mol/h)の速度で、酸素ガスは40mL/分(0.11mol/h)の速度で供給し、触媒層温度281〜282℃で酸化反応を行った。反応開始から1.5時間後の時点で、反応管出口のガスを20分間、30重量%ヨウ化カリウム水溶液に流通させることによりサンプリングし、ヨウ素滴定法により塩素の生成量を測定して、塩素の生成速度(mol/h)を求めた。この塩素の生成速度と上記塩化水素の供給速度(mol/h)から、下式により塩化水素の転化率(%)を算出した。
<Catalyst activity evaluation>
1 g of the obtained catalyst was filled in a nickel reaction tube having an inner diameter of 13 mm, and further 12 g of α-alumina sphere (“SSA995” manufactured by Nikkato Co., Ltd.) was filled as a preheating layer on the gas inlet side of the catalyst layer. While supplying nitrogen gas into the reaction tube at a rate of 80 mL / min, the reaction tube is immersed in a salt bath using a molten salt (potassium nitrate / sodium nitrite = 1/1 (weight ratio)) as a heat medium to form a catalyst layer. The temperature of was 281-282 ° C. Next, after the supply of nitrogen gas is stopped, hydrogen chloride gas and oxygen gas are supplied at a rate of 80 mL / min (0.21 mol / h) for hydrogen chloride gas and 40 mL / min (0.11 mol / h) for oxygen gas. The oxidation reaction was performed at a catalyst layer temperature of 281 to 282 ° C. At 1.5 hours after the start of the reaction, the gas at the outlet of the reaction tube was sampled by flowing it through a 30 wt% aqueous potassium iodide solution for 20 minutes, and the amount of chlorine produced was measured by an iodine titration method. The production rate (mol / h) of was determined. From the chlorine production rate and the hydrogen chloride supply rate (mol / h), the conversion rate (%) of hydrogen chloride was calculated by the following equation.

塩化水素の転化率(%)
=〔塩素の生成速度(mol/h)×2÷塩化水素の供給速度(mol/h)〕×100
Hydrogen chloride conversion (%)
= [Chlorine production rate (mol / h) × 2 ÷ hydrogen chloride supply rate (mol / h)] × 100

(実施例2)
実施例1において用いた36%塩酸水溶液に代えて、20%塩酸水溶液(36%塩酸水溶液(和光純薬工業(株)製)25gをイオン交換水20gで希釈して調製した)45gを用いたこと以外、実施例1と同様にして、本発明の賦活方法で賦活した触媒(賦活触媒)を得た。なお、ここで使用した20%塩酸水溶液のpHを測定したところ、−1.7であった。
次に、得られた賦活触媒を用いて塩化水素を酸素で酸化する反応を行ったときの触媒活性を、実施例1と同様の方法で評価した。結果を表1に示す。
(Example 2)
Instead of the 36% hydrochloric acid aqueous solution used in Example 1, 45 g of 20% hydrochloric acid aqueous solution (prepared by diluting 25 g of 36% hydrochloric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) with 20 g of ion-exchanged water) was used. Except for this, a catalyst (activated catalyst) activated by the activation method of the present invention was obtained in the same manner as in Example 1. In addition, it was -1.7 when pH of the 20% hydrochloric acid aqueous solution used here was measured.
Next, the catalytic activity when the reaction for oxidizing hydrogen chloride with oxygen was performed using the obtained activated catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 1.

(実施例3)
実施例1において用いた36%塩酸水溶液に代えて、2.5%塩酸水溶液(36%塩酸水溶液(和光純薬工業(株)製)3.125gをイオン交換水41.875gで希釈して調製した)45gを用いたこと以外、実施例1と同様にして、本発明の賦活方法で賦活した触媒(賦活触媒)を得た。なお、ここで使用した2.5%塩酸水溶液のpHを測定したところ、0.2であった。
次に、得られた賦活触媒を用いて塩化水素を酸素で酸化する反応を行ったときの触媒活性を、実施例1と同様の方法で評価した。結果を表1に示す。
(Example 3)
In place of the 36% hydrochloric acid aqueous solution used in Example 1, prepared by diluting 3.125 g of a 2.5% aqueous hydrochloric acid solution (36% hydrochloric acid aqueous solution (manufactured by Wako Pure Chemical Industries, Ltd.) with 41.875 g of ion-exchanged water. Except for using 45 g, a catalyst (activated catalyst) activated by the activation method of the present invention was obtained in the same manner as in Example 1. The pH of the 2.5% aqueous hydrochloric acid solution used here was 0.2.
Next, the catalytic activity when the reaction for oxidizing hydrogen chloride with oxygen was performed using the obtained activated catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例1)
参考例1で得た劣化触媒を用いて塩化水素を酸素で酸化する反応を行ったときの触媒活性を、実施例1と同様の方法で評価した。結果を表1に示す。
(Comparative Example 1)
The catalytic activity when the reaction of oxidizing hydrogen chloride with oxygen was performed using the deteriorated catalyst obtained in Reference Example 1 was evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例2)
参考例1で得た劣化触媒5gとイオン交換水45gとを容器に入れて混合し、25℃で24時間静置することにより両者を接触させた。その後、上澄み液をデカンテーションにより除去して固形物を得、引き続き、この固形物を再びイオン交換水45gとともに容器に入れ、25℃で静置し、上澄み液をデカンテーションにより除去する操作を2回繰返した。このとき、静置時間は1回目は24時間、2回目は72時間とした。その後、60℃で恒量になるまで(2時間以上)乾燥して、水処理した触媒を得た。
次に、得られた触媒を用いて塩化水素を酸素で酸化する反応を行ったときの触媒活性を、実施例1と同様の方法で評価した。結果を表1に示す。
(Comparative Example 2)
5 g of the deteriorated catalyst obtained in Reference Example 1 and 45 g of ion-exchanged water were mixed in a container, and the mixture was allowed to contact at 25 ° C. for 24 hours. Thereafter, the supernatant is removed by decantation to obtain a solid. Subsequently, the solid is again put into a container together with 45 g of ion-exchanged water, left at 25 ° C., and the supernatant is removed by decantation. Repeated several times. At this time, the standing time was 24 hours for the first time and 72 hours for the second time. Then, it dried until it became constant weight at 60 degreeC (2 hours or more), and the catalyst which carried out water treatment was obtained.
Next, the catalytic activity when the reaction of oxidizing hydrogen chloride with oxygen was performed using the obtained catalyst was evaluated in the same manner as in Example 1. The results are shown in Table 1.

(比較例3)
参考例1で得た劣化触媒1gを、内径13mmのニッケル製反応管に充填し、さらに触媒層のガス入口側に予熱層として、α−アルミナ球(ニッカトー(株)製「SSA995」)12gを充填した。この反応管内に窒素ガスを80mL/分の速度で供給しながら、溶融塩(硝酸カリウム/亜硝酸ナトリウム=1/1(重量比))を熱媒体とする塩浴に反応管を浸して、触媒層の温度を350℃にした。次いで、窒素ガスの供給を停止した後、一酸化炭素ガスおよび窒素ガスを、一酸化炭素ガスは3.2mL/分(0.009mol/h)の速度で、窒素ガスは28.8mL/分(0.08mol/h)の速度で供給し、350℃で2時間保持することにより、還元性ガスによる接触処理を行った。
(Comparative Example 3)
1 g of the deteriorated catalyst obtained in Reference Example 1 was filled in a nickel reaction tube having an inner diameter of 13 mm, and 12 g of α-alumina sphere (“SSA995” manufactured by Nikkato Co., Ltd.) was used as a preheating layer on the gas inlet side of the catalyst layer. Filled. While supplying nitrogen gas into the reaction tube at a rate of 80 mL / min, the reaction tube is immersed in a salt bath using a molten salt (potassium nitrate / sodium nitrite = 1/1 (weight ratio)) as a heat medium to form a catalyst layer. The temperature of was set to 350 ° C. Next, after the supply of nitrogen gas was stopped, carbon monoxide gas and nitrogen gas were supplied at a rate of 3.2 mL / min (0.009 mol / h) for carbon monoxide gas and 28.8 mL / min for nitrogen gas ( 0.08 mol / h) was supplied and kept at 350 ° C. for 2 hours to perform contact treatment with a reducing gas.

次いで、上記還元性ガスによる接触処理に引き続き、酸化性ガスによる接触処理を行った。すなわち、一酸化炭素ガスの供給を停止した後、酸素ガスおよび窒素ガスを、酸素ガスは40mL/分(0.009mol/h)の速度で、窒素ガスは160mL/分(0.43mol/h)の速度で供給し、350℃で2時間保持することにより、酸化性ガスによる接触処理を行い、還元性ガスによる接触処理の後、酸化性ガスによる接触処理を施した触媒を得た。   Subsequently, the contact treatment with the oxidizing gas was performed following the contact treatment with the reducing gas. That is, after the supply of carbon monoxide gas is stopped, oxygen gas and nitrogen gas are supplied at a rate of 40 mL / min (0.009 mol / h) for oxygen gas and 160 mL / min (0.43 mol / h) for nitrogen gas. The catalyst was subjected to contact treatment with an oxidizing gas by maintaining at 350 ° C. for 2 hours, and a catalyst subjected to contact treatment with an oxidizing gas after contact treatment with a reducing gas was obtained.

次に、得られた触媒を反応管から取り出すことなく、上記酸化性ガスによる接触処理に引き続き、塩化水素を酸素で酸化する反応を行ったときの触媒活性を評価した。すなわち、酸素ガスの供給を停止し、窒素ガスの供給速度を80mL/分(0.21mol/h)とした後、触媒層の温度を281〜282℃にした。次いで、これ以降は実施例1の触媒活性評価と同様にして、窒素ガスの供給を停止した後、塩化水素ガスおよび酸素ガスを供給して酸化反応を行い、塩素の生成量を測定し、塩化水素の転化率(%)を算出した。結果を表1に示す。   Next, without removing the obtained catalyst from the reaction tube, the catalytic activity when the reaction of oxidizing hydrogen chloride with oxygen was performed following the contact treatment with the oxidizing gas was evaluated. That is, the supply of oxygen gas was stopped, the supply rate of nitrogen gas was set to 80 mL / min (0.21 mol / h), and then the temperature of the catalyst layer was set to 281 to 282 ° C. Subsequently, after the supply of nitrogen gas was stopped in the same manner as the catalyst activity evaluation in Example 1, hydrogen chloride gas and oxygen gas were supplied to perform an oxidation reaction, and the amount of chlorine produced was measured. The hydrogen conversion (%) was calculated. The results are shown in Table 1.

Figure 2010274216
Figure 2010274216

Claims (5)

塩化水素を酸素で酸化する反応に使用される塩素製造用触媒の賦活方法であって、活性が低下した塩素製造用触媒を酸性液に接触させることを特徴とする塩素製造用触媒の賦活方法。   A method for activating a catalyst for producing chlorine used in a reaction for oxidizing hydrogen chloride with oxygen, comprising bringing a catalyst for producing chlorine having reduced activity into contact with an acidic solution. 前記酸性液のpHが5以下である請求項1に記載の塩素製造用触媒の賦活方法。   The method for activating a catalyst for chlorine production according to claim 1, wherein the acidic solution has a pH of 5 or less. 前記酸性液が、無機酸が溶解している水溶液である請求項1又は2に記載の塩素製造用触媒の賦活方法。   The method for activating a catalyst for chlorine production according to claim 1 or 2, wherein the acidic liquid is an aqueous solution in which an inorganic acid is dissolved. 前記塩素製造用触媒が、酸化ルテニウムを含有する触媒である請求項1〜3のいずれかに記載の塩素製造用触媒の賦活方法。   The method for activating a catalyst for chlorine production according to claim 1, wherein the catalyst for chlorine production is a catalyst containing ruthenium oxide. 触媒の存在下に塩化水素を酸素で酸化する塩素の製造方法であって、前記触媒として、請求項1〜4のいずれかに記載の賦活方法により賦活した触媒を用いることを特徴とする塩素の製造方法。   A method for producing chlorine in which hydrogen chloride is oxidized with oxygen in the presence of a catalyst, wherein the catalyst is a catalyst activated by the activation method according to claim 1. Production method.
JP2009130989A 2009-05-29 2009-05-29 Method of activating catalyst for producing chlorine, and method of producing chlorine Pending JP2010274216A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009130989A JP2010274216A (en) 2009-05-29 2009-05-29 Method of activating catalyst for producing chlorine, and method of producing chlorine
CN2010800198309A CN102413927A (en) 2009-05-29 2010-05-19 Method for activating catalyst for chlorine production and method for producing chlorine
PCT/JP2010/058434 WO2010137504A1 (en) 2009-05-29 2010-05-19 Method for activating catalyst for chlorine production and method for producing chlorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009130989A JP2010274216A (en) 2009-05-29 2009-05-29 Method of activating catalyst for producing chlorine, and method of producing chlorine

Publications (1)

Publication Number Publication Date
JP2010274216A true JP2010274216A (en) 2010-12-09

Family

ID=43222615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009130989A Pending JP2010274216A (en) 2009-05-29 2009-05-29 Method of activating catalyst for producing chlorine, and method of producing chlorine

Country Status (3)

Country Link
JP (1) JP2010274216A (en)
CN (1) CN102413927A (en)
WO (1) WO2010137504A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111495359A (en) * 2020-04-01 2020-08-07 浙江师范大学 Molded catalyst for preparing chlorine by oxidizing hydrogen chloride and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506592A (en) * 1973-05-22 1975-01-23
JPH02144149A (en) * 1988-11-22 1990-06-01 Ube Ind Ltd Method for reactivating platinum-group metal carrying catalyst
JPH03221145A (en) * 1989-11-22 1991-09-30 Mitsui Toatsu Chem Inc Regeneration of catalyst
JP2005270910A (en) * 2004-03-26 2005-10-06 Sumitomo Chemical Co Ltd Method for regenerating reduction catalyst and method for producing (alkylamino)diphenylamines
JP2009022917A (en) * 2007-07-23 2009-02-05 Sumitomo Chemical Co Ltd Activation method for chlorine production catalyst and method for producing chlorine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506592A (en) * 1973-05-22 1975-01-23
JPH02144149A (en) * 1988-11-22 1990-06-01 Ube Ind Ltd Method for reactivating platinum-group metal carrying catalyst
JPH03221145A (en) * 1989-11-22 1991-09-30 Mitsui Toatsu Chem Inc Regeneration of catalyst
JP2005270910A (en) * 2004-03-26 2005-10-06 Sumitomo Chemical Co Ltd Method for regenerating reduction catalyst and method for producing (alkylamino)diphenylamines
JP2009022917A (en) * 2007-07-23 2009-02-05 Sumitomo Chemical Co Ltd Activation method for chlorine production catalyst and method for producing chlorine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010047222; ZWEIDINGER, S. et al: 'Reaction Mechanism of the Oxidation of HCl over RuO2(110)' J. Phys. Chem. C Vol.112, No.27, 20080613, p.9966-9969 *
JPN6010047224; LOPEZ, N. et al: 'Mechanism of HCl oxidation (Deacon process) over RuO2' Journal of Catalysis Vol.255, No.1, 20080401, p.29-39 *

Also Published As

Publication number Publication date
WO2010137504A1 (en) 2010-12-02
CN102413927A (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP5169047B2 (en) Chlorine production method
JP5577319B2 (en) Process for regenerating a ruthenium-containing or ruthenium compound-containing catalyst poisoned with sulfur in the form of a sulfur compound
JP5277813B2 (en) Method for producing fluorinated propene
JP2009108049A (en) Method for producing trans-1,3,3,3-tetrafluoropropene
CN110621403B (en) Process for regenerating poisoned catalysts containing ruthenium or ruthenium compounds
JP4367381B2 (en) Method for activating catalyst for producing chlorine and method for producing chlorine
JP2005289800A (en) Method of producing chlorine
JP4438771B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP5368883B2 (en) Method for activating catalyst for chlorine production and method for producing chlorine
JP2010274216A (en) Method of activating catalyst for producing chlorine, and method of producing chlorine
JP4487975B2 (en) Method for producing oxidation catalyst, method for producing chlorine, and method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP4611007B2 (en) Chlorine production method
JP2010105858A (en) Method for producing chlorine, and method for oxidizing carbon monoxide and/or unsaturated hydrocarbon
JP5169763B2 (en) Chlorine production method
JP2011162382A (en) Method for producing chlorine
JP5249717B2 (en) Method for oxidizing carbon monoxide and / or unsaturated hydrocarbon
JP5267305B2 (en) Chlorine production method
JP5365540B2 (en) Method for oxidizing organic compounds
JPH09271673A (en) Method for regenerating catalyst and production of trichloroethylene utilizing the same
JP2012091977A (en) Method for producing chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219