JP2010273000A - Electronic tuning bandpass filter - Google Patents

Electronic tuning bandpass filter Download PDF

Info

Publication number
JP2010273000A
JP2010273000A JP2009121540A JP2009121540A JP2010273000A JP 2010273000 A JP2010273000 A JP 2010273000A JP 2009121540 A JP2009121540 A JP 2009121540A JP 2009121540 A JP2009121540 A JP 2009121540A JP 2010273000 A JP2010273000 A JP 2010273000A
Authority
JP
Japan
Prior art keywords
line
resonance
magnetic field
frequency
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009121540A
Other languages
Japanese (ja)
Inventor
Masaaki Hirose
雅昭 廣世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CANDOX SYSTEMS Inc
Original Assignee
CANDOX SYSTEMS Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CANDOX SYSTEMS Inc filed Critical CANDOX SYSTEMS Inc
Priority to JP2009121540A priority Critical patent/JP2010273000A/en
Publication of JP2010273000A publication Critical patent/JP2010273000A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic tuning bandpass filter which has little insertion loss, a steep out-of-band attenuation characteristic and an optional narrow band to wide band passage characteristic, does not cause distortion due to a nonlinear element, or the like, and controls a resonance frequency having both a characteristic of a resonance (antiresonance) transmission line type bandpass filter, for example, such as an interdigital filter structure and a characteristic of a YIG tuning type filter, etc., that continuously vary an optional frequency. <P>SOLUTION: A piece of crystal for generating a resonance magnetostatic wave mode is installed between the vicinity of the maximum current point of a line of a transmission line resonator and a ground side, and a transmission line type resonance element is included, which controls the resonance frequency of the line by changing an equivalent inductance of the line due to the application of a direct current magnetic field from over the line and due to a change in a permeability that occurs before and after the resonance mode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、固定型でしか得られない様な高性能バンドパスフィルター特性を電子的に可変させることができる電子同調バンドパスフィルターに関するものである。   The present invention relates to an electronically tuned band-pass filter that can electronically vary a high-performance band-pass filter characteristic that can be obtained only by a fixed type.

マイクロ波領域の広帯域をカバーする受信機、例えば、雑音に埋もれるような微小信号を抽出する受信機では、目的外の妨害入力信号を除去し、目的の周波数の信号のみを通過させるバンドパスフィルターが初段に必要である。この可変同調バンドパスフィルターの挿入損失が、受信機全体のノイズフィギュアー(受信感度)などの特性を決定してしまうため、極力低損失なバンドパスフィルターが要求されている。   In a receiver that covers a wide band in the microwave region, for example, a receiver that extracts a minute signal buried in noise, a band-pass filter that removes an unintended interference input signal and passes only a signal of a target frequency is provided. Necessary for the first stage. Since the insertion loss of this tunable bandpass filter determines characteristics such as noise figure (reception sensitivity) of the entire receiver, a bandpass filter with as low a loss as possible is required.

広い周波数範囲を可変同調する装置では、この低挿入損を優先させるため、多数の分布線路型のメカニカルなフィルターを並べ、電気的に切り替えて使用したりしている。   In an apparatus that tunes a wide frequency range, in order to prioritize this low insertion loss, a large number of distributed line type mechanical filters are arranged and electrically switched for use.

一方、連続可変や高速可変を要求される装置では、5〜10デシベル程度の挿入損を持つYIG(イットリウム・アイアン・ガーネット)球によるフィルターなどを使用している。   On the other hand, in a device that requires continuous variable or high-speed variable, a YIG (yttrium iron garnet) ball filter having an insertion loss of about 5 to 10 decibels is used.

更に、例えばレーダー用受信装置では、微小信号のみでなく、比較的近距離にある反射物などからの大信号にも耐えなければならない。   Furthermore, for example, a radar receiver must be able to withstand not only a minute signal but also a large signal from a reflector at a relatively short distance.

可変容量ダイオード等を、λ/4型共振回路開放端に挿入する場合は、大きな電圧がダイオードにかかり、非直線性による混変調が生じるため、高信頼型装置には不向きである。   When a variable capacitance diode or the like is inserted into the open end of the λ / 4 type resonance circuit, a large voltage is applied to the diode and cross modulation due to non-linearity occurs, which is not suitable for a highly reliable device.

マイクロ波領域のバンドパスフィルターの従来技術としては、下記の技術が挙げられる。
(1)狭帯域通過特性を求める場合は、十分に高い共振Qを必要とするため、数ミリ〜数センチの厚みを持ったメカニカル構造の共振(反共振)伝送線路による例えばインターデジタル構造のバンドパスフィルターを構成させる。同調周波数を変化させるには、この反共振回路開放端にバラクターダイオードを挿入し、印加バイアス電圧によりキャパシタンスを変えて同調周波数を変化させることが考えられる。
The following techniques can be cited as conventional techniques for bandpass filters in the microwave region.
(1) When a narrow band pass characteristic is required, a sufficiently high resonance Q is required, and therefore, for example, an interdigital band by a mechanical structure resonance (anti-resonance) transmission line having a thickness of several millimeters to several centimeters. Configure a pass filter. In order to change the tuning frequency, it is conceivable to insert a varactor diode at the open end of the anti-resonance circuit and change the tuning frequency by changing the capacitance according to the applied bias voltage.

しかしこの方法では、バラクターダイオードが挿入されるオープン端は、最大の共振電圧がかかる点でもあるので、ダイオードの非直線性に起因する歪など数々の問題に注意して使用しなければならない問題がある。   However, in this method, the open end where the varactor diode is inserted is also the point where the maximum resonance voltage is applied, so there are problems that must be used with attention to various problems such as distortion caused by the nonlinearity of the diode. There is.

(2)広い周波数範囲を可変同調するには、比較的広帯域通過特性を持つYIG同調フィルターが使用される。図1は、従来のYIG同調フィルタの構造図であり、YIG単結晶を数百ミクロン程度の球に加工し、直交するループコイルによって、高周波磁界をYIG球にかける構造を作るものである。更に、この高周波磁界に直交する直流バイアス磁界をかけ、この直流磁界の強度に比例したYIG静磁モードのスピン共鳴周波数を変化させ、任意周波数を通過させるフィルターである。 (2) In order to variably tune a wide frequency range, a YIG tuning filter having a relatively wide band pass characteristic is used. FIG. 1 is a structural diagram of a conventional YIG tuned filter, in which a YIG single crystal is processed into a sphere of about several hundred microns and a structure in which a high-frequency magnetic field is applied to the YIG sphere by orthogonal loop coils. Furthermore, a DC bias magnetic field orthogonal to the high frequency magnetic field is applied, the YIG magnetostatic mode spin resonance frequency is proportional to the strength of the DC magnetic field, and an arbitrary frequency is passed.

これは、電子的に自由な制御が出来る優れたフィルターであるが、小さな共鳴球に直交する二つのループコイルをかける構造を基本とし、更に通過帯域外の減衰量を確保するため、数段並べて帯域外減衰量を確保する必要がある。このため、どうしても、挿入損失が増える欠点がある。通常、5〜10dB程度の挿入損失があり、高性能な伝送線路型メカニカル同調固定フィルター等に比べると大きな挿入損を有している。高感度特性を至上命題とする高性能受信設備には、この数デシベルのロスは非常に大きな問題となっている。   This is an excellent filter that can be controlled electronically, but it is based on a structure in which two loop coils orthogonal to a small resonance sphere are applied, and several stages are arranged in order to secure attenuation outside the passband. It is necessary to secure out-of-band attenuation. For this reason, there is a disadvantage that the insertion loss increases. Usually, it has an insertion loss of about 5 to 10 dB, and has a larger insertion loss than a high-performance transmission line type mechanical tuning fixed filter or the like. This loss of several decibels is a very big problem for high-performance receivers that have high sensitivity characteristics as the most important issue.

(3)多数のメカニカル構造伝送線路型フィルターで各固定周波数のバンドパスフィルターを得て、これを並べ、PIN型ダイオードによるスイッチでこのフィルターを切替え、同調周波数を可変する方法も用いられている。
前述の2方式の欠点を避けるために用いられるもので、電気的通過・減衰特性は良好であるが、(イ)システムが極めて大型及び高価になることと、(ロ)切替周波数が不連続・ステップ状になる欠点があった。
(3) A method is also used in which a band-pass filter of each fixed frequency is obtained by a number of mechanical structure transmission line type filters, these are arranged, this filter is switched by a switch using a PIN diode, and the tuning frequency is varied.
It is used to avoid the disadvantages of the two systems mentioned above, and it has good electrical passage and attenuation characteristics. However, (b) the system becomes very large and expensive, and (b) the switching frequency is discontinuous. There was a drawback of stepping.

この発明は、このような点に鑑みなされたものであり、挿入損失が少なく、急峻な帯域外減衰特性と任意の狭帯域〜広帯域通過特性を持ち、非直線素子等による歪みを発生させない、例えばインターデジタルフィルター構造など共振(反共振)伝送線路型のバンドパスフィルターの特徴と、任意周波数を連続に可変できるYIG同調型フィルター等の特徴を併有するバンドパスフィルターを提供することを目的とする。   The present invention has been made in view of such points, has a low insertion loss, has a steep out-of-band attenuation characteristic and an arbitrary narrow band to wide band pass characteristic, and does not generate distortion due to a non-linear element, for example. It is an object of the present invention to provide a bandpass filter having both the characteristics of a resonance (antiresonance) transmission line type bandpass filter such as an interdigital filter structure and the characteristics of a YIG tuning type filter that can continuously vary an arbitrary frequency.

上記目的に沿う本発明の構成は、分布型伝送線路共振器の線路の最大電流点付近とグランド側の間に、共鳴静磁波モードを発生する結晶片を設置し、前記線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、前記線路の等価インダクタンスを変化させ、前記線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする(請求項1)。
一端を短絡し、他端が開放端である伝送線路共振器の反共振回路は、短絡端が最大電流点であるので、短絡端側線路とグランド側の間に共鳴静磁波モードを発生する結晶片を設置し、前記短絡端側線路上から直流磁界を加えることにより、共鳴モード前後で起こる透磁率の変化により、線路の等価インダクタンスを変化させ、反共振線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする(請求項2)。
In the configuration of the present invention that meets the above-described object, a crystal piece that generates a resonant magnetostatic wave mode is installed between the vicinity of the maximum current point of the line of the distributed transmission line resonator and the ground side, and a DC magnetic field is generated from the line. It includes a transmission line type resonance element that controls the resonance frequency of the line by changing the equivalent inductance of the line by changing the magnetic permeability that occurs before and after the resonance mode when applied (Claim 1). .
The anti-resonance circuit of the transmission line resonator, in which one end is short-circuited and the other end is an open end, is a crystal that generates a resonant magnetostatic wave mode between the short-circuit end side line and the ground side because the short-circuit end is the maximum current point. A transmission line type resonance that controls the resonance frequency of the anti-resonant line by changing the equivalent inductance of the line by changing the permeability that occurs before and after the resonance mode by applying a DC magnetic field from above the short-circuited end side line by installing a piece An element is included (claim 2).

また、本発明は、任意通過特性(帯域幅、挿入損失)及び減衰特性を得るため、例えば多数の反共振片を組み合わせたインターデジタル型バンドパスフィルターで、基本的なバンドパスフィルター構造を形成し、その各反共振片短絡端側線路とグランド側との間に共鳴静磁波モードを発生する結晶片を設置し、同一又は個別に直流磁界を印加し、各反共振片の等価電気長を可変とし、共鳴モード前後で起こる透磁率の変化により、線路の等価インダクタンスを変化させ、この手段によりインターデジタル型フィルターによる基本特性を得た上で、中心周波数を可変制御する伝送線路型共振素子を含むことを特徴とする(請求項3)。   In addition, the present invention forms a basic band-pass filter structure, for example, an interdigital band-pass filter that combines a number of anti-resonant pieces in order to obtain arbitrary pass characteristics (bandwidth, insertion loss) and attenuation characteristics. A crystal piece that generates a resonant magnetostatic wave mode is installed between each anti-resonant piece short-circuit end side line and the ground side, and a DC magnetic field is applied to the same or separately to change the equivalent electrical length of each anti-resonant piece. Including a transmission line type resonance element that variably controls the center frequency after changing the equivalent inductance of the line due to the change in permeability occurring before and after the resonance mode and obtaining the basic characteristics by the interdigital filter by this means (Claim 3).

また、本発明は、両端オープン型伝送線路共振器(例えばCoupled Resonator、Hairpin型、Edge Coupled型、などの名称で知られている) においても、その線路中心付近は電流最大点であるので、その線路中心付近とグランド側の間に静磁波モードを発生する結晶片を設置し、前記短絡端側線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、線路の等価インダクタンスを変化させ、共振線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする(請求項4)。   Further, the present invention also has an open-ended transmission line resonator (known as a name such as Coupled Resonator, Hairpin type, Edge Coupled type, etc.), and the vicinity of the line center is the maximum current point. By installing a crystal piece that generates a magnetostatic wave mode between the vicinity of the line center and the ground side, and applying a DC magnetic field from the short-circuited end side line, the equivalent inductance of the line is changed by the change in permeability that occurs before and after the resonance mode. And a transmission line type resonance element that controls the resonance frequency of the resonance line.

前記短絡端側線路又は共振器の線路中心付近は、電流最大点付近であり、前記静磁波モードを発生する結晶片にかかる高周波磁界と直角に前記直流磁界を印加する(請求項5)。   The vicinity of the line center of the short-circuit end side line or the resonator is near the current maximum point, and the DC magnetic field is applied perpendicular to the high-frequency magnetic field applied to the crystal piece that generates the magnetostatic wave mode.

前記高周波磁界に直角に直流磁界をかけるため、前記共振又は反共振線路と前記結晶片との間に磁心に励起コイルを巻いた電磁石を配置するのが好ましい(請求項6)。
直流バイアス磁界の僅かな変化で磁性体ディスクの高周波透磁率を大きく変えられる地点で前記直流磁界を加えるのが良い(請求項7)。
In order to apply a DC magnetic field perpendicular to the high-frequency magnetic field, it is preferable to dispose an electromagnet having an excitation coil wound around a magnetic core between the resonance or anti-resonance line and the crystal piece.
The DC magnetic field is preferably applied at a point where the high frequency magnetic permeability of the magnetic disk can be greatly changed by a slight change in the DC bias magnetic field.

本発明に使用する共鳴静磁波モードを発生する結晶片としては、YIGディスクを使用するのが好ましい(請求項8)。また、共鳴静磁波モードを発生する結晶片としては、損失項を最小とするため、多結晶ではなく単結晶片を使用するのが好ましい(請求項9)。
請求項1に記載の静磁モード結晶片装填伝送線路型共振素子は、可変同調周波数バンドエリミネートフィルター(請求項10)、単独の電子可変共振回路(請求項11)又は周波数決定素子とすることができる(請求項12)。
It is preferable to use a YIG disk as the crystal piece for generating the resonant magnetostatic wave mode used in the present invention. Further, as the crystal piece that generates the resonant magnetostatic wave mode, it is preferable to use a single crystal piece instead of a polycrystal in order to minimize the loss term.
The magnetostatic mode crystal piece-loaded transmission line type resonance element according to claim 1 may be a tunable frequency band elimination filter (claim 10), a single electronic variable resonance circuit (claim 11), or a frequency determination element. (Claim 12).

請求項1に記載の静磁モード結晶片装填伝送線路型共振素子は、発振回路と組み合わせて可変周波数発信器の共鳴素子とすることができる(請求項13)。   The magnetostatic mode crystal piece-loaded transmission line type resonance element according to claim 1 can be used as a resonance element of a variable frequency oscillator in combination with an oscillation circuit (claim 13).

以上述べたごとく、本発明によれば、周波数固定型でしか得られない様な、「低損失」「狭帯域」「任意設計帯域」「帯域外高減衰量」特性を確保しながら、YIG球等による可変同調フィルターやバラクタダイオードを併用した可変同調フィルターが持つ連続可変同調周波数機能を持たせたバンドパスフィルターが構成できるため、妨害波を排除しながら、高感度に受信信号を選択することができる。その結果、極めて信頼性の高い高感度受信システムを構築する重要な要素となる。特に、各種電波監視システムや航空機、空港等でのレーダー受信部性能向上に役立つ。   As described above, according to the present invention, while maintaining the characteristics of “low loss”, “narrow band”, “arbitrary design band”, and “out-of-band high attenuation” that can only be obtained with a fixed frequency type, A band-pass filter with a continuously variable tuning frequency function that a variable tuning filter using a variable tuning filter or a varactor diode in combination can be configured, so it is possible to select a received signal with high sensitivity while eliminating interference it can. As a result, it becomes an important element for constructing a highly reliable high sensitivity receiving system. In particular, it is useful for improving the performance of radar receivers in various radio wave monitoring systems, aircraft and airports.

従来技術のYIG同調フィルタの構造図(断面図)である。It is structural drawing (sectional drawing) of the YIG tuning filter of a prior art. 共鳴(静磁波)モード付近の透磁率変化を示す線図である。FIG. 6 is a diagram showing a permeability change near a resonance (magnetostatic wave) mode. 本発明の反共振線路と可変インダクタンス機構を示す説明図である。It is explanatory drawing which shows the anti-resonance line and variable inductance mechanism of this invention. 従来の固定周波数インターデジタル型バンドパスフィルターの一例を示す図である。It is a figure which shows an example of the conventional fixed frequency interdigital type band pass filter. 本発明の可変インダクタンス箇所設置型インターデジタルバンドパスフィルターを示す図である。It is a figure which shows the variable inductance location installation type interdigital bandpass filter of this invention. 本発明の両端開放の共振器の実施例を示す図である。It is a figure which shows the Example of the resonator of open both ends of this invention.

次に、本発明の実施の形態を図面に基づいて説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

本発明のバンドパスフィルターの電気的特性・構造は、共振(又は反共振)伝送線路型バンドパスフィルターを基本とする。   The electrical characteristics and structure of the band-pass filter of the present invention are based on a resonant (or anti-resonant) transmission line type band-pass filter.

実効的に伝送線路長を可変させる手段として、伝送線路電流最大点付近の導体とグランド面間に静磁モードを発生する結晶磁性体ディスクを挿入する。   As means for effectively varying the transmission line length, a crystalline magnetic disk that generates a magnetostatic mode is inserted between the conductor near the transmission line current maximum point and the ground plane.

このディスクには、線路を流れる高周波電流による高周波磁界が横方向からかかる。この高周波磁界に直角に直流磁界をかけるため、共振又は反共振線路とディスクの上下方向にパーマロイなど磁心に励磁コイルを巻いた電磁石を設置する。   A high-frequency magnetic field due to a high-frequency current flowing in the line is applied to the disk from the lateral direction. In order to apply a DC magnetic field perpendicular to the high-frequency magnetic field, an electromagnet having an exciting coil wound around a magnetic core such as a permalloy is installed in the vertical direction of the resonance or anti-resonance line and the disk.

直流磁界を増加させてゆくと、YIG単結晶等ディスク内結晶構造による電子スピン周波数が上昇して行き、静磁モードが発生する領域に到達する。本発明のシステムでは、マイクロ波伝送線路型共振回路の共振周波数地点より僅かに低い周波数点で静磁モード周波数地点付近の直流磁界(バイアス)を加える。この地点は、直流バイアス磁界の僅かな変化で磁性体ディスクの高周波透磁率を大きく変えられる地点である。   When the DC magnetic field is increased, the electron spin frequency due to the crystal structure in the disk such as a YIG single crystal increases, and reaches the region where the magnetostatic mode is generated. In the system of the present invention, a DC magnetic field (bias) near the magnetostatic mode frequency point is applied at a frequency point slightly lower than the resonance frequency point of the microwave transmission line type resonance circuit. This point is a point where the high frequency magnetic permeability of the magnetic disk can be greatly changed by a slight change in the DC bias magnetic field.

すなわち、ディスクを装着しないときの伝送線路共振(反共振)回路にインダクタンスを挿入したことと等価なふるまいとなり、直流バイアス磁界より挿入インダクタンスを任意に可変させ、周波数を制御することが出来る。   That is, the behavior is equivalent to inserting an inductance into a transmission line resonance (anti-resonance) circuit when no disk is mounted, and the frequency can be controlled by arbitrarily varying the insertion inductance from a DC bias magnetic field.

この構造をインターデジタル型に並べてインターデジタル可変周波数バンドパスフィルターを制作すれば、一般のインターデジタル型フィルターの持つ任意通過幅の低損失バンドパスフィルター減衰域抑制の可変同調型とすることができる。   If this structure is arranged in an interdigital type to produce an interdigital variable frequency bandpass filter, a low-loss bandpass filter with an arbitrary pass width possessed by a general interdigital filter can be made to be a variable tuning type.

図2は、共鳴(静磁波)モードによる透磁率の変化を示すものである。反共振線路(λ/4に切ってある)とグランド面との間に静磁モードを発生する単結晶片を挿入する。単結晶片は、反共振線路に貼り付けても、反共振線路とグランド面との間に配置しても差し支えない。反共振線路は、図2に示すように、右端が開放端、左端が短絡端になっている。   FIG. 2 shows a change in permeability according to the resonance (magnetostatic wave) mode. A single crystal piece that generates a magnetostatic mode is inserted between the anti-resonant line (cut to λ / 4) and the ground plane. The single crystal piece may be attached to the anti-resonant line or may be disposed between the anti-resonant line and the ground plane. As shown in FIG. 2, the anti-resonant line has an open end at the right end and a short-circuited end at the left end.

図2に示すように、上下方向に直流磁界を印加し、直流磁界の強度を上げていくと、図1に示すように、透磁率が大きく変化するインダクタンス可変域(共鳴モード)に達する。この直流磁界の印加方向と直交する横方向に高周波磁界が発生する。   As shown in FIG. 2, when a direct-current magnetic field is applied in the vertical direction and the strength of the direct-current magnetic field is increased, an inductance variable region (resonance mode) in which the magnetic permeability greatly changes is reached as shown in FIG. A high frequency magnetic field is generated in a lateral direction perpendicular to the direction in which the DC magnetic field is applied.

上記インダクタンス可変域でインダクタンスを変化させることによって、反共振線路の周波数を制御することが出来る。   The frequency of the anti-resonant line can be controlled by changing the inductance in the inductance variable range.

図3は、従来の固定周波数インターデジタル型バンドパスフィルターの一例を示すものであり、λ/4の線路をインターデジタルに並べて、共鳴周波数を通すバンドパスフィルターである。これは、本願発明のように周波数を可変できない固定型である。   FIG. 3 shows an example of a conventional fixed-frequency interdigital bandpass filter, which is a bandpass filter that arranges λ / 4 lines in an interdigital manner and passes a resonance frequency. This is a fixed type in which the frequency cannot be varied as in the present invention.

図5は、本発明の可変インダクタンス箇所設置型インターデジタルバンドパスフィルターを示すものである。多数の反共振片の開放端と短絡端とを互い違いに(逆になるように)、即ちインターデジタルに並べたものである。短絡端の箇所に静磁モードを発生する単結晶片を挿入し、それぞれの反共振片に上下方向の磁界をかけるものであり、図4の従来品と異なり、インダクタンスを可変と出来るものである。   FIG. 5 shows an interdigital bandpass filter with a variable inductance location according to the present invention. The open ends and short-circuit ends of a number of anti-resonant pieces are arranged alternately (in reverse), that is, in an interdigital manner. A single crystal piece that generates a magnetostatic mode is inserted at the short-circuited end, and a vertical magnetic field is applied to each anti-resonant piece. Unlike the conventional product of FIG. 4, the inductance can be made variable. .

図6は、本発明の両端開放共振器の実施例を示すもので、1/2波長伝送線路型共振器である。上部導体とグランド面でストリップ線路型伝送線路を形成する例を示す。中央の電流最大点に、等価インダクタンス可変のため、YIG等の単結晶片を挿入する。   FIG. 6 shows an embodiment of an open-ended resonator according to the present invention, which is a 1/2 wavelength transmission line type resonator. An example in which a stripline transmission line is formed by an upper conductor and a ground plane will be described. A single crystal piece such as YIG is inserted at the center current maximum point to change the equivalent inductance.

本発明の装置では、静磁波モードを発生する結晶片は、その面積において均一な電気的特性を有するので、その大きさ(容積)は、システムで扱う電力値に合わせ自由に選べると共に金属電極に直に貼り付けることができるため、放熱も簡単に行えるので、大電力回路にも応用可能である。また、本来その同調特性は、印加磁界の強度に正比例する直線動作をする物質であるため、非直線性による歪み発生は極めて少ない。   In the apparatus of the present invention, the crystal piece that generates the magnetostatic wave mode has a uniform electrical characteristic in its area, so its size (volume) can be freely selected according to the power value handled by the system and the metal electrode Since it can be attached directly, it can be easily dissipated, so it can be applied to high power circuits. In addition, since the tuning characteristic is a substance that performs a linear operation that is directly proportional to the strength of the applied magnetic field, distortion due to non-linearity is extremely small.

(静磁モード共鳴素子)
高周波やマイクロ波帯で使用される磁性体にフェリ磁性体(フェライト)がある。一般に、フェライトと言うと多結晶体で、これが磁石やサーキュレータ、吸収体などに使用されている。
(Static magnetoresonance element)
Ferrimagnetic material (ferrite) is a magnetic material used in high frequency and microwave bands. Generally speaking, ferrite is a polycrystalline body, which is used for magnets, circulators, absorbers and the like.

本発明でのフェライトは、結晶格子を揃えて単結晶としたものを使用する。このことにより、内部電子スピンが揃って回転するので、損失分が極めて少なくなり、等価誘電率などの電気定数や鋭い共鳴現象を得ることができる。   As the ferrite in the present invention, a single crystal having a uniform crystal lattice is used. As a result, since the internal electron spins rotate together, the loss is extremely reduced, and an electrical constant such as an equivalent dielectric constant and a sharp resonance phenomenon can be obtained.

第2図に示す如く、外部バイアス磁界を増して行くと、共鳴モードが発生する。この付近の領域が静磁モードと呼ばれる領域であり、共鳴現象を呈する直前の透磁率が大きく変化する領域を使用する。
静磁モードを発生する結晶片としては、最も代表的な物質は、YIG(イットリウム・アイアン・ガーネット)単結晶で、マイクロ波帯に於いて損失も少なく、急峻な共鳴現象を呈することができる代表的な物質である。
YIGの他に同様な現象を呈する物質(フェライト)に次のようなものがあり、本発明に於いては、YIGと同様に使用することが出来る。
InYIG、GaYIG、BiCaInVIG、NiZn、LiZn、CuZn、MnMgAl
As shown in FIG. 2, when the external bias magnetic field is increased, a resonance mode is generated. A region in the vicinity of this is a region called a magnetostatic mode, and a region in which the magnetic permeability immediately before the resonance phenomenon changes greatly is used.
The most representative material that generates magnetostatic mode is YIG (yttrium, iron, garnet) single crystal, which has little loss in the microwave band and can exhibit a sharp resonance phenomenon. Material.
In addition to YIG, there are the following substances (ferrites) that exhibit the same phenomenon, and in the present invention, they can be used in the same manner as YIG.
InYIG, GaYIG, BiCaInVIG, NiZn, LiZn, CuZn, MnMgAl

以上述べたごとく、本発明によれば、周波数固定型でしか得られない様な、「低損失」「狭帯域」「任意設計帯域」「帯域外高減衰量」特性を確保しながら、YIG球による可変同調フィルターやバラクタダイオードを併用した可変同調フィルターが持つ連続可変同調周波数機能を持たせたバンドパスフィルターが構成できるため、妨害波を排除しながら、高感度に受信信号を選択することができるため、極めて信頼性の高い高感度受信システムを構築する重要な要素となる。特に、各種電波監視システムや航空機、空港等でのレーダー受信部性能向上に役立つ。

As described above, according to the present invention, while maintaining the characteristics of “low loss”, “narrow band”, “arbitrary design band”, and “out-of-band high attenuation” that can only be obtained with a fixed frequency type, A band-pass filter with a continuously variable tuning frequency function that the variable tuning filter using tunable filters and varactor diodes together has a function of continuously variable tuning frequency can be configured, so that received signals can be selected with high sensitivity while eliminating interfering waves. Therefore, it becomes an important element for constructing a highly reliable high sensitivity receiving system. In particular, it is useful for improving the performance of radar receivers in various radio wave monitoring systems, aircraft, airports, and the like.

Claims (13)

伝送線路共振器の線路の最大電流点付近とグランド側の間に、共鳴静磁波モードを発生する結晶片を設置し、前記線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、前記線路の等価インダクタンスを変化させ、前記線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする電子同調バンドパスフィルター。 Permeability that occurs before and after the resonance mode by installing a crystal fragment that generates a resonant magnetostatic wave mode between the vicinity of the maximum current point of the transmission line resonator line and the ground side, and applying a DC magnetic field from the line. An electronic tuning bandpass filter comprising a transmission line type resonance element that changes the equivalent inductance of the line by controlling the change of the line and controls the resonance frequency of the line. 一端を短絡した伝送線路共振器の短絡端側線路とグランド側の間に共鳴静磁波モードを発生する結晶片を設置し、前記短絡端側線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、線路の等価インダクタンスを変化させ前記線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする電子同調バンドパスフィルター。 By installing a crystal piece that generates a resonant magnetostatic wave mode between the short-circuited end-side line and the ground side of the transmission line resonator whose one end is short-circuited, and by applying a DC magnetic field from the short-circuited-end side line, before and after the resonance mode An electronic tuning bandpass filter comprising a transmission line type resonance element that changes the equivalent inductance of a line and controls the resonance frequency of the line by changing the magnetic permeability that occurs. 任意通過特性(帯域幅、挿入損失)及び減衰特性を得るため、例えば多数の反共振片を組み合わせたインターデジタル型バンドパスフィルター等で、基本的なバンドパスフィルター構造を形成し、その各反共振片短絡端側線路とグランド側の間に共鳴静磁波モードを発生する結晶片を設置し、同一又は個別に直流磁界を印加し、各反共振片の等価電気長を可変し、共鳴モード前後で起こる透磁率の変化により、線路の等価インダクタンスを変化させ、この手段によりインターデジタル型フィルターによる基本特性を得た上で、中心周波数を可変制御する伝送線路型共振素子を含むことを特徴とする電子同調バンドパスフィルター。 In order to obtain arbitrary pass characteristics (bandwidth, insertion loss) and attenuation characteristics, a basic bandpass filter structure is formed with an interdigital type bandpass filter combined with a number of antiresonant pieces, and each antiresonance is formed. A crystal piece that generates a resonant magnetostatic wave mode is installed between the short-circuited end-side line and the ground side, and a DC magnetic field is applied to the same or individually to vary the equivalent electrical length of each anti-resonant piece before and after the resonance mode. An electronic device characterized by including a transmission line type resonance element that variably controls the center frequency after changing the equivalent inductance of the line due to the change in permeability and obtaining the basic characteristics by the interdigital filter by this means Tuning bandpass filter. 両端オープン型伝送線路共振器の線路中心付近とグランド側の間に静磁波モードを発生する結晶片を設置し、前記短絡端側線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、線路の等価インダクタンスを変化させ前記線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする電子同調バンドパスフィルター。 Permeability that occurs before and after the resonance mode by installing a crystal fragment that generates a magnetostatic wave mode between the center of the open-ended transmission line resonator and the ground side and applying a DC magnetic field from the short-circuited end-side line. An electronic tuning band-pass filter comprising a transmission line type resonance element that changes the equivalent inductance of the line by controlling the change of the line to control the resonance frequency of the line. 前記静磁波モードを発生する結晶片にかかる高周波磁界と直角に前記直流磁界を印加する請求項1〜4のいずれかに記載のバンドパスフィルター。   The band-pass filter according to any one of claims 1 to 4, wherein the DC magnetic field is applied perpendicular to a high-frequency magnetic field applied to a crystal piece that generates the magnetostatic wave mode. 前記高周波磁界に直角に直流磁界をかけるため、前記共振又は反共振線路と前記結晶片との間に磁心に励起コイルを巻いた電磁石を配置する請求項5記載のバンドパスフィルター。   6. The bandpass filter according to claim 5, wherein an electromagnet having an excitation coil wound around a magnetic core is disposed between the resonance or antiresonance line and the crystal piece in order to apply a direct current magnetic field to the high frequency magnetic field at a right angle. 直流バイアス磁界の僅かな変化で磁性体ディスクの高周波透磁率を大きく変えられる地点で前記直流磁界を加える請求項1〜6のいずれかに記載のバンドパスフィルター。   The band pass filter according to any one of claims 1 to 6, wherein the DC magnetic field is applied at a point where the high frequency permeability of the magnetic disk can be greatly changed by a slight change in the DC bias magnetic field. 前記共鳴静磁波モードを発生する結晶片が、YIG球である請求項1〜7のいずれかに記載のバンドパスフィルター。   The band-pass filter according to any one of claims 1 to 7, wherein the crystal piece that generates the resonant magnetostatic wave mode is a YIG sphere. 前記共鳴静磁波モードを発生する結晶片は、単結晶片である請求項1〜8のいずれかに記載のバンドパスフィルター。 The band-pass filter according to claim 1, wherein the crystal piece that generates the resonant magnetostatic wave mode is a single crystal piece. 伝送線路共振器の線路の最大電流点付近とグランド側の間に、共鳴静磁波モードを発生する結晶片を設置し、前記線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、前記線路の等価インダクタンスを変化させ、前記線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする可変同調周波数バンドエリミネートフィルター。 Permeability that occurs before and after the resonance mode by installing a crystal fragment that generates a resonant magnetostatic wave mode between the vicinity of the maximum current point of the transmission line resonator line and the ground side, and applying a DC magnetic field from the line. A variable tuning frequency band eliminate filter comprising a transmission line type resonance element that changes the equivalent inductance of the line by controlling the change of the line and controls the resonance frequency of the line. 伝送線路共振器の線路の最大電流点付近とグランド側の間に、共鳴静磁波モードを発生する結晶片を設置し、前記線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、前記線路の等価インダクタンスを変化させ、前記線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする電子可変共振回路。 Permeability that occurs before and after the resonance mode by installing a crystal fragment that generates a resonant magnetostatic wave mode between the vicinity of the maximum current point of the transmission line resonator line and the ground side, and applying a DC magnetic field from the line. An electronic variable resonance circuit comprising a transmission line type resonance element that changes the equivalent inductance of the line by controlling the change of the line and controls the resonance frequency of the line. 伝送線路共振器の線路の最大電流点付近とグランド側の間に、共鳴静磁波モードを発生する結晶片を設置し、前記線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、前記線路の等価インダクタンスを変化させ、前記線路の共鳴周波数を制御する伝送線路型共振素子を含むことを特徴とする周波数決定素子。 Permeability that occurs before and after the resonance mode by installing a crystal fragment that generates a resonant magnetostatic wave mode between the vicinity of the maximum current point of the transmission line resonator line and the ground side, and applying a DC magnetic field from the line. A frequency determining element comprising a transmission line type resonance element that changes the equivalent inductance of the line by controlling the change of the line and controls the resonance frequency of the line. 伝送線路共振器の線路の最大電流点付近とグランド側の間に、共鳴静磁波モードを発生する結晶片を設置し、前記線路上から直流磁界を印加することにより、共鳴モード前後で起こる透磁率の変化により、前記線路の等価インダクタンスを変化させ、前記線路の共鳴周波数を制御する伝送線路型共振素子と発振回路とを組み合わせたことを特徴とする可変周波数発信器の共鳴素子。
Permeability that occurs before and after the resonance mode by installing a crystal piece that generates a resonance magnetostatic wave mode between the vicinity of the maximum current point of the transmission line resonator line and the ground side, and applying a DC magnetic field from the line. A resonance element of a variable frequency oscillator characterized by combining an oscillation circuit with a transmission line type resonance element that changes the equivalent inductance of the line by controlling the change of the line and controls the resonance frequency of the line.
JP2009121540A 2009-05-20 2009-05-20 Electronic tuning bandpass filter Pending JP2010273000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009121540A JP2010273000A (en) 2009-05-20 2009-05-20 Electronic tuning bandpass filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009121540A JP2010273000A (en) 2009-05-20 2009-05-20 Electronic tuning bandpass filter

Publications (1)

Publication Number Publication Date
JP2010273000A true JP2010273000A (en) 2010-12-02

Family

ID=43420696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009121540A Pending JP2010273000A (en) 2009-05-20 2009-05-20 Electronic tuning bandpass filter

Country Status (1)

Country Link
JP (1) JP2010273000A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379685B2 (en) 2012-09-19 2016-06-28 Murata Manufacturing Co., Ltd. Built-in-circuit substrate and composite module
CN114976543A (en) * 2022-07-04 2022-08-30 成都威频科技有限公司 Insert finger type YIG resonance structure and resonator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167301A (en) * 1984-09-11 1986-04-07 Sony Corp Ferromagnetic thin film filter
JPH0258401A (en) * 1988-08-24 1990-02-27 Mitsubishi Electric Corp Ferrimagnetic substance thin film filter
JP2004537905A (en) * 2001-08-02 2004-12-16 コミツサリア タ レネルジー アトミーク Ultrahigh frequency resonant circuits and tunable ultrahigh frequency filters using such resonant circuits

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167301A (en) * 1984-09-11 1986-04-07 Sony Corp Ferromagnetic thin film filter
JPH0258401A (en) * 1988-08-24 1990-02-27 Mitsubishi Electric Corp Ferrimagnetic substance thin film filter
JP2004537905A (en) * 2001-08-02 2004-12-16 コミツサリア タ レネルジー アトミーク Ultrahigh frequency resonant circuits and tunable ultrahigh frequency filters using such resonant circuits

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013001243; Y.Murakami and S.Itoh: 'A Bandpass Filter Using YIG Film Grown by LPE' 1985 IEEE MTT-S International Microwave Symposium Digest , 1985, pp.285 - 288, IEEE *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379685B2 (en) 2012-09-19 2016-06-28 Murata Manufacturing Co., Ltd. Built-in-circuit substrate and composite module
CN114976543A (en) * 2022-07-04 2022-08-30 成都威频科技有限公司 Insert finger type YIG resonance structure and resonator
CN114976543B (en) * 2022-07-04 2023-05-12 成都威频科技有限公司 Interdigital YIG resonant structure and resonator

Similar Documents

Publication Publication Date Title
CA2711310C (en) Electrically variable inductor, associated tunable filter and methods
US9300028B2 (en) Frequency selective limiter
RU2666968C1 (en) Frequency filter of uhf signal on magnetic waves
CN111613863A (en) Stripline resonator structure and magnetic tuning trap composed of resonator structure
US20160164528A1 (en) Frequency source with improved phase noise
US3368169A (en) Tunable bandpass filter
CN107181029A (en) A kind of wide-band double-tuned YIG-filter quickly tuned
JP2871725B2 (en) Waveguide bandpass filter
Adam et al. MSW frequency selective limiters at UHF
Lin et al. Integrated non-reciprocal dual H-and E-field tunable bandpass filter with ultra-wideband isolation
JP2010273000A (en) Electronic tuning bandpass filter
US3113278A (en) Microwave power limiter utilizing detuning action of gyromagnetic material at high r-f power level
US9203129B2 (en) Increasing the minimum rejection bandwidth of a YIG-tuned notch filter using a shunt YIG resonator
US4251786A (en) Stepped-rod ferrite microwave limiter having wide dynamic range and optimal frequency selectivity
RU113076U1 (en) MAGNETOSTATIC WAVE DEVICE
US20150365063A1 (en) Lumped element frequency selective limiters
Tsai et al. Wideband microwave filters using ferromagnetic resonance tuning in flip-chip YIG-GaAs layer structures
Du et al. A magnetically tunable bandpass filter with high out-of-band suppression
US3268838A (en) Magnetically tunable band-stop and band-pass filters
JPH0537202A (en) Adil type microwave filter
US3480888A (en) Electronically tuned filter
US6114929A (en) Magnetostatic wave device with specified distances between magnetic garnet film and ground conductors
US4027256A (en) Low level broadband limiter having ferrite rod extending through dielectric resonators
Arams et al. Low-level garnet limiters
CN212011220U (en) Stripline resonator structure and magnetic tuning trap composed of resonator structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A02 Decision of refusal

Effective date: 20130517

Free format text: JAPANESE INTERMEDIATE CODE: A02