JP2010270071A - Cation raw material for ionic fluid and process for producing the same - Google Patents

Cation raw material for ionic fluid and process for producing the same Download PDF

Info

Publication number
JP2010270071A
JP2010270071A JP2009123830A JP2009123830A JP2010270071A JP 2010270071 A JP2010270071 A JP 2010270071A JP 2009123830 A JP2009123830 A JP 2009123830A JP 2009123830 A JP2009123830 A JP 2009123830A JP 2010270071 A JP2010270071 A JP 2010270071A
Authority
JP
Japan
Prior art keywords
group
fullerene
acid group
raw material
sulfonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009123830A
Other languages
Japanese (ja)
Inventor
Kyoji Kimoto
協司 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009123830A priority Critical patent/JP2010270071A/en
Publication of JP2010270071A publication Critical patent/JP2010270071A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cation raw material linking a sulfonic acid group and a phosphonic acid group which is useful in synthesizing an ionic fluid to be used in a lithium-ion battery, a fuel cell electrolyte or a solvent for recovering rare earth metals. <P>SOLUTION: The cation raw material for an ion fluid includes the chemical structure: (X)<SB>m</SB>-Y-fullerene-(Z)<SB>n</SB>(wherein X is an imidazole group or a benzimidazole group; Y is S or SO<SB>2</SB>; Z is a sulfonic acid group, a phosphonic acid group or a precursor thereof; m is an integer of 1-4; n is an integer of 1-10; and m+n=2-12). A process for producing the cation raw material for an ion fluid comprises (step 1) a step of bonding an imidazole group or a benzimidazole group to fullerene, (step 2) a step of bonding a sulfonic acid group, a phosphonic acid group or a precursor thereof to the fullerene, and if necessary, (step 3) a step of oxidizing the sulfide bond into a sulfone bond. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン電池や燃料電池の電解質又はレアメタル回収用溶媒として用いられるイオン液体を合成するのに有用なカチオン原料及びその製造方法に関する。   The present invention relates to a cation raw material useful for synthesizing an ionic liquid used as an electrolyte or a rare metal recovery solvent for lithium ion batteries and fuel cells, and a method for producing the same.

イオン液体は、低融点,高耐熱性,不揮発性,高イオン伝導性,広電位窓,水相との層分離等の特徴を有し、リチウムイオン電池や燃料電池の電解質又は反応・抽出溶媒として最近注目を集めている。
イオン液体はイミダゾリウムイオン,ピリジニウムイオン,テトラアルキルアンモニウムイオン,テトラアルキルホスホニウムイオン等の有機カチオンと、BF,PF,CFSO,(CFSON等のアニオンとから構成されている。
Ionic liquid has characteristics such as low melting point, high heat resistance, non-volatility, high ionic conductivity, wide potential window, layer separation from water phase, etc., as an electrolyte or reaction / extraction solvent for lithium ion batteries and fuel cells Recently attracted attention.
The ionic liquid is composed of an organic cation such as imidazolium ion, pyridinium ion, tetraalkylammonium ion or tetraalkylphosphonium ion, and an anion such as BF 4 , PF 6 , CF 3 SO 3 , (CF 3 SO 2 ) 2 N or the like. Has been.

上記カチオンは有機化合物なので、目的に応じて設計できる。しかし、従来、その特徴を充分に生かせるカチオン原料は存在しなかった。
例えば、燃料電池の電解質用としてスルホン酸基を有するイミダゾリウムイオン(特許文献1参照)は、スルホン酸基を導入するのにアルキルスルトンを用いるためにスルホン酸基が一個しか導入できない上に、耐酸化性の低いメチレン基が4つも導入される。また、金属イオン架橋による不溶化やOHラジカルスキャベンジャーであるCeイオンの利用に必要なイオン交換基であるホスホン酸基の導入は不可能である(本発明者の発明に係る特許文献2参照)。
Since the cation is an organic compound, it can be designed according to the purpose. However, conventionally, there has been no cationic raw material that can fully utilize its characteristics.
For example, an imidazolium ion having a sulfonic acid group for use in an electrolyte of a fuel cell (see Patent Document 1) uses an alkyl sultone to introduce a sulfonic acid group, so that only one sulfonic acid group can be introduced. As many as four methylene groups with low chemical properties are introduced. Further, it is impossible to introduce a phosphonic acid group, which is an ion exchange group necessary for insolubilization by metal ion crosslinking and use of Ce ions which are OH radical scavengers (see Patent Document 2 relating to the present inventor's invention).

本発明者は、スルホン酸基やホスホン酸基が結合した化学修飾フラーレンの製造方法(本発明者の発明に係る特許文献3参照)及びイミダゾール化フラーレンの製造方法(本発明者の発明に係る特願2007−305494号明細書参照)を応用して、イミダゾール基又はベンズイミダゾール基がフラーレンと結合し、該フラーレンにスルホン酸基,ホスホン酸基又はその前駆体が結合した化学修飾フラーレンを合成することで、スルホン酸基やホスホン酸基を複数個導入できるイオン液体用のカチオン原料を実現して本発明を完成した。   The inventor has prepared a method for producing a chemically modified fullerene having a sulfonic acid group or a phosphonic acid group bonded thereto (see Patent Document 3 relating to the inventor's invention) and a method for producing an imidazolated fullerene (species relating to the inventor's invention) Application of Japanese Patent Application No. 2007-305494) to synthesize chemically modified fullerene in which an imidazole group or a benzimidazole group is bonded to a fullerene and a sulfonic acid group, a phosphonic acid group or a precursor thereof is bonded to the fullerene. Thus, the present invention was completed by realizing a cation raw material for ionic liquid capable of introducing a plurality of sulfonic acid groups and phosphonic acid groups.

本発明のカチオン原料を用いてイオン液体を合成するには、まずイミダゾール環の1位のイミノ基をMH(ここで、MはLi,Na又はK)を用いてNMに変え、ハロゲン化アルキルと反応させて三級アミンとした後、次のような公知の方法(非特許文献1参照)で3位の三級アミンを四級化してイミダゾリウムカチオンとすることで達成される。
(1)アニオン交換法
(2)酸エステル法
(3)中和法
In order to synthesize an ionic liquid using the cation raw material of the present invention, first, the imino group at the 1-position of the imidazole ring is changed to NM using MH (where M is Li, Na or K), This is achieved by reacting to a tertiary amine and then quaternizing the tertiary amine at the 3-position into the imidazolium cation by the following known method (see Non-Patent Document 1).
(1) Anion exchange method (2) Acid ester method (3) Neutralization method

国際公開2006/025482号International Publication No. 2006/025482 特開2009−046571号公報JP 2009-045771 A 特許第3984280号公報Japanese Patent No. 3984280

北爪智哉・渕上寿雄・沢田英夫・伊藤敏幸共著、「イオン液体―常識を覆す不思議な塩―」、コロナ社、2005年発行、p.6-10Tomoya Kitazume, Toshio Sujoue, Hideo Sawada, Toshiyuki Ito, “Ionic Liquids: Mysterious Salts that Overturn Common Senses”, Corona, 2005, p.6-10

本発明は、リチウムイオン電池や燃料電池の電解質又はレアメタル回収用溶媒として用いられるイオン液体に、スルホン酸基やホスホン酸基を複数個導入できるカチオン原料を提供することを目的とする。   An object of the present invention is to provide a cation raw material capable of introducing a plurality of sulfonic acid groups and phosphonic acid groups into an ionic liquid used as an electrolyte or a rare metal recovery solvent for lithium ion batteries and fuel cells.

上記課題を解決するために、本発明は、化学構造が(X)−Y−fullerene−(Z)であるイオン液体用カチオン原料である(ここで、Xはイミダゾール基又はベンズイミダゾール基; YはS又はSO; Zはスルホン酸基,ホスホン酸基又はその前駆体; mは1〜4の整数; nは1〜10の整数; m+n=2〜12)。 In order to solve the above problems, the present invention is a cation raw material for an ionic liquid having a chemical structure of (X) m -Y-fullreene- (Z) n (where X is an imidazole group or a benzimidazole group; Y is S or SO 2 ; Z is a sulfonic acid group, phosphonic acid group or a precursor thereof; m is an integer of 1 to 4; n is an integer of 1 to 10; m + n = 2 to 12).

また、上記課題を解決するため、本発明は、上記のイオン液体用カチオン原料の製造方法であって、2−メルカプトイミダゾール又は2−メルカプトベンズイミダゾールのメルカプト基をジオキサン又はジメチルアセトアミド中でMHによりSMに変え、フラーレンと常圧又は加圧下、20〜200℃で10〜200時間反応させる、イミダゾール基又はベンズイミダゾール基をフラーレンに結合する工程(ここで、MはLi,Na又はK)と、スルホン酸化試薬MSOの場合は(ジメチルアセトアミド+水)、ホスホン酸化試薬MPO(OR)の場合はジオキサンという特定の反応溶媒を選択し、該溶媒中にフラーレンとMSO又はMPO(OR)とを分散させ、常圧又は加圧下で、20〜200℃の反応温度を用いて10〜200時間反応させる、スルホン酸基,ホスホン酸基又はその前駆体をフラーレンに結合する工程(ここで、MはLi,Na又はK; RはC〜Cのアルキル基又はフェニル基)とを含む。 Further, in order to solve the above-mentioned problems, the present invention is a method for producing a cation raw material for ionic liquid as described above, wherein the mercapto group of 2-mercaptoimidazole or 2-mercaptobenzimidazole is SM by MH in dioxane or dimethylacetamide. And a step of binding an imidazole group or a benzimidazole group to fullerene, which is reacted with fullerene at normal pressure or under pressure at 20 to 200 ° C. for 10 to 200 hours, where M is Li, Na or K, and sulfone In the case of the oxidizing reagent M 2 SO 3 (dimethylacetamide + water), in the case of the phosphonating reagent MPO (OR) 2 , a specific reaction solvent of dioxane is selected, and in the solvent, fullerene and M 2 SO 3 or MPO ( OR) 2 and allowed to disperse, normal pressure or under pressure, with a reaction temperature of 20 to 200 ° C. Reacting 0-200 hours, a sulfonic acid group, a phosphonic acid group or its precursor step that binds to the fullerene (here, M is Li, Na or K; R is an alkyl group or a phenyl group of C 1 -C 5) Including.

上記の製造方法は、過酸化水素,過酢酸,過マンガン酸カリ,過ホウ酸ナトリウム等の酸化剤により、常圧又は加圧下、20〜200℃で10〜200時間という反応条件を用いて、X−S−fullereneをX−SO−fullereneに酸化する工程をさらに含んでいてもよい。 The above production method is carried out using an oxidizing agent such as hydrogen peroxide, peracetic acid, potassium permanganate, sodium perborate and the like under reaction pressure of 20 to 200 ° C. for 10 to 200 hours under normal pressure or pressure. the X-S-fullerene may further comprise the step of oxidizing the X-SO 2 -fullerene.

本発明のカチオン原料を用いることにより、リチウムイオン電池や燃料電池の電解質として用いられるイオン液体に、リチウムイオンやプロトンの伝導度を大きくし、また金属イオン架橋による不溶化やOHラジカルスキャベンジャーのCeイオンを利用する目的で、スルホン酸基やホスホン酸基を複数個導入することが可能になる。
また、本発明のカチオン原料は、金属イオン架橋用のホスホン酸基を有するので、レアメタル回収用溶媒として用いられるイオン液体の合成にも使用可能である。
By using the cation raw material of the present invention, the conductivity of lithium ions and protons is increased in ionic liquids used as electrolytes for lithium ion batteries and fuel cells, and insolubilization by metal ion crosslinking and Ce ions of OH radical scavengers. It is possible to introduce a plurality of sulfonic acid groups or phosphonic acid groups for the purpose of utilizing the above.
Moreover, since the cation raw material of this invention has the phosphonic acid group for metal ion bridge | crosslinking, it can be used also for the synthesis | combination of the ionic liquid used as a solvent for rare metal collection | recovery.

本発明は、化学構造が(X)−Y−fullerene−(Z)であるイオン液体用カチオン原料である(ここで、Xはイミダゾール基又はベンズイミダゾール基; YはS又はSO; Zはスルホン酸基,ホスホン酸基又はその前駆体; mは1〜4の整数; nは1〜10の整数; m+n=2〜12)。 The present invention is a cation raw material for an ionic liquid having a chemical structure of (X) m -Y-fullrene- (Z) n (where X is an imidazole group or a benzimidazole group; Y is S or SO 2 ; Z Is a sulfonic acid group, a phosphonic acid group or a precursor thereof; m is an integer of 1 to 4; n is an integer of 1 to 10; m + n = 2 to 12).

上記の構造式で、結合数mは好ましくは1又は2である。結合数nは好ましくは2〜7の範囲にあり、スルホン酸基,ホスホン酸基又はその前駆体の一種類がフラーレンに結合していてもよく、複数の種類が混合して結合していてもよい。
また、精製して結合数m,nが実質的に単一でもよく、結合数m,nが異なるものの混合物でも構わない。反応条件を工夫して(m+n)を12よりも大きくすることも可能である。
In the above structural formula, the number of bonds m is preferably 1 or 2. The number n of bonds is preferably in the range of 2 to 7, and one type of sulfonic acid group, phosphonic acid group or precursor thereof may be bonded to fullerene, or a plurality of types may be mixed and bonded. Good.
Further, the number of bonds m and n may be substantially single after purification, or a mixture of those having different numbers of bonds m and n may be used. It is possible to make (m + n) larger than 12 by devising reaction conditions.

基体のfullereneとしては、C60,C70,C76,C78,C84等のフラーレンを用いることができるし、それらの混合物を用いることも可能である。特に、C60の製造工程で得られる、精製前のC60が50〜90%,C70が40〜10%,高次フラーレンが10%以下の混合物を用いると原料コストが安くなるので有利である。
本発明において、スルホン酸基の前駆体にはスルホニルハライド基やスルホン酸エステル基、またホスホン酸基の前駆体にはホスホン酸エステル基が含まれる。これらの前駆体は、加水分解によりスルホン酸基やホスホン酸基に変換することが可能であるが、場合によっては、そのまま使用しても構わない。
As the fullerene of the substrate, fullerenes such as C 60 , C 70 , C 76 , C 78 , and C 84 can be used, or a mixture thereof can also be used. In particular, obtained by the manufacturing process of C 60, C 60 50 to 90% before purification, C 70 is 40 to 10%, preferably a so material cost becomes cheaper higher fullerenes is a mixture of 10% or less is there.
In the present invention, the sulfonic acid group precursor includes a sulfonyl halide group or a sulfonic acid ester group, and the phosphonic acid group precursor includes a phosphonic acid ester group. These precursors can be converted into sulfonic acid groups or phosphonic acid groups by hydrolysis, but in some cases, they may be used as they are.

本発明のカチオン原料の製造方法は、下記の(工程1)及び(工程2)を含み、必要により(工程3)を含むことを特徴とする。   The method for producing a cation raw material of the present invention includes the following (Step 1) and (Step 2), and (Step 3) as necessary.

(工程1)
2−メルカプトイミダゾール又は2−メルカプトベンズイミダゾールのメルカプト基をジオキサン又はジメチルアセトアミド中でMHによりSMに変え、フラーレンと常圧又は加圧下、20〜200℃で10〜200時間反応させる、イミダゾール基又はベンズイミダゾール基をフラーレンに結合する工程(ここで、MはLi,Na又はK)。
(Process 1)
The mercapto group of 2-mercaptoimidazole or 2-mercaptobenzimidazole is changed to SM by MH in dioxane or dimethylacetamide, and reacted with fullerene at normal pressure or under pressure at 20 to 200 ° C. for 10 to 200 hours. A step of bonding an imidazole group to fullerene (where M is Li, Na or K).

上記の工程においては、イミダゾール環に結合した2位のメルカプト基の方が1位のイミノ基よりも酸性が強いので優先的にSMに変り、次式のようにフラーレンの二重結合に付加する。この場合、中間体として生じるカルバニオンは、反応溶媒からHを引き抜いて安定化する。

Figure 2010270071
In the above process, the mercapto group at the 2-position bonded to the imidazole ring is more acidic than the imino group at the 1-position, so it is preferentially changed to SM and added to the fullerene double bond as shown in the following formula. . In this case, the carbanion produced as an intermediate is stabilized by extracting H from the reaction solvent.
Figure 2010270071

反応に使用する溶媒としては、ジオキサンやジメチルアセトアミドのような非プロトン系極性有機溶媒が好ましく用いられる。テトラヒドロフランも用いることができるが、沸点が低く反応温度が上げられないので、ジオキサンの方が好ましい。
また、同じアミド系溶媒でも、ジメチルホルムアミドはフラーレンに付加してしまうので、ジメチルアセトアミドを用いることが好ましい。
As the solvent used in the reaction, an aprotic polar organic solvent such as dioxane or dimethylacetamide is preferably used. Tetrahydrofuran can also be used, but dioxane is preferred because the boiling point is low and the reaction temperature cannot be increased.
Further, even in the same amide solvent, dimethylformamide is preferably added to fullerene, so that dimethylacetamide is preferably used.

(工程2)
スルホン酸化試薬MSOの場合は(ジメチルアセトアミド+水)、ホスホン酸化試薬MPO(OR)の場合はジオキサンという特定の反応溶媒を選択し、該溶媒中にフラーレンとMSO又はMPO(OR)とを分散させ、常圧又は加圧下で、20〜200℃の反応温度を用いて10〜200時間反応させる、スルホン酸基,ホスホン酸基又はその前駆体をフラーレンに結合する工程(ここで、MはLi,Na又はK; RはC〜Cのアルキル基又はフェニル基)。
(Process 2)
In the case of the sulfonating reagent M 2 SO 3 (dimethylacetamide + water), in the case of the phosphonating reagent MPO (OR) 2 , a specific reaction solvent of dioxane is selected, and in the solvent, fullerene and M 2 SO 3 or MPO are selected. (OR) 2 is a step of dispersing a sulfonic acid group, a phosphonic acid group or a precursor thereof to fullerene by dispersing 2 and reacting at normal pressure or under pressure using a reaction temperature of 20 to 200 ° C. for 10 to 200 hours. (here, M Li, Na or K; R is an alkyl group or a phenyl group of C 1 ~C 5).

上記の工程によるフラーレンとスルホン酸化試薬との反応結果を下表に示す。
表中の溶媒結合の場合は、反応溶媒に由来する有機化合物がフラーレンに結合する副反応が生じるので好ましくない。この場合の生成物の赤外吸収スペクトルには複雑なピークが現れ、単純なスペクトルを示す目的反応の生成物と容易に区別することができる。
ちなみに、DMFは(CHNCOHであり、DMAcは(CHNCOCHで同じアミド系溶媒に属していて、両者の化学構造の差はわずかであるにもかかわらず、反応結果が全く異なることは驚くべき発見であり、上記工程で特定の反応溶媒を選択する理由となっている。
The table below shows the reaction results of fullerene and the sulfonating reagent by the above steps.
In the case of the solvent bond in the table, a side reaction occurs in which an organic compound derived from the reaction solvent is bonded to fullerene, which is not preferable. In this case, a complex peak appears in the infrared absorption spectrum of the product, and it can be easily distinguished from the product of the target reaction showing a simple spectrum.
By the way, DMF is (CH 3 ) 2 NCOH, DMAc is (CH 3 ) 2 NCOCH 3 and belongs to the same amide solvent. It is a surprising discovery that it is completely different, which is the reason for selecting a specific reaction solvent in the above process.

Figure 2010270071
Figure 2010270071

ここで、反応溶媒に水を添加する一つの理由は、スルホン酸化試薬の有機溶媒に対する溶解度を高めるためである。水を添加するもう一つの理由は、下式のように、反応時に生成するカルバニオンが、溶媒分子と結合する前に水からプロトンを引き抜いて安定化するためである。

Figure 2010270071
Here, one reason for adding water to the reaction solvent is to increase the solubility of the sulfonating reagent in the organic solvent. Another reason for adding water is that, as shown in the following formula, the carbanion produced during the reaction is stabilized by extracting protons from the water before binding to the solvent molecules.
Figure 2010270071

反応後に得られるSOM型は、必要により、イオン交換法でリチウムイオン電池用のSOLi型や燃料電池用のSOH型に変換することが可能である。 The SO 3 M type obtained after the reaction can be converted into an SO 3 Li type for a lithium ion battery or an SO 3 H type for a fuel cell by an ion exchange method, if necessary.

上記の工程で使用するホスホン酸化試薬MPO(OR)は、非プロトン系極性有機溶媒を用い、通常20〜100℃の条件で次の反応により調製される。

Figure 2010270071
The phosphonating reagent MPO (OR) 2 used in the above step is prepared by the following reaction using an aprotic polar organic solvent and usually at 20 to 100 ° C.
Figure 2010270071

この中にフラーレンを入れてホスホン酸化反応を行うが、溶媒としてジメチルホルムアミドを用いると溶媒結合が生じるので、ジオキサンを用いる必要があることが生成物の赤外吸収スペクトル分析から判明した。
この場合、同じ環状エーテル系のテトラヒドロフランを使用することも可能であるが、沸点が低いため反応温度が低くなるので、ジオキサンを用いることが好ましい。
Phosphonation reaction is carried out by adding fullerene to this, but when dimethylformamide is used as a solvent, solvent bonding occurs, and it was found from the infrared absorption spectrum analysis of the product that dioxane must be used.
In this case, it is possible to use the same cyclic ether-based tetrahydrofuran, but it is preferable to use dioxane because the reaction temperature is lowered because the boiling point is low.

ホスホン酸化反応時に生成するカルバニオンは、溶媒のジオキサン又はホスホン酸エステルのアルキル基からプロトンを引き抜いて安定化する。

Figure 2010270071
The carbanion produced during the phosphonation reaction is stabilized by extracting a proton from the alkyl group of the solvent dioxane or phosphonate.
Figure 2010270071

ホスホン酸化反応で得られたホスホン酸エステル基は、公知の方法でトリメチルシリルブロマイドと反応させてエステル交換を行った後、水を加えることで加水分解してホスホン酸基PO(OH)に変換することができる。また、ホスホン酸エステル基の加水分解は熱濃塩酸中で行うことも可能である。
また、前記の方法でスルホン酸化反応を行い、予めスルホン酸基を結合した後、上記のホスホン酸エステル基を結合することで、スルホン酸基とホスホン酸基が共存している化学修飾フラーレンを合成することも可能である。この場合、反応順序を逆にして、最初にホスホン酸エステル基を結合し、次いでスルホン酸基を結合することも可能である。
The phosphonic acid ester group obtained by the phosphonation reaction is reacted with trimethylsilyl bromide by a known method for transesterification, and then hydrolyzed by adding water to convert it to the phosphonic acid group PO (OH) 2 . be able to. The hydrolysis of the phosphonate group can also be carried out in hot concentrated hydrochloric acid.
In addition, the sulfonic acid oxidation reaction is performed by the above-described method, the sulfonic acid group is bonded in advance, and then the phosphonic acid ester group is bonded to synthesize a chemically modified fullerene in which the sulfonic acid group and the phosphonic acid group coexist. It is also possible to do. In this case, it is also possible to reverse the reaction sequence and first bind the phosphonate ester group and then the sulfonic acid group.

(工程3)
過酸化水素,過酢酸,過マンガン酸カリ,過ホウ酸ナトリウム等の酸化剤により、常圧又は加圧下、20〜200℃で10〜200時間という反応条件を用いて、X−S−fullereneをX−SO−fullereneに酸化する工程。
(Process 3)
Using an oxidizing agent such as hydrogen peroxide, peracetic acid, potassium permanganate, sodium perborate or the like, under normal pressure or under pressure, reaction conditions of 20 to 200 ° C. for 10 to 200 hours are used to treat X-S-fullrene. step of oxidizing the X-SO 2 -fullerene.

上記の工程における反応溶媒は酸化剤の種類によって異なり、過酸化水素や過酢酸についてはメタノール、酢酸,トリフロロ酢酸,過マンガン酸カリについては水や水/メチレンクロライド、過ホウ酸ナトリウムについてはメタノール等が好適に用いられる。   The reaction solvent in the above process varies depending on the type of oxidizing agent. For hydrogen peroxide and peracetic acid, methanol, acetic acid, trifluoroacetic acid, for potassium permanganate, water and water / methylene chloride, for sodium perborate, methanol, etc. Are preferably used.

上述した三工程を実施する順序は、工程1−工程2−(工程3)、工程2−工程1−(工程3)、工程1−(工程3)−工程2等、様々なバリエーションを取ることが可能であり、目的物に応じて適宜選択することが可能である。
次に実施例を示すが、本発明はこれらに限定されるものではない。
The order in which the above-described three steps are performed takes various variations, such as step 1-step 2- (step 3), step 2-step 1- (step 3), step 1- (step 3) -step 2. It is possible to select appropriately according to the object.
Examples are shown below, but the present invention is not limited thereto.

(実施例1)
300mlの三口フラスコに、フラーレンC60 720mgとジメチルアセトアミド200mlを入れた。ここに亜硫酸カリウムKSO 790mg(フラーレンの5倍モル)を水10mlに溶かして添加した後、80℃で4日間加熱撹拌した。
反応終了後、溶媒を乾燥除去して残渣をエタノールで抽出した。固形分を濾別し、濾液のエタノールを乾燥除去した後、赤外吸収スペクトルをKBrを用いて測定したところ、1117cm−1にSO伸縮,619cm−1にCS伸縮のピークが表れた。
Example 1
A 300 ml three-necked flask was charged with 720 mg of fullerene C 60 and 200 ml of dimethylacetamide. To this was added 790 mg of potassium sulfite K 2 SO 3 (5 mol of fullerene) dissolved in 10 ml of water, and the mixture was heated and stirred at 80 ° C. for 4 days.
After completion of the reaction, the solvent was removed by drying and the residue was extracted with ethanol. The solid was filtered off, after which the filtrate ethanol was removed by drying, The infrared absorption spectrum was measured using a KBr, SO 2 stretch the 1117Cm -1, appeared peaks of CS stretch to 619cm -1.

また、ICP−AES(誘導結合プラズマ原子発光スペクトル法)によりS,K分析を行い、燃焼法でC,H,Oの元素分析を行った結果は、C57.5%,S11.4%,K14.7%,H0.55%,O13.0%であり、スルホン酸基SOKとHが4〜5個程度結合していることが確認された。
さらに、試料をDOに溶解してNMRを測定したところ、ベータ位のプロトンと推定されるピークが確認された。得られたスルホン酸化フラーレンの収率は、フラーレンベースでおよそ30%であった。
Further, S, K analysis was performed by ICP-AES (inductively coupled plasma atomic emission spectrum method), and elemental analysis of C, H, O by combustion method was C57.5%, S11.4%, K14. 7%, H0.55%, and O13.0%, and it was confirmed that about 4 to 5 sulfonic acid groups SO 3 K and H were bonded.
Furthermore, when the sample was dissolved in D 2 O and NMR was measured, a peak presumed to be a proton at the beta position was confirmed. The yield of the sulfonated fullerene obtained was approximately 30% on a fullerene basis.

300mlの三口フラスコにジオキサン80gを入れ、2−メルカプトイミダゾール0.4gと水素化リチウム0.05gを加えて50℃で攪拌した。水素の泡の発生が収まった後、上記のスルホン酸基SOKが結合したフラーレン1.4gを加えて、80℃で2晩攪拌したところ、反応したフラーレンが溶媒に溶けてきた。
反応終了後、未反応のスルホン酸化フラーレンを濾過して除き、濾液のジオキサンをエバポレーターで蒸発させて除去し、残渣をメタノールで洗浄後、KBrを用いて赤外吸収スペクトルを測定した。得られたIRには上述したスルホン酸基の吸収以外に、2500〜3128cm−1にイミダゾール基特有の吸収が見られ、イミダゾール基がスルホン酸化フラーレンに結合していることが確認された。
In a 300 ml three-necked flask, 80 g of dioxane was added, 0.4 g of 2-mercaptoimidazole and 0.05 g of lithium hydride were added, and the mixture was stirred at 50 ° C. After generation of hydrogen bubbles ceased, 1.4 g of the fullerene having the sulfonic acid group SO 3 K bound thereto was added and stirred at 80 ° C. for 2 nights. As a result, the reacted fullerene was dissolved in the solvent.
After completion of the reaction, unreacted sulfonated fullerene was removed by filtration, the dioxane in the filtrate was removed by evaporation using an evaporator, the residue was washed with methanol, and the infrared absorption spectrum was measured using KBr. In the obtained IR, in addition to the absorption of the sulfonic acid group described above, absorption specific to the imidazole group was observed at 2500 to 3128 cm −1, and it was confirmed that the imidazole group was bonded to the sulfonated fullerene.

(比較例1)
実施例1において、ジメチルアセトアミドの代わりにジメチルホルムアミドを用いて同様に操作し、スルホン酸化後の生成物の赤外吸収スペクトルを測定したところ、多くのピークが現れ、溶媒のジメチルホルムアミドがフラーレンに結合していることが確認された。
(Comparative Example 1)
In Example 1, the same operation was performed using dimethylformamide instead of dimethylacetamide, and the infrared absorption spectrum of the product after sulfonation was measured. As a result, many peaks appeared, and the solvent dimethylformamide bound to fullerene. It was confirmed that

(実施例2)
実施例1において、2−メルカプトイミダゾールの代わりに2−メルカプトベンズイミダゾール、溶媒のジオキサンの代わりにジメチルアセトアミドを用いて同様に操作し、ベンズイミダゾール基が結合したスルホン酸化フラーレンを得た。
(Example 2)
In Example 1, the same operation was performed using 2-mercaptobenzimidazole in place of 2-mercaptoimidazole and dimethylacetamide in place of dioxane as a solvent to obtain a sulfonated fullerene having a benzimidazole group bonded thereto.

(実施例3)
300mlの三口フラスコにジエチルホスファイトHPO(OEt) 690mg,ジオキサン200mlを入れ、LiH40mgを添加した。80℃で加熱撹拌するとHが発生し、やがて溶液が透明になったので、フラーレンC60を720mg加え、そのまま80℃で4日間加熱撹拌した。
反応終了後、溶媒を乾燥除去し、残渣を(エタノール+THF)で抽出した。固形分を濾別し、濾液の(エタノール+THF)を乾燥除去した後、KBrで赤外吸収スペクトルを測定したところ、2926cm−1にC,1209cm−1にP=O,1043cm−1にP−O−Cの吸収が表れ、ホスホン酸エステル基PO(OEt)が結合していることが確認された。
(Example 3)
Diethyl phosphite HPO (OEt) 2 (690 mg) and dioxane (200 ml) were placed in a 300 ml three-necked flask, and LiH (40 mg) was added. When heated and stirred at 80 ° C., H 2 was generated and eventually the solution became transparent. Thus, 720 mg of fullerene C 60 was added, and the mixture was heated and stirred at 80 ° C. for 4 days.
After completion of the reaction, the solvent was removed by drying, and the residue was extracted with (ethanol + THF). The solid was filtered off, after which the filtrate of the (ethanol + THF) was removed by drying, it was measured infrared absorption spectrum in KBr, C 2 H 5 to 2926cm -1, to 1209cm -1 P = O, 1043cm -1 P—O—C absorption was observed, and it was confirmed that the phosphonate ester group PO (OEt) 2 was bonded.

このホスホン酸エステル化フラーレン500mgにトリメチルシリルブロマイド1gを加えて室温で一晩エステル交換を行った後、水を加えて加水分解した。得られた生成物を乾燥後、KBrで赤外吸収スペクトルを測定したところ、Cの吸収は消失しており、3348cm−1にOH,1184cm−1にP=O,1074cm−1にP−O−Cの吸収が表れた。
得られたホスホン酸化フラーレンをICP−AESでP分析を行い、燃焼法でC,H,Oの元素分析を行った結果は、C73.9%,P10.6%,H1.4%,O15.5%であり、ホスホン酸基PO(OH)とHが3〜4個程度結合していることが確認された。
1 g of trimethylsilyl bromide was added to 500 mg of this phosphonate esterified fullerene and the ester exchange was carried out overnight at room temperature, followed by hydrolysis with water. After drying the obtained product was measured with infrared absorption spectrum in KBr, absorption of C 2 H 5 is lost, OH to 3348cm -1, to 1184cm -1 P = O, the 1074Cm -1 Absorption of PO-C appeared.
The obtained phosphonated fullerene was subjected to P analysis by ICP-AES, and the results of elemental analysis of C, H, O by combustion method were C73.9%, P10.6%, H1.4%, O15. 5%, and it was confirmed that about 3 to 4 phosphonic acid groups PO (OH) 2 and H were bonded.

さらに、試料をDOに溶解してNMRを測定したところ、ベータ位のプロトンと推定されるピークが確認された。得られたホスホン酸化フラーレンの収率は、フラーレンベースでおよそ35%であった。
上記のホスホン酸化フラーレンを用いて、実施例1と同様な操作で2−メルカプトイミダゾールと反応させたところ、イミダゾール基が結合したホスホン酸化フラーレンが得られた。生成物のS分析を行ったところ、1個のイミダゾール基が結合していることが判明した。
Furthermore, when the sample was dissolved in D 2 O and NMR was measured, a peak presumed to be a proton at the beta position was confirmed. The yield of the phosphonated fullerene obtained was approximately 35% on a fullerene basis.
When the phosphonated fullerene was reacted with 2-mercaptoimidazole in the same manner as in Example 1, a phosphonated fullerene having an imidazole group bonded thereto was obtained. An S analysis of the product revealed that one imidazole group was bonded.

(比較例2)
実施例3において、ジオキサンの代わりにジメチルホルムアミドを用いて同様に操作し、ホスホン酸エステル化反応を行ったところ、生成物の赤外吸収スペクトルには多くのピークが現れ、溶媒のジメチルホルムアミドが結合していることが確認された。
(Comparative Example 2)
In Example 3, the same operation was carried out using dimethylformamide instead of dioxane, and phosphonate esterification reaction was performed. As a result, many peaks appeared in the infrared absorption spectrum of the product, and the solvent dimethylformamide was bound. It was confirmed that

(実施例4)
300mlの三口フラスコにジオキサン80gを入れ、2−メルカプトイミダゾール0.4gと水素化リチウム0.05gを加えて50℃で攪拌した。水素の泡の発生が収まった後、0.72gのフラーレンC60を加えて、80℃で2晩攪拌したところ、反応したフラーレンが溶媒に溶けて黒褐色の溶液になった。
反応終了後、ジオキサンをエバポレーターで蒸発させて除去し、残渣をメタノールで洗浄後、赤外吸収スペクトルを測定した。得られたIRには、2500〜3128cm−1にイミダゾール基特有の吸収が見られ、イミダゾール化フラーレンが生成していることが確認された。
Example 4
In a 300 ml three-necked flask, 80 g of dioxane was added, 0.4 g of 2-mercaptoimidazole and 0.05 g of lithium hydride were added, and the mixture was stirred at 50 ° C. After the generation of hydrogen bubbles ceased, 0.72 g of fullerene C 60 was added and stirred at 80 ° C. for 2 nights. As a result, the reacted fullerene was dissolved in a solvent to form a black brown solution.
After completion of the reaction, dioxane was removed by evaporation with an evaporator, the residue was washed with methanol, and the infrared absorption spectrum was measured. In the obtained IR, absorption specific to the imidazole group was observed at 2500 to 3128 cm −1, and it was confirmed that imidazolated fullerene was generated.

実施例2の原料フラーレンC60の代わりに、上記のイミダゾール化フラーレンを用いて実施例2と同様に操作し、HPO(OEt)と反応させたところ、ホスホン酸化エステル基が結合したイミダゾール化フラーレンが得られた。 In place of the raw material fullerene C 60 of Example 2, the above imidazolated fullerene was used in the same manner as in Example 2 and reacted with HPO (OEt) 2. As a result, imidazolated fullerene having a phosphonated ester group bonded thereto was obtained. was gotten.

(実施例5)
実施例1で得られたスルホン酸化フラーレンを原料として、実施例3と同様な操作を行ったところ、赤外吸収スペクトルにはスルホン酸基とホスホン酸エステル基の吸収が表れ、両者が共存していることが確認された。ICP−AESでP分析を行ったところ、ホスホン酸基は2個程度結合していると推定された。
得られた(スルホン酸+ホスホン酸エステル)化フラーレンを原料として用い、実施例1と同様に操作して、イミダゾール基をフラーレンに結合した。
(Example 5)
When the same operation as in Example 3 was performed using the sulfonated fullerene obtained in Example 1 as a raw material, absorption of sulfonic acid groups and phosphonic acid ester groups appeared in the infrared absorption spectrum. It was confirmed that When P analysis was performed by ICP-AES, it was estimated that about two phosphonic acid groups were bonded.
Using the obtained (sulfonic acid + phosphonic ester) fullerene as a raw material, the same procedure as in Example 1 was followed to bond the imidazole group to the fullerene.

(実施例6)
実施例3で得られたイミダゾール基が結合したホスホン酸化フラーレンを、溶媒としてトリフロロ酢酸を用い、過酸化水素と70℃で2晩反応させて生成物の赤外吸収スペクトルを測定したところ、SOの吸収が現れ、スルフィド結合がスルホン結合に酸化されたことが確認された。
(Example 6)
When the phosphonated fullerene imidazole group obtained is bound in Example 3, using trifluoroacetic acid as solvent, measuring the infrared absorption spectrum of the product is reacted for 2 nights with hydrogen peroxide and 70 ° C., SO 2 It was confirmed that the sulfide bond was oxidized to the sulfone bond.

Claims (3)

化学構造が(X)−Y−fullerene−(Z)であるイオン液体用カチオン原料(ここで、Xはイミダゾール基又はベンズイミダゾール基; YはS又はSO; Zはスルホン酸基,ホスホン酸基又はその前駆体; mは1〜4の整数; nは1〜10の整数; m+n=2〜12)。 Cation raw material for ionic liquid having chemical structure (X) m -Y-fullrene- (Z) n (where X is an imidazole group or benzimidazole group; Y is S or SO 2 ; Z is a sulfonic acid group, phosphone) An acid group or a precursor thereof; m is an integer of 1 to 4; n is an integer of 1 to 10; m + n = 2 to 12). 請求項1に記載のイオン液体用カチオン原料の製造方法であって、
2−メルカプトイミダゾール又は2−メルカプトベンズイミダゾールのメルカプト基をジオキサン又はジメチルアセトアミド中でMHによりSMに変え、フラーレンと常圧又は加圧下、20〜200℃で10〜200時間反応させる、イミダゾール基又はベンズイミダゾール基をフラーレンに結合する工程(ここで、MはLi,Na又はK)と、
スルホン酸化試薬MSOの場合は(ジメチルアセトアミド+水)、ホスホン酸化試薬MPO(OR)の場合はジオキサンという特定の反応溶媒を選択し、該溶媒中にフラーレンとMSO又はMPO(OR)とを分散させ、常圧又は加圧下で、20〜200℃の反応温度を用いて10〜200時間反応させる、スルホン酸基,ホスホン酸基又はその前駆体をフラーレンに結合する工程(ここで、MはLi,Na又はK; RはC〜Cのアルキル基又はフェニル基)と
を含むイオン液体用カチオン原料の製造方法。
It is a manufacturing method of the cation raw material for ionic liquids according to claim 1,
The mercapto group of 2-mercaptoimidazole or 2-mercaptobenzimidazole is changed to SM by MH in dioxane or dimethylacetamide, and reacted with fullerene at normal pressure or under pressure at 20 to 200 ° C. for 10 to 200 hours. A step of bonding an imidazole group to fullerene (where M is Li, Na or K);
In the case of the sulfonating reagent M 2 SO 3 (dimethylacetamide + water), in the case of the phosphonating reagent MPO (OR) 2 , a specific reaction solvent of dioxane is selected, and in the solvent, fullerene and M 2 SO 3 or MPO are selected. (OR) 2 is a step of dispersing a sulfonic acid group, a phosphonic acid group or a precursor thereof to fullerene by dispersing 2 and reacting at normal pressure or under pressure using a reaction temperature of 20 to 200 ° C. for 10 to 200 hours. (here, M Li, Na or K; R is C 1 alkyl group or a phenyl group -C 5) the method of producing an ionic liquid for the cation material and a.
請求項2に記載の製造方法において、
過酸化水素,過酢酸,過マンガン酸カリ,過ホウ酸ナトリウム等の酸化剤により、常圧又は加圧下、20〜200℃で10〜200時間という反応条件を用いて、X−S−fullereneをX−SO−fullereneに酸化する工程をさらに含むイオン液体用カチオン原料の製造方法。
In the manufacturing method of Claim 2,
Using an oxidizing agent such as hydrogen peroxide, peracetic acid, potassium permanganate, sodium perborate or the like, under normal pressure or under pressure, reaction conditions of 20 to 200 ° C. for 10 to 200 hours are used to treat X-S-fullrene. X-SO 2 -fullerene further comprising manufacturing method of ionic liquids for cation raw material step of oxidizing the.
JP2009123830A 2009-05-22 2009-05-22 Cation raw material for ionic fluid and process for producing the same Pending JP2010270071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009123830A JP2010270071A (en) 2009-05-22 2009-05-22 Cation raw material for ionic fluid and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009123830A JP2010270071A (en) 2009-05-22 2009-05-22 Cation raw material for ionic fluid and process for producing the same

Publications (1)

Publication Number Publication Date
JP2010270071A true JP2010270071A (en) 2010-12-02

Family

ID=43418413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009123830A Pending JP2010270071A (en) 2009-05-22 2009-05-22 Cation raw material for ionic fluid and process for producing the same

Country Status (1)

Country Link
JP (1) JP2010270071A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136976A1 (en) * 2016-02-14 2017-08-17 陈铭 Ionic liquid having methanofullerene carboxylate as anion, and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136976A1 (en) * 2016-02-14 2017-08-17 陈铭 Ionic liquid having methanofullerene carboxylate as anion, and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108140864B (en) Redox flow battery for storing electrical energy and use thereof
CN102643421A (en) Novel polymer containing phosphonate group and preparation method and application of novel polymer
JP3984280B1 (en) CHEMICALLY MODIFIED FULLERENE AND METHOD FOR PRODUCING THE SAME, PROTON CONDUCTIVE MEMBRANE CONTAINING CHEMICALLY MODIFIED FULLERENE
CN108976169A (en) A kind of glyoxaline ion liquid and its preparation method and application
CN103910757A (en) Bis(4-halogenated phenyl) (3&#39;-phosphonic phenyl)oxophosphines as well as salts and preparation methods thereof
CN114540845A (en) Electrochemical synthesis method of 2,2&#39; -bis-succinimide derivative
CN104151552B (en) Poly aromatic (sulfur) ether sulfone material containing phosphonyl group and preparation method and application
CN104829813B (en) A kind of ionomeric polymer containing phosphine, preparation method and anion-exchange membrane
KR101379361B1 (en) Polymer electrolyte membrane comprising ionic liquid having sulfonic acid group, and method for preparing the same
JP4322073B2 (en) Purification method of ionic liquid
JP2010270071A (en) Cation raw material for ionic fluid and process for producing the same
JP5780481B2 (en) Electrolyte, electrolyte membrane, lithium ion secondary battery and phosphazene compound
JP5893714B2 (en) Ion conductive polymers used in electrochemical devices
CN107828056B (en) POSS (polyhedral oligomeric silsesquioxane) based quaternary ammonium salt ionic liquid and preparation method thereof
CN111205641A (en) Preparation of tripolycyanogen ring-containing triphosphonate-doped PBI high-temperature proton exchange membrane
TW201522312A (en) Charge-transporting material for photoelectrochemical elements
JP2010037277A (en) Method for producing chemically modified fullerene
CN105753821A (en) Preparation method of 2,5-furandicarboxylic acid
JP2009084497A (en) Bonding method of chemically modified fullerene, and film
WO2010139476A1 (en) Proton-conducting organic materials
CA3150294A1 (en) Redox flow battery electrolytes with 2,5-dimercapto-1,3,4-thiadiazole (&#34;dmtd&#34;) and its derivatives
JP2004247252A (en) Proton conducting material and proton conducting film using same
CN102659839A (en) Double (4-halogen phenyl group) (3&#39;-dialkyl oxygen phosphine phenone group) oxygen phosphine and preparation method thereof
CN115925521B (en) Synthesis method of tris (trifluoroethoxy) methane
CN104109173A (en) HPPP-Zn coordination polymer and synthesis method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110805