JP2010269060A - Array type ultrasonic pulse wave measuring sheet - Google Patents

Array type ultrasonic pulse wave measuring sheet Download PDF

Info

Publication number
JP2010269060A
JP2010269060A JP2009125136A JP2009125136A JP2010269060A JP 2010269060 A JP2010269060 A JP 2010269060A JP 2009125136 A JP2009125136 A JP 2009125136A JP 2009125136 A JP2009125136 A JP 2009125136A JP 2010269060 A JP2010269060 A JP 2010269060A
Authority
JP
Japan
Prior art keywords
sheet
array
ultrasonic
pulse wave
ultrasonic pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009125136A
Other languages
Japanese (ja)
Inventor
Yoichi Haga
洋一 芳賀
Tadao Matsunaga
忠雄 松永
Keisuke Nishiyauchi
啓介 西谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2009125136A priority Critical patent/JP2010269060A/en
Publication of JP2010269060A publication Critical patent/JP2010269060A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an array type ultrasonic pulse wave measuring sheet, as a flexible ultrasonic sheet, which can be easily installed on the body surface, and which can be easily used without requiring probe positioning by a specialist by arranging a number of elements in an array shape. <P>SOLUTION: As the flexible ultrasonic sheet as an array of ultrasonic elements is applied to the wrist close to the radial artery, signals of the ultrasonic elements correctly applied to the radial artery need only be read, thus eliminating need of fine positioning. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、血行動態評価や血管の硬さ計測に関する。   The present invention relates to hemodynamic evaluation and blood vessel hardness measurement.

アレイ状に微小超音波トランスデューサを並べた例およびその構成と加工法がいくつかあるが、いずれもプローブ形状であり、体表に貼り付け可能なフレキシブルかつ薄いシート形状ではない。   There are several examples in which micro ultrasonic transducers are arranged in an array, and there are several configurations and processing methods, but all are probe shapes, not flexible and thin sheet shapes that can be attached to the body surface.

Surface Micromachined Capacitive Ultrasonic Transducers I. Ladabaum, J. Xuecheng, H. T. Soh, A. Atalar, B. T. Khuri-Yakub IEEE Trans on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 3 (1998), pp. 678-690Surface Micromachined Capacitive Ultrasonic Transducers I. Ladabaum, J. Xuecheng, HT Soh, A. Atalar, BT Khuri-Yakub IEEE Trans on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, No. 3 (1998), pp. 678- 690 Flexible Transducer Arrays with Through-wafer Electrical Interconnects Based on Trench Refilling with PDMS X. Zhuang, D.-S. Lin, O. Oralkan, and B. T. Khuri-YakubTechnical Digest of the 20th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007), Kobe (2007, Jan.), pp. 73-76Flexible Transducer Arrays with Through-wafer Electrical Interconnects Based on Trench Refilling with PDMS X. Zhuang, D.-S. Lin, O. Oralkan, and BT Khuri-Yakub Technical Digest of the 20th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2007 ), Kobe (2007, Jan.), pp. 73-76

使用者が自身で容易に用いることができる超音波検査、体表に装着することで超音波による経時モニタリングが可能、などの新たな計測手段を提供する。   Provided are new measuring means such as ultrasonic inspection that can be easily used by the user, and monitoring with time by ultrasonic waves by attaching to the body surface.

体表に容易に装着できるフレキシブルな超音波シートであり、多数の素子が並ぶアレイ形状にすることで、専門家、例えば臨床医や臨床工学技士のプローブ位置合わせを必要とせずに使用者が容易に用いることができる。具体的な目的の一つとして、手首の撓骨動脈上の皮膚に装着し血行動態を検出、モニタリングする健康管理デバイスを目指している。   A flexible ultrasonic sheet that can be easily mounted on the body surface, and an array of many elements makes it easy for the user without the need for probe alignment by specialists, such as clinicians and clinical engineers. Can be used. As one of the specific purposes, it aims at a health care device that detects and monitors hemodynamics by attaching it to the skin on the radial artery of the wrist.

従来の超音波検査は専門家のプローブ位置合わせを必要とするが、フレキシブルなアレイ形状にすることで使用者が自分で用いることができ、健康管理などに役立てることができる。MEMS技術を用いることで一括作製ができる。   Conventional ultrasonic inspection requires expert probe alignment, but by using a flexible array shape, the user can use it by himself / herself, which can be useful for health management and the like. Batch production is possible by using MEMS technology.

アレイ型超音波脈波測定シートのイメージImage of array type ultrasonic pulse wave measurement sheet 測定対象の検討Examination of measurement target デバイスの構造図Device structure diagram アレイ型超音波脈波測定シートのイメージImage of array type ultrasonic pulse wave measurement sheet 基板配線の取り出しRemoving the board wiring 基板配線設計図PCB wiring plan 超音波素子作製のプロセスフローUltrasonic device fabrication process flow 配線基板作製のプロセスフローWiring board manufacturing process flow バッキング材作製のプロセスフローBacking material production process flow 超音波素子の作製Fabrication of ultrasonic element 超音波素子の作製Fabrication of ultrasonic element 電極配線パターンの作製Fabrication of electrode wiring pattern バッキング材の形成Backing material formation バッキング材を粘着シートに貼るApply backing material to adhesive sheet 単素子で評価Evaluation with a single element 配線の取り出しWiring removal 評価の方法Evaluation method 対象物からの反射なしNo reflection from object 対象物からの反射ありReflection from the object 対象物との距離を近づけるMove closer to the object 時間変化の距離への換算Conversion of time change into distance

動脈の層が厚くなったり硬くなったりして弾力性や柔軟性が失われた状態である動脈硬化は、心臓病や脳血管障害などの病気を引き起こす大きな要因であり、これらの病気の予防や治療には動脈硬化の早期発見が重要となる。   Arteriosclerosis, a condition in which the arterial layer becomes thicker or stiffer and loses its elasticity and flexibility, is a major cause of diseases such as heart disease and cerebrovascular disorder. Early detection of arteriosclerosis is important for treatment.

血液が心臓から押し出される時に生じる血管内の圧力の波形を脈波といい、この脈波の計測により血管運動反応をとらえることで血管の状態を診ることができ、動脈硬化の早期発見に役立つとされている。また、漢方や鍼灸に代表される統合医療の分野では、橈骨(トウコツ)動脈(手首の親指側を走る動脈)の脈波を3カ所同時計測する脈診と呼ばれる手法があり、様々な病態や疾患の把握に役立つ。   When the blood is pushed out of the heart, the waveform of the pressure in the blood vessel is called a pulse wave. By measuring this pulse wave, the vasomotor response can be examined, and the state of the blood vessel can be examined. Has been. In the field of integrated medicine represented by Kampo and Acupuncture, there is a technique called pulse diagnosis that simultaneously measures the pulse wave of the rib arteries (the artery running on the thumb side of the wrist) at three locations. Useful for understanding disease.

脈波の計測は超音波プローブによりこれまでにも行われているが、測定対象である橈骨(トウコツ)動脈(手首の親指側を走る動脈)や上腕動脈などへプローブを位置合わせするには専門家、例えば臨床医や臨床工学技士の技術が必要となる。またプローブと測定対象のわずかな位置ずれが計測結果に影響することから、プローブを手首上に固定する必要がある。しかし、手首を数分以上、安定して固定することが難しく、プローブを手首に追従して動かすことも実用上難しいことから、装着に時間がかかり長時間の安定した測定ができない。なお、その他、超音波計測できる比較的体表面に近い動脈として、頚動脈、頭部の浅側頭動脈、足表面近くの動脈などがある。   Pulse waves have been measured with ultrasonic probes, but specialized in positioning the probe to the rib artery (the artery that runs on the thumb side of the wrist), the brachial artery, etc. The skills of a home, such as a clinician or clinical engineer, are required. In addition, since the slight displacement between the probe and the measurement object affects the measurement result, it is necessary to fix the probe on the wrist. However, it is difficult to stably fix the wrist for several minutes or more, and it is practically difficult to move the probe following the wrist. In addition, examples of arteries that are relatively close to the body surface that can be ultrasonically measured include the carotid artery, the superficial temporal artery of the head, and the artery near the foot surface.

そこで、複数の超音波素子をアレイ状に搭載したフレキシブルかつウェアラブルなシート状の測定装置を作製することにより、専門家によるプローブの位置合わせを不要にし、一般家庭での簡便な脈波計測や血管の硬さ評価、運動時のモニターなどを可能にする(図1参照)。多点同時計測もできる。   Therefore, by creating a flexible and wearable sheet-shaped measuring device with a plurality of ultrasonic elements mounted in an array, there is no need for the probe to be positioned by an expert, making it easy to measure pulse waves and blood vessels at home. Hardness evaluation, exercise monitoring, etc. are possible (see Fig. 1). Multi-point simultaneous measurement is also possible.

体表近くに位置する動脈上の皮膚(橈骨)に貼れるようにしたシートに超音波素子を1次元または2次元アレイ状に搭載し、超音波素子をアレイ状に搭載したフレキシブルなシートを橈骨動脈付近の手首に貼るだけで、橈骨動脈に対して正しく当てられた超音波素子(図1の赤枠の素子)の信号だけを読み取ればよいので、細かな位置合わせを必要としない。また、シートに超音波素子を1次元または2次元アレイ状に搭載することで測定対象との精密な位置合わせが不要である。   Ultrasonic elements are mounted in a one-dimensional or two-dimensional array on a sheet that can be attached to the skin (ribs) on the artery located near the body surface, and a flexible sheet is mounted with the ultrasonic elements in an array. Since only the signal of the ultrasonic element correctly applied to the radial artery (the element in the red frame in FIG. 1) need only be read by being attached to the nearby wrist, fine alignment is not required. In addition, since the ultrasonic elements are mounted on the sheet in a one-dimensional or two-dimensional array, precise alignment with the measurement object is unnecessary.

フレキシブルかつウェアラブルなシート状にすることで運動時のモニターが可能となる。フレキシブルかつ薄く軽量なシート状にすることで測定対象に追従して動き、位置ずれを低減する。   A flexible and wearable sheet can be monitored during exercise. A flexible, thin and lightweight sheet that moves following the object to be measured and reduces displacement.

測定項目は、橈骨動脈の「径の変化」、ドップラー効果を利用した血流速、弾性計測による血管硬さの評価などがあり、素子サイズを小さくし数を増やすことで簡単なイメージングも可能となる。血管壁の変位を見るとした場合、血管壁と素子が共に変位した時には血管壁のみの変位を測定することができないが、血管壁の径の変化を見るとすれば、血管壁と素子が共に変位した時でも血管壁の径の変化は測定可能である(図2参照)。   Measurement items include “diameter change” of radial artery, blood flow velocity using Doppler effect, and evaluation of blood vessel hardness by elastic measurement. Simple imaging is possible by reducing the element size and increasing the number. Become. When looking at the displacement of the blood vessel wall, it is impossible to measure the displacement of only the blood vessel wall when both the blood vessel wall and the element are displaced. Even when displaced, the change in the diameter of the blood vessel wall can be measured (see FIG. 2).

超音波素子(超音波トランスデューサ)には圧電単結晶PMN-PT、電極にはAu/Cr、フレキシブルな基板にはポリイミドフィルムを使用する。上部電極側の振動を抑え、体内に効率よく超音波を伝搬させるためにバッキング材を取り付ける(図3参照)。   Piezoelectric single crystal PMN-PT is used for the ultrasonic element (ultrasonic transducer), Au / Cr is used for the electrode, and polyimide film is used for the flexible substrate. A backing material is attached to suppress the vibration on the upper electrode side and to efficiently propagate the ultrasonic wave into the body (see FIG. 3).

なお、超音波トランスデューサは必ずしも圧電単結晶である必要はなく、PZT などの圧電セラミックス、MEMS 技術で作製されるCMUTs(Capacitive Micromachined Ultrasonic Transducers)でもよい(非特許文献1,2)。またPZT はバルク材料の他、スパッタリングなどの成膜、泥状のスラリーを薄くのばして焼結したシートなどを用いることができる。いずれもMEMS 等の微細加工技術により2次元のアレイ型シートに作製できる。後述するものは実施例の一つである。フレキシブルな基板は必ずしもポリイミドである必要はなく、その他の柔軟な材料でも、硬く曲がらないアレイ間を柔らかい素材や曲がる構造で接続した構成でもよい。   Note that the ultrasonic transducer does not necessarily need to be a piezoelectric single crystal, and may be piezoelectric ceramics such as PZT or CMUTs (Capacitive Micromachined Ultrasonic Transducers) manufactured by MEMS technology (Non-Patent Documents 1 and 2). PZT can be a bulk material, a film formed by sputtering, or a sheet obtained by thinning and sintering a slurry of slurry. Both can be made into a two-dimensional array type sheet by microfabrication technology such as MEMS. What will be described later is one of the embodiments. The flexible substrate is not necessarily made of polyimide, and may be another flexible material or a structure in which the hard and unbent arrays are connected by a soft material or a bending structure.

手首の動きを考えると、主に長軸方向にフレキシブルであることが必要となるので、電極配線は短軸方向へ伸ばすのが望ましい(図4参照)。   Considering the movement of the wrist, it is necessary to be flexible mainly in the long axis direction, so it is desirable to extend the electrode wiring in the short axis direction (see FIG. 4).

仕様は以下の通り。
・素子数:30 個(横10 個1 列×3)
・素子サイズ:500μm×500μm
・フレキシブル基板サイズ:20mm×20mm
・配線:細径同軸ケーブル
The specifications are as follows.
-Number of elements: 30 (10 horizontal x 1 row x 3)
・ Element size: 500μm × 500μm
-Flexible board size: 20mm x 20mm
・ Wiring: Thin coaxial cable

超音波素子作製のプロセスフローを図7に示す。圧電材料PMN-PT(厚さ0.3mm)の全面にAu/Crをスパッタリングにより成膜し(約600nm)、ダイサーにより上下電極の分離のための切り込み(数μm)と、素子分離のための切り込み(約100μm)を入れる。加工したPMN-PT をAu/Cr の配線パターンが作製されたフレキシブル基板に接合する(Au/Au 接合)。バッキング材を粘着シートで貼り付け、ダイサーによりそれぞれの素子に分離する。同軸ケーブルを導電性接着剤で取り付け、分極を行う(図5及び図6参照)。   FIG. 7 shows a process flow for manufacturing the ultrasonic element. A film of Au / Cr is formed on the entire surface of the piezoelectric material PMN-PT (thickness 0.3 mm) by sputtering (about 600 nm), and a notch for separating the upper and lower electrodes (several μm) by a dicer and a notch for element isolation (Approx. 100 μm). The processed PMN-PT is bonded to a flexible board with Au / Cr wiring pattern (Au / Au bonding). A backing material is pasted with an adhesive sheet, and each element is separated by a dicer. A coaxial cable is attached with a conductive adhesive, and polarization is performed (see FIGS. 5 and 6).

次に、配線基板作製のプロセスフローを図8に示す。ポリイミドフィルム(50μm)にAu/Cr をスパッタリングにより成膜し(約700nm)、ポジレジストをスピンコートで塗布する。配線基板のパターンが描かれたマスクを用いたフォトリソグラフィによりレジストをパターニングする。配線パターンに残ったレジストをマスクとして不要なAu/Crをエッチングする。アセトンによりレジストを除去しAu/Cr の配線パターンを得る。この配線基板フィルムに加工したPMN-PT をAu/Au 接合により接合する。   Next, FIG. 8 shows a process flow for manufacturing a wiring board. Au / Cr is deposited on a polyimide film (50 μm) by sputtering (about 700 nm), and a positive resist is applied by spin coating. The resist is patterned by photolithography using a mask on which a wiring board pattern is drawn. Unnecessary Au / Cr is etched using the resist remaining in the wiring pattern as a mask. The resist is removed with acetone to obtain an Au / Cr wiring pattern. PMN-PT processed on this wiring board film is bonded by Au / Au bonding.

バッキング材作製のプロセスフローを図9に示す。エポキシとタングステンを58:42 で混合したバッキング材をガラス板の枠に埋める。下地にはバッキング材が硬化後剥がしやすくするためにテフロン(登録商標)フィルムを使用する。80℃/3h で硬化後、テフロン(登録商標)フィルム上からバッキング材を取り出し、両面粘着シート(10μm)の片面に貼り付ける。ダイサーにより貼り付ける超音波素子のサイズに切り出し、超音波素子に貼り付ける。ダイサーによりそれぞれの素子に分離する。   A process flow for producing the backing material is shown in FIG. Backing material mixed with epoxy and tungsten at 58:42 is buried in the frame of the glass plate. A Teflon (registered trademark) film is used for the base so that the backing material can be easily peeled off after curing. After curing at 80 ° C / 3h, remove the backing material from the Teflon (registered trademark) film and apply it to one side of the double-sided PSA sheet (10μm). Cut out to the size of the ultrasonic element to be attached by a dicer, and attach it to the ultrasonic element. Each element is separated by a dicer.

アレイ状の横1 列10 個の超音波素子を一度に作製するために、PMN-PT(厚さ0.3mm)を0.5mm×10mmのサイズに切り出し、回転させながら全面にAu/Cr をスパッタリングにて成膜し、25μm 幅の切り込みを入れ上下電極を分離した(図10参照)。   In order to fabricate 10 ultrasonic elements in one horizontal row in an array at a time, PMN-PT (thickness 0.3 mm) is cut into 0.5 mm x 10 mm size, and Au / Cr is sputtered on the entire surface while rotating. The upper and lower electrodes were separated by making a 25 μm wide cut (see FIG. 10).

素子の分離の際に基板まで切断しないために、PMN-PT の下部電極側に幅100μm、深さ100μm の切り込みを入れておく(図11参照)。   In order not to cut the substrate when the element is separated, a cut having a width of 100 μm and a depth of 100 μm is made on the lower electrode side of the PMN-PT (see FIG. 11).

ポリイミドフィルム上にAu/Cr の電極配線パターンを作製した(図12参照)。テフロン(登録商標)フィルム上に作ったガラス板の枠に、エポキシとタングステン(5.84g:4.16g)を混合したものを厚さを揃えて埋め80℃/3h で硬化し、約300μm の厚さのバッキング材を形成した(図13参照)。   An electrode wiring pattern of Au / Cr was prepared on a polyimide film (see FIG. 12). A glass plate frame made on a Teflon (registered trademark) film is filled with a mixture of epoxy and tungsten (5.84 g: 4.16 g), filled in to a uniform thickness, cured at 80 ° C / 3h, and approximately 300μm thick The backing material was formed (see FIG. 13).

バッキング材をテフロン(登録商標)フィルム上のガラス枠から取り出し、両面粘着シート(10μm)の片面に貼り、粘着シートごと0.5mm×10mm のサイズに切り出し、PMN-PT に貼った(図14参照)。   The backing material was taken out from the glass frame on the Teflon (registered trademark) film, pasted on one side of a double-sided adhesive sheet (10 μm), cut out together with the adhesive sheet to a size of 0.5 mm x 10 mm, and pasted on PMN-PT (see Fig. 14) .

単素子での評価を(図15に示す。単素子(0.5mm×0.5mm)を切り出し、フリップチップボンダーを用いて配線基板フィルムとAu/Au接合で接合した。
・接合条件: 温度:350℃/60min、荷重:1 N、圧力:4 MPa
Evaluation with a single element was performed (shown in FIG. 15. A single element (0.5 mm × 0.5 mm) was cut out and bonded with a wiring board film by Au / Au bonding using a flip chip bonder.
-Joining conditions: Temperature: 350 ° C / 60min, load: 1 N, pressure: 4 MPa

図16に示すように、同軸ケーブル(φ300μm)を導電性接着剤で取り付け、分極(450V/30min)を行った。   As shown in FIG. 16, a coaxial cable (φ300 μm) was attached with a conductive adhesive, and polarization (450 V / 30 min) was performed.

評価の方法(図17参照)
・上部電極側を下向き、下部電極側(基板フィルム側)を上向きにして超音波ゲルで覆う
・上部電極側の反射を吸収するためにバッキング材としてスポンジを置く
・対象物(金属の定規を使用)を基板フィルム上で動かし、素子との距離を変化させ、デジタルオシロスコープでその時の波形の変化を観測
・対象物からの反射時間の変化を距離に換算
Evaluation method (see Fig. 17)
-Cover with ultrasonic gel with the upper electrode side facing down and the lower electrode side (substrate film side) facing up-Place a sponge as a backing material to absorb reflection on the upper electrode side-Object (use a metal ruler ) On the substrate film, change the distance to the element, observe the change in waveform at that time with a digital oscilloscope, convert the change in reflection time from the object into distance

今回バッキング材を素子に貼り付けていないため、バッキング材としてスポンジを利用して上部電極側の超音波の反射を抑えることにした。対象物には、大きな反射を得るために金属製の定規を使用した(図18〜20参照)。   Since the backing material is not attached to the element this time, we decided to use a sponge as the backing material to suppress the reflection of ultrasonic waves on the upper electrode side. A metal ruler was used for the object to obtain a large reflection (see FIGS. 18 to 20).

対象物を近づけると、反射波の帰ってくる時間(横軸)が変化する。その時間の変化分と音速(1.5×103 m/s)から対象物との距離の変化が得られる。   When the object is brought closer, the time (horizontal axis) when the reflected wave returns changes. The change in distance from the object can be obtained from the change in time and the speed of sound (1.5 × 103 m / s).

インピーダンスアナライザーによる測定ではこの単素子の共振周波数は1.35MHz であった(図21参照)。   In the measurement by the impedance analyzer, the resonance frequency of this single element was 1.35 MHz (see FIG. 21).

実仕様の際には深さごとに分布する複数の反射音源を分解して血管系を測定する必要があることから単パルス化、高周波化により距離分解能を向上させる必要がある。   In the actual specification, it is necessary to measure the vascular system by disassembling a plurality of reflection sound sources distributed at different depths, so it is necessary to improve the distance resolution by using a single pulse and increasing the frequency.

Claims (4)

体表近くに位置する動脈上の皮膚に貼れるようにしたシートに超音波素子を1次元または2次元アレイ状に搭載したことを特徴とするアレイ型超音波脈波測定シート。   An array type ultrasonic pulse wave measurement sheet, wherein ultrasonic elements are mounted in a one-dimensional or two-dimensional array on a sheet that can be attached to the skin on an artery located near the body surface. シートに超音波素子を1次元または2次元アレイ状に搭載することで測定対象との精密な位置合わせが不要であることを特徴とする請求項1に記載のアレイ型超音波脈波測定シート。   2. The array-type ultrasonic pulse wave measurement sheet according to claim 1, wherein the ultrasonic elements are mounted on the sheet in a one-dimensional or two-dimensional array so that precise alignment with a measurement object is unnecessary. フレキシブルかつ薄く軽量なシート状にすることで測定対象に追従して動き、位置ずれを低減することを特徴とする請求項1または2に記載のアレイ型超音波脈波測定シート。   3. The array-type ultrasonic pulse wave measurement sheet according to claim 1, wherein the sheet is flexible, thin and lightweight, and moves in accordance with a measurement target to reduce positional deviation. 測定項目は、橈骨動脈の径の変化、血流速、血管弾性、または血管像であることを特徴とする請求項1ないし3のいずれかに記載のアレイ型超音波脈波測定シート。   4. The array type ultrasonic pulse wave measurement sheet according to claim 1, wherein the measurement item is a change in radial artery diameter, blood flow velocity, blood vessel elasticity, or blood vessel image.
JP2009125136A 2009-05-25 2009-05-25 Array type ultrasonic pulse wave measuring sheet Pending JP2010269060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009125136A JP2010269060A (en) 2009-05-25 2009-05-25 Array type ultrasonic pulse wave measuring sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009125136A JP2010269060A (en) 2009-05-25 2009-05-25 Array type ultrasonic pulse wave measuring sheet

Publications (1)

Publication Number Publication Date
JP2010269060A true JP2010269060A (en) 2010-12-02

Family

ID=43417589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009125136A Pending JP2010269060A (en) 2009-05-25 2009-05-25 Array type ultrasonic pulse wave measuring sheet

Country Status (1)

Country Link
JP (1) JP2010269060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500804A (en) * 2013-12-11 2017-01-05 フジフィルム ディマティックス, インコーポレイテッド Flexible micro-machined transducer device and manufacturing method thereof
CN112515702A (en) * 2020-11-30 2021-03-19 中国科学院空天信息创新研究院 Self-adaptive ultrasonic beam synthesis method based on relative displacement of ultrasonic probe and skin
WO2022091174A1 (en) 2020-10-26 2022-05-05 朝日インテック株式会社 Image display device and image display method
WO2023063197A1 (en) 2021-10-13 2023-04-20 Nihon Kohden Corporation Information processing apparatus and ultrasound system
KR20230078290A (en) * 2021-11-26 2023-06-02 한국세라믹기술원 Micro ultrasonics wave transducer array and biosensor patch using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541899A (en) * 1999-04-15 2002-12-10 エフ・アール・エイ・ワイ・プロジエクト・リミテツド Ultrasound imaging device
JP2003503094A (en) * 1999-06-29 2003-01-28 テンシス メディカル インコーポレイテッド Non-invasive method and apparatus for determining arterial blood pressure
JP2004533876A (en) * 2001-05-18 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Integrated cardiac resuscitation system with perfusion detection
JP2006051105A (en) * 2004-08-10 2006-02-23 Toshiba Corp Ultrasonic probe and biological information measuring system
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
JP2009504057A (en) * 2005-08-05 2009-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Bent two-dimensional array transducer
JP2009055475A (en) * 2007-08-28 2009-03-12 Olympus Medical Systems Corp Ultrasonic transducer, method of manufacturing ultrasonic transducer, ultrasonic diagnostic apparatus, and ultrasonic microscope
JP2009512485A (en) * 2005-10-19 2009-03-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Two-dimensional ultrasonic transducer and method for radial applications
JP2009515631A (en) * 2005-11-17 2009-04-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CPR guided by blood flow measurements

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002541899A (en) * 1999-04-15 2002-12-10 エフ・アール・エイ・ワイ・プロジエクト・リミテツド Ultrasound imaging device
JP2003503094A (en) * 1999-06-29 2003-01-28 テンシス メディカル インコーポレイテッド Non-invasive method and apparatus for determining arterial blood pressure
JP2004533876A (en) * 2001-05-18 2004-11-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Integrated cardiac resuscitation system with perfusion detection
JP2006051105A (en) * 2004-08-10 2006-02-23 Toshiba Corp Ultrasonic probe and biological information measuring system
JP2009504057A (en) * 2005-08-05 2009-01-29 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Bent two-dimensional array transducer
JP2009512485A (en) * 2005-10-19 2009-03-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Two-dimensional ultrasonic transducer and method for radial applications
JP2009515631A (en) * 2005-11-17 2009-04-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ CPR guided by blood flow measurements
JP2008212366A (en) * 2007-03-02 2008-09-18 Nagoya Institute Of Technology Evaluation apparatus of luminal body in living body
JP2009055475A (en) * 2007-08-28 2009-03-12 Olympus Medical Systems Corp Ultrasonic transducer, method of manufacturing ultrasonic transducer, ultrasonic diagnostic apparatus, and ultrasonic microscope

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017500804A (en) * 2013-12-11 2017-01-05 フジフィルム ディマティックス, インコーポレイテッド Flexible micro-machined transducer device and manufacturing method thereof
US10586912B2 (en) 2013-12-11 2020-03-10 Fujifilm Dimatix, Inc. Method for fabricating flexible micromachined transducer device
JP2020182223A (en) * 2013-12-11 2020-11-05 フジフィルム ディマティックス, インコーポレイテッド Flexible micromachined transducer device and method for fabricating the same
JP7208954B2 (en) 2013-12-11 2023-01-19 フジフィルム ディマティックス, インコーポレイテッド Flexible microfabricated transducer device and method of manufacture
WO2022091174A1 (en) 2020-10-26 2022-05-05 朝日インテック株式会社 Image display device and image display method
CN112515702A (en) * 2020-11-30 2021-03-19 中国科学院空天信息创新研究院 Self-adaptive ultrasonic beam synthesis method based on relative displacement of ultrasonic probe and skin
CN112515702B (en) * 2020-11-30 2022-06-10 中国科学院空天信息创新研究院 Self-adaptive ultrasonic beam synthesis method based on relative displacement of ultrasonic probe and skin
WO2023063197A1 (en) 2021-10-13 2023-04-20 Nihon Kohden Corporation Information processing apparatus and ultrasound system
KR20230078290A (en) * 2021-11-26 2023-06-02 한국세라믹기술원 Micro ultrasonics wave transducer array and biosensor patch using the same
KR102634238B1 (en) * 2021-11-26 2024-02-05 한국세라믹기술원 Micro ultrasonics wave transducer array and biosensor patch using the same

Similar Documents

Publication Publication Date Title
Peng et al. Noninvasive and nonocclusive blood pressure monitoring via a flexible piezo-composite ultrasonic sensor
US20050251044A1 (en) Method and apparatus for non-invasive ultrasonic fetal heart rate monitoring
JP2010269060A (en) Array type ultrasonic pulse wave measuring sheet
Chen et al. PMN-PT single-crystal high-frequency kerfless phased array
KR101915255B1 (en) Method of manufacturing the ultrasonic probe and the ultrasonic probe
US20200101492A1 (en) Capacitive transducer, manufacturing method thereof, and image forming apparatus
CN110141268A (en) A kind of machinery rotating type double frequency intravascular ultrasound radiant force elastic imaging probe
JP2016005209A (en) Capacitance transducer, and method of manufacturing the same
JP2006051105A (en) Ultrasonic probe and biological information measuring system
CN107046094B (en) Piezoelectric element, method for manufacturing same, ultrasonic probe, and ultrasonic measurement device
JP2017098781A (en) Piezoelectric device, ultrasonic probe, ultrasonic measurement device and manufacturing method of piezoelectric device
Chen et al. Flexible ultrasound transducer with embedded optical shape sensing fiber for biomedical imaging applications
CN112791926A (en) Ultrasonic imaging apparatus and ultrasonic imaging system
JP6257176B2 (en) Capacitance type transducer and manufacturing method thereof
CN109561886B (en) Device, method for manufacturing device, and method for manufacturing matrix-type ultrasonic probe
Peng et al. A flexible piezo-composite ultrasound blood pressure sensor with silver nanowire-based stretchable electrodes
JP2021505323A (en) Intraluminal ultrasound scanner with reduced diameter
Xu et al. Design, modeling and characterization of a 35MHz 1-D CMUT phased array
CN214390969U (en) Ultrasonic imaging apparatus and ultrasonic imaging system
Sun et al. MEMS Ultrasonic Fingertip Heart Rate Sensor
JP7305479B2 (en) Ultrasonic probe and ultrasonic diagnostic equipment
JP6265578B1 (en) Device, device manufacturing method, and array-type ultrasonic probe manufacturing method
Chen et al. Laser Micromachined Flexible Ultrasound Line Array and Subplanar Multimodal Imaging Applications
Krings et al. Design of a wearable ultrasound patch with soft and conformal matching layer
JP2008212453A (en) Ultrasonic probe for intravascular diagnosis and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130828

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131224