JP2010268589A - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP2010268589A
JP2010268589A JP2009117385A JP2009117385A JP2010268589A JP 2010268589 A JP2010268589 A JP 2010268589A JP 2009117385 A JP2009117385 A JP 2009117385A JP 2009117385 A JP2009117385 A JP 2009117385A JP 2010268589 A JP2010268589 A JP 2010268589A
Authority
JP
Japan
Prior art keywords
phase
coils
magnetic flux
rotating electrical
electrical machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009117385A
Other languages
Japanese (ja)
Other versions
JP5471025B2 (en
Inventor
Yoichi Hirakawa
洋一 平川
Takashi Kato
崇 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009117385A priority Critical patent/JP5471025B2/en
Publication of JP2010268589A publication Critical patent/JP2010268589A/en
Application granted granted Critical
Publication of JP5471025B2 publication Critical patent/JP5471025B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the generation of an copper loss resulting from the magnetic flux of a fundamental wave frequency. <P>SOLUTION: This rotating electric machine comprises secondary coils 19a, 20a and 21a which are not electrically connected to armature coils 16a, 17a and 18a and wound around teeth 13a, 14a and 15a of a stator 12, and the secondary coils 19a, 20a and 21a are connected in series to one another. According to such a constitution, since unnecessary currents do not flow to the secondary coils 19a, 20a and 21a by an induction voltage, the generation of the copper loss resulting from the magnetic flux of the fundamental wave frequency can be suppressed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電機子コイルに鎖交する界磁磁束を低減する磁束抑制手段を有する回転電機に関する。   The present invention relates to a rotating electrical machine having magnetic flux suppression means for reducing a field magnetic flux interlinked with an armature coil.

従来より、界磁を形成するための永久磁石を有するロータと、磁気空隙を介してロータの永久磁石に対向配置されたステータ鉄心と、ステータ鉄心のスロットに巻き込まれた電機子コイルと、ステータ鉄心の歯部に巻回された短絡コイルとを有する回転電機が知られている。この回転電機では、ロータの回転速度が上昇した際、短絡コイルに流れる電流(短絡電流)が増加することにより、電機子コイルに鎖交する界磁磁束(高調波磁束)が低減される(弱め界磁)。   Conventionally, a rotor having a permanent magnet for forming a field, a stator core disposed opposite to the permanent magnet of the rotor via a magnetic gap, an armature coil wound in a slot of the stator core, and a stator core 2. Description of the Related Art A rotating electric machine having a short-circuited coil wound around a tooth portion is known. In this rotating electric machine, when the rotational speed of the rotor increases, the current flowing through the short-circuited coil (short-circuit current) increases, so that the field magnetic flux (harmonic magnetic flux) linked to the armature coil is reduced (weakened). Field).

特開平8−172742号公報JP-A-8-172742

従来の回転電機は、電機子コイルから独立させてステータ鉄心の歯部に短絡コイルを巻回した構成になっているために、回転電機を駆動する基本波周波数(電気角周波数)の磁束に起因して短絡コイルに誘導電圧が発生し、この誘導電圧によって短絡コイルに不要な電流が流れることにより、銅損が発生する。   The conventional rotating electric machine has a configuration in which a short-circuit coil is wound around the tooth portion of the stator iron core independently of the armature coil, and thus is caused by a magnetic flux having a fundamental frequency (electrical angular frequency) that drives the rotating electric machine. Then, an induced voltage is generated in the short-circuited coil, and unnecessary current flows through the short-circuited coil due to the induced voltage, thereby causing copper loss.

本発明は上記課題を解決するためになされたものであり、その目的は基本波周波数の磁束に起因する銅損の発生を抑制可能な回転電機を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a rotating electrical machine capable of suppressing the occurrence of copper loss due to the magnetic flux having the fundamental frequency.

本発明に係る回転電機では、ステータは電機子コイルとは異なる複数のコイルを備え、複数のコイルは互いに接続されている。   In the rotating electrical machine according to the present invention, the stator includes a plurality of coils different from the armature coil, and the plurality of coils are connected to each other.

本発明に係る回転電機によれば、誘導電圧によって複数のコイルに不要な電流が流れることがないので、基本波周波数の磁束に起因する銅損の発生を抑制することができる。   According to the rotating electrical machine according to the present invention, since unnecessary current does not flow through the plurality of coils due to the induced voltage, it is possible to suppress the occurrence of copper loss due to the magnetic flux of the fundamental frequency.

本発明の実施形態となる電動車両の構成を示すブロック図である。It is a block diagram which shows the structure of the electric vehicle used as embodiment of this invention. 図1に示す回転電機の構成を示す断面図である。It is sectional drawing which shows the structure of the rotary electric machine shown in FIG. 3相交流電流により駆動される回転電機の歯部,電機子コイル,及び2次コイルの構成を示す模式図である。It is a schematic diagram which shows the structure of the tooth | gear part, armature coil, and secondary coil of a rotary electric machine driven by a three-phase alternating current. 3相のキャリア信号の位相差を示す模式図である。It is a schematic diagram which shows the phase difference of a three-phase carrier signal. 3相の電機子コイルが巻回された歯部を3セット有する回転電機におけるキャリア信号の位相差を示す模式図である。It is a schematic diagram which shows the phase difference of the carrier signal in the rotary electric machine which has 3 sets of tooth parts by which the armature coil of 3 phases was wound. 2次コイルに発生する誘起電圧の位相を説明するためのベクトル図である。It is a vector diagram for demonstrating the phase of the induced voltage which generate | occur | produces in a secondary coil. 3相の電機子コイルが巻回された歯部を3セット有する回転電機における2次コイルの接続形態を示す模式図である。It is a schematic diagram which shows the connection form of the secondary coil in the rotary electric machine which has 3 sets of tooth | gear parts by which the armature coil of 3 phases was wound.

本発明に係る回転電機は、例えば図1に示すような電動車両1(ハイブリッド車両や電気自動車等)に適用することができる。以下、図面を参照して、本発明に係る回転電機を適用した本発明の実施形態となる電動車両1の構成を説明する。   The rotating electrical machine according to the present invention can be applied to an electric vehicle 1 (such as a hybrid vehicle or an electric vehicle) as shown in FIG. Hereinafter, a configuration of an electric vehicle 1 according to an embodiment of the present invention to which a rotating electrical machine according to the present invention is applied will be described with reference to the drawings.

〔電気自動車の構成〕
本発明の実施形態となる電動車両1は、図1に示すように、バッテリ2の直流電流を3相(U相,V相,W相)交流電流に変換するPWM駆動方式のインバータ(INV)3と、インバータ3から供給される3相交流電流を利用して後輪4c,4dを回転駆動させるモータ5(回転電機)とを備える。本実施形態では、モータ5は後輪4c,4dを回転駆動させることとしたが、前輪4a,4bや前輪4a,4bと後輪4c,4dの双方を回転駆動させるようにしてもよい。
[Configuration of electric vehicle]
As shown in FIG. 1, an electric vehicle 1 according to an embodiment of the present invention includes a PWM drive type inverter (INV) that converts a DC current of a battery 2 into a three-phase (U-phase, V-phase, W-phase) AC current. 3 and a motor 5 (rotating electrical machine) that rotationally drives the rear wheels 4c and 4d using the three-phase alternating current supplied from the inverter 3. In the present embodiment, the motor 5 rotates the rear wheels 4c and 4d. However, the front wheels 4a and 4b or both the front wheels 4a and 4b and the rear wheels 4c and 4d may be driven to rotate.

〔モータの構成〕
モータ5は、図2に示すように、界磁を形成するための永久磁石(図示せず)を有するロータ11と、磁気空隙を介してロータ11の永久磁石に対向配置されたステータ12とを有する。ステータ12は、等角度間隔に配置された3相(U相,V相,W相)の歯部を3セット(U相の歯部13a〜13c,V相の歯部14a〜14c,W相の歯部15a〜15c)と、各歯部に巻回された電機子コイル(図3参照)とを有する。なお図3は3相の歯部の1セット(U相の歯部13a,V相の歯部14a,W相の歯部15a)抜き出し、各歯部に巻回された電機子コイル16a,17a,18aの構成を模式的に示したものである。
[Motor configuration]
As shown in FIG. 2, the motor 5 includes a rotor 11 having a permanent magnet (not shown) for forming a field, and a stator 12 arranged to face the permanent magnet of the rotor 11 via a magnetic gap. Have. The stator 12 has three sets of three-phase (U-phase, V-phase, W-phase) tooth portions arranged at equiangular intervals (U-phase tooth portions 13a-13c, V-phase tooth portions 14a-14c, W-phase). Tooth portions 15a to 15c) and armature coils (see FIG. 3) wound around the respective tooth portions. FIG. 3 shows one set of three-phase tooth portions (U-phase tooth portion 13a, V-phase tooth portion 14a, W-phase tooth portion 15a) and armature coils 16a and 17a wound around each tooth portion. , 18a is schematically shown.

3相の各歯部には、電機子コイルから電気的に独立して2次コイル(図3に示す構成においては2次コイル19a,20a,21a)が巻回されている。各セットの2次コイルは直列接続され、V相の2次コイル(図3に示す構成においては2次コイル20a)とW相の2次コイル(図3に示す構成において2次コイル21a)間には抵抗素子Rが挿入されている。このような構成によれば、基本波周波数の磁束に起因してU相,V相,W相の歯部に誘起される誘起電圧の位相は相間で120°ずつずれていることから、2次コイル(図3に示す構成においては2次コイル19a,20a,21a)に発生する誘起電圧は0となる。従って、基本波周波数の磁束に起因する2次コイルの銅損を0にすることができる。   A secondary coil (secondary coils 19a, 20a, and 21a in the configuration shown in FIG. 3) is wound around each tooth portion of the three phases, independently of the armature coil. The secondary coils of each set are connected in series between the V-phase secondary coil (secondary coil 20a in the configuration shown in FIG. 3) and the W-phase secondary coil (secondary coil 21a in the configuration shown in FIG. 3). A resistance element R is inserted into the. According to such a configuration, the phase of the induced voltage induced in the U-phase, V-phase, and W-phase teeth due to the magnetic flux at the fundamental frequency is shifted by 120 ° between the phases. The induced voltage generated in the coils (secondary coils 19a, 20a, 21a in the configuration shown in FIG. 3) is zero. Therefore, the copper loss of the secondary coil caused by the magnetic flux having the fundamental frequency can be reduced to zero.

ところで上記構成によれば、基本波周波数の磁束の位相が相間で120°ずつずれていることから、基本波周波数の磁束を弱める電流が2次コイルに流れなくなる。またこの時、高周波磁束の位相も相間で120°ずつずれていると、高調波磁束を弱めることもできなくなってしまう。一例として、PWM駆動方式のインバータ3で給電した際に発生する高調波磁束の位相を示すために、高調波磁束と同じ位相になるPWM出力電圧を数式1,2に示す。数式1中、パラメータnは1以上の奇数を示し、パラメータkは2以上の偶数を示す。また数式2中、パラメータnは2以上の偶数を示し、パラメータkは1以上の奇数を示す。また数式1,2中、パラメータvは出力電圧、パラメータEは直流電圧、パラメータaは変調率、パラメータωは電気角速度(=2πf)、パラメータfは電気角周波数、パラメータψは基本波のU相との位相差,パラメータωはキャリア角速度、パラメータfはキャリア周波数を示す。

Figure 2010268589
Figure 2010268589
By the way, according to the said structure, since the phase of the magnetic flux of fundamental wave frequency has shifted | deviated 120 degree | times between phases, the electric current which weakens the magnetic flux of fundamental wave frequency does not flow into a secondary coil. At this time, if the phase of the high-frequency magnetic flux is also shifted by 120 ° between phases, the harmonic magnetic flux cannot be weakened. As an example, in order to show the phase of the harmonic magnetic flux generated when power is supplied by the inverter 3 of the PWM drive system, the PWM output voltage having the same phase as the harmonic magnetic flux is shown in Equations 1 and 2. In Equation 1, the parameter n represents an odd number of 1 or more, and the parameter k represents an even number of 2 or more. In Equation 2, the parameter n represents an even number of 2 or more, and the parameter k represents an odd number of 1 or more. In Equations 1 and 2, parameter v 1 is the output voltage, parameter Ed is the DC voltage, parameter a is the modulation factor, parameter ω 0 is the electrical angular velocity (= 2πf 0 ), parameter f 0 is the electrical angular frequency, and parameter ψ 0. Is the phase difference of the fundamental wave from the U phase, the parameter ω s is the carrier angular velocity, and the parameter f s is the carrier frequency.
Figure 2010268589
Figure 2010268589

数式1,2から明らかなように、パラメータkの値が3の倍数でない場合、U相,V相,W相の高調波位相が120°ずつずれることなるので、高調波磁束を弱めることができない。そこで本実施形態では、パラメータkの値が3の倍数でない周波数の磁束を減衰可能にするために、図4に示すように、インバータ3を構成するU相,V相,W相のスイッチング素子S1〜S6のキャリア信号に位相差を設ける。U相,V相,W相のスイッチング素子のキャリア信号に位相差を設けた場合、PWM出力電圧は以下の数式3,4に示すようになる。なお数式3中、パラメータnは1以上の奇数を示し、パラメータkは2以上の偶数を示す。また数式4中、パラメータnは2以上の偶数を示し、パラメータkは1以上の奇数を示す。また数式3,4中、パラメータψはU相のキャリア信号との位相差を示す。

Figure 2010268589
Figure 2010268589
As is clear from Equations 1 and 2, when the value of parameter k is not a multiple of 3, the harmonic phases of the U phase, V phase, and W phase are shifted by 120 °, so the harmonic magnetic flux cannot be weakened. . Therefore, in the present embodiment, in order to be able to attenuate the magnetic flux having a frequency whose parameter k is not a multiple of 3, as shown in FIG. 4, the switching element S1 of U phase, V phase, and W phase constituting the inverter 3 is used. A phase difference is provided for the carrier signals of .about.S6. When a phase difference is provided in the carrier signals of the switching elements of the U phase, the V phase, and the W phase, the PWM output voltage is expressed by the following equations 3 and 4. In Equation 3, the parameter n represents an odd number of 1 or more, and the parameter k represents an even number of 2 or more. In Equation 4, parameter n represents an even number of 2 or more, and parameter k represents an odd number of 1 or more. In Equations 3 and 4, the parameter ψ S indicates the phase difference from the U-phase carrier signal.
Figure 2010268589
Figure 2010268589

数式3,4から明らかなように、U相,V相,W相のスイッチング素子のキャリア信号に位相差を設けた場合、U相,V相,及びW相の高調波磁束の位相は120°ずつずれなくなる。従って、高調波磁束に起因する誘起電圧が2次コイルに発生することによって高周波磁束を低減することができる。   As is clear from Equations 3 and 4, when a phase difference is provided in the carrier signals of the switching elements of the U phase, V phase, and W phase, the phase of the U-phase, V-phase, and W-phase harmonic magnetic flux is 120 °. It will not shift. Therefore, the induction voltage caused by the harmonic magnetic flux is generated in the secondary coil, so that the high frequency magnetic flux can be reduced.

ところで2次コイルを直列接続し、インバータ3を構成する3相のスイッチング素子のキャリア信号の位相をずらすと、変調率が0の時に3相のスイッチング素子が同時にオン又はオフにならないために、高調波電流が発生する可能性がある。そこでU相,V相,及びW相の歯部が3セットある場合、同一のセット内では同一位相のキャリア信号を用いて三角波を比較する。また2次コイルについては、図5に示すように、第1のセットのU相の歯部13aに巻回された2次コイル19aと、第2のセットのV相の歯部14bに巻回された2次コイル20bと、第3のセットのW相の歯部15cに巻回された2次コイル21cとを直列に接続する。なお2次コイル19aと2次コイル21c間には抵抗素子Rが挿入されている。   By the way, when the secondary coil is connected in series and the phase of the carrier signal of the three-phase switching elements constituting the inverter 3 is shifted, the three-phase switching elements are not simultaneously turned on or off when the modulation factor is 0. Wave current may occur. Therefore, when there are three sets of U-phase, V-phase, and W-phase teeth, triangular waves are compared using carrier signals of the same phase within the same set. Further, as shown in FIG. 5, the secondary coil is wound around the secondary coil 19a wound around the U-phase tooth portion 13a of the first set and the V-phase tooth portion 14b of the second set. The secondary coil 20b thus made and the secondary coil 21c wound around the third phase W-phase tooth portion 15c are connected in series. A resistance element R is inserted between the secondary coil 19a and the secondary coil 21c.

このような構成によれば、直列接続された各2次コイルを通過する高調波磁束は位相が異なるため、2次コイルに電流が流れて高調波磁束を低減できると共に、インバータ3においては3相毎のキャリア信号の位相が同一になるので、キャリア信号の位相のずれに起因して電機子コイルに高調波電流が発生することを防止できる。なお本実施形態では、モータ5は3相×3セットのモータであったが、P相×Q組(P,Qは任意の自然数)のモータにおいても同様に実現することができる。   According to such a configuration, since the harmonic magnetic flux passing through each of the secondary coils connected in series has a different phase, the current flows through the secondary coil and the harmonic magnetic flux can be reduced. Since the phase of each carrier signal is the same, it is possible to prevent a harmonic current from being generated in the armature coil due to the phase shift of the carrier signal. In the present embodiment, the motor 5 is a three-phase × three-set motor. However, the motor 5 can be similarly realized in a P-phase × Q-set motor (P and Q are arbitrary natural numbers).

次に、キャリア信号の位相のずらし方について幾つかの実施例を説明する。   Next, some examples of how to shift the phase of the carrier signal will be described.

〔実施例1〕
各相に巻回された2次コイルは直列接続されていることから、各相の2次コイルに発生する誘起電圧の位相が同位相になれば2次コイルに電流が流れ、磁束を低減できる。そこで実施例1では、数式3,4における角速度nω+kωの成分について、各相の歯部に巻回された2次コイルに発生する誘起電圧を同位相にするために、キャリア信号の位相ψがkψとなるようにkψだけキャリア信号の位相をずらす。具体的には、相数3,k=1である場合、U相(kψ=0)のキャリア信号の位相(ψ)は0、V相(kψ=120)のキャリア信号の位相(ψ)は120°、W相(kψ=240)のキャリア信号の位相(ψ)は240°とする。この結果、U相,V相,及びW相に巻回された2次コイルに発生する誘起電圧の角速度nω+kωの成分は同位相となり、2次コイルに電流が流れ、角速度nω+kωの磁束は低減される。一方、角速度nω−kωの成分は、3相の誘起電圧が120°ずつずれることから、2次コイルに発生する誘起電圧が相殺されて電流が流れず、低減されないことになる。
[Example 1]
Since the secondary coil wound around each phase is connected in series, if the phase of the induced voltage generated in the secondary coil of each phase becomes the same phase, a current flows through the secondary coil and the magnetic flux can be reduced. . Therefore, in the first embodiment, the phase of the carrier signal is used in order to make the induced voltage generated in the secondary coil wound around the tooth portion of each phase the same phase for the component of the angular velocity nω s + kω 0 in Equations 3 and 4. [psi S is shifted only the carrier signal phase Keipusai 0 such that kψ 0. Specifically, when the number of phases is 3 and k = 1, the phase (ψ S ) of the carrier signal of the U phase (kψ 0 = 0) is 0, and the phase of the carrier signal of the V phase (kψ 0 = 120) ( ψ S ) is 120 °, and the phase (ψ S ) of the carrier signal of the W phase (kψ 0 = 240) is 240 °. As a result, the component of the angular velocity nω s + kω 0 of the induced voltage generated in the secondary coil wound in the U-phase, V-phase, and W-phase becomes the same phase, and current flows through the secondary coil, and the angular velocity nω s + kω. Zero magnetic flux is reduced. On the other hand, in the component of the angular velocity nω s −kω 0 , the induced voltage of the three phases shifts by 120 °, so that the induced voltage generated in the secondary coil cancels out and the current does not flow and is not reduced.

なお相数3,k=1である場合、キャリア信号の位相(キャリア位相)をずらさない時には、図6に示すように、U相,V相,W相の2次コイルに発生する誘起電圧の角速度nω+kω及び角速度nω−kωの成分の位相(ベクトルV1,V’2,V’3)は120°ずつずれる。一方、V相,W相のキャリア位相をU相のキャリア位相に対して180°ずらした時には、U相,V相,W相の2次コイルに発生する誘起電圧の角速度nω+kω及び角速度nω−kωの成分の位相(ベクトルV1,V2,V3)は60°ずれる。すなわち、V相,W相のキャリア位相をU相のキャリア位相に対して180°ずらした時には、U相,V相,W相の2次コイルに発生する誘起電圧の角速度nω+kω及び角速度nω−kωの成分共に、各相の誘起電圧ベクトルの和が0にならず、2次コイルに電流が流れ、両方の周波数成分の磁束を低減できる。従って、V相,W相のキャリア信号の位相をU相のキャリア信号の位相に対して180°ずらすようにしてもよい。 When the number of phases is 3 and k = 1, when the phase of the carrier signal (carrier phase) is not shifted, the induced voltage generated in the secondary coils of the U phase, V phase, and W phase as shown in FIG. The phases (vectors V1, V′2, V′3) of the angular velocity nω s + kω 0 and the angular velocity nω s −kω 0 are shifted by 120 °. On the other hand, when the V-phase and W-phase carrier phases are shifted by 180 ° with respect to the U-phase carrier phase, the angular velocities nω s + kω 0 and the angular velocities of the induced voltages generated in the U-phase, V-phase, and W-phase secondary coils. The phase of nω s −kω 0 component (vectors V1, V2, V3) is shifted by 60 °. That is, when the V-phase and W-phase carrier phases are shifted by 180 ° with respect to the U-phase carrier phase, the angular velocity nω s + kω 0 and the angular velocity of the induced voltage generated in the U-phase, V-phase, and W-phase secondary coils. For both the components of nω s −kω 0 , the sum of the induced voltage vectors of each phase does not become 0, and a current flows through the secondary coil, so that the magnetic flux of both frequency components can be reduced. Therefore, the phase of the V-phase and W-phase carrier signals may be shifted by 180 ° with respect to the phase of the U-phase carrier signal.

〔実施例2〕
実施例2では、鉄損を最小にするようにキャリア信号の位相を数式を用いて算出する。以下では一例として、3相交流電流により駆動されるモータの角速度の成分を説明する。電機子コイル及び永久磁石により各相の歯部に発生する磁束の振幅をφとすると、2次コイルにより減衰されたU相の歯部の磁束φ’は以下の数式5のように表される。なお数式5中、パラメータφuv’,φuw’はそれぞれ、U相のキャリア信号とV相のキャリア信号の位相差及びU相のキャリア信号とW相のキャリア信号の位相差を示す。

Figure 2010268589
[Example 2]
In the second embodiment, the phase of the carrier signal is calculated using mathematical formulas so as to minimize the iron loss. As an example, the angular velocity component of a motor driven by a three-phase alternating current will be described below. When the amplitude of the magnetic flux generated in the tooth portion of each phase by the armature coil and the permanent magnet is φ, the magnetic flux φ u ′ of the U-phase tooth portion attenuated by the secondary coil is expressed as the following Expression 5. The In Equation 5, parameters φ uv ′ and φ uw ′ indicate the phase difference between the U-phase carrier signal and the V-phase carrier signal and the phase difference between the U-phase carrier signal and the W-phase carrier signal, respectively.
Figure 2010268589

同様に2次コイルにより減衰されたV相,W相の歯部の磁束φ’,φ’は以下の数式6,7のように表される。

Figure 2010268589
Figure 2010268589
Similarly, the magnetic fluxes φ V ′ and φ W ′ of the V-phase and W-phase teeth attenuated by the secondary coil are expressed as in the following equations 6 and 7.
Figure 2010268589
Figure 2010268589

上記数式5〜7に示す関係を一般化し、鉄損が周波数と磁束密度の積の二乗に比例すると仮定すると、高調波磁束は以下の数式8,9により算出される。従ってキャリア信号の位相ψを変数として鉄損Wを最小にするキャリア信号の位相ψを算出することにより、鉄損Wを最小にすることができる。数式8中、パラメータnは1以上の奇数を示し、パラメータkは2以上の偶数を示す。また数式9中、パラメータnは2以上の偶数を示し、パラメータkは1以上の奇数を示す。また数式8,9中、パラメータmは相数、パラメータKは鉄損係数を示す。

Figure 2010268589
Figure 2010268589
Assuming that the relations shown in Formulas 5 to 7 are generalized and the iron loss is proportional to the square of the product of the frequency and the magnetic flux density, the harmonic magnetic flux is calculated by the following Formulas 8 and 9. Therefore, the iron loss W can be minimized by calculating the phase ψ S of the carrier signal that minimizes the iron loss W using the phase ψ S of the carrier signal as a variable. In Equation 8, the parameter n represents an odd number of 1 or more, and the parameter k represents an even number of 2 or more. In Equation 9, the parameter n represents an even number of 2 or more, and the parameter k represents an odd number of 1 or more. In Equations 8 and 9, parameter m represents the number of phases, and parameter K represents the iron loss coefficient.
Figure 2010268589
Figure 2010268589

以上の説明から明らかなように、本発明の実施形態となる電動車両1では、電機子コイル16a〜16c,17a〜17c,18a〜18cと電気的に接続されていない、ステータ12の歯部13a〜13c,14a〜14c,15a〜15cに巻回された2次コイル19a〜19c,20a〜20c,21a〜21cを備え、2次コイル19a〜19c,20a〜20c,21a〜21cは直列接続されている。このような構成によれば、誘導電圧によって2次コイル19a〜19c,20a〜20c,21a〜21cに不要な電流が流れることがないので、基本波周波数の磁束に起因する銅損の発生を抑制することができる。また本発明の実施形態となる電動車両1では、2次コイル19a〜19c,20a〜20c,21a〜21cに特定の高調波磁束を抑制する電流が流れるようにインバータ3を駆動するキャリア信号の位相をずらすので、2次コイル19a〜19c,20a〜20c,21a〜21cを直列に接続した際、特定の高調波磁束が減衰されなくなることを抑制できる。   As is clear from the above description, in the electric vehicle 1 according to the embodiment of the present invention, the tooth portion 13a of the stator 12 that is not electrically connected to the armature coils 16a to 16c, 17a to 17c, and 18a to 18c. Secondary coils 19a to 19c, 20a to 20c, and 21a to 21c wound around ~ 13c, 14a to 14c, and 15a to 15c, and the secondary coils 19a to 19c, 20a to 20c, and 21a to 21c are connected in series. ing. According to such a configuration, unnecessary current does not flow through the secondary coils 19a to 19c, 20a to 20c, and 21a to 21c due to the induced voltage, thereby suppressing the occurrence of copper loss due to the magnetic flux of the fundamental frequency. can do. Moreover, in the electric vehicle 1 which becomes embodiment of this invention, the phase of the carrier signal which drives the inverter 3 so that the electric current which suppresses a specific harmonic magnetic flux may flow into the secondary coils 19a-19c, 20a-20c, 21a-21c. Therefore, when the secondary coils 19a to 19c, 20a to 20c, and 21a to 21c are connected in series, it is possible to prevent the specific harmonic magnetic flux from being attenuated.

図5に示すようなU相,V相,W相の電機子コイルが巻回された歯部が3セットある回転電機において、図7に示すように、1セット目のU相の歯部13aに巻線された2次コイル19a、2セット目のU相の歯部13bに巻回された2次コイル19b、及び3セット目のU相の歯部13cに巻回された2次コイル19cを抵抗素子R1〜R3を介して並列接続してもよい。このような構成によれば、U相の基本波周波数は3セット間で同位相になることから、並列接続された2次コイルに基本波周波数の磁束に起因する電流は流れない。従って、2次コイルに基本波周波数の磁束に起因する電流による銅損が発生することを防止できる。また図示しないが、V相及びW相にも2次コイルを巻線して並列に接続することにより同様の効果が得られる。   In a rotating electrical machine having three sets of teeth around which U-phase, V-phase, and W-phase armature coils are wound as shown in FIG. 5, as shown in FIG. 7, the first set of U-phase teeth 13a The secondary coil 19a wound around the secondary coil 19b wound around the second set of U-phase teeth 13b, and the secondary coil 19c wound around the third set of U-phase teeth 13c. May be connected in parallel via resistance elements R1 to R3. According to such a configuration, since the fundamental frequency of the U phase is the same between the three sets, no current due to the magnetic flux of the fundamental frequency flows through the secondary coils connected in parallel. Therefore, it is possible to prevent the copper loss due to the current caused by the magnetic flux having the fundamental frequency in the secondary coil. Although not shown, the same effect can be obtained by winding secondary coils in the V phase and the W phase and connecting them in parallel.

2次コイル19a,19b,19cが巻回された歯部に発生する高調波磁束が同位相である場合、高調波磁束による誘起電圧が2次コイル内で打ち消されてしまうために、2次コイルに高調波電流が流れず、歯部に発生する高調波磁束を低減することはできない。この場合、PWM駆動方式のインバータから電流を供給しているならば、1セット目の3相に電流を供給しているインバータのキャリア信号の位相と、2セット目の3相に電流を供給しているインバータのキャリア信号の位相と、3セット目の3相に電流を供給しているインバータのキャリア信号の位相を異ならせることにより、2次コイルに高調波電流が流れ、高調波磁束を低減することができる。   When the harmonic magnetic flux generated in the tooth portion around which the secondary coils 19a, 19b, and 19c are wound has the same phase, the induced voltage due to the harmonic magnetic flux is canceled in the secondary coil. Thus, the harmonic current does not flow, and the harmonic magnetic flux generated in the tooth portion cannot be reduced. In this case, if the current is supplied from the PWM drive type inverter, the current of the carrier signal of the inverter supplying the current to the first set of the three phases and the current of the second set of the three phases are supplied. By making the phase of the carrier signal of the current inverter different from the phase of the carrier signal of the inverter that supplies current to the third phase of the third set, harmonic current flows through the secondary coil, reducing harmonic flux can do.

以上、本発明者らによってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例及び運用技術等は全て本発明の範疇に含まれることは勿論である。   The embodiment to which the invention made by the present inventors is applied has been described above, but the present invention is not limited by the description and the drawings that constitute a part of the disclosure of the present invention. That is, it is needless to say that other embodiments, examples, operational techniques, and the like made by those skilled in the art based on the present embodiment are all included in the scope of the present invention.

1:電動車両
2:バッテリ
3:インバータ(INV)
4a,4b:前輪
4c,4d:後輪
5:モータ
11:ロータ
12:ステータ
13a〜13c,14a〜14c,15a〜15c:歯部
16a〜16c,17a〜17c,18a〜18c:電機子コイル
19a〜19c,20a〜20c,21a〜21c:2次コイル
1: Electric vehicle 2: Battery 3: Inverter (INV)
4a, 4b: front wheels 4c, 4d: rear wheels 5: motor 11: rotor 12: stators 13a-13c, 14a-14c, 15a-15c: teeth 16a-16c, 17a-17c, 18a-18c: armature coil 19a -19c, 20a-20c, 21a-21c: secondary coil

Claims (5)

ロータと、ステータと、前記ステータに巻回された電機子コイルとを備え、前記電機子コイルに多相交流電流を通電することにより前記ロータと前記ステータにより形成される磁気回路に交番磁束を生成する回転電機において、
前記ステータは前記電機子コイルとは異なる複数のコイルを備え、当該複数のコイルが互いに接続されていることを特徴とする回転電機。
A rotor, a stator, and an armature coil wound around the stator are provided, and alternating magnetic flux is generated in a magnetic circuit formed by the rotor and the stator by passing a multiphase alternating current through the armature coil. In the rotating electrical machine
The stator includes a plurality of coils different from the armature coils, and the plurality of coils are connected to each other.
請求項1に記載の回転電機において、
前記複数のコイルは、前記電機子コイルと電気的に接続されていないことを特徴とする回転電機。
In the rotating electrical machine according to claim 1,
The rotating electric machine, wherein the plurality of coils are not electrically connected to the armature coil.
請求項2に記載の回転電機において、
前記複数のコイルが直列接続されていることを特徴とする回転電機。
The rotating electrical machine according to claim 2,
The rotating electrical machine, wherein the plurality of coils are connected in series.
請求項2に記載の回転電機において、
前記複数のコイルが並列接続されていることを特徴とする回転電機。
The rotating electrical machine according to claim 2,
The rotating electrical machine, wherein the plurality of coils are connected in parallel.
請求項3又は請求項4に記載の回転電機において、
前記多相交流電流は複数のキャリア信号により駆動されるインバータ回路により前記複数のコイルに通電され、前記インバータ回路は前記複数のコイルに特定の高調波磁束を抑制する電流が流れるように複数のキャリア信号の位相をずらすことを特徴とする回転電機。
In the rotating electrical machine according to claim 3 or claim 4,
The multiphase alternating current is energized to the plurality of coils by an inverter circuit driven by a plurality of carrier signals, and the inverter circuit has a plurality of carriers such that a current for suppressing a specific harmonic magnetic flux flows through the plurality of coils. A rotating electrical machine characterized by shifting the phase of a signal.
JP2009117385A 2009-05-14 2009-05-14 Rotating electric machine Active JP5471025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117385A JP5471025B2 (en) 2009-05-14 2009-05-14 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117385A JP5471025B2 (en) 2009-05-14 2009-05-14 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2010268589A true JP2010268589A (en) 2010-11-25
JP5471025B2 JP5471025B2 (en) 2014-04-16

Family

ID=43365072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117385A Active JP5471025B2 (en) 2009-05-14 2009-05-14 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP5471025B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116408A (en) * 1977-03-18 1978-10-11 Westinghouse Electric Corp Ac rotary machine
JPH02214432A (en) * 1989-02-12 1990-08-27 Masaru Hiwatari Winding for eliminating spatial higher harmonic flux
JPH08242587A (en) * 1995-03-01 1996-09-17 Toshiba Corp Control method for pwm inverter
JPH09163701A (en) * 1995-12-05 1997-06-20 Toyota Motor Corp Rotary electric machine
JP2004187386A (en) * 2002-12-02 2004-07-02 Toyota Industries Corp Inverter device, drive control device, and drive control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53116408A (en) * 1977-03-18 1978-10-11 Westinghouse Electric Corp Ac rotary machine
JPH02214432A (en) * 1989-02-12 1990-08-27 Masaru Hiwatari Winding for eliminating spatial higher harmonic flux
JPH08242587A (en) * 1995-03-01 1996-09-17 Toshiba Corp Control method for pwm inverter
JPH09163701A (en) * 1995-12-05 1997-06-20 Toyota Motor Corp Rotary electric machine
JP2004187386A (en) * 2002-12-02 2004-07-02 Toyota Industries Corp Inverter device, drive control device, and drive control method

Also Published As

Publication number Publication date
JP5471025B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
Chen et al. A nine-phase 18-slot 14-pole interior permanent magnet machine with low space harmonics for electric vehicle applications
US7777384B2 (en) Permanent magnet dynamoelectric machine with variable magnetic flux excitation
Dwari et al. Fault-tolerant control of five-phase permanent-magnet motors with trapezoidal back EMF
JP2010268597A (en) Electric rotating machine and drive system of the same
US20170133960A1 (en) Rotating electric machine drive system
JP2011045193A (en) Rotary electric machine and drive system of the same
US20030155876A1 (en) Current controlling method and apparatus for electric rotating machine
US10193428B2 (en) Electric rotating machine
Liu et al. A family of vernier permanent magnet machines utilizing an alternating rotor leakage flux blocking design
JP2015509697A (en) Synchronous electrical machine
JP2019509706A (en) Multi-level high speed variable speed drive
Aslan et al. New 5-phase concentrated winding machine with bi-harmonic rotor for automotive application
JP5907813B2 (en) Brushless motor
Demir et al. Design, analysis and validation of a dual three-phase 72-slot, 12-pole permanent magnet synchronous motor
WO2018008372A1 (en) 6-line 3-phase motor, inverter apparatus, and motor system
Sakai et al. Induction machines with novel concentrated windings
JP5471025B2 (en) Rotating electric machine
Abdel-Khalik et al. A nine-phase six-terminal fractional-slot-winding for interior permanent-magnet machines with low space harmonics
Miyama et al. Technical arrangement of high-performance techniques achieved by multi-phase permanent magnet synchronous motor systems
US9806574B2 (en) Low loss permanent magnet excited electric machine
Umesh et al. Multiphase induction motor drive with 1: 3: 9: 15 speed ratios for gear free electric vehicle application
CN211321250U (en) Alternating motor
Sakai et al. Integrated motor controlled by multi-inverter with pole-changing functionality and fault tolerance
JP5516045B2 (en) Multiphase motor
JP2003088177A (en) Motor driving method based on multiple pwm inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151