JP2010267769A - Soldering method and apparatus - Google Patents

Soldering method and apparatus Download PDF

Info

Publication number
JP2010267769A
JP2010267769A JP2009117400A JP2009117400A JP2010267769A JP 2010267769 A JP2010267769 A JP 2010267769A JP 2009117400 A JP2009117400 A JP 2009117400A JP 2009117400 A JP2009117400 A JP 2009117400A JP 2010267769 A JP2010267769 A JP 2010267769A
Authority
JP
Japan
Prior art keywords
cooler
chamber
soldering
substrate
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009117400A
Other languages
Japanese (ja)
Inventor
Takeshi Yamanaka
勇史 山中
Tomoyuki Watanabe
智之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009117400A priority Critical patent/JP2010267769A/en
Publication of JP2010267769A publication Critical patent/JP2010267769A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soldering method and apparatus capable of performing the soldering without scattering foreign matters in a cooler when pressure-reducing with (air pressure-varied) an atmosphere chamber during the soldering of an element relative to a substrate of a cooler equipped with an insulating substrate. <P>SOLUTION: When a semiconductor element 11 is soldered relative to a substrate 12 of a cooler 10 equipped with an insulating substrate by this soldering apparatus 30, the inside of a chamber 31 is pressure-reduced by a vacuum pump 33 through an intra-chamber exhaustion piping 32 in a state in which couplers 36a, 36b attached to an intra-cooler exhaustion piping 34 connected to the vacuum pump 33 are fitted to the inlet and outlet of the cooler 16. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、真空状態又は雰囲気ガス状態とした雰囲気室内で、基板に対して素子を実装する際のはんだ付け方法及び装置に関するものである。   The present invention relates to a soldering method and apparatus for mounting an element on a substrate in an atmosphere chamber in a vacuum state or an atmospheric gas state.

従来、パワーモジュールでは、素子−はんだ−絶縁基板−はんだ放熱板−グリス−冷却器という積層構造が採用されていた。ところが、ハイブリッド自動車や電気自動車等に搭載される高耐圧・大電流用のパワーモジュールでは、半導体素子の動作時における自己発熱量が大きいため、高放熱性を有する冷却構造を具備する必要があり、素子−はんだ−絶縁基板付き冷却器という積層構造が採用される傾向にある。   Conventionally, power modules have adopted a laminated structure of element-solder-insulating substrate-solder heat sink-grease-cooler. However, the power module for high withstand voltage and large current mounted in a hybrid vehicle or electric vehicle has a large amount of self-heating during the operation of the semiconductor element, so it is necessary to have a cooling structure with high heat dissipation. There is a tendency to employ a laminated structure of a cooler with an element, a solder, and an insulating substrate.

ここで、素子を基板に対してはんだ付けする技術として、例えば特許文献1に記載されたものがある。ここに記載されている技術では、小型雰囲気室内を雰囲気ガス状態又は真空状態として、はんだ付けを行うようにしている。これにより、はんだ付けの際に、塵、水分、酸素の巻き込みを防止して、はんだ付けの信頼性を確保している。また、近年では環境問題の観点から、鉛フリーはんだが使用されるようになったが、鉛フリーはんだは濡れ性が悪いため、プロセス途中に強制的に雰囲気室内の気圧変動を実施して、はんだ付け性を改善することが行われている。   Here, as a technique for soldering the element to the substrate, for example, there is one described in Patent Document 1. In the technique described here, soldering is performed in an atmosphere gas state or a vacuum state in a small atmosphere chamber. This prevents dust, moisture, and oxygen from being involved during soldering and ensures soldering reliability. In recent years, lead-free solder has been used from the viewpoint of environmental problems. However, since lead-free solder has poor wettability, the air pressure in the atmosphere chamber is forcibly changed during the process, and Improvements have been made to improve attachment.

特開平06−029659号公報Japanese Patent Application Laid-Open No. 06-029659

しかしながら、絶縁基板付き冷却器は、その冷却性能を向上させるために、内部の流路構造が複雑な形状をしているため、製造中に多数の異物(加工カスなど)が発生し、その異物が製品内に付着して残留している。そのため、製造中及び製品完成後に、冷却器内部の洗浄を行って異物を除去しているが、流路構造が非常に複雑な形状であるために、通常の洗浄では異物を完全に除去することができていないのが実情である。   However, in order to improve the cooling performance of the cooler with an insulating substrate, the internal flow path structure has a complicated shape, so that a large number of foreign matters (such as processing waste) are generated during the production. Remains attached to the product. Therefore, the inside of the cooler is cleaned during manufacturing and after completion of the product to remove foreign matter. However, since the flow path structure has a very complicated shape, the normal cleaning must completely remove foreign matter. The fact is that it is not possible.

このような絶縁基板付き冷却器に備わる基板に対して素子をはんだ付けする場合、はんだ付けを行う際に行われる雰囲気室内の減圧(気圧変動)によって、冷却器内に残留していた異物が雰囲気室内に飛散してしまう。そうすると、雰囲気室内に飛散した異物が素子上に付着してしまい、はんだ付けを行う際に素子の温度が上昇すると、異物が素子上に固着してしまい、雰囲気室の排気等を行っても素子上に固着した異物を除去することができないと問題があった。このように、異物が素子に付着した状態では、素子性能を低下させてしまうためパワーモジュールとして不良品となる。   When an element is soldered to a substrate provided in such a cooler with an insulating substrate, foreign matter remaining in the cooler is removed from the atmosphere due to reduced pressure (atmospheric pressure fluctuation) in the atmosphere chamber when soldering. It will be scattered indoors. Then, foreign matter scattered in the atmosphere chamber adheres to the element, and when the temperature of the element rises during soldering, the foreign matter adheres to the element, and even if the atmosphere chamber is exhausted, etc. There was a problem if the foreign matter stuck on the top could not be removed. As described above, when the foreign matter is attached to the element, the element performance is deteriorated, so that the power module becomes a defective product.

ここで、冷却器内の異物の飛散を防止するために、冷却器の出入口にキャップ等を装着してはんだ付けを行うことも考えられるが、雰囲気室内の減圧(気圧変動)を実施したときに生じる雰囲気室内と冷却器内とで生じる気圧差によってキャップ等が外れたり、損傷したりしてしまう。このため、冷却器内の異物の雰囲気室内への飛散を防止することができない。また、損傷したキャップの破片等によって雰囲気室に損傷を与えてしまうおそれもあった。   Here, in order to prevent the scattering of foreign matter in the cooler, it may be possible to perform soldering by attaching a cap or the like to the inlet / outlet of the cooler, but when reducing the pressure in the atmosphere chamber (pressure fluctuation) The cap or the like may be removed or damaged due to a difference in atmospheric pressure generated between the generated atmosphere chamber and the cooler. For this reason, it is not possible to prevent scattering of foreign matter in the cooler into the atmosphere chamber. In addition, the atmosphere chamber may be damaged by broken cap pieces or the like.

そこで、本発明は上記した問題点を解決するためになされたものであり、絶縁基板付き冷却器の基板に対して素子をはんだ付けする際、雰囲気室を減圧(気圧変動)したときに、冷却器内の異物を飛散させることなくはんだ付けを行うことができるはんだ付け方法及び装置を提供することを課題とする。   Therefore, the present invention has been made to solve the above-described problems, and when soldering an element to a substrate of a cooler with an insulating substrate, cooling is performed when the atmosphere chamber is depressurized (atmospheric pressure fluctuation). It is an object of the present invention to provide a soldering method and apparatus capable of performing soldering without scattering foreign matter in the vessel.

上記課題を解決するためになされた本発明は、チャンバ内で絶縁基板付き冷却器の基板に対して素子をはんだ付けする方法において、前記チャンバ内を減圧する際に、前記チャンバとは異なる排気経路を用いて前記冷却器内を減圧して、はんだ付けを行うことを特徴とする。   The present invention has been made to solve the above-mentioned problems. In the method of soldering an element to a substrate of a cooler with an insulating substrate in a chamber, an exhaust path different from that of the chamber when the pressure in the chamber is reduced. The inside of the cooler is depressurized using a soldering to perform soldering.

このはんだ付け方法では、絶縁基板付き冷却器の基板に対して素子をはんだ付けする際、チャンバ内の酸素を除去するとともに、はんだにボイドが発生しないようにするために、チャンバ内を減圧(気圧変動)する。このとき、チャンバとは異なる排気経路を用いて冷却器内も減圧する。   In this soldering method, when the element is soldered to the substrate of the cooler with an insulating substrate, the chamber is depressurized (atmospheric pressure) in order to remove oxygen in the chamber and prevent voids from being generated in the solder. fluctuate. At this time, the inside of the cooler is also decompressed using an exhaust path different from the chamber.

具体的には、前記冷却器内の減圧は、前記冷却器の出入口に配管付きカプラを装着し、前記配管の他端を前記チャンバ内の排気用の真空ポンプに接続して前記真空ポンプを利用して行えばよい。   Specifically, for reducing the pressure in the cooler, a coupler with a pipe is attached to the inlet / outlet of the cooler, and the other end of the pipe is connected to an exhaust vacuum pump in the chamber. Just do it.

これにより、チャンバ内の排気とほぼ同時に冷却器内も排気されるので、チャンバ内で減圧(気圧変動)を行っても、チャンバ内と冷却器内とで気圧の差がほとんど発生しない。また、チャンバの容積よりも冷却器の容積の方が小さいので、チャンバ内に比べ冷却器内の方が早く減圧される。これらのことから、チャンバ内を減圧(気圧変動)したときに、冷却器の出入口に装着したカプラが外れたり損傷したりすることを確実に防止することができる。従って、冷却器内の異物がチャンバ内に飛散することを確実に防止することができるため、絶縁基板付き冷却器の基板に対して素子を良好にはんだ付けすることができる。   As a result, the cooler is exhausted almost simultaneously with the exhaust in the chamber, so even if the pressure is reduced (atmospheric pressure fluctuation) in the chamber, there is almost no pressure difference between the chamber and the cooler. Further, since the volume of the cooler is smaller than the volume of the chamber, the pressure in the cooler is reduced more quickly than in the chamber. For these reasons, it is possible to reliably prevent the coupler attached to the inlet / outlet of the cooler from being detached or damaged when the pressure in the chamber is reduced (atmospheric pressure fluctuation). Therefore, foreign matter in the cooler can be reliably prevented from scattering into the chamber, so that the element can be soldered well to the substrate of the cooler with an insulating substrate.

そして、上記したはんだ付け方法を実施するはんだ付け装置においては、前記絶縁基板付き冷却器と前記素子とを収容する密閉空間を構成するチャンバと、前記チャンバ内を減圧するチャンバ排気系と、前記冷却器内を減圧する冷却器排気系とを備え、前記チャンバ排気系により前記チャンバ内を減圧する際に、冷却器排気系により前記冷却器内を減圧するようにすればよい。   In the soldering apparatus for performing the above-described soldering method, a chamber constituting a sealed space for housing the cooler with an insulating substrate and the element, a chamber exhaust system for decompressing the inside of the chamber, and the cooling A cooler exhaust system for decompressing the interior of the chamber, and when the interior of the chamber is decompressed by the chamber exhaust system, the interior of the cooler may be decompressed by the cooler exhaust system.

このようなはんだ付け装置により、上記したはんだ付け方法を確実に実施することができ、冷却器内の異物を飛散させることなくはんだ付けを行うことができる。   With such a soldering apparatus, the above-described soldering method can be reliably performed, and soldering can be performed without scattering foreign matter in the cooler.

本発明に係るはんだ付け方法及び装置によれば、上記した通り、絶縁基板付き冷却器の基板に対して素子をはんだ付けする際、雰囲気室を減圧(気圧変動)したときに、冷却器内の異物を飛散させることなくはんだ付けを行うことができる。   According to the soldering method and apparatus of the present invention, as described above, when the element is soldered to the substrate of the cooler with an insulating substrate, when the atmosphere chamber is depressurized (atmospheric pressure fluctuation), Soldering can be performed without scattering foreign matter.

半導体素子をはんだ付けする絶縁基板付き冷却器の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the cooler with an insulated substrate which solders a semiconductor element. はんだ付け装置の概略構成を示す図である。It is a figure which shows schematic structure of a soldering apparatus. チャンバ内に絶縁基板付き冷却器を配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the cooler with an insulated substrate in a chamber. 絶縁基板付き冷却器にはんだを介して半導体素子を配置した状態を示す図である。It is a figure which shows the state which has arrange | positioned the semiconductor element through the solder to the cooler with an insulated substrate. はんだ付けを行っている状態を示す図である。It is a figure which shows the state which is soldering.

以下、本発明のはんだ付け方法を具体化した実施の形態について、図面に基づき詳細に説明する。そこでまず、本実施の形態に係るはんだ付け方法により、半導体素子をはんだ付けする(実装する)絶縁基板付き冷却器について、図1を参照しながら説明する。図1は、半導体素子をはんだ付けする絶縁基板付き冷却器の概略構成を示す断面図である。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the soldering method of the present invention will be described below in detail with reference to the drawings. First, a cooler with an insulating substrate for soldering (mounting) a semiconductor element by the soldering method according to the present embodiment will be described with reference to FIG. FIG. 1 is a sectional view showing a schematic configuration of a cooler with an insulating substrate for soldering a semiconductor element.

図1に示すように、絶縁基板付き冷却器10は、半導体素子11(図4参照)が実装される基板12と、冷媒流路を備えた冷却器16と、基板12と冷却器16との間に介在し両者の線膨張率差による応力歪を緩和する応力緩和部材17とを有している。   As shown in FIG. 1, the cooler 10 with an insulating substrate includes a substrate 12 on which a semiconductor element 11 (see FIG. 4) is mounted, a cooler 16 having a refrigerant flow path, a substrate 12 and the cooler 16. And a stress relaxation member 17 that is interposed between the stress relaxation members 17 to relieve stress strain caused by a difference in linear expansion coefficient between the two.

基板12は、セラミック絶縁基板13と、その上下面に設けられた高純度アルミ14,15とから構成されている。セラミック絶縁基板13は、必要とされる絶縁特性、熱伝導率および機械的強度を満たしていれば、どのようなセラミックから形成されていてもよい。例えば、酸化アルミニウムや窒化アルミニウムが適用可能であり、ここではセラミック絶縁基板13として窒化アルミニウム(AlN)を用いている。また、高純度アルミ14,15は純度が99.99%以上のものを用いればよい。   The substrate 12 includes a ceramic insulating substrate 13 and high-purity aluminum 14 and 15 provided on the upper and lower surfaces thereof. The ceramic insulating substrate 13 may be made of any ceramic as long as the required insulating properties, thermal conductivity, and mechanical strength are satisfied. For example, aluminum oxide or aluminum nitride is applicable, and here, aluminum nitride (AlN) is used as the ceramic insulating substrate 13. The high-purity aluminum 14 and 15 may have a purity of 99.99% or higher.

冷却器16は、冷媒の出入口が設けられた二分割ケース18内にフィン部材19が収容されており、フィン部材19により内部に冷媒を流す流路が構成されている。この冷却器16を構成する各部品は、高熱伝導性を有しかつ軽量であるアルミ製部材によって形成されており、各部品がロウ付けされている。ロウ材としては、Al−Si系合金,Al−Si−Mg系合金等のアルミニウムロウ材が使用されている。   In the cooler 16, a fin member 19 is accommodated in a two-divided case 18 provided with a refrigerant inlet / outlet, and the fin member 19 forms a flow path through which the refrigerant flows. Each component constituting the cooler 16 is formed of an aluminum member having high thermal conductivity and light weight, and each component is brazed. As the brazing material, an aluminum brazing material such as an Al—Si based alloy or an Al—Si—Mg based alloy is used.

ここで、この冷却器16は、冷却性能を向上させるために複雑な形状のフィン部材19を用いて複雑な流路構成としている。このような流路構成を可能とするために、フィン部材19は微細形状をなしており、その製造工程中に発生した異物が完全に除去されずに冷却器16内部に残留し付着している。なお、この異物は、製造中及び製品完成後に行われる通常の洗浄では完全には除去することができない。   Here, the cooler 16 has a complicated flow path configuration using fin members 19 having a complicated shape in order to improve the cooling performance. In order to enable such a flow path configuration, the fin member 19 has a fine shape, and the foreign matter generated during the manufacturing process remains in the cooler 16 without being completely removed. . This foreign matter cannot be completely removed by normal cleaning performed during manufacture and after the product is completed.

応力緩和部材17は、高熱伝導性を有する材料からなり、応力吸収空間が幾つか設けられている。応力緩和部材17として、例えば、純度が99.99%以上のアルミ板で、複数の貫通穴が千鳥状に配置されているものを用いることができる(いわゆるパンチングアルミ)。高純度アルミである応力緩和部材17の線膨張率は,アルミニウムの固有値と等しい23.5ppm/℃である。高純度アルミは、ヤング率が70.3GPaと比較的軟らかい材料であり、応力に対する変形が大きい。そのため、アルミ製の冷却器16とセラミック絶縁基板13との線膨張率差による応力歪を緩和することができるようになっている。   The stress relaxation member 17 is made of a material having high thermal conductivity, and is provided with several stress absorption spaces. As the stress relaxation member 17, for example, an aluminum plate having a purity of 99.99% or more and having a plurality of through holes arranged in a staggered manner (so-called punching aluminum) can be used. The linear expansion coefficient of the stress relaxation member 17 made of high-purity aluminum is 23.5 ppm / ° C., which is equal to the intrinsic value of aluminum. High-purity aluminum is a relatively soft material with a Young's modulus of 70.3 GPa, and has a large deformation with respect to stress. Therefore, the stress strain due to the difference in linear expansion coefficient between the aluminum cooler 16 and the ceramic insulating substrate 13 can be alleviated.

そして、基板12と応力緩和部材17とが、基板12に実装(はんだ付け)される半導体素子11から発せられる熱を効率よく冷却器16に伝達させるために、ロウ付けによって冷却器16上に直接接合され、絶縁基板付き冷却器10が構成されている。なお、ロウ材としては、上記したAl−Si系合金,Al−Si−Mg系合金等のアルミニウムロウ材が使用されている。   Then, in order for the substrate 12 and the stress relaxation member 17 to efficiently transfer the heat generated from the semiconductor element 11 mounted (soldered) to the substrate 12 to the cooler 16, it is directly brazed onto the cooler 16 by brazing. The cooler 10 with the insulating substrate is formed by bonding. As the brazing material, an aluminum brazing material such as the Al—Si based alloy and the Al—Si—Mg based alloy described above is used.

続いて、本発明のはんだ付け方法を実施するはんだ付け装置について、図2を参照しながら簡単に説明する。図2は、はんだ付け装置の概略構成を示す図である。
図2に示すように、はんだ付け装置30には、チャンバ31と、チャンバ内排気配管32と、真空ポンプ33と、冷却器内排気配管34と、ヒータ35とが備わっている。
Next, a soldering apparatus for performing the soldering method of the present invention will be briefly described with reference to FIG. FIG. 2 is a diagram showing a schematic configuration of the soldering apparatus.
As shown in FIG. 2, the soldering apparatus 30 includes a chamber 31, a chamber exhaust pipe 32, a vacuum pump 33, a cooler exhaust pipe 34, and a heater 35.

チャンバ31は、はんだ付けを行う対象である、絶縁基板付き冷却器10と半導体素子11をその内部に収容可能な密閉空間である。このチャンバ31にチャンバ内排気配管32が接続されている。そして、チャンバ内排気配管32の他端が真空ポンプ33に接続されている。これにより、真空ポンプ33を作動させることにより、チャンバ31内を減圧することができるようになっている。本実施の形態では、チャンバ内排気配管32と真空ポンプ33とにより、本発明の「チャンバ排気系」が構成されている。   The chamber 31 is a sealed space in which the cooler with an insulating substrate 10 and the semiconductor element 11 that are objects to be soldered can be accommodated. An in-chamber exhaust pipe 32 is connected to the chamber 31. The other end of the in-chamber exhaust pipe 32 is connected to the vacuum pump 33. Thereby, the inside of the chamber 31 can be decompressed by operating the vacuum pump 33. In the present embodiment, the “chamber exhaust system” of the present invention is configured by the in-chamber exhaust pipe 32 and the vacuum pump 33.

また、真空ポンプ33には、冷却器内排気配管34が接続されている。この冷却器内排気配管34は、二股に分岐しており各先端部に冷却器16の出入口に着脱可能なカプラ36a,36bが取り付けられている。これらのカプラ36a,36bを冷却器16の出入口に装着し真空ポンプ33を作動させることにより、冷却器16内を減圧することができるようになっている。本実施の形態では、冷却器内排気配管34と真空ポンプ33とにより、本発明の「冷却器排気系」が構成されている。   The vacuum pump 33 is connected to an in-cooler exhaust pipe 34. The cooler exhaust pipe 34 is bifurcated, and detachable couplers 36 a and 36 b are attached to the inlets and outlets of the cooler 16 at the respective ends. By installing these couplers 36a and 36b at the inlet / outlet of the cooler 16 and operating the vacuum pump 33, the inside of the cooler 16 can be decompressed. In the present embodiment, the “cooler exhaust system” of the present invention is configured by the cooler exhaust pipe 34 and the vacuum pump 33.

なお、ヒータ35は、チャンバ31の底部に設けられており、はんだ付けを行う際に、ヒータ上面に配置される絶縁基板付き冷却器10を加熱して、基板上に配置されたはんだ40(図4参照)を溶融させるためのものである。   The heater 35 is provided at the bottom of the chamber 31, and when soldering is performed, the cooler 10 with an insulating substrate disposed on the upper surface of the heater is heated, and the solder 40 disposed on the substrate (see FIG. 4).

次に、上記したはんだ付け装置30を用いて、本発明のはんだ付け方法を実施する手順について、図3〜図5を参照しながら説明する。図3は、チャンバ内に絶縁基板付き冷却器を配置した状態を示す図である。図4は、絶縁基板付き冷却器にはんだを介して半導体素子を配置した状態を示す図である。図5は、はんだ付けを行っている状態を示す図である。   Next, the procedure for carrying out the soldering method of the present invention using the above-described soldering apparatus 30 will be described with reference to FIGS. FIG. 3 is a view showing a state in which a cooler with an insulating substrate is arranged in the chamber. FIG. 4 is a diagram showing a state in which a semiconductor element is arranged via a solder in a cooler with an insulating substrate. FIG. 5 is a diagram illustrating a state in which soldering is performed.

まず、絶縁基板付き冷却器10をチャンバ31内に配置する。具体的には、図3に示すように、ヒータ35の上面に絶縁基板付き冷却器10を、冷却器16がヒータ35に接するようにして配置する。その後、冷却器16の出入口に対して、冷却器内排気配管34の各カプラ36a,36bを装着する。   First, the cooler 10 with an insulating substrate is disposed in the chamber 31. Specifically, as shown in FIG. 3, the cooler 10 with an insulating substrate is disposed on the upper surface of the heater 35 so that the cooler 16 is in contact with the heater 35. Thereafter, the couplers 36 a and 36 b of the in-cooler exhaust pipe 34 are attached to the inlet / outlet of the cooler 16.

続いて、図4に示すように、チャンバ31内に配置された絶縁基板付き冷却器10の基板12上面(より正確には高純度アルミ14の上面)にはんだ40を介在させて半導体素子11を配置する。
なお、半導体素子11の配置を先に行ってから、各カプラ36a,36bを冷却器16の出入口に装着することもできる。但し、この場合には、カプラ装着時に半導体素子11の配置位置がずれるおそれがある。このため、半導体素子11の配置よりもカプラ36a,36bの装着を先に行った方がよい。
Subsequently, as shown in FIG. 4, the semiconductor element 11 is placed on the upper surface of the substrate 12 (more precisely, the upper surface of the high-purity aluminum 14) of the cooler 10 with an insulating substrate disposed in the chamber 31. Deploy.
Note that the couplers 36 a and 36 b can be mounted at the inlet / outlet of the cooler 16 after the semiconductor element 11 is arranged first. In this case, however, the arrangement position of the semiconductor element 11 may be shifted when the coupler is mounted. For this reason, it is better to attach the couplers 36a and 36b first than the arrangement of the semiconductor element 11.

その後、真空ポンプ33を作動させてチャンバ31内の気圧変動を行いながら、ヒータ35を作動させ、絶縁基板付き冷却器10を加熱する。絶縁基板付き冷却器10が加熱されることにより、基板12上に配置されているはんだ40が溶融して、基板12と半導体素子11とがはんだ付けされる。   Thereafter, the heater 35 is operated while the vacuum pump 33 is operated to change the atmospheric pressure in the chamber 31, and the cooler 10 with the insulating substrate is heated. When the cooler 10 with the insulating substrate is heated, the solder 40 disposed on the substrate 12 is melted, and the substrate 12 and the semiconductor element 11 are soldered.

ここで、チャンバ31内が減圧される際、真空ポンプ33が作動すると、冷却器内排気配管34が真空ポンプ33に接続されているため、冷却器16内もほぼ同時に減圧される。このため、チャンバ31内が減圧されたときに、チャンバ31内と冷却器16内とでほとんど圧力差が生じない。また、チャンバ31の容積よりも冷却器16の容積の方が小さいので、チャンバ31内に比べ冷却器16内の方が早く減圧される。これらのことから、チャンバ31内の気圧変動を実施したときに、冷却器16の出入口に装着されたカプラ36a,36bが外れたり、損傷したりすることを確実に防止することができる。その結果、はんだ付けを行っているときに、冷却器16内に残留した異物がチャンバ31内に飛散することがないので、基板12に対して半導体素子11を良好にはんだ付けすることができる。   Here, when the inside of the chamber 31 is depressurized, if the vacuum pump 33 is activated, the cooler exhaust pipe 34 is connected to the vacuum pump 33, so that the inside of the cooler 16 is depressurized almost simultaneously. For this reason, when the inside of the chamber 31 is depressurized, there is almost no pressure difference between the inside of the chamber 31 and the inside of the cooler 16. Further, since the volume of the cooler 16 is smaller than the volume of the chamber 31, the pressure in the cooler 16 is reduced more quickly than in the chamber 31. For these reasons, it is possible to reliably prevent the couplers 36a and 36b attached to the inlet / outlet of the cooler 16 from being detached or damaged when the atmospheric pressure in the chamber 31 is changed. As a result, since foreign matters remaining in the cooler 16 are not scattered in the chamber 31 during soldering, the semiconductor element 11 can be satisfactorily soldered to the substrate 12.

以上、詳細に説明したように本実施の形態に係るはんだ付け方法によれば、冷却器16の出入口に対し、真空ポンプ33に接続された冷却器内排気配管34に取り付けられたカプラ36a,36bを装着した状態で、チャンバ31内をチャンバ内排気配管32を介して真空ポンプ33により減圧する。このため、チャンバ31内の排気とほぼ同時に冷却器16内も排気されるので、チャンバ31内を減圧しても、チャンバ31内と冷却器16内とで気圧の差がほとんど発生しない。また、チャンバ31の容積よりも冷却器16の容積の方が小さいので、チャンバ31内に比べ冷却器16内の方が早く減圧される。これらのことから、冷却器16の出入口に装着したカプラ36a,36bが外れたり損傷したりすることを確実に防止することができる。従って、冷却器16内の異物がチャンバ31内に飛散することを確実に防止することができるため、絶縁基板付き冷却器10の基板12に対して半導体素子11を良好にはんだ付けすることができる。   As described above, according to the soldering method according to the present embodiment, the couplers 36a and 36b attached to the cooler exhaust pipe 34 connected to the vacuum pump 33 with respect to the inlet / outlet of the cooler 16. In a state where is mounted, the inside of the chamber 31 is depressurized by the vacuum pump 33 via the in-chamber exhaust pipe 32. For this reason, since the cooler 16 is exhausted almost simultaneously with the exhaust in the chamber 31, even if the pressure in the chamber 31 is reduced, there is almost no difference in atmospheric pressure between the chamber 31 and the cooler 16. Further, since the volume of the cooler 16 is smaller than the volume of the chamber 31, the pressure in the cooler 16 is reduced more quickly than in the chamber 31. Accordingly, it is possible to reliably prevent the couplers 36a and 36b attached to the inlet / outlet of the cooler 16 from being detached or damaged. Accordingly, it is possible to reliably prevent foreign matter in the cooler 16 from being scattered in the chamber 31, and thus the semiconductor element 11 can be satisfactorily soldered to the substrate 12 of the cooler 10 with an insulating substrate. .

なお、上記した実施の形態は単なる例示にすぎず、本発明を何ら限定するものではなく、その要旨を逸脱しない範囲内で種々の改良、変形が可能であることはもちろんである。例えば、上記した実施の形態では、チャンバ31内を減圧して真空状態としているだけであるが、チャンバ31内に水素などの雰囲気ガスを充填してもよい。   It should be noted that the above-described embodiment is merely an example and does not limit the present invention in any way, and various improvements and modifications can be made without departing from the scope of the invention. For example, in the above-described embodiment, the inside of the chamber 31 is only depressurized to be in a vacuum state, but the chamber 31 may be filled with an atmospheric gas such as hydrogen.

また、上記した実施の形態では、冷却器16内の排気をチャンバ31内の排気を行う真空ポンプ31を利用して行っているが、もちろん、冷却器16内の排気を行うための真空ポンプを別に設けることもできる。この場合には、冷却器内排気用の真空ポンプをチャンバ内排気用の真空ポンプと同時に作動させる、あるいは冷却器内排気用の真空ポンプをチャンバ内排気用の真空ポンプよりも若干早めに作動させるようにすればよい。   In the above-described embodiment, the exhaust in the cooler 16 is performed using the vacuum pump 31 that exhausts in the chamber 31. Of course, a vacuum pump for exhausting the cooler 16 is used. It can also be provided separately. In this case, the vacuum pump for exhausting the cooler is operated simultaneously with the vacuum pump for exhausting the chamber, or the vacuum pump for exhausting the cooler is operated slightly earlier than the vacuum pump for exhausting the chamber. What should I do?

10 絶縁基板付き冷却器
11 半導体素子
12 基板
13 セラミック絶縁基板
14 高純度アルミ
15 高純度アルミ
16 冷却器
17 応力緩和部材
18 二分割ケース
19 フィン部材
30 はんだ付け装置
31 チャンバ
32 チャンバ内排気配管
33 真空ポンプ
34 冷却器内排気配管
35 ヒータ
40 はんだ
DESCRIPTION OF SYMBOLS 10 Cooler with insulating substrate 11 Semiconductor element 12 Substrate 13 Ceramic insulating substrate 14 High-purity aluminum 15 High-purity aluminum 16 Cooler 17 Stress relaxation member 18 Two-divided case 19 Fin member 30 Soldering device 31 Chamber 32 Chamber exhaust piping 33 Vacuum Pump 34 Exhaust pipe in cooler 35 Heater 40 Solder

Claims (3)

チャンバ内で絶縁基板付き冷却器の基板に対して素子をはんだ付けする方法において、
前記チャンバ内を減圧する際に、前記チャンバとは異なる排気経路を用いて前記冷却器内を減圧して、はんだ付けを行うことを特徴とするはんだ付け方法。
In a method of soldering an element to a substrate of a cooler with an insulating substrate in a chamber,
When depressurizing the inside of the chamber, the soldering method is performed by depressurizing the inside of the cooler using an exhaust path different from that of the chamber.
請求項1に記載するはんだ付け方法において、
前記冷却器内の減圧は、前記冷却器の出入口に配管付きカプラを装着し、前記配管の他端を前記チャンバ内の排気用の真空ポンプに接続して前記真空ポンプを利用して行うことを特徴とするはんだ付け方法。
In the soldering method of Claim 1,
Pressure reduction in the cooler is performed using the vacuum pump by attaching a coupler with a pipe to the inlet / outlet of the cooler and connecting the other end of the pipe to a vacuum pump for exhausting in the chamber. A characteristic soldering method.
絶縁基板付き冷却器の基板に対して素子をはんだ付けする装置において、
前記絶縁基板付き冷却器と前記素子とを収容する密閉空間を構成するチャンバと、
前記チャンバ内を減圧するチャンバ排気系と、
前記冷却器内を減圧する冷却器排気系とを備え、
前記チャンバ排気系により前記チャンバ内を減圧する際に、冷却器排気系により前記冷却器内を減圧する
ことを特徴とするはんだ付け装置。
In an apparatus for soldering an element to a substrate of a cooler with an insulating substrate,
A chamber constituting a sealed space for accommodating the cooler with an insulating substrate and the element;
A chamber exhaust system for reducing the pressure in the chamber;
A cooler exhaust system for depressurizing the inside of the cooler,
A soldering apparatus, wherein when the inside of the chamber is decompressed by the chamber exhaust system, the inside of the cooler is decompressed by a cooler exhaust system.
JP2009117400A 2009-05-14 2009-05-14 Soldering method and apparatus Withdrawn JP2010267769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117400A JP2010267769A (en) 2009-05-14 2009-05-14 Soldering method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117400A JP2010267769A (en) 2009-05-14 2009-05-14 Soldering method and apparatus

Publications (1)

Publication Number Publication Date
JP2010267769A true JP2010267769A (en) 2010-11-25

Family

ID=43364505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117400A Withdrawn JP2010267769A (en) 2009-05-14 2009-05-14 Soldering method and apparatus

Country Status (1)

Country Link
JP (1) JP2010267769A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115583A1 (en) * 2013-01-24 2014-07-31 オリジン電気株式会社 Heat-bonding device and heat-bonded-article manufacturing method
CN104968462A (en) * 2013-01-24 2015-10-07 欧利生电气株式会社 Heat bonding apparatus and method of manufacturing heat bonded product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115583A1 (en) * 2013-01-24 2014-07-31 オリジン電気株式会社 Heat-bonding device and heat-bonded-article manufacturing method
JP2014143304A (en) * 2013-01-24 2014-08-07 Origin Electric Co Ltd Thermal bonding device and method of manufacturing thermally bonded product
CN104968462A (en) * 2013-01-24 2015-10-07 欧利生电气株式会社 Heat bonding apparatus and method of manufacturing heat bonded product
US9919372B2 (en) 2013-01-24 2018-03-20 Origin Electric Company, Limited Heat-bonding apparatus and method of manufacturing heat-bonded products
CN104968462B (en) * 2013-01-24 2018-06-05 欧利生电气株式会社 Heat the manufacturing method of engagement device and heating engagement product

Similar Documents

Publication Publication Date Title
JP2009117428A (en) Method for power semiconductor module, fabrication, its apparatus, power semiconductor module thereof and its junction method
WO2007105361A1 (en) Electronic component module
JP2010093225A (en) Substrate for power module with heat sink and method for manufacturing the same, power module with heat sink, and substrate for power module
JP2006245479A (en) Device for cooling electronic component
US9530722B2 (en) Semiconductor device and production method for same
JP2009094138A (en) Wafer holder, and semiconductor manufacturing device
JP2004221547A (en) Thermally conductive multilayer substrate and substrate for power modules
JP2007059875A (en) Heat dissipation member, and package for electronic part housing using this and electronic apparatus
JP2010267769A (en) Soldering method and apparatus
JP2010165743A (en) Semiconductor module, and method for manufacturing the same
JP2015135932A (en) Peltier cooling type IC package
JP2009065033A (en) Wafer holder and semiconductor manufacturing apparatus with wafer holder mounted
JP4360847B2 (en) Ceramic circuit board, heat dissipation module, and semiconductor device
CN105428333A (en) Semiconductor device
JP2010232366A (en) Device for power electronics
JP2010114197A (en) Method for manufacturing semiconductor component
JP2009094137A (en) Wafer holder, and semiconductor manufacturing device
US20090249625A1 (en) Method for jointing a semiconductor element and a heat pipe
JP2005032833A (en) Module type semiconductor device
JP2008124390A (en) Semiconductor device
JP2011210745A (en) Substrate for power module, and method of manufacturing the same
JP2008204808A (en) Airtight terminal for semiconductor device
JP5039070B2 (en) Semiconductor device
JP2014027281A (en) Substrate processing apparatus
JP2004327732A (en) Ceramic circuit board and electrical circuit module

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120807