JP2010267463A - Positive electrode for solid electrolyte battery, and solid electrolyte battery - Google Patents
Positive electrode for solid electrolyte battery, and solid electrolyte battery Download PDFInfo
- Publication number
- JP2010267463A JP2010267463A JP2009117220A JP2009117220A JP2010267463A JP 2010267463 A JP2010267463 A JP 2010267463A JP 2009117220 A JP2009117220 A JP 2009117220A JP 2009117220 A JP2009117220 A JP 2009117220A JP 2010267463 A JP2010267463 A JP 2010267463A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- solid electrolyte
- electrolyte battery
- thin film
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、固体電解質電池用の正極および固体電解質電池に関し、特に焼結式の正極であって、内部抵抗が低減された固体電解質電池用の正極および固体電解質電池に関する。 The present invention relates to a positive electrode for a solid electrolyte battery and a solid electrolyte battery, and more particularly to a positive electrode for a solid electrolyte battery having a reduced internal resistance and a solid electrolyte battery.
非水電解質電池に関して、体積容量密度の更なる向上を図るため、活物質充填密度の高い焼結式の正極を用いた非水電解質電池が開発されている(特許文献1)。また、安全性に優れるため、固体電解質を用いた非水電解質電池(以下、「固体電解質電池」ともいう。)が注目されている。 With respect to non-aqueous electrolyte batteries, non-aqueous electrolyte batteries using a sintered positive electrode having a high active material filling density have been developed in order to further improve the volume capacity density (Patent Document 1). In addition, since it is excellent in safety, a non-aqueous electrolyte battery using a solid electrolyte (hereinafter also referred to as “solid electrolyte battery”) has attracted attention.
さらに、上記正極には、例えばコバルト酸リチウム(LiCoO2)等、結晶構造上リチウムイオン(Li+)の移動性が高い層状岩塩型構造を有する正極活物質が好ましく用いられている。 Furthermore, for the positive electrode, a positive electrode active material having a layered rock salt structure in which lithium ions (Li + ) are highly mobile in terms of crystal structure, such as lithium cobaltate (LiCoO 2 ), is preferably used.
しかしながら、層状岩塩型構造を有する正極活物質を用いた焼結式の正極であっても、固体電解質電池に適用した場合、電池の内部抵抗が高く、必ずしも充分に満足できる充放電性能が得られないという問題があった。 However, even if it is a sintered positive electrode using a positive electrode active material having a layered rock salt structure, when applied to a solid electrolyte battery, the internal resistance of the battery is high, and sufficiently satisfactory charge / discharge performance can be obtained. There was no problem.
そこで本発明は、層状岩塩型構造を有する正極活物質の焼結式の正極を用いた固体電解質電池の内部抵抗が大幅に低減され、優れた特性を有する固体電解質電池を提供することを課題とする。 Accordingly, an object of the present invention is to provide a solid electrolyte battery having excellent characteristics in which the internal resistance of a solid electrolyte battery using a sintered positive electrode of a positive electrode active material having a layered rock salt structure is greatly reduced. To do.
本発明者らは、上記の課題に鑑み、鋭意研究の結果、以下に示す発明により前記課題を解決できることを見出し本発明に至った。以下、各請求項の発明について説明する。 In view of the above problems, the present inventors have found that the above problems can be solved by the following invention as a result of intensive studies, and have reached the present invention. Hereinafter, the invention of each claim will be described.
(1)本発明に係る固体電解質電池用の正極は、
層状岩塩型構造を有する正極活物質を主体とする焼結体よりなり、
前記焼結体の表面は湿式研磨されると共に、
湿式研磨された前記焼結体の表面には、層状岩塩型構造を有する正極活物質からなる薄膜が設けられており、
前記薄膜は、気相成長法を用いて成膜された後、400〜600℃の温度で熱処理されて形成され、X線回折測定による(003)の回折ピークの半値幅が0.270〜0.500°であることを特徴とする。
(1) The positive electrode for a solid electrolyte battery according to the present invention is
It consists of a sintered body mainly composed of a positive electrode active material having a layered rock salt structure,
The surface of the sintered body is wet-polished,
A thin film made of a positive electrode active material having a layered rock salt type structure is provided on the surface of the wet-polished sintered body,
The thin film is formed by vapor deposition and then heat-treated at a temperature of 400 to 600 ° C., and the half width of the (003) diffraction peak measured by X-ray diffraction measurement is 0.270 to 0. .500 °.
本発明者は、Li+の移動性が高い層状岩塩型構造を有する正極活物質を用いた焼結式の正極であるにも拘わらず固体電解質電池に適用した場合、何故内部抵抗が高く充分に満足できる充放電性能が得られないのかその原因について検討した結果、以下のことが分かった。 The present inventor, when applied to a solid electrolyte battery despite the fact that it is a sintered positive electrode using a positive electrode active material having a layered rock salt type structure with a high mobility of Li + , why is the internal resistance sufficiently high? As a result of examining whether or not satisfactory charge / discharge performance could be obtained, the following was found.
即ち、層状岩塩型構造を有する化合物は、前記したようにその結晶構造上、Li+の移動性が高く正極活物質として好適な化合物であるが、Li+は結晶のab軸に対して平行な方向に移動し易く、c軸方向には移動し難い。そして、正極/固体電解質界面となる焼結体の表面では、層状岩塩構造型を有する正極活物質粒子の多くがc軸配向(c軸が表面の方向を向いている)している。このため、正極を固体電解質電池に用いた場合、正極と固体電解質との間でLi+の移動が制限されて界面が高抵抗層となるため、内部抵抗が増大して、充分に満足できる充放電性能が得られないことが分かった。 That is, as described above, a compound having a layered rock salt structure is a compound having high Li + mobility and suitable as a positive electrode active material because of its crystal structure, but Li + is parallel to the ab axis of the crystal. It is easy to move in the direction and difficult to move in the c-axis direction. And, on the surface of the sintered body that becomes the positive electrode / solid electrolyte interface, most of the positive electrode active material particles having a layered rock salt structure type are c-axis oriented (the c-axis is directed toward the surface). For this reason, when the positive electrode is used in a solid electrolyte battery, the movement of Li + between the positive electrode and the solid electrolyte is restricted, and the interface becomes a high resistance layer, so that the internal resistance increases and the charge is sufficiently satisfactory. It was found that the discharge performance could not be obtained.
そして、本発明者はこのような焼結体の表面を湿式研磨することによって、焼結体の表面に研磨レベルのサイズでランダム配向した結晶からなる多結晶層を形成してLi+を移動し易くさせた。そしてさらに、湿式研磨した焼結体の表面に、気相成長法を用いて成膜した後、結晶化が進み過ぎない温度である400〜600℃の温度で熱処理した所定の層状岩塩型構造の正極活物質からなる薄膜を設けた。この薄膜は、X線回折測定による(003)の回折ピークの半値幅が0.270〜0.500°であり、ナノメートル(nm)レベルでランダム配向した微細な結晶構造を有している。このため、正極と固体電解質間におけるLi+の伝導パスを一層増大させることができ、その結果、正極/固体電解質界面の抵抗をより大幅に低減することができる。このように、本発明においては、まず湿式研磨により焼結体の表面にランダム配向した多結晶層を形成させ、さらに、この多結晶層にランダム配向した微細結晶構造を有する薄膜を設けているため、Li+の移動性を大きく向上させることができる。 Then, the present inventor forms a polycrystalline layer made of crystals randomly oriented at the polishing level on the surface of the sintered body by wet polishing the surface of such a sintered body, and moves Li +. I made it easier. Furthermore, after forming a film on the surface of the wet-polished sintered body by using a vapor phase growth method, a predetermined layered rock salt structure having a heat treatment at a temperature of 400 to 600 ° C. that is a temperature at which crystallization does not proceed excessively. A thin film made of a positive electrode active material was provided. This thin film has a fine crystal structure in which the half width of the diffraction peak of (003) measured by X-ray diffraction measurement is 0.270 to 0.500 °, and is randomly oriented at the nanometer (nm) level. For this reason, the conduction path of Li + between the positive electrode and the solid electrolyte can be further increased, and as a result, the resistance at the positive electrode / solid electrolyte interface can be further greatly reduced. As described above, in the present invention, a polycrystalline layer randomly oriented on the surface of the sintered body is first formed by wet polishing, and further, a thin film having a microcrystalline structure randomly oriented is provided on the polycrystalline layer. Li + mobility can be greatly improved.
なお、湿式研磨をせずに薄膜を形成した場合には焼結体の表面はc軸配向のままであるため、正極/固体電解質界面の抵抗を低減することができず、薄膜形成の効果が発揮されない。 When the thin film is formed without wet polishing, the surface of the sintered body remains in the c-axis orientation, so the resistance at the positive electrode / solid electrolyte interface cannot be reduced, and the effect of forming the thin film can be reduced. It is not demonstrated.
また、前記薄膜は気相成長法によって成膜されているため、表面が平滑であり、固体電解質を積層させる際に、正極と固体電解質が良好に接触するため界面抵抗をより一層大幅に低減することができる。 In addition, since the thin film is formed by vapor deposition, the surface is smooth, and when the solid electrolyte is laminated, the positive electrode and the solid electrolyte are in good contact with each other, so that the interface resistance is further greatly reduced. be able to.
なお、焼結体の表面の湿式研磨は、例えば従来法により焼結された焼結体の表面を水やエタノール等のアルコールを用いながら研磨する湿式研磨によって行うことができる。 The wet polishing of the surface of the sintered body can be performed, for example, by wet polishing in which the surface of the sintered body sintered by a conventional method is polished using water or alcohol such as ethanol.
また、前記薄膜の形成に用いる気相成長法としては、X線回折測定においてハローパターンを示す薄膜を形成させることが可能な種々の方法、具体的には例えば真空蒸着法、通常のスパッタリング法、イオンプレーティング法およびパルスレーザデポジッション(PLD)法等の物理的蒸着(PVD)法や、化学的蒸着(CVD)法を用いることが好ましい。なお、ECRスパッタリングは結晶性の薄膜が形成され易いため、注意を要する。 Further, as the vapor phase growth method used for forming the thin film, various methods capable of forming a thin film showing a halo pattern in X-ray diffraction measurement, specifically, for example, a vacuum deposition method, a normal sputtering method, It is preferable to use a physical vapor deposition (PVD) method such as an ion plating method and a pulsed laser deposition (PLD) method, or a chemical vapor deposition (CVD) method. Note that ECR sputtering requires caution because a crystalline thin film is easily formed.
なお、湿式研磨および薄膜形成は、焼結体が固体電解質と対向する面の表層のみに行えばよく、焼結体の全ての面に湿式研磨および薄膜形成を施す必要はない。 In addition, wet polishing and thin film formation may be performed only on the surface layer of the sintered body facing the solid electrolyte, and it is not necessary to perform wet polishing and thin film formation on all surfaces of the sintered body.
本発明に用いられる層状岩塩型構造を有する正極活物質としては、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、ニッケルマンガン酸リチウム(LiNi0.5Mn0.5O2)、ニッケルコバルトマンガン酸リチウム(LiNi0.33Co0.33Mn0.33O2)等の酸化物等が挙げられる。なお、焼結体および薄膜には上記の正極活物質の混合物を用いてもよく、また焼結体と薄膜の正極活物質が異なっていてもよい。 Examples of the positive electrode active material having a layered rock salt structure used in the present invention include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and nickel nickel manganate (LiNi 0.5 Mn 0.5 O 2 ), nickel cobalt lithium manganate (LiNi 0.33 Co 0.33 Mn 0.33 O 2 ) and the like. The sintered body and the thin film may be a mixture of the positive electrode active materials described above, and the sintered body and the thin film may have different positive electrode active materials.
なお、前記焼結体の厚みは、0.3mmを超えると焼結体内部におけるLi+の移動経路が長くなるため、正極としてのバルク抵抗が増大する。また、充放電に伴う体積の膨張収縮が大きくなり正極にクラックが生じる恐れがある。このため、焼結体の厚みは0.3mm以下であることが好ましい。 If the thickness of the sintered body exceeds 0.3 mm, the movement path of Li + in the sintered body becomes longer, and the bulk resistance as the positive electrode increases. In addition, the volume expansion and contraction associated with charging / discharging may increase and the positive electrode may crack. For this reason, it is preferable that the thickness of a sintered compact is 0.3 mm or less.
また、本発明でいう「焼結体」には正極活物質以外の構成物質、例えば、金属酸化物等の化合物や固体電解質の成分等の物質を一部含有していてもよい。また、本発明でいう「固体電解質電池」は少量の電解液を含むものであってもよい。 Further, the “sintered body” as used in the present invention may contain a constituent material other than the positive electrode active material, for example, a compound such as a metal oxide or a solid electrolyte component. The “solid electrolyte battery” as used in the present invention may contain a small amount of electrolyte.
(2)次に、本発明に係る固体電解質電池用の正極は、
層状岩塩型構造を有する正極活物質を主体とする焼結体よりなり、
前記焼結体の表面は湿式研磨されると共に、
湿式研磨された前記焼結体の表面には、層状岩塩型構造を有する正極活物質からなる薄膜が設けられており、
前記薄膜は、気相成長法を用いて成膜された後、400〜600℃の温度で熱処理されて形成され、X線回折測定による(003)と(104)の回折ピークの強度比(003)/(104)が1〜4であることを特徴とする。
(2) Next, the positive electrode for a solid electrolyte battery according to the present invention is:
It consists of a sintered body mainly composed of a positive electrode active material having a layered rock salt structure,
The surface of the sintered body is wet-polished,
A thin film made of a positive electrode active material having a layered rock salt type structure is provided on the surface of the wet-polished sintered body,
The thin film is formed by vapor deposition and then heat-treated at a temperature of 400 to 600 ° C., and an intensity ratio (003) of diffraction peaks of (003) and (104) by X-ray diffraction measurement. ) / (104) is 1 to 4.
(2)に記載の発明の正極の薄膜は、X線回折測定による(003)と(104)の回折ピークの強度比(003)/(104)が1〜4である層状岩塩型構造を有する正極活物質であり、ナノメートルレベルでランダム配向した微細な結晶構造を有する多結晶体である。 The positive electrode thin film of the invention described in (2) has a layered rock-salt structure in which the intensity ratio (003) / (104) of diffraction peaks of (003) and (104) by X-ray diffraction measurement is 1 to 4. It is a positive electrode active material, and is a polycrystalline body having a fine crystal structure randomly oriented at the nanometer level.
このため、(2)に記載の発明によっても、(1)に記載の発明と同じく、湿式研磨の効果と相俟って正極/固体電解質界面の抵抗を従来より大幅に低減することができ、充分に満足できる充放電性能を有する固体電解質電池用の正極を提供することができる。 Therefore, according to the invention described in (2), like the invention described in (1), the resistance of the positive electrode / solid electrolyte interface can be greatly reduced as compared with the conventional method, combined with the effect of wet polishing. A positive electrode for a solid electrolyte battery having sufficiently satisfactory charge / discharge performance can be provided.
(3)次に、本発明に係る固体電解質電池用の正極は、
(1)または(2)の発明に係る固体電解質用電池の正極であって、
前記薄膜の厚みが0.05〜5μmであることを特徴とする。
(3) Next, the positive electrode for a solid electrolyte battery according to the present invention is:
A positive electrode of a solid electrolyte battery according to the invention of (1) or (2),
The thin film has a thickness of 0.05 to 5 μm.
固体電解質/正極界面の抵抗を一層効果的に低減するためには薄膜の厚みを0.05〜5μmとすることが好ましい。薄膜の厚みが0.05μm未満の場合には焼結体の表面を完全に覆うことができない恐れがあり、また、5μmを超える場合には薄膜本来の結晶性が発現する恐れがある。 In order to more effectively reduce the resistance of the solid electrolyte / positive electrode interface, the thickness of the thin film is preferably 0.05 to 5 μm. If the thickness of the thin film is less than 0.05 μm, the surface of the sintered body may not be completely covered, and if it exceeds 5 μm, the original crystallinity of the thin film may be developed.
(4)本発明に係る固体電解質電池は、
前記(1)〜(3)のいずれかの発明に係る固体電解質電池用の正極が用いられていることを特徴とする。
(4) The solid electrolyte battery according to the present invention is:
A positive electrode for a solid electrolyte battery according to any one of the above (1) to (3) is used.
本発明に係る固体電解質電池は、前記のいずれかの発明に係る固体電解質電池用の正極が用いられているため、電池の内部抵抗が大幅に低減され、充分満足できる充放電性能を有する固体電解質電池を提供することができる。 Since the solid electrolyte battery according to the present invention uses the positive electrode for a solid electrolyte battery according to any one of the above inventions, the internal resistance of the battery is greatly reduced, and the solid electrolyte has sufficiently satisfactory charge / discharge performance. A battery can be provided.
本発明によれば、層状岩塩型構造を有する正極活物質の焼結式の正極を用いた固体電解質電池の内部抵抗が大幅に低減され、優れた特性を有する固体電解質電池を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the internal resistance of the solid electrolyte battery using the sintering type positive electrode of the positive electrode active material which has a layered rock salt type structure can be reduced significantly, and the solid electrolyte battery which has the outstanding characteristic can be provided. .
以下、本発明を実施の形態により説明する。なお、本発明は、以下の実施の形態に限定されるものではない。本発明と同一および均等の範囲内において、以下の実施の形態に対して種々の変更を加えることが可能である。 Hereinafter, the present invention will be described with reference to embodiments. Note that the present invention is not limited to the following embodiments. Various modifications can be made to the following embodiments within the same and equivalent scope as the present invention.
1.固体電解質電池の構成
はじめに、本実施の形態に係る固体電解質電池の構成について説明する。図1は本実施の形態に係る固体電解質電池の構成を模式的に示す断面図である。図1において、1は層状岩塩型構造を有する正極活物質を主体とする粒子の焼結体よりなる正極であり、5は固体電解質である。本実施の形態の場合、正極1の固体電解質5と対向させた側の表面は湿式研磨されている(湿式研磨面2)。また、湿式研磨面2に層状岩塩型構造を有する正極活物質の薄膜3が形成されている。4は必要に応じて正極1と固体電解質5の間に形成されている緩衝層であり、6は固体電解質5の表面に形成された負極である。この固体電解質電池は以下の工程に従って作製される。
1. Configuration of Solid Electrolyte Battery First, the configuration of the solid electrolyte battery according to the present embodiment will be described. FIG. 1 is a cross-sectional view schematically showing the configuration of the solid electrolyte battery according to the present embodiment. In FIG. 1, 1 is a positive electrode made of a sintered body of particles mainly composed of a positive electrode active material having a layered rock salt structure, and 5 is a solid electrolyte. In the present embodiment, the surface of the positive electrode 1 facing the solid electrolyte 5 is wet-polished (wet polishing surface 2). A thin film 3 of a positive electrode active material having a layered rock salt structure is formed on the wet polished surface 2. 4 is a buffer layer formed between the positive electrode 1 and the solid electrolyte 5 as required, and 6 is a negative electrode formed on the surface of the solid electrolyte 5. This solid electrolyte battery is manufactured according to the following steps.
2.固体電解質電池の作製
次に、固体電解質電池の作製について説明する。
(1)正極の作製
はじめに、正極の作製について説明する。
イ.焼結体の作製
焼結体は、LiCoO2等層状岩塩型構造を有する正極活物質を主体とする粒子を加圧成形後、あるいはグリーンシート法等により塗膜等を形成後、所定の雰囲気、温度で焼結することにより得ることができる。
2. Production of Solid Electrolyte Battery Next, production of a solid electrolyte battery will be described.
(1) Production of positive electrode First, production of a positive electrode will be described.
I. Preparation of sintered body A sintered body has a predetermined atmosphere, after pressure forming particles mainly composed of a positive electrode active material having a layered rock salt structure such as LiCoO 2 , or after forming a coating film or the like by a green sheet method or the like. It can be obtained by sintering at a temperature.
焼結により直接薄い焼結体を作製しようとしても焼結体には波打ちが生じるため、作製が困難である。このため、一般的には厚手の焼結体を作製した後、ワイヤーカットによるスライス加工や、種々の番手のSiC研磨紙およびAl2O3研磨紙等を適宜使用して乾式研磨を行うことにより所定の厚みに加工することが好ましい。 Even if an attempt is made to produce a thin sintered body directly by sintering, the sintered body is wavy and difficult to produce. For this reason, generally, after producing a thick sintered body, it is possible to perform slicing by wire cutting, dry polishing using various counts of SiC abrasive paper and Al 2 O 3 abrasive paper as appropriate. It is preferable to process to a predetermined thickness.
ロ.焼結体の湿式研磨
次に、焼結体の固体電解質と対向させる表面を湿式研磨することにより、焼結体の表面のc軸配向した粒子を、研磨レベルのサイズで多結晶構造を有する粒子にする。即ち焼結体の表層を多結晶化させる。具体的には、焼結体の表面を、純水および例えばAl2O3研磨紙等の研磨紙等を用いて湿式研磨を行うことにより、焼結体の表面の粒子の結晶軸の方向をランダムにしてLi+を移動し易くさせる。
B. Next, the surface of the sintered body facing the solid electrolyte is wet-polished so that the c-axis oriented particles on the surface of the sintered body have a polycrystalline structure with a polishing level size. To. That is, the surface layer of the sintered body is polycrystallized. Specifically, the surface of the sintered body is wet-polished using pure water and abrasive paper such as Al 2 O 3 abrasive paper, thereby changing the direction of the crystal axes of the particles on the surface of the sintered body. Randomly make Li + easy to move.
なお、湿式研磨の場合、SiC研磨紙のように硬度が高く、目の粗い(番手の低い)研磨紙を用いると、必要以上に焼結体の表面の粒子が脱落する恐れがある。このため、Al2O3研磨紙のように硬度が低く、目の細かい(番手の高い)研磨紙を用いて研磨することが好ましい。 In the case of wet polishing, if a polishing paper having a high hardness and coarse (low count) is used like SiC polishing paper, particles on the surface of the sintered body may fall off more than necessary. For this reason, it is preferable to polish using a polishing paper having a low hardness and fine (high count) like Al 2 O 3 polishing paper.
ハ.薄膜形成
正極1の湿式研磨面2にPLD法によりLiCoO2を析出させ、厚み0.05〜5μmの薄膜を形成させる。その後、LiCoO2が充分に結晶化しない温度、具体的には400〜600℃において180分間程度熱処理を行う。この結果、結晶の成長が抑制され、ナノメートルレベルでランダムに配向した微細な結晶構造を有するLiCoO2からなる多結晶体であり、平滑な表面を有する薄膜が形成された正極を得ることができる。
C. Thin Film Formation LiCoO 2 is deposited on the wet polished surface 2 of the positive electrode 1 by the PLD method to form a thin film having a thickness of 0.05 to 5 μm. Thereafter, heat treatment is performed for about 180 minutes at a temperature at which LiCoO 2 is not sufficiently crystallized, specifically at 400 to 600 ° C. As a result, it is possible to obtain a positive electrode on which a thin film having a smooth surface is formed, which is a polycrystalline body made of LiCoO 2 having a fine crystal structure randomly controlled at the nanometer level, with suppressed crystal growth. .
(2)固体電解質の形成
次に、固体電解質の形成について説明する。正極1の薄膜3上に、蒸着法やスパッタ法を用いて、Li+伝導性の固体電解質5を形成する。この場合、前記の通り正極1の湿式研磨面2および薄膜3が多結晶化されているため、正極1と固体電解質5の間のLi+の伝導パスが大きく増大して、正極1/固体電解質5の界面抵抗が大きく低減される。その結果電池の内部抵抗が大幅に低減される。なお、必要に応じて正極1と固体電解質5の間に緩衝層4を形成する。
(2) Formation of solid electrolyte Next, formation of a solid electrolyte is demonstrated. A Li + conductive solid electrolyte 5 is formed on the thin film 3 of the positive electrode 1 by vapor deposition or sputtering. In this case, since the wet polished surface 2 and the thin film 3 of the positive electrode 1 are polycrystallized as described above, the conduction path of Li + between the positive electrode 1 and the solid electrolyte 5 is greatly increased, and the positive electrode 1 / solid electrolyte. 5 interface resistance is greatly reduced. As a result, the internal resistance of the battery is greatly reduced. Note that a buffer layer 4 is formed between the positive electrode 1 and the solid electrolyte 5 as necessary.
(3)負極
次に、固体電解質5の表面に、例えば金属リチウム、リチウム合金、黒鉛、チタン酸リチウム等の負極6を設ける。
(3) Negative Electrode Next, the negative electrode 6 such as metal lithium, lithium alloy, graphite, lithium titanate or the like is provided on the surface of the solid electrolyte 5.
(4)電池の組立て
次に、図1に示した正極1、湿式研磨面2、薄膜3、緩衝層4、固体電解質5、負極6からなる積層体を、正負両極端子を有する密閉容器内に封入して固体電解質電池を組立てる。
(4) Battery assembly Next, the laminate comprising the positive electrode 1, the wet polished surface 2, the thin film 3, the buffer layer 4, the solid electrolyte 5, and the negative electrode 6 shown in FIG. 1 is placed in a sealed container having positive and negative electrode terminals. Encapsulate and assemble solid electrolyte battery.
以下に実施例を挙げ、本発明を具体的に説明する。本実施例は、LiCoO2の焼結体の表面を湿式研磨した後、湿式研磨した表面にPLD法を用いてLiCoO2の薄膜を形成した例である。 The present invention will be specifically described with reference to examples. In this example, the surface of the LiCoO 2 sintered body was wet-polished, and then a LiCoO 2 thin film was formed on the wet-polished surface using the PLD method.
1.正極の作製と評価
(1)正極の作製
イ.焼結
所定量のLiCoO2粒子、トルエン(溶媒)、PVD(バインダー)、DPB(可塑剤)を混練して得られた混合物を基材上に塗工後、乾燥して塗膜を作製した。前記塗膜を大気雰囲気中において昇温速度0.5℃/分で400℃まで昇温し、この温度で12時間保持した。引き続き前記昇温速度で700℃まで昇温してこの温度で3時間保持し、さらに昇温速度10℃/分で950℃まで昇温しこの温度で6時間保持した。その後、室温まで冷却して焼結体を得た。
1. Production and evaluation of positive electrode (1) Production of positive electrode a. Sintering A mixture obtained by kneading a predetermined amount of LiCoO 2 particles, toluene (solvent), PVD (binder), and DPB (plasticizer) was applied onto a substrate and dried to prepare a coating film. The coating film was heated to 400 ° C. at a temperature rising rate of 0.5 ° C./min in the air atmosphere and held at this temperature for 12 hours. Subsequently, the temperature was raised to 700 ° C. at the rate of temperature rise and held at this temperature for 3 hours, and further raised to 950 ° C. at a rate of temperature rise of 10 ° C./min and held at this temperature for 6 hours. Then, it cooled to room temperature and obtained the sintered compact.
ロ.乾式研磨
次に、得られた焼結体をSiCの研磨紙2種(#400、#800)を用いて2段階の研磨(乾式研磨)を行った後、更にAl2O3の研磨紙(#1000)を用いて研磨(乾式研磨)を行い、焼結体の厚みを0.06mmとした。
B. Next, the obtained sintered body was subjected to two-stage polishing (dry polishing) using two types of SiC polishing papers (# 400, # 800), and further to an Al 2 O 3 polishing paper ( (# 1000) was used for polishing (dry polishing), and the thickness of the sintered body was 0.06 mm.
ハ.湿式研磨
次に、純水を用いながらAl2O3の研磨紙(#1000)により焼結体の固体電解質と対向させる表面の全面を研磨(湿式研磨)した。なお、湿式研磨を行う際の研磨器の回転数は20rpmとし、60秒間研磨した。
C. Next, the entire surface of the sintered body facing the solid electrolyte was polished (wet polishing) with Al 2 O 3 polishing paper (# 1000) using pure water. In addition, the rotation speed of the polisher at the time of performing wet polishing was 20 rpm, and polished for 60 seconds.
ニ.薄膜形成
次に、焼結体の湿式研磨面にPLD法によりLiCoO2の薄膜を形成した。具体的には、室温、0.2Paの酸素雰囲下、40Hz、300mJの条件で厚み1μmのLiCoO2の薄膜を成膜した。その後、500℃で3時間熱処理(アニール)をし、LiCoO2を結晶化させ正極を得た。
D. Thin Film Formation Next, a LiCoO 2 thin film was formed on the wet polished surface of the sintered body by the PLD method. Specifically, a LiCoO 2 thin film having a thickness of 1 μm was formed under the conditions of room temperature, 0.2 Pa oxygen atmosphere, 40 Hz, 300 mJ. Thereafter, heat treatment (annealing) was performed at 500 ° C. for 3 hours to crystallize LiCoO 2 to obtain a positive electrode.
(2)正極の評価
イ.TEMによる焼結体の表面近傍の断面観察
図2は本実施例の固体電解質電池用の正極の湿式研磨前後における焼結体の表面近傍のTEM像である。図(a)、図(b)はそれぞれ湿式研磨後、湿式研磨前における焼結体の表面近傍のTEM像であり、図(a)から湿式研磨後の焼結体の表面(湿式研磨面)は研磨レベルのサイズの多結晶構造を有しており、多結晶構造を有する層の厚みtは0.1μmであることが確認された。
(2) Evaluation of positive electrode a. FIG. 2 is a TEM image of the vicinity of the surface of the sintered body before and after wet polishing of the positive electrode for the solid electrolyte battery of this example. FIGS. (A) and (b) are TEM images near the surface of the sintered body after wet polishing and before wet polishing, respectively. From FIG. (A), the surface of the sintered body after wet polishing (wet polishing surface) Has a polycrystalline structure with a polishing level size, and it was confirmed that the thickness t of the layer having the polycrystalline structure was 0.1 μm.
ロ.薄膜のX線回折測定
a.PLD法により成膜した薄膜
PLD法により成膜した薄膜のX線回折測定を行なった結果、薄膜のX線回折パターンはハローパターンであり、薄膜は非晶質あるいは極めて結晶性が低いことが分かった。
B. X-ray diffraction measurement of thin film a. Thin film formed by PLD method As a result of X-ray diffraction measurement of the thin film formed by PLD method, it was found that the X-ray diffraction pattern of the thin film was a halo pattern, and the thin film was amorphous or very low in crystallinity. It was.
b.熱処理後の薄膜
熱処理後の薄膜のX線回折測定を行なった。図3は本実施例の熱処理後の薄膜のX線回折図である。図3より、LiCoO2の(003)の回折ピークの半値幅と(003)の回折ピークと(104)面の回折ピークのピーク強度比を求め、熱処理後の薄膜の結晶の配向を評価した。結果を表1に示す。
b. Thin film after heat treatment X-ray diffraction measurement was performed on the thin film after heat treatment. FIG. 3 is an X-ray diffraction pattern of the thin film after the heat treatment of this example. From FIG. 3, the half-width of the (003) diffraction peak of LiCoO 2 , the peak intensity ratio of the (003) diffraction peak and the (104) plane diffraction peak were determined, and the crystal orientation of the thin film after heat treatment was evaluated. The results are shown in Table 1.
ハ.TEMによる薄膜の断面観察
熱処理後の薄膜の断面をTEMにより観察した。図4は、熱処理後の薄膜のTEM像であって、図4より、薄膜はナノメートルレベルでランダムに配向している微細な結晶構造を有する多結晶体であることが分かる。
C. Cross-sectional observation of thin film by TEM The cross-section of the thin film after heat treatment was observed by TEM. FIG. 4 is a TEM image of the thin film after the heat treatment, and it can be seen from FIG. 4 that the thin film is a polycrystalline body having a fine crystal structure randomly oriented at the nanometer level.
2.固体電解質電池の作製と評価
(1)固体電解質電池の作製
イ.緩衝層および固体電解質の形成
次に、作製した正極の薄膜の表面に緩衝層を形成し、緩衝層の表面に固体電解質を形成した。具体的には、1PaのO2雰囲気下10Hz、200mJの条件で、PLD法によりLiNbO3からなる厚み10nmの緩衝層を形成し、次に緩衝層の表面に真空蒸着法によりP2S5とLi2Sのアモルファスの混合物からなる厚み10μmの固体電解質を形成した。
2. Production and evaluation of solid electrolyte battery (1) Production of solid electrolyte battery a. Formation of Buffer Layer and Solid Electrolyte Next, a buffer layer was formed on the surface of the produced positive electrode thin film, and a solid electrolyte was formed on the surface of the buffer layer. Specifically, a 10 nm thick buffer layer made of LiNbO 3 is formed by PLD under the conditions of 10 Hz and 200 mJ in an O 2 atmosphere of 1 Pa, and then P 2 S 5 and P 2 S 5 are formed on the surface of the buffer layer by vacuum evaporation. A 10 μm thick solid electrolyte made of an amorphous mixture of Li 2 S was formed.
ロ.負極の形成
次に、前記固体電解質の表面に、真空蒸着法により厚み1μmの金属リチウムからなる負極を形成した。
B. Formation of Negative Electrode Next, a negative electrode made of metallic lithium having a thickness of 1 μm was formed on the surface of the solid electrolyte by a vacuum deposition method.
ハ.固体電解質電池の組立て
前記の方法で作製した正極、緩衝層、固体電解質、負極からなる積層体をコイン型セルの容器内に組込み、固体電解質電池とした。初期開路電圧(OCV)は3.0Vであり、正常な電圧を有することが確認された。
C. Assembly of Solid Electrolyte Battery A laminate composed of the positive electrode, buffer layer, solid electrolyte, and negative electrode produced by the above method was incorporated into a coin cell container to obtain a solid electrolyte battery. The initial open circuit voltage (OCV) was 3.0 V, which was confirmed to have a normal voltage.
(2)固体電解質電池の評価
次に、コイン型セルを室温においてカットオフ電圧3V−4.2V、電流密度0.05mA/cm2の条件にて充放電サイクル試験を行い、放電開始後60秒間の電圧降下により電池の内部抵抗(全抵抗)を求めた。また複素インピーダンス法により正極と固体電解質間の界面抵抗を測定した。結果を表1に示す。
(2) Evaluation of Solid Electrolyte Battery Next, a charge / discharge cycle test was performed on the coin-type cell at room temperature under the conditions of a cutoff voltage of 3 V to 4.2 V and a current density of 0.05 mA / cm 2 , and after discharge start for 60 seconds. The internal resistance (total resistance) of the battery was determined from the voltage drop. The interfacial resistance between the positive electrode and the solid electrolyte was measured by the complex impedance method. The results are shown in Table 1.
(比較例)
実施例の正極の作製において、焼結体の表面にLiCoO2の薄膜を形成しなかったこと以外は、全て実施例と同様にして正極および固体電解質電池を作製し、実施例と同様にして正極の薄膜のX線回折測定および固体電解質電池の内部抵抗を測定した。測定結果を実施例の結果と併せて表1に示す。
(Comparative example)
In the production of the positive electrode of the example, a positive electrode and a solid electrolyte battery were produced in the same manner as in the example except that no LiCoO 2 thin film was formed on the surface of the sintered body. The X-ray diffraction measurement of the thin film and the internal resistance of the solid electrolyte battery were measured. The measurement results are shown in Table 1 together with the results of the examples.
表1のX線回折測定結果から、実施例の薄膜の(003)の半値幅は比較例に比べて大きく、(1)に記載の発明で規定する0.270〜0.500°内にあることが確認された。また、(003)と(104)の回折ピークの強度比は比較例に比べて小さく、(2)に記載の発明で規定している1〜4内にあることが確認された。また、内部抵抗の測定結果から、実施例は比較例に比べて全抵抗および正極と固体電解質の間の界面抵抗が小さいことが確認され、優れた充放電性能が期待できる。 From the results of X-ray diffraction measurement in Table 1, the half width of (003) of the thin film of the example is larger than that of the comparative example, and is within 0.270 to 0.500 ° defined by the invention described in (1). It was confirmed. Moreover, it was confirmed that the intensity ratio of the diffraction peaks of (003) and (104) is smaller than that of the comparative example and is within 1 to 4 defined in the invention described in (2). Moreover, from the measurement results of the internal resistance, it was confirmed that the examples had lower total resistance and interface resistance between the positive electrode and the solid electrolyte than the comparative examples, and excellent charge / discharge performance can be expected.
以上、詳述したように、本発明によれば、層状岩塩型構造を有する正極活物質の焼結式の正極を用いた固体電解質電池の内部抵抗が大幅に低減され、優れた特性を有する固体電解質電池を提供することができる。 As described above in detail, according to the present invention, the internal resistance of a solid electrolyte battery using a sintered positive electrode of a positive electrode active material having a layered rock salt structure is greatly reduced, and a solid having excellent characteristics. An electrolyte battery can be provided.
1 正極
2 湿式研磨面
3 薄膜
4 緩衝層
5 固体電解質
6 負極
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Wet polishing surface 3 Thin film 4 Buffer layer 5 Solid electrolyte 6 Negative electrode
Claims (4)
前記焼結体の表面は湿式研磨されると共に、
湿式研磨された前記焼結体の表面には、層状岩塩型構造を有する正極活物質からなる薄膜が設けられており、
前記薄膜は、気相成長法を用いて成膜された後、400〜600℃の温度で熱処理されて形成され、X線回折測定による(003)の回折ピークの半値幅が0.270〜0.500°であることを特徴とする固体電解質電池用の正極。 It consists of a sintered body mainly composed of a positive electrode active material having a layered rock salt structure,
The surface of the sintered body is wet-polished,
A thin film made of a positive electrode active material having a layered rock salt type structure is provided on the surface of the wet-polished sintered body,
The thin film is formed by vapor deposition and then heat-treated at a temperature of 400 to 600 ° C., and the half width of the (003) diffraction peak measured by X-ray diffraction measurement is 0.270 to 0. A positive electrode for a solid electrolyte battery, characterized by being 500 °.
前記焼結体の表面は湿式研磨されると共に、
湿式研磨された前記焼結体の表面には、層状岩塩型構造を有する正極活物質からなる薄膜が設けられており、
前記薄膜は、気相成長法を用いて成膜された後、400〜600℃の温度で熱処理されて形成され、X線回折測定による(003)と(104)の回折ピークの強度比(003)/(104)が1〜4であることを特徴とする固体電解質電池用の正極。 It consists of a sintered body mainly composed of a positive electrode active material having a layered rock salt structure,
The surface of the sintered body is wet-polished,
A thin film made of a positive electrode active material having a layered rock salt type structure is provided on the surface of the wet-polished sintered body,
The thin film is formed by vapor deposition and then heat-treated at a temperature of 400 to 600 ° C., and an intensity ratio (003) of diffraction peaks of (003) and (104) by X-ray diffraction measurement. ) / (104) is 1 to 4, a positive electrode for a solid electrolyte battery.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009117220A JP2010267463A (en) | 2009-05-14 | 2009-05-14 | Positive electrode for solid electrolyte battery, and solid electrolyte battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009117220A JP2010267463A (en) | 2009-05-14 | 2009-05-14 | Positive electrode for solid electrolyte battery, and solid electrolyte battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010267463A true JP2010267463A (en) | 2010-11-25 |
Family
ID=43364265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009117220A Pending JP2010267463A (en) | 2009-05-14 | 2009-05-14 | Positive electrode for solid electrolyte battery, and solid electrolyte battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010267463A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012111077A1 (en) * | 2011-02-14 | 2012-08-23 | トヨタ自動車株式会社 | Secondary cell and battery assembly |
JP2015097150A (en) * | 2013-11-15 | 2015-05-21 | セイコーエプソン株式会社 | Electrode body for batteries, electrode complex and lithium battery |
CN106207162A (en) * | 2015-05-26 | 2016-12-07 | 松下知识产权经营株式会社 | All-solid-state lithium-ion secondary battery and manufacture method thereof |
-
2009
- 2009-05-14 JP JP2009117220A patent/JP2010267463A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012111077A1 (en) * | 2011-02-14 | 2012-08-23 | トヨタ自動車株式会社 | Secondary cell and battery assembly |
CN103370810A (en) * | 2011-02-14 | 2013-10-23 | 丰田自动车株式会社 | Secondary cell and battery assembly |
KR101572339B1 (en) | 2011-02-14 | 2015-11-26 | 도요타지도샤가부시키가이샤 | Secondary cell and battery assembly |
US10680215B2 (en) | 2011-02-14 | 2020-06-09 | Toyota Jidosha Kabushiki Kaisha | Secondary battery and assembled battery |
JP2015097150A (en) * | 2013-11-15 | 2015-05-21 | セイコーエプソン株式会社 | Electrode body for batteries, electrode complex and lithium battery |
CN106207162A (en) * | 2015-05-26 | 2016-12-07 | 松下知识产权经营株式会社 | All-solid-state lithium-ion secondary battery and manufacture method thereof |
JP2016225281A (en) * | 2015-05-26 | 2016-12-28 | パナソニックIpマネジメント株式会社 | All-solid lithium ion secondary battery and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5175826B2 (en) | Active material particles and use thereof | |
WO2010021205A1 (en) | Rechargeable battery with nonaqueous electrolyte and process for producing the rechargeable battery | |
WO2011128976A1 (en) | Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material | |
EP2369666A1 (en) | Plate-shaped particles for positive electrode material of lithium secondary batteries, lithium secondary battery positive electrode active material films, manufacturing method therefor, lithium secondary battery positive electrode active material manufacturing method, and lithium secondary batteries | |
JP5930372B2 (en) | Solid electrolyte material, all-solid battery, and method for producing solid electrolyte material | |
JP5282819B2 (en) | Method for producing positive electrode active material layer | |
Tan et al. | Controllable crystalline preferred orientation in Li–Co–Ni–Mn oxide cathode thin films for all-solid-state lithium batteries | |
JP2014002965A (en) | Method for producing solid electrolyte thin film, solid electrolyte thin film and solid battery | |
CN112400245A (en) | Rechargeable lithium ion battery with anode structure comprising porous regions | |
JP2024023209A (en) | Composition, methods for its production, and its use | |
WO2011043267A1 (en) | Non-aqueous electrolyte cell | |
US10615449B2 (en) | Electrode material for secondary battery and secondary battery | |
US20170084918A1 (en) | Cathode of three-dimensional lithium secondary battery and method of fabricating the same | |
JP2011044368A (en) | Nonaqueous electrolyte battery | |
JP5713220B2 (en) | Lithium secondary battery | |
CN111864195B (en) | Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same | |
KR20180003577A (en) | Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery | |
JP7497454B2 (en) | All-solid-state battery including oxide-based solid electrolyte for low-temperature sintering process and method for manufacturing the same | |
JP3609377B2 (en) | Cathode thin film for lithium secondary battery and method for producing the same | |
JP2004185991A (en) | Negative electrode material for lithium secondary battery, lithium secondary battery using the same, and negative electrode material manufcturing method | |
JP2010218819A (en) | Cathode for nonaqueous electrolyte battery and nonaqueous electrolyte battery | |
JP2010267463A (en) | Positive electrode for solid electrolyte battery, and solid electrolyte battery | |
JP2011113735A (en) | Nonaqueous electrolyte battery | |
JP7104877B2 (en) | Cathode material for lithium secondary batteries | |
JP2023025111A (en) | Secondary battery anode material, secondary battery anode, and secondary battery |