JP2010266366A - Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device - Google Patents

Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device Download PDF

Info

Publication number
JP2010266366A
JP2010266366A JP2009118774A JP2009118774A JP2010266366A JP 2010266366 A JP2010266366 A JP 2010266366A JP 2009118774 A JP2009118774 A JP 2009118774A JP 2009118774 A JP2009118774 A JP 2009118774A JP 2010266366 A JP2010266366 A JP 2010266366A
Authority
JP
Japan
Prior art keywords
pixel
image
feature extraction
extraction method
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009118774A
Other languages
Japanese (ja)
Inventor
Takashi Shimizu
隆 清水
Kazuoki Isojima
一興 五十島
Yusuke Shirota
佑輔 白田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateyama Machine Co Ltd
Original Assignee
Tateyama Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateyama Machine Co Ltd filed Critical Tateyama Machine Co Ltd
Priority to JP2009118774A priority Critical patent/JP2010266366A/en
Publication of JP2010266366A publication Critical patent/JP2010266366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tool defect inspection method and a tool defect inspection device for viewing the whole blade surface with fixed brightness, and inspecting efficiently and accurately. <P>SOLUTION: In this characteristic extraction method for imaging a workpiece 12 which is an inspection object, and extracting a characteristic line of its shape, imaged image data are used as they are, and a pixel row of one pixel×n pixels (n is a natural number) is taken in a vertical axis direction, in a horizontal axis direction or in an oblique direction of a pixel array of an imaging element, and a pixel having the smallest value or the largest value of brightness of each pixel is determined in the row. The pixel is extracted as a part of the shape of an inspection object, and in the extraction processing, the pixel having the smallest value or the largest value is determined, while changing successively the position of the pixel row to a direction orthogonal to a direction of the pixel row. Each extracted pixel is connected, to thereby obtain the characteristic line of the inspection object. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、CCDカメラなどの光学式撮像装置によって検査対象物の画像を撮像する方法を用い、各種回転切削工作機械の刃物工具であるスローアウェイチップや、ドリルやタップなどの刃物工具の刃の形状検査・欠陥検査に利用可能な、画像の特徴抽出方法並びに工具欠陥検査方法と工具欠陥検査装置に関する。   The present invention uses a method of capturing an image of an object to be inspected by an optical imaging device such as a CCD camera, and uses a throw-away tip that is a blade tool of various rotary cutting machine tools, and a blade of a blade tool such as a drill or a tap. The present invention relates to an image feature extraction method, a tool defect inspection method, and a tool defect inspection apparatus that can be used for shape inspection and defect inspection.

従来、例えばドリル刃、タップ、バイト、フライス等の切削工具の刃先を形成するスローアウェイチップには、適宜に厚みを有する略菱形や略正方形、又は略正三角形等に形成された多種類の構造が存在する。更に、スローアウェイチップは、粉体焼結製法によって作られる製品が多く、例えば数十μm程度の微細な欠けや割れ等の欠陥が、部分的または刃全体に亘って生じる場合があり、製品検査においては、これらを確実に識別する必要があった。従って、検査工程が複雑且つ微妙な判断が求められるため、従来、目視により、不良品の抽出並びに品種の仕分けが行われていた。   Conventionally, for example, a throwaway tip that forms a cutting edge of a cutting tool such as a drill blade, a tap, a cutting tool, a milling cutter, etc., various types of structures formed in a substantially rhombus, a substantially square, or a substantially equilateral triangle having an appropriate thickness Exists. Furthermore, many throw-away tips are manufactured by a powder sintering method. For example, defects such as fine chips and cracks of about several tens of μm may occur partially or over the entire blade. In this case, it was necessary to reliably identify these. Therefore, since the inspection process requires complicated and delicate determination, conventionally, defective products are extracted and products are sorted by visual inspection.

人による目視検査では、欠陥部分と周辺部分の明るさの変化が小さい検査対象物に関して、検査対象物を動かして回転させながら明るさの変化を認識し、明るさの変化が大きくなる部分を欠陥部分若しくは検査対象物の形状が変わる部分と判断している。また、光を用いた外観検査においては、平面部分や急峻な角度のある辺の部分にある欠陥部分に関して、特定方向への光の反射や光の散乱により、欠陥部分と周辺部分の明るさの変化が大きい傾向があることを利用し、明るさの差異を用いて欠陥検査を行っている。   In visual inspection by humans, for inspection objects with small changes in brightness between the defective part and the peripheral part, the change in brightness is recognized while moving and rotating the inspection object, and the part where the change in brightness is large is defective. It is determined that the portion or the shape of the inspection object changes. In addition, in appearance inspection using light, the brightness of the defective part and the peripheral part of the defective part on the flat part or the side part with a steep angle is reflected by light reflection or light scattering in a specific direction. Using the fact that the change tends to be large, defect inspection is performed using the difference in brightness.

しかしながら、目視による種別毎の不良品の抽出では、形状が一部のみ微妙に違う多種類の製品において、微細な欠けや変形などを有する不良品や、異品種の区分けが難しいものであった。そのため、仕分けの際に微細な欠陥や不良品を見落としたりすることがあった。さらに、弧などの緩やかな形状変化がある部分にある欠陥部分に関しては、欠陥の有無にかかわらず全方向への光の反射があるため、欠陥部分と周辺部分の明るさの変化が小さい傾向があり、欠陥部分の特定が困難である。また、欠陥自身が緩やかな形状変化をとる部分については、平面部分や円弧などの緩やかな形状変化がある部分にかかわらず、欠陥部分と周辺部分の明るさの変化が小さい傾向があり、欠陥部分の特定が困難であった。   However, with the visual extraction of defective products for each type, it is difficult to classify defective products having minute chippings or deformations and different types of products in various types of products that are slightly different in shape. For this reason, fine defects and defective products may be overlooked during sorting. In addition, with regard to a defective part in a part having a gradual shape change such as an arc, since there is light reflection in all directions regardless of the presence or absence of a defect, the brightness change between the defective part and the peripheral part tends to be small. And it is difficult to identify the defective part. In addition, for the part where the defect itself has a gradual shape change, the brightness change between the defective part and the peripheral part tends to be small regardless of the part having a gradual shape change such as a flat part or an arc. It was difficult to identify.

そこで、スローアウェイチップやその他刃物工具の欠陥検査には、目視による検査の他に、画像処理による検査も行われている。例えば、特許文献1〜3に開示されたスローアウェイチップの検査装置では、レーザ光を走査させてスローアウェイチップの切刃の形状的欠陥を検出し、切刃の欠損などを判別している。また、特許文献4には、ワークの刃先稜線を異なる角度から照明しカメラの撮像方向に対して両側に位置した複数の照明装置と、照明された前記ワークを撮像可能に形成されたカメラと、カメラにより撮像されたワークの検査像を画像処理する画像処理装置とを備え、ワークの検査工程毎にカメラを配置し、ステージ上でワークを移動させ、ワークの表面と側面及び刃先を撮像し、各々所定の基準像と各検査像とを比較して欠陥を判定する工具欠陥検査方法が開示されている。   In view of this, the defect inspection of the throw-away tip and other blade tools includes inspection by image processing in addition to visual inspection. For example, in the throw-away tip inspection devices disclosed in Patent Documents 1 to 3, a laser beam is scanned to detect a shape defect of the cutting edge of the throw-away tip, and a cutting edge defect or the like is discriminated. Further, in Patent Document 4, a plurality of illumination devices that illuminate the edge edge of a workpiece from different angles and are located on both sides with respect to the imaging direction of the camera, and a camera that is formed so as to be capable of imaging the illuminated workpiece, An image processing device that performs image processing on the inspection image of the workpiece imaged by the camera, arranges the camera for each inspection process of the workpiece, moves the workpiece on the stage, images the surface, side surface, and blade edge of the workpiece, A tool defect inspection method for determining a defect by comparing each predetermined reference image and each inspection image is disclosed.

特開平10−202476号公報JP-A-10-202476 特開平10−202477号公報JP-A-10-202477 特開平10−202478号公報Japanese Patent Laid-Open No. 10-202478 特開2007−278915号公報JP 2007-278915 A

しかしながら、欠陥検査用の自動機械を用いて外観検査を行う検査方法の場合、スローアウェイチップなどの刃物工具の刃面部分は円弧状になっており、緩やかな形状変化がある。そのため、刃面部分へ特定の方向から光を照射すると刃面の一部だけ光り、一定の明るさで刃面全体を見ることは困難である。従って、一定の明るさで刃面全体を見るためには、多角的な方向から検査対象物へ光を照射する必要がある。   However, in the case of an inspection method in which an appearance inspection is performed using an automatic machine for defect inspection, the blade surface portion of a blade tool such as a throw-away tip has an arc shape and has a gradual shape change. For this reason, when light is irradiated onto the blade surface portion from a specific direction, only a part of the blade surface shines, and it is difficult to see the entire blade surface with a constant brightness. Therefore, in order to see the entire blade surface with a constant brightness, it is necessary to irradiate the inspection object with light from various directions.

また、CCDカメラなどの光学式撮像方法によって画像を取得する場合、刃面部分に対して、カメラの位置は特定の位置・角度となるため、一定の明るさで刃面全体を見るためには、照明を多角的に配置して刃面全体の反射光がカメラに入射することにより1つの画像で検査範囲をカバーする方法、若しくは、検査対象物を3次元方向に移動・回転させ刃面の反射面を変えながら撮像することにより複数の刃面部分の画像を合成して検査範囲をカバーする方法のいずれかを用いる。しかし、前者の方法では照明機構が大掛かりになるため高価となり、後者の方法では検査対象物の搬送機構が複雑且つ撮像枚数が多くなるため高価且つ検査時間が長くなるものであった。   In addition, when acquiring an image by an optical imaging method such as a CCD camera, the camera position is a specific position / angle with respect to the blade surface portion, so that the entire blade surface can be viewed at a constant brightness. A method of covering the inspection range with one image by arranging the illumination in a multifaceted manner and the reflected light of the entire blade surface is incident on the camera, or moving and rotating the inspection object in a three-dimensional direction. Any one of methods of covering the inspection range by combining images of a plurality of blade surface portions by imaging while changing the reflection surface is used. However, the former method is expensive due to the large illumination mechanism, and the latter method is expensive and requires a long inspection time because the conveyance mechanism for the inspection object is complicated and the number of images to be captured increases.

また、一定の明るさで刃面全体を見る場合、検査対象物の形状の違いや良品部分と欠陥部分の違いがあってもそれらの輝度差が小さいため、欠陥部分のみ特定することが困難である。   Also, when viewing the entire blade surface at a certain brightness, even if there is a difference in the shape of the object to be inspected or a difference between a non-defective part and a defective part, the brightness difference is small, so it is difficult to identify only the defective part. is there.

その他、特許文献1〜3に開示されている検査装置では、レーザ光の走査によりスローアウェイチップの刃線の欠損を検査しているものであり、装置が複雑であり、レーザ光のスポット径以下の微細な欠損を検知することができず、走査による検査時間も長く、検査項目が少なく多品種のスローアウェイチップを効率的に検査できるものではなかった。また、特許文献4に開示された検査装置は、複数方向からの照明装置から照射された照射光をワーク検査面に照射しているので、比較的明るく均一なワーク画像を得ることができるが、基準像と各検査像とを比較して欠陥を判定するので、画像処理が複雑になり、装置が高価になり検査時間がかかるものであった。   In addition, in the inspection apparatus disclosed in Patent Documents 1 to 3, the blade line of the throw-away tip is inspected by scanning with laser light, the apparatus is complicated, and the spot diameter is less than the spot diameter of the laser light. In other words, it was not possible to detect minute defects, and the inspection time by scanning was long, and there were few inspection items. Moreover, since the inspection apparatus disclosed in Patent Document 4 irradiates the workpiece inspection surface with the irradiation light irradiated from the illumination device from a plurality of directions, a relatively bright and uniform workpiece image can be obtained. Since the defect is determined by comparing the reference image with each inspection image, the image processing becomes complicated, the apparatus becomes expensive, and inspection time is required.

この発明は、上記背景技術の問題に鑑みて成されたもので、安価かつ簡単な方法で、一定の明るさで容易に画像の特徴を抽出することができる画像の特徴抽出方法を提供することを目的とする。   The present invention has been made in view of the above problems of the background art, and provides an image feature extraction method capable of easily extracting image features at a constant brightness with an inexpensive and simple method. With the goal.

さらに、この発明は、上記画像の特徴抽出方法を用いて、一定の明るさで刃面全体を見ることができ、効率良く正確に検査することができる工具欠陥検査方法と工具欠陥検査装置を提供することを目的とする。   Furthermore, the present invention provides a tool defect inspection method and a tool defect inspection apparatus which can efficiently and accurately inspect the entire blade surface with a constant brightness using the image feature extraction method. The purpose is to do.

この発明は、均一な照明を用い、CCDカメラ等を用いた撮像装置によって画像を取得し、その画像の輝度変化を調べることにより欠陥検査を行う画像の特徴抽出方法並びに工具欠陥検査方法と工具欠陥検査装置である。   The present invention relates to an image feature extraction method, a tool defect inspection method, and a tool defect in which an image is acquired by an imaging device using a CCD camera or the like using uniform illumination, and a defect inspection is performed by examining a change in luminance of the image. Inspection equipment.

CCDカメラなどの撮像方法によって画像を取得する場合、良好に撮像可能な条件は、工具の刃面部分に対してカメラの位置は特定の位置、角度となるため、一定の明るさで刃面全体を見るためには、照明を多角的に配置しなければならない。均一照明の下で撮像した画像を考えると、ある画素位置の輝度値と隣接する画素の輝度値の差はわずかである。すなわち、画像内の小さな領域では緩やかな輝度変化をとる。この画像に形状の異なる部分があると、輝度変化の傾向が変わる。この発明は、この現象を利用して、検査対象物の形状の特徴に対する輝度変化の特徴を予め決め、その輝度変化の特徴と異なる輝度変化となる部分を抽出する方法を用い、欠陥の有無及び欠陥部分の形状・大きさを検出するものである。   When an image is acquired by an imaging method such as a CCD camera, the conditions for good imaging are that the position of the camera is a specific position and angle with respect to the blade surface of the tool. In order to see the lights, the lights must be arranged in multiple ways. Considering an image captured under uniform illumination, the difference between the luminance value at a certain pixel position and the luminance value of an adjacent pixel is small. That is, the luminance changes moderately in a small area in the image. If there is a part with a different shape in this image, the tendency of the luminance change changes. The present invention utilizes this phenomenon to determine in advance the characteristics of the luminance change with respect to the shape characteristics of the inspection object, and to extract a portion that has a luminance change different from the characteristic of the luminance change. The shape and size of the defective part are detected.

この発明は、検査対象物を撮像してその形状の特徴線を抽出する特徴抽出方法において、撮像した画像データを、画像処理等を施さずにそのまま用いて、撮像素子の画素配列の縦軸方向や横軸方向若しくは斜め方向に1画素×n画素(nは自然数)の画素列をとり、その列内で前記各画素の輝度の最小値若しくは最大値となる画素を求め、その画素を前記検査対象物の形状の一部として抽出し、この抽出処理を前記画素列の方向と直交する方向に、前記画素列の位置を順次変えながら前記最小値若しくは最大値となる画素を求め、抽出した画素を繋ぎ合わせて検査対象物の特徴線として抽出する画像の特徴抽出方法である。   The present invention relates to a feature extraction method for picking up an image of an inspection object and extracting a feature line of the shape, and using the picked-up image data as it is without performing image processing or the like, in the vertical axis direction of the pixel array of the image sensor. Also, a pixel row of 1 pixel × n pixels (n is a natural number) is taken in the horizontal axis direction or the oblique direction, and a pixel having the minimum value or the maximum value of the luminance of each pixel is obtained in the row, and the pixel is subjected to the inspection. Extracted as a part of the shape of the object, this extraction process is performed by obtaining the pixel having the minimum value or maximum value while sequentially changing the position of the pixel column in a direction orthogonal to the direction of the pixel column, and extracting the pixel Is a feature extraction method of an image that is extracted as a feature line of an inspection object by joining together.

前記撮像素子を備えたカメラのレンズの光軸を含む平面上及びその平面と直交する平面上に複数の照明を配置して、前記検査対象物を複数の角度から照明して、前記検査対象物を前記撮像素子により撮像して、前記検査対象物の特徴線を抽出するものである。前記複数の照明は、前記検査対象物のエッジに対して斜めに対面した前記カメラレンズを中心に、その両側に複数の照明が各々等角度に配置され、前記検査対象物を前記複数の照明により照らして、前記撮像素子の撮像範囲のうちの広範囲に亘り、明るく均一な画像の撮像を可能にするものである。   A plurality of illuminations are arranged on a plane including an optical axis of a lens of a camera lens provided with the image sensor and on a plane orthogonal to the plane, and the inspection object is illuminated from a plurality of angles, and the inspection object Is picked up by the image pickup device, and a characteristic line of the inspection object is extracted. The plurality of illuminations are arranged such that a plurality of illuminations are arranged at equal angles on both sides of the camera lens obliquely facing the edge of the inspection object, and the inspection object is formed by the plurality of illuminations. In light of this, it is possible to capture bright and uniform images over a wide range of the imaging range of the imaging device.

さらに、前記撮像素子により撮像した画像を、複数の画像範囲に分割し、その際、比較的輝度が均一な画像範囲に分割して、画像範囲毎に前記検査対象物の特徴線を抽出するものである。   Further, the image picked up by the image pickup device is divided into a plurality of image ranges, and at that time, the image is divided into image ranges having relatively uniform brightness, and the feature line of the inspection object is extracted for each image range. It is.

前記画像範囲に前記画素列を定め、前記画像範囲の端の画素から順に前記画素列と直交する方向に各画素について、現在位置の画素と次の位置の画素の輝度を求め、現在位置の画素の輝度が所定の輝度閾値より小さく次の位置の画素の輝度が前記輝度閾値より大きくなる画素と、現在位置の画素の輝度が前記輝度閾値より大きく次の位置の画素の輝度が前記輝度閾値より小さくなる画素を求め、この処理を所定画素ずつ、例えば1画素ずつ前記画素列の方向と交差する方向に移動しながらこれらの条件を満たす全ての画素を求め、求めた各画素を繋いで得られた線分の間の画素範囲を境界部分として特徴抽出する画像の特徴抽出方法である。   The pixel row is defined in the image range, and the luminance of the pixel at the current position and the pixel at the next position is obtained for each pixel in a direction orthogonal to the pixel row in order from the pixel at the end of the image range. A pixel whose luminance is less than a predetermined luminance threshold and the luminance of the pixel at the next position is larger than the luminance threshold, and the luminance of the pixel at the current position larger than the luminance threshold is higher than the luminance threshold. Obtain a smaller pixel, and obtain all pixels that satisfy these conditions while moving this process in a direction that intersects the direction of the pixel column by a predetermined pixel, for example, one pixel at a time. This is a feature extraction method for an image in which a pixel range between line segments is extracted as a boundary portion.

前記輝度閾値は、前記輝度の最小値に所定の輝度値を加算した値、若しくは、輝度最大値から所定の輝度値を減算した値を輝度閾値として設定するものである。   The luminance threshold value is a value obtained by adding a predetermined luminance value to the minimum luminance value or a value obtained by subtracting a predetermined luminance value from the maximum luminance value as the luminance threshold value.

また、検査対象物を撮像してその形状の特徴線を抽出する際に、前記特徴線の画素位置がその並びの延長方向からずれて次の前記特徴線の画素が存在する場合を、形状異常の可能性有り、と判断するものである。   In addition, when imaging the inspection object and extracting the feature line of the shape, if the pixel position of the feature line is shifted from the extending direction of the arrangement and the next pixel of the feature line exists, the shape abnormality It is judged that there is a possibility of.

前記境界部分と前記特徴線との間隔の画素数を求め、この画素数の変化を元に境界線の特徴を抽出し、前記形状異常の可能性のある前記画素位置での、前記境界部分と前記特徴線との間の画素数が所定数の閾値を超えた場合、形状異常部分と判断するものである。   The number of pixels in the interval between the boundary portion and the feature line is obtained, and the feature of the boundary line is extracted based on the change in the number of pixels, and the boundary portion at the pixel position where there is a possibility of the shape abnormality When the number of pixels between the feature lines exceeds a predetermined number of thresholds, it is determined that the shape is abnormal.

前記形状異常部分と判断した前記特徴線上の画素範囲での前記境界線間の画素数と、前記画像範囲の前記境界線間の画素数の平均値との差を求め、前記差が所定の値よりも大きい場合に、その形状異常部分を欠陥部分と確定するものである。   A difference between the number of pixels between the boundary lines in the pixel range on the feature line determined to be the abnormal shape portion and an average value of the number of pixels between the boundary lines in the image range is obtained, and the difference is a predetermined value. If it is larger, the shape abnormal portion is determined as a defective portion.

またこの発明は、上記画像の特徴抽出方法を用いて、工具刃面の欠陥検査を行う欠陥検査方法である。さらに、上記画像の特徴抽出方法を用いて、工具刃面の欠陥検査を行う工具欠陥検査装置である。   The present invention is also a defect inspection method for inspecting a tool blade surface using the image feature extraction method. Furthermore, the present invention is a tool defect inspection apparatus that performs a defect inspection of a tool blade surface using the image feature extraction method.

この発明の画像の特徴抽出方法並びに工具欠陥検査装置と工具欠陥検査方法によれば、簡単な撮像装置と照明装置により、画像の輝度の変化を利用してその画像の特徴抽出を行うことができる。これにより、従来、検査が困難であった形状変化の小さな検査対象物の形状の特徴や欠陥の特徴を抽出することができる。さらに、この特徴抽出方法を刃物工具に適用することにより、刃面部分及び欠陥部分の画像の撮像及び抽出が容易に可能である。特に、この発明に用いられる照明装置により工具の刃部を照明した場合、均一に照明される照明範囲が広く、最大の明るさで広範囲に均一な輝度の画像の撮像が可能である。そして、従来よりも低価格かつ汎用性の高い機能を有し、従来では自動検出困難であった形状変化の小さな形状の特徴抽出機能を備えた検査装置を実現可能とするものである。   According to the image feature extraction method, the tool defect inspection device, and the tool defect inspection method of the present invention, it is possible to perform feature extraction of the image using a change in luminance of the image by a simple imaging device and illumination device. . Thereby, it is possible to extract the feature of the shape of the inspection object and the feature of the defect with a small shape change that have been difficult to inspect. Furthermore, by applying this feature extraction method to a blade tool, it is possible to easily capture and extract an image of a blade surface portion and a defective portion. In particular, when the tool blade portion is illuminated by the illumination device used in the present invention, the illumination range that is uniformly illuminated is wide, and it is possible to capture an image of uniform brightness over a wide range with the maximum brightness. Then, it is possible to realize an inspection apparatus having a feature extraction function having a shape having a small shape change, which has a function that is lower in price and higher in versatility than conventional and has been difficult to detect automatically in the past.

この発明の一実施形態の工具欠陥検査装置を示す概略全体構成図である。1 is a schematic overall configuration diagram showing a tool defect inspection apparatus according to an embodiment of the present invention. この実施形態の工具欠陥検査装置の照明装置の一部を示す概略斜視図である。It is a schematic perspective view which shows a part of illuminating device of the tool defect inspection apparatus of this embodiment. この実施形態に用いる照明の光強度部分布を示すグラフである。It is a graph which shows the light intensity part distribution of the illumination used for this embodiment. この実施形態の工具欠陥検査装置により検査されるスローアウェイチップの刃面の部分拡大図である。It is the elements on larger scale of the blade surface of the throw away tip inspected by the tool defect inspection apparatus of this embodiment. この実施形態の工具欠陥検査装置により撮像されたスローアウェイチップのエッジ部の部分拡大画像である。It is the partial enlarged image of the edge part of the throw away tip imaged with the tool defect inspection apparatus of this embodiment. この実施形態の工具欠陥検査装置により検査される工具刃面の画像の模式図である。It is a schematic diagram of the image of the tool blade surface inspected by the tool defect inspection apparatus of this embodiment. この実施形態の工具欠陥検査装置により撮像された画像の一部の画素列の輝度を示すグラフである。It is a graph which shows the brightness | luminance of a one part pixel row | line of the image imaged with the tool defect inspection apparatus of this embodiment. この実施形態の工具欠陥検査装置により欠陥部分と判断される画像部分の画素を示す模式図である。It is a schematic diagram which shows the pixel of the image part judged to be a defective part by the tool defect inspection apparatus of this embodiment. この実施形態の工具欠陥検査方法における特徴抽出処理のフローチャートである。It is a flowchart of the feature extraction process in the tool defect inspection method of this embodiment. この実施形態の工具欠陥検査方法における特徴抽出処理により欠陥部分を検出するフローチャートである。It is a flowchart which detects a defect part by the feature extraction process in the tool defect inspection method of this embodiment. この実施形態の工具欠陥検査方法における特徴抽出処理により欠陥部分を確定するフローチャートである。It is a flowchart which fixes a defect part by the feature extraction process in the tool defect inspection method of this embodiment. この実施形態の工具欠陥検査方法における特徴抽出処理により抽出した境界を示す画像である。It is an image which shows the boundary extracted by the feature extraction process in the tool defect inspection method of this embodiment. この実施形態の工具欠陥検査方法における特徴抽出処理により検出した欠陥部分を示す画像である。It is an image which shows the defect part detected by the feature extraction process in the tool defect inspection method of this embodiment.

以下、この発明の画像の特徴抽出方法並びに工具欠陥検査方法と工具欠陥検査装置の一実施形態について、図面を基にして説明する。この実施形態の工具欠陥検査装置10と検査方法は、切削などに使用するドリル刃、タップ、バイト、フライス等の切削工具の刃先を形成するスローアウェイチップであるワーク12の検査に使用される。   Hereinafter, an embodiment of an image feature extraction method, a tool defect inspection method, and a tool defect inspection apparatus according to the present invention will be described with reference to the drawings. The tool defect inspection apparatus 10 and the inspection method of this embodiment are used for inspection of a workpiece 12 that is a throw-away tip that forms a cutting edge of a cutting tool such as a drill blade, a tap, a cutting tool, and a milling cutter used for cutting or the like.

この工具欠陥検査装置10は、図1に示すように、後述する種々の照明装置20が設けられ、照明された検査対象であるワーク12を撮像するCCD等のカメラ14とレンズ15が、図示しない保持部材により固定されて、所定の位置に取り付けられている。さらに、カメラ14は、撮像した画像に対して所定の画像処理を施す処理プログラムが設けられたコンピュータ等の画像処理装置16に各々接続され、画像処理装置16にはその出力を表示する表示装置18が設けられている。   As shown in FIG. 1, the tool defect inspection apparatus 10 is provided with various illuminating devices 20 to be described later, and a camera 14 such as a CCD for imaging the illuminated workpiece 12 and a lens 15 are not shown. It is fixed by a holding member and attached at a predetermined position. Further, the camera 14 is connected to an image processing device 16 such as a computer provided with a processing program for performing predetermined image processing on the captured image, and the image processing device 16 displays the output of the display device 18. Is provided.

ここで、ワーク12であるスローアウェイチップの外周部分である刃面12aのエッジ部分12bは、図4に示すように、拡大すると、小さな円弧形状をしている。従って、この刃面全体を均一に照明することができる照明装置20が必要であり、以下に述べるように配置されている。   Here, the edge portion 12b of the blade surface 12a, which is the outer peripheral portion of the throw-away tip, which is the workpiece 12, has a small arc shape when enlarged as shown in FIG. Therefore, the illuminating device 20 which can illuminate the whole blade surface uniformly is required, and is arranged as described below.

先ず、カメラ14とレンズ15は、その光軸がワーク12の表面である刃面12aに対して45°の角度に配置されている。そして、レンズ15の光軸である直線を通る垂直面(水平面と直交する平面)上に、照明装置20が配置される。ここでは、照明装置20に個々の照明を6個配置した例を示す。照明装置20の各照明の光軸の方向のなす角度は、照明20−1と照明20−2、照明20−2と照明20−3、照明20−3とカメラ14及びレンズ15、カメラ14及びレンズ15と照明20−4、照明16−4と照明16−5、及び照明16−5と照明16−6の、それぞれの間の角度は等しい角度に設定されている。さらに、図2に示すように、照明装置20の垂直方向の各光軸のなす角度と同じ角度で、照明20−6の両側に水平方向に照明20−7、照明20−8を配置する。即ち、照明20−6,20−7の光軸と刃面12aとのなす角度と、照明20−6,20−8の光軸と刃面12aとのなす角度は等しい。そして、照明20−1から照明20−8までの点灯状態と明るさを調整することにより、多種類の刃面形状に対応して均一な明るさの照明が可能となる。   First, the camera 14 and the lens 15 are arranged at an angle of 45 ° with respect to the blade surface 12 a that is the surface of the workpiece 12. And the illuminating device 20 is arrange | positioned on the vertical surface (plane orthogonal to a horizontal surface) which passes along the straight line which is the optical axis of the lens 15. FIG. Here, an example in which six individual lights are arranged in the lighting device 20 is shown. The angle formed by the direction of the optical axis of each illumination of the illumination device 20 includes illumination 20-1 and illumination 20-2, illumination 20-2 and illumination 20-3, illumination 20-3 and camera 14, lens 15, camera 14, and The angles between the lens 15 and the illumination 20-4, the illumination 16-4 and the illumination 16-5, and the illumination 16-5 and the illumination 16-6 are set to be equal. Further, as shown in FIG. 2, the illumination 20-7 and the illumination 20-8 are arranged in the horizontal direction on both sides of the illumination 20-6 at the same angle as the angle formed by the optical axes in the vertical direction of the illumination device 20. That is, the angle formed between the optical axis of the illumination 20-6 and 20-7 and the blade surface 12a is equal to the angle formed between the optical axis of the illumination 20-6 and 20-8 and the blade surface 12a. Then, by adjusting the lighting state and brightness from the illumination 20-1 to the illumination 20-8, illumination with uniform brightness can be made corresponding to various types of blade surface shapes.

ここで、一般に照明は、図3に示すように、照明の光軸上の光強度が最大で、光軸から離れるにつれて光強度が小さくなる。従って、光強度が強く即ち明るく、均一な照明となるよう、光軸上と光軸付近の明るさの差が小さく、範囲が広い照明を用いるのが好ましい。例えば、図3に示すように、照明光の光強度分布1,2における破線h以上の光強度の範囲を用いる場合、光強度分布1の幅Aは、光強度分布2の幅Bに比べ広いため、光強度分布1となる照明を用いるのが好ましい。   Here, in general, as shown in FIG. 3, the illumination has the maximum light intensity on the optical axis of the illumination, and the light intensity decreases as the distance from the optical axis increases. Therefore, it is preferable to use an illumination with a wide range and a small difference in brightness between the optical axis and the vicinity of the optical axis so that the light intensity is high, that is, bright and uniform illumination. For example, as shown in FIG. 3, when using a light intensity range equal to or greater than the broken line h in the light intensity distributions 1 and 2 of the illumination light, the width A of the light intensity distribution 1 is wider than the width B of the light intensity distribution 2. For this reason, it is preferable to use illumination with a light intensity distribution 1.

次に、この実施形態の工具欠陥検査装置10の図1、図2に示す装置により撮像した画像を用いて、ワーク12の刃面12aのエッジ部分12bの特徴及び欠陥部分を抽出する方法について説明する。一般に、ワーク12の刃面12aの撮像画像は、図5に示すように、刃面12aのエッジ部分12bや、欠陥部分が暗く、周辺部分が明るい。そこで、この画像に検査範囲を設けて、この範囲内で、刃面部分及び欠陥部分の特徴抽出を行う。   Next, a method for extracting features and defect portions of the edge portion 12b of the blade surface 12a of the workpiece 12 using the images captured by the device shown in FIGS. 1 and 2 of the tool defect inspection device 10 of this embodiment will be described. To do. In general, as shown in FIG. 5, the captured image of the blade surface 12 a of the workpiece 12 has a dark edge portion 12 b and a defective portion of the blade surface 12 a and a bright peripheral portion. Therefore, an inspection range is provided in this image, and the features of the blade surface portion and the defect portion are extracted within this range.

先ず、図9に示すように、カメラ14により撮像した画像について、コンピュータ16の処理により、所定の検査範囲Aに区分けする(S1)。その区分けした検査範囲A内の画像(図6)について、画像平面内で縦軸方向であるY方向に、画像データの各画素の1ラインL毎に、その各画素の輝度Bの最小値Bmin及びその画素位置を求める。これを検査範囲A内の横方向であるX軸方向に1画素ずつ移動させながら検出し記憶する(S2)。この輝度Bの最小値Bminについてその全画素位置を繋ぐと、図6の破線で示す曲線Lbができる。この曲線Lbは刃面12aのエッジ部12bに相当する画素位置を抽出しているものであり、曲線Lbは、刃面12aのエッジ部分12bの特徴線である。   First, as shown in FIG. 9, the image captured by the camera 14 is divided into a predetermined inspection range A by the processing of the computer 16 (S1). For the image (FIG. 6) in the divided inspection range A, the minimum value Bmin of the luminance B of each pixel in the Y direction which is the vertical axis direction in the image plane for each line L of each pixel of the image data. And its pixel position. This is detected and stored while moving one pixel at a time in the X-axis direction, which is the horizontal direction within the inspection range A (S2). When all pixel positions of the minimum value Bmin of the brightness B are connected, a curve Lb indicated by a broken line in FIG. 6 is formed. The curve Lb is a pixel position corresponding to the edge portion 12b of the blade surface 12a, and the curve Lb is a characteristic line of the edge portion 12b of the blade surface 12a.

さらに、各輝度最小値Bminに所定の輝度を加算し、閾値Bthを決める(S3)。そして、Y軸方向1ライン毎に上から下方向へ1画素ごとに輝度Bを調べ、輝度閾値Bthを挟んで、輝度閾値Bthより大きい輝度から小さい輝度に変わる画素位置B1と、輝度閾値Bthより小さい輝度から大きい輝度に変わる画素位置B2を求める(図7)。また、それらの位置を刃面12a部分及び欠陥部分の境界部分とする。これを検査範囲Aについて行い、図6に示す輝度最小値Bminの曲線上の画素位置から上下それぞれ移動した時に、最初に輝度閾値Bthと交差する境界部分の画素位置を求める。この幅は、後述するように欠陥部分については、図12に示す白抜き部分の上下方向の幅となる。それらの間隔を境界線幅Bwとして求める(S4)。さらに、境界線幅Bwの異常値を除去し、検査範囲A内の境界線幅Bwの平均値を求める。   Further, a predetermined brightness is added to each brightness minimum value Bmin to determine a threshold value Bth (S3). Then, the brightness B is examined for each pixel from the top to the bottom for each line in the Y-axis direction, and the brightness threshold Bth is interposed between the pixel position B1 that changes from the brightness higher than the brightness threshold Bth to the brightness lower than the brightness threshold Bth. A pixel position B2 that changes from low luminance to high luminance is obtained (FIG. 7). Moreover, those positions are used as the boundary part of the blade surface 12a part and a defect part. This is performed for the inspection range A, and when the pixel position is moved up and down from the pixel position on the curve of the minimum luminance value Bmin shown in FIG. As will be described later, this width is the vertical width of the white portion shown in FIG. These intervals are obtained as the boundary line width Bw (S4). Further, the abnormal value of the boundary line width Bw is removed, and the average value of the boundary line width Bw in the inspection range A is obtained.

次に、図10に示すように、図6の輝度最小値Bminの曲線上の画素位置を左端から順に調べ、図8に示すように、右側に隣接する輝度最小値Bminの画素位置とのY軸方向の画素位置の差を求める(S5)。この差が所定の画素数n以上、例えば2画素以上ある場合、その画素位置は、「欠陥部分の可能性がある」と判断する(S6)。この状態で、画素位置を移動しながら縦方向の画素数の比較を行い、検査範囲Aの終端まで行う(S7)。   Next, as shown in FIG. 10, the pixel positions on the curve of the minimum luminance value Bmin in FIG. 6 are examined in order from the left end, and as shown in FIG. A difference in pixel position in the axial direction is obtained (S5). If this difference is greater than or equal to a predetermined number of pixels n, for example, 2 or more, it is determined that the pixel position is “possibly defective” (S6). In this state, the number of pixels in the vertical direction is compared while moving the pixel position, and the process is performed up to the end of the inspection range A (S7).

また、「欠陥部分の可能性がある」位置での輝度最小値BminのY軸方向の画素位置と、移動先の画素位置、例えばX軸方向終端の画素列の輝度最小値BminのY軸方向の画素位置を比較する(S8)。これらのY軸方向の画素位置の差が所定の画素数m以上、例えば2画素以上ある画素列が、連続する場合、連続した個数が所定の個数p、例えばp>3画素となった場合に、「欠陥部分」と判断する(S9)。なお、上記移動先の画素位置は、適宜設定可能であり、隣接する画素列同士を比較しても良く、基準となるべき輝度最小値BminのY軸方向の画素位置をあらかじめ抽出するようにしても良い。   Further, the pixel position in the Y-axis direction of the minimum luminance value Bmin at the position “possibly defective” and the Y-axis direction of the pixel position of the movement destination, for example, the minimum luminance value Bmin of the pixel column at the end in the X-axis direction Are compared (S8). When pixel rows having a difference in pixel position in the Y-axis direction of a predetermined number of pixels m or more, for example, two pixels or more are continuous, or when the number of consecutive pixels is a predetermined number p, for example, p> 3 pixels And “defect portion” are determined (S9). Note that the pixel position of the movement destination can be set as appropriate, and adjacent pixel columns may be compared, and the pixel position in the Y-axis direction of the minimum luminance value Bmin to be used as a reference is extracted in advance. Also good.

さらに、図11に示すように、「欠陥部分」と判断した輝度最小値Bminの曲線上の画素範囲の左端の画素位置から順に、その画素位置での境界線幅と境界線幅の平均値との差を求める(S10)。この差が所定の値q(例えば3画素)よりも大きければ(S11)、「欠陥部分」と確定し(S12)、その境界線幅をY軸方向の長さとする。さらに、先に「欠陥部分」と判断した範囲でこの計算をし、「欠陥部分」と確定した部分がX軸方向に連続する画素数を、横方向(X軸方向)の長さとする。この方法により、欠陥の有無及び欠陥部分の大きさを求めることが可能となる。このようにして、図13の白抜き部分に示すように、連続する欠陥の位置と大きさを画素単位で検出することができる。   Further, as shown in FIG. 11, in order from the leftmost pixel position of the pixel range on the curve of the minimum luminance value Bmin determined as the “defective part”, the boundary line width and the average value of the boundary line width at the pixel position are Is obtained (S10). If this difference is larger than a predetermined value q (for example, 3 pixels) (S11), it is determined as “defective part” (S12), and the boundary line width is set as the length in the Y-axis direction. Further, this calculation is performed within the range previously determined as “defective part”, and the number of pixels in which the part determined to be “defective part” continues in the X-axis direction is defined as the length in the horizontal direction (X-axis direction). By this method, it is possible to determine the presence / absence of a defect and the size of the defective portion. In this way, the position and size of successive defects can be detected in pixel units, as shown in the white areas in FIG.

この実施形態の画像の特徴抽出方法並びに工具欠陥検査装置と工具欠陥検査方法によれば、簡単なカメラ14とレンズ15、照明装置20、およびコンピュータによる画像処理装置16により、高速で正確な画像検査を行うことができる。特に、画像の輝度の変化を利用してその画像の特徴抽出を行うので、従来、検査が困難であった形状変化の小さな検査対象物の形状の特徴や欠陥の特徴を抽出することができる。さらに、この特徴抽出方法を刃物工具に適用し、刃面部分及び欠陥部分の画像の撮像及び抽出を、容易に且つ正確に行うことが可能である。   According to the image feature extraction method, the tool defect inspection apparatus, and the tool defect inspection method of this embodiment, the simple camera 14 and lens 15, the illumination apparatus 20, and the image processing apparatus 16 using a computer can perform high-speed and accurate image inspection. It can be performed. In particular, since the feature extraction of the image is performed using the change in luminance of the image, it is possible to extract the feature of the inspection object and the feature of the defect with a small shape change, which has conventionally been difficult to inspect. Further, this feature extraction method can be applied to a blade tool to easily and accurately capture and extract an image of a blade surface portion and a defect portion.

なお、この発明は上記実施形態に限定されるものではなく、使用するカメラは撮像素子がCCD以外のものも用いることができ、画素単位の検出も1画素単位でなくても、複数の画素を1単位として、上述の処理を行っても良い。また、特徴抽出において、画像の輝度の最小値を検出して、その特徴線としたが、照明によっては、最大値の画素を繋いで特徴形状としても良い。   Note that the present invention is not limited to the above-described embodiment, and the camera to be used can use an image pickup device other than a CCD, and a plurality of pixels can be used even if the detection in pixel units is not in units of one pixel. The above processing may be performed as one unit. In the feature extraction, the minimum value of the luminance of the image is detected and used as the feature line. However, depending on the illumination, the maximum shape of pixels may be connected to form a feature shape.

10 工具欠陥検査装置
12 ワーク
12a 刃面
14 カメラ
15 レンズ
16 画像処理装置
18 表示装置
20 照明装置

DESCRIPTION OF SYMBOLS 10 Tool defect inspection apparatus 12 Work piece 12a Blade surface 14 Camera 15 Lens 16 Image processing apparatus 18 Display apparatus 20 Illumination apparatus

Claims (11)

検査対象物を撮像してその形状の特徴線を抽出する特徴抽出方法において、撮像した画像データをそのまま用いて、撮像素子の画素配列の縦軸方向や横軸方向若しくは斜め方向に1画素×n画素(nは自然数)の画素列をとり、その列内で前記各画素の輝度の最小値若しくは最大値となる画素を求め、その画素を前記検査対象物の形状の一部として抽出し、この抽出処理を前記画素列の方向と直交する方向に、前記画素列の位置を順次変えながら前記最小値若しくは最大値となる画素を求め、抽出した画素を繋ぎ合わせて検査対象物の特徴線として抽出することを特徴とする画像の特徴抽出方法。   In a feature extraction method for picking up an image of an inspection object and extracting a feature line of the shape, the picked-up image data is used as it is, and 1 pixel × n in the vertical, horizontal, or diagonal directions of the pixel array of the image sensor. Taking a pixel column of pixels (n is a natural number), obtaining a pixel having the minimum or maximum luminance value of each pixel in the column, extracting the pixel as a part of the shape of the inspection object, In the extraction process, the pixel having the minimum value or the maximum value is obtained while sequentially changing the position of the pixel row in a direction orthogonal to the direction of the pixel row, and the extracted pixels are connected to be extracted as a characteristic line of the inspection object. An image feature extraction method characterized by: 前記撮像素子を備えたカメラのレンズの光軸を含む平面上及びその平面と直交する平面上に複数の照明を配置して、前記検査対象物を複数の角度から照明して、前記検査対象物を前記撮像素子により撮像して、前記検査対象物の特徴線を抽出する請求項1記載の画像の特徴抽出方法。   A plurality of illuminations are arranged on a plane including an optical axis of a lens of a camera lens provided with the image sensor and on a plane orthogonal to the plane, and the inspection object is illuminated from a plurality of angles, and the inspection object The image feature extraction method according to claim 1, wherein a feature line of the inspection object is extracted by imaging the image with the imaging element. 前記複数の照明は、前記検査対象物のエッジに対して斜めに対面した前記カメラレンズを中心に、その両側に複数の照明が各々等角度に配置され、前記検査対象物を前記複数の照明により照らして、前記撮像素子の撮像範囲のうちの広範囲に亘り、明るく均一な画像の撮像を可能にする請求項2記載の画像の特徴抽出方法。   The plurality of illuminations are arranged such that a plurality of illuminations are arranged at equal angles on both sides of the camera lens obliquely facing the edge of the inspection object, and the inspection object is formed by the plurality of illuminations. 3. The image feature extraction method according to claim 2, wherein a bright and uniform image can be captured over a wide range of the imaging range of the image sensor. 前記撮像素子により撮像した画像を、複数の画像範囲に分割し、その際比較的輝度が均一な画像範囲に分割して、画像範囲毎に前記検査対象物の特徴線を抽出する請求項1記載の画像の特徴抽出方法。   The image picked up by the image pickup device is divided into a plurality of image ranges, and at that time, the image is divided into image ranges having relatively uniform brightness, and the characteristic line of the inspection object is extracted for each image range. Image feature extraction method. 前記画像範囲に前記画素列を定め、前記画像範囲の端の画素から順に前記画素列と直交する方向に各画素について、現在位置の画素と次の位置の画素の輝度を求め、現在位置の画素の輝度が所定の輝度閾値より小さく次の位置の画素の輝度が前記輝度閾値より大きくなる画素と、現在位置の画素の輝度が前記輝度閾値より大きく次の位置の画素の輝度が前記輝度閾値より小さくなる画素を求め、この処理を所定画素ずつ前記画素列の方向と交差する方向に移動しながらこれらの条件を満たす全ての画素を求め、求めた各画素を繋いで得られた線分の間の画素範囲を境界部分として特徴抽出する請求項1記載の画像の特徴抽出方法。   The pixel row is defined in the image range, and the luminance of the pixel at the current position and the pixel at the next position is obtained for each pixel in a direction orthogonal to the pixel row in order from the pixel at the end of the image range. A pixel whose luminance is less than a predetermined luminance threshold and the luminance of the pixel at the next position is larger than the luminance threshold, and the luminance of the pixel at the current position larger than the luminance threshold is higher than the luminance threshold. Find a smaller pixel, move this process in the direction intersecting the direction of the pixel column by a predetermined pixel, find all the pixels that satisfy these conditions, and connect the obtained pixels to the line segment The image feature extraction method according to claim 1, wherein the feature extraction is performed using the pixel range as a boundary portion. 前記輝度閾値は、前記輝度の最小値に所定の輝度値を加算した値、若しくは、輝度最大値から所定の輝度値を減算した値を輝度閾値として設定する請求項5記載の画像の特徴抽出方法。   6. The image feature extraction method according to claim 5, wherein the luminance threshold value is set as a luminance threshold value by adding a predetermined luminance value to the minimum luminance value or by subtracting a predetermined luminance value from the maximum luminance value. . 検査対象物を撮像してその形状の特徴線を抽出する際に、前記特徴線の画素位置がその並びの延長方向からずれて次の前記特徴線の画素が存在する場合を、形状異常の可能性有り、と判断する請求項5又は6記載の画像の特徴抽出方法。   When imaging the inspection object and extracting the feature line of the shape, if the pixel position of the feature line is deviated from the extending direction of the arrangement and there is a pixel of the next feature line, a shape abnormality is possible The image feature extraction method according to claim 5, wherein it is determined that the image has a characteristic. 前記境界部分と前記特徴線との間隔の画素数を求め、この画素数の変化を元に境界線の特徴を抽出し、前記形状異常の可能性のある前記画素位置での、前記境界部分と前記特徴線との間隔の画素数が所定の閾値を超えた場合、形状異常部分と判断する請求項5又は6記載の画像の特徴抽出方法。   The number of pixels in the interval between the boundary portion and the feature line is obtained, and the feature of the boundary line is extracted based on the change in the number of pixels, and the boundary portion at the pixel position where there is a possibility of the shape abnormality The image feature extraction method according to claim 5 or 6, wherein when the number of pixels at an interval from the feature line exceeds a predetermined threshold, it is determined as a shape abnormality portion. 前記形状異常部分と判断した前記特徴線上の画素範囲での前記境界線間の画素数と、前記画像範囲の前記境界線間の画素数の平均値との差を求め、前記差が所定の値よりも大きい場合に、その形状異常部分を欠陥部分と確定する請求項5又は6記載の画像の特徴抽出方法。   A difference between the number of pixels between the boundary lines in the pixel range on the feature line determined to be the abnormal shape portion and an average value of the number of pixels between the boundary lines in the image range is obtained, and the difference is a predetermined value. 7. The image feature extraction method according to claim 5 or 6, wherein the shape abnormal portion is determined as a defective portion when the difference is larger. 請求項1乃至請求項9記載の画像の特徴抽出方法を用いて、工具刃面の欠陥検査を行う欠陥検査方法。   A defect inspection method for inspecting a tool blade surface using the image feature extraction method according to claim 1. 請求項10の画像の特徴抽出方法を用いて、工具刃面の欠陥検査を行う工具欠陥検査装置。

A tool defect inspection apparatus for performing a defect inspection on a tool blade surface using the image feature extraction method according to claim 10.

JP2009118774A 2009-05-15 2009-05-15 Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device Pending JP2010266366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009118774A JP2010266366A (en) 2009-05-15 2009-05-15 Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009118774A JP2010266366A (en) 2009-05-15 2009-05-15 Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device

Publications (1)

Publication Number Publication Date
JP2010266366A true JP2010266366A (en) 2010-11-25

Family

ID=43363465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009118774A Pending JP2010266366A (en) 2009-05-15 2009-05-15 Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device

Country Status (1)

Country Link
JP (1) JP2010266366A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153632A (en) * 2016-07-05 2016-11-23 苏州格莱威科环保科技有限公司 A kind of detection device of rotor
DE102021200598A1 (en) 2021-01-22 2022-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Process and device for creating meaningful cutting edge images
CN115106840A (en) * 2021-03-17 2022-09-27 芝浦机械株式会社 Tool shape abnormality detection device and tool shape abnormality detection method
CN117036358A (en) * 2023-10-10 2023-11-10 济南章力机械有限公司 Method and system for detecting tool wear of numerical control machine tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106153632A (en) * 2016-07-05 2016-11-23 苏州格莱威科环保科技有限公司 A kind of detection device of rotor
DE102021200598A1 (en) 2021-01-22 2022-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Process and device for creating meaningful cutting edge images
CN115106840A (en) * 2021-03-17 2022-09-27 芝浦机械株式会社 Tool shape abnormality detection device and tool shape abnormality detection method
CN115106840B (en) * 2021-03-17 2023-12-08 芝浦机械株式会社 Tool shape abnormality detection device and tool shape abnormality detection method
CN117036358A (en) * 2023-10-10 2023-11-10 济南章力机械有限公司 Method and system for detecting tool wear of numerical control machine tool
CN117036358B (en) * 2023-10-10 2024-01-30 济南章力机械有限公司 Method and system for detecting tool wear of numerical control machine tool

Similar Documents

Publication Publication Date Title
TWI617801B (en) Wafer inspection method and wafer inspection device
JP2008002848A (en) Flaw inspection device of rod-shaped rotary tool and flaw detection method of rod-shaped rotary tool
JP5174540B2 (en) Wood defect detection device
KR101163278B1 (en) Probe mark inspection apparatus, probe apparatus, probe mark inspection method and storage medium
US20110128368A1 (en) Hole Inspection Method and Apparatus
JP2007147433A (en) Flaw inspection method of ceramic plate and flaw inspection device therefor
JP2007278915A (en) Device and method for inspecting defect of tool
JP2007071661A (en) Visual inspection device
JPH1151622A (en) Method and device for foreign matter inspection
JP2017120232A (en) Inspection device
JP2007240207A (en) Tool inspection apparatus and method
JP2008032433A (en) Substrate inspection device
JP2010266366A (en) Characteristic extraction method of image, tool defect inspection method, and tool defect inspection device
JPH10132537A (en) Method for inspecting part surface having u-shaped groove form
JP2009002679A (en) Tool defect inspection device
JP2008224523A (en) Inspection device and inspection method of screw component
JP2010197313A (en) Inspection system of product shape
JP2008026149A (en) Visual examination device
JP6605772B1 (en) Defect inspection apparatus and defect inspection method
JP7299388B2 (en) Defect judgment device for the outer surface of iron pipes
JP5622338B2 (en) Method for discriminating and checking foreign matter and scratch marks in semiconductor device manufacturing process
JP2009236760A (en) Image detection device and inspection apparatus
US9219885B2 (en) Imaging system with defocused and aperture-cropped light sources for detecting surface characteristics
JP5784406B2 (en) Inspection method for processed products
JP3135075B2 (en) Appearance inspection method and apparatus, magnetic head inspection method and apparatus, and magnetic head manufacturing facility