JP2010266123A - Cooling storage - Google Patents

Cooling storage Download PDF

Info

Publication number
JP2010266123A
JP2010266123A JP2009117726A JP2009117726A JP2010266123A JP 2010266123 A JP2010266123 A JP 2010266123A JP 2009117726 A JP2009117726 A JP 2009117726A JP 2009117726 A JP2009117726 A JP 2009117726A JP 2010266123 A JP2010266123 A JP 2010266123A
Authority
JP
Japan
Prior art keywords
temperature
heater
set temperature
cooler
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117726A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Suzuki
義康 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2009117726A priority Critical patent/JP2010266123A/en
Publication of JP2010266123A publication Critical patent/JP2010266123A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress dew condensation in a storage chamber with a higher internal set temperature while minimizing power consumption. <P>SOLUTION: The cooling storage is equipped with a duct heater 40 attached to an air duct 30 to raise a temperature in a refrigeration chamber 12, an ambient temperature sensor 57 detecting an ambient temperature, and a heater control part 50 controlling a heating value of the duct heater 40. The heater control part 50 is composed of a comparison part 51 comparing a refrigeration chamber set temperature TR and a freezing chamber set temperature TF and sending out a calculation instruction signal when the difference reaches a predetermined value or larger, a temperature difference calculating part 52 calculating the difference of the ambient temperature and the refrigeration chamber set temperature TR when the calculation instruction signal is received, and an energization rate control part 53 carrying out control so that an energization rate to the duct heater 40 becomes larger as a calculated value becomes smaller on the basis of the calculated value of the temperature difference calculating part 52. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、庫内設定温度が互いに異なる複数の貯蔵室を備えた冷却貯蔵庫に関する。   The present invention relates to a cold storage having a plurality of storage rooms having different internal set temperatures.

この種の冷却貯蔵庫の一例として冷凍冷蔵庫が挙げられる。冷凍冷蔵庫は、断熱箱体からなる本体内が断熱性の仕切壁で冷蔵室と冷凍室とに区分され、各室にはそれぞれ、冷凍サイクルの一部を構成する冷却器と、冷却ファンとが装備された構造であって、各室では、庫内温度センサで検知された庫内温度と、予め定められた庫内設定温度とが比較され、庫内温度が設定温度よりも高いか低いかにより、冷却動作とその停止とが繰り返されて、各室がそれぞれ、ほぼ庫内設定温度に維持されるようになっている(例えば、特許文献1参照)。   An example of this type of cold storage is a refrigerator-freezer. A refrigerator-freezer is divided into a refrigerator compartment and a freezer compartment by a heat-insulating partition wall in the body consisting of a heat insulation box, and each compartment has a cooler and a cooling fan that constitute a part of the refrigeration cycle. It is an equipped structure, and in each room, the internal temperature detected by the internal temperature sensor is compared with the predetermined internal temperature, and whether the internal temperature is higher or lower than the preset temperature. Thus, the cooling operation and the stop thereof are repeated, and each chamber is maintained substantially at the set temperature inside the chamber (see, for example, Patent Document 1).

特開2000−220939号公報JP 2000-220939 A

この種の冷凍冷蔵庫において、冷蔵室と冷凍室の各庫内設定温度の差が大きいと、仕切壁を通して冷凍室の冷熱が冷蔵室に伝わり、冷蔵室に面した仕切壁の表面温度が低くなりやすい。一方、当該冷凍冷蔵庫の設置位置の周囲温度と冷蔵室の庫内設定温度との差が小さいほど、庫外からの熱侵入が少なくて冷蔵室の庫内温度が上昇し難いために冷却動作の停止時間が長くなり、すなわち冷却器での着霜が抑制されることで冷蔵室内が高湿度になりやすく、上記した低温状態にある冷蔵室側の仕切壁の表面に結露が生じやすいという問題があった。
本発明は上記のような事情に基づいて完成されたものであって、その目的は、電力消費を極力抑えた上で庫内設定温度が高い方の貯蔵室における結露を抑制するところにある。
In this type of refrigerator / freezer, if the temperature difference between the refrigerator compartment and the freezer compartment is large, the cold temperature of the freezer compartment is transmitted to the refrigerator compartment through the partition wall, and the surface temperature of the partition wall facing the refrigerator compartment is lowered. Cheap. On the other hand, the smaller the difference between the ambient temperature at the position where the refrigerator / freezer is installed and the set temperature in the refrigerator compartment, the less the heat enters from the outside and the temperature inside the refrigerator compartment is less likely to rise. There is a problem that the stop time becomes long, that is, the refrigeration room is likely to become high humidity by suppressing frost formation in the cooler, and condensation is likely to occur on the surface of the partition wall on the cold room side described above at a low temperature. there were.
The present invention has been completed based on the above circumstances, and an object thereof is to suppress dew condensation in a storage room having a higher internal set temperature while suppressing power consumption as much as possible.

本発明は、断熱箱体からなる貯蔵庫本体内には複数の貯蔵室が断熱性の仕切壁により区分して形成され、各貯蔵室には、冷凍サイクルの一部を構成する冷却器と、同冷却器を通過しつつ当該貯蔵室内に循環流を生じさせる冷却ファンとがそれぞれ設けられるとともに、互いに高低異なる庫内設定温度が設定されるようになっており、各貯蔵室では、庫内温度センサで検知された庫内温度が対応する庫内設定温度よりも高いか低いかに応じて前記冷却器の冷却動作を実行しまたは停止することを繰り返すことにより、庫内が対応する庫内設定温度に維持されるようにした冷却貯蔵庫において、庫内設定温度が高い方の貯蔵室内を昇温するべく同貯蔵室に設けられたヒータと、当該冷却貯蔵庫の設置位置の周囲温度を検知する周囲温度センサと、高い方の庫内設定温度と低い方の庫内設定温度との差が所定値以上であることを条件に、周囲温度と高い方の庫内設定温度との差に基づき同差が小さいほど前記ヒータの発熱量が大きくなるように制御するヒータ制御手段と、が具備されているに特徴を有する。   According to the present invention, a plurality of storage chambers are formed by partitioning a heat insulating partition wall in a storage body composed of a heat insulating box, and each storage chamber has the same structure as a cooler constituting a part of a refrigeration cycle. A cooling fan that generates a circulating flow in the storage chamber while passing through the cooler is provided, and a set temperature inside the store that is different from each other is set. By repeatedly executing or stopping the cooling operation of the cooler according to whether the internal temperature detected in step 1 is higher or lower than the corresponding internal set temperature, the internal temperature becomes the corresponding internal set temperature. In a cooling storage that is maintained, a heater provided in the storage chamber to raise the temperature of the storage chamber having a higher internal set temperature, and an ambient temperature sensor that detects the ambient temperature at the installation location of the cooling storage When, On the condition that the difference between the lower chamber set temperature and the lower chamber set temperature is a predetermined value or more, the smaller the difference is based on the difference between the ambient temperature and the higher chamber set temperature, the above And heater control means for controlling the heater so as to increase the amount of heat generated.

高い方の庫内設定温度と低い方の庫内設定温度との差が所定値以上ある場合、すなわち庫内設定温度が高い方の貯蔵室(高温側の貯蔵室)に面した仕切壁の表面が、隣室の冷熱の影響で低温状態にあると見なされる際には、その高温側の貯蔵室に設けられたヒータが冷却運転中に発熱される。それにより同貯蔵室の庫内温度が上昇するために冷却動作が実行される時間が長くなり、庫内空気が冷却器を通過することに伴う除湿効果によって高温側の貯蔵室の庫内湿度が低下し、高温側の貯蔵室の仕切壁への結露が防止される。
ここで、周囲温度と高温側の貯蔵室の庫内設定温度との差が小さいほど、庫外からの熱侵入による同高温側の貯蔵室の温度上昇が少なく、したがってヒータの発熱による補助が多く必要であり、逆に周囲温度と高温側の貯蔵室の庫内設定温度との差が大きくなれば、庫外からの熱侵入による同高温側の貯蔵室の温度上昇が多くなることで、ヒータの発熱による補助が少なくて済むという事情がある。そこで本発明では、周囲温度と高温側の貯蔵室の庫内設定温度との差が小さいほどヒータの発熱量が大きくなるように、すなわち必要に応じたヒータの発熱量を得るようにして、消費電力を最小限に抑えている。また、ヒータの発熱量が多過ぎて貯蔵室内が過剰昇温されると、逆に冷却動作の実行時間が長くなり過ぎて冷凍装置の運転用の電力も余分に必要となるが、本発明では過剰な冷却動作も防止される。
結果、電力消費を極力抑えた上で庫内設定温度が高い方の貯蔵室における結露を抑制することができる。
When the difference between the higher chamber set temperature and the lower chamber set temperature is greater than or equal to the specified value, that is, the surface of the partition wall facing the storage chamber with the higher chamber set temperature (the storage chamber on the high temperature side) However, when it is considered that the adjacent room is in a low temperature state due to the cold, the heater provided in the high temperature side storage room generates heat during the cooling operation. As a result, the time during which the cooling operation is performed increases because the internal temperature of the storage room rises, and the internal humidity of the high temperature side storage room is reduced due to the dehumidifying effect of the internal air passing through the cooler. Decreases and condensation on the partition wall of the high temperature side storage room is prevented.
Here, the smaller the difference between the ambient temperature and the set temperature inside the storage room on the high temperature side, the smaller the temperature rise in the storage room on the high temperature side due to heat penetration from the outside of the storage room. Conversely, if the difference between the ambient temperature and the set temperature inside the storage room on the high temperature side becomes large, the temperature rise in the storage room on the high temperature side due to heat intrusion from outside the container increases, and the heater There is a circumstance that the subsidy due to the heat generation of is less. Therefore, in the present invention, the smaller the difference between the ambient temperature and the set temperature in the storage room on the high temperature side, the larger the heating value of the heater, that is, to obtain the heating value of the heater as required. Power is kept to a minimum. In addition, if the heater generates too much heat and the storage chamber is excessively heated, the cooling operation time becomes too long and extra power is required to operate the refrigeration system. Excessive cooling operation is also prevented.
As a result, it is possible to suppress dew condensation in the storage room having a higher internal set temperature while suppressing power consumption as much as possible.

また、以下のような構成としてもよい。
(1)前記ヒータ制御手段は、高い方の庫内設定温度と低い方の庫内設定温度とを比較してその差が所定値以上である場合に演算指示信号を送出する比較部と、前記演算指示信号を受けた場合に周囲温度と高い方の庫内設定温度との差を演算する温度差演算部と、前記温度差演算部の演算値に基づき同演算値が小さいほど前記ヒータへの通電率が大となるように制御する通電率制御部と、から構成されている。
高い方の庫内設定温度と低い方の庫内設定温度との差が所定値以上あることが比較部において認識されると、周囲温度と高い方の庫内設定温度との差が演算され、その演算値に基づき同演算値が小さいほどヒータへの通電率が大となるように制御される。
The following configuration may also be used.
(1) The heater control means compares the higher chamber set temperature with the lower chamber set temperature and sends a calculation instruction signal when the difference is equal to or greater than a predetermined value; A temperature difference calculation unit that calculates a difference between an ambient temperature and a higher internal set temperature when a calculation instruction signal is received, and based on the calculated value of the temperature difference calculation unit, the smaller the calculated value, And an energization rate control unit that controls the energization rate to be large.
When the comparison unit recognizes that the difference between the higher chamber set temperature and the lower chamber set temperature is a predetermined value or more, the difference between the ambient temperature and the higher chamber set temperature is calculated, Based on the calculated value, control is performed such that the smaller the calculated value, the greater the energization rate to the heater.

(2)前記各貯蔵室の天井部にはドレンパンを兼ねたエアダクトが張設されることで前記冷却器が収容された冷却器室が形成されるとともに、前記エアダクトには前記冷却ファンが装着され、冷却運転時には前記冷却ファンの駆動に伴い前記冷却器と熱交換して生成された冷気が貯蔵室内に循環供給される一方、前記冷却器に装着された除霜ヒータにより同冷却器を加熱して着霜を除去する除霜運転が行われるようになっており、かつ前記エアダクトにおける前記冷却ファンの配設位置の近傍には、前記除霜運転時に併せて発熱されるダクトヒータが装着されているものであって、前記ダクトヒータが、庫内設定温度が高い方の貯蔵室内を昇温するべく設けられた前記ヒータである。
ダクトヒータは、冷却器室を構成するエアダクトに設けられ、除霜運転中に発熱されることで冷却ファン付近を除霜することに機能する。冷却運転中には、このダクトヒータを発熱させることで、結露防止を図るべく高温側の貯蔵室内を昇温することができる。
(2) An air duct that also serves as a drain pan is stretched on the ceiling of each storage chamber to form a cooler chamber that houses the cooler, and the cooling fan is mounted on the air duct. During the cooling operation, cold air generated by heat exchange with the cooler is circulated and supplied into the storage chamber as the cooling fan is driven, while the cooler is heated by a defrost heater attached to the cooler. A defrosting operation for removing frost is performed, and a duct heater that generates heat during the defrosting operation is mounted in the vicinity of the position of the cooling fan in the air duct. The duct heater is the heater provided to raise the temperature of the storage chamber having a higher internal set temperature.
The duct heater is provided in an air duct constituting the cooler chamber and functions to defrost the vicinity of the cooling fan by generating heat during the defrosting operation. During the cooling operation, the duct heater can be heated to raise the temperature of the high-temperature storage chamber in order to prevent condensation.

(3)前記各貯蔵室の天井部にはドレンパンを兼ねたエアダクトが張設されることで前記冷却器が収容された冷却器室が形成され、冷却運転時には前記冷却ファンの駆動に伴い前記冷却器と熱交換して生成された冷気が貯蔵室内に循環供給される一方、前記冷却器には除霜ヒータが装着されて同除霜ヒータにより前記冷却器を加熱して着霜を除去する除霜運転が行われるようになっているものであって、前記除霜ヒータが、庫内設定温度が高い方の貯蔵室内を昇温するべく設けられた前記ヒータである。
除霜ヒータは冷却器に装着され、除霜運転中に発熱されることで冷却器に付着した着霜を除去することに機能する。冷却運転中には、この除霜ヒータを発熱させることにより、エアダクトを挟んで結露防止を図るべく高温側の貯蔵室内を昇温することができる。除霜運転を可能とした冷却貯蔵庫に必須の除霜ヒータを貯蔵室昇温用のヒータに兼用したから、コスト低減に寄与し得る。
(3) An air duct that also serves as a drain pan is stretched on the ceiling of each storage chamber to form a cooler chamber in which the cooler is accommodated, and the cooling fan is driven during the cooling operation. The cool air generated by heat exchange with the cooler is circulated and supplied into the storage chamber, while the cooler is equipped with a defrost heater, and the cooler is heated by the defrost heater to remove frost. The frost operation is performed, and the defrost heater is the heater provided to raise the temperature of the storage chamber having a higher internal set temperature.
The defrost heater is attached to the cooler and functions to remove frost adhering to the cooler by generating heat during the defrost operation. During the cooling operation, the defrost heater can generate heat, so that the temperature of the storage chamber on the high temperature side can be raised so as to prevent condensation by sandwiching the air duct. Since the defrost heater indispensable for the cooling storage that enables the defrost operation is also used as the heater for increasing the temperature of the storage room, it can contribute to cost reduction.

本発明によれば、電力消費を極力抑えた上で庫内設定温度が高い方の貯蔵室における結露を抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, after suppressing power consumption as much as possible, the dew condensation in the store room with a higher internal set temperature can be suppressed.

本発明の実施形態に係る冷凍冷蔵庫の正面図Front view of a refrigerator-freezer according to an embodiment of the present invention 冷蔵室側を示す縦断面図Longitudinal section showing the refrigerator compartment side エアダクトの平面図Air duct top view ヒータの通電制御機構のブロック図Block diagram of heater energization control mechanism ヒータ通電率を示すグラフGraph showing heater energization rate ヒータの通電制御のフローチャートFlow chart of heater energization control

<実施形態1>
本発明の実施形態1を図1ないし図6によって説明する。この実施形態では、4ドア型の冷凍冷蔵庫を例示している。
冷凍冷蔵庫は、図1及び図2に示すように、前面開口のやや縦長の断熱箱体からなる本体10を有しており、本体10内には、間口方向の中央部に断熱性の仕切壁11が設けられることで、正面から見た右側に冷蔵室12が、左側に冷凍室13が形成されている。本体10の前面開口部には、観音開き式の断熱扉14が上下2段に分かれて装着されている。本体10は、底面に配された図示4本の脚15で支持されているとともに、本体10の上面には、パネルで囲まれることにより機械室16が形成されている。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. In this embodiment, a four-door refrigerator-freezer is illustrated.
As shown in FIGS. 1 and 2, the refrigerator / freezer has a main body 10 made of a slightly vertically long heat insulating box with a front opening. Inside the main body 10, a heat insulating partition wall is provided at the center in the frontage direction. 11 is provided, the refrigerator compartment 12 is formed in the right side seen from the front, and the freezer compartment 13 is formed in the left side. A double-spread type heat insulating door 14 is attached to the front opening of the main body 10 in two upper and lower stages. The main body 10 is supported by four illustrated legs 15 arranged on the bottom surface, and a machine room 16 is formed on the upper surface of the main body 10 by being surrounded by a panel.

機械室16内には、冷蔵室12と冷凍室13とにそれぞれ対応して、独立した冷凍ユニット20が装備されている。冷蔵室12側を例に採ると、冷凍ユニット20は、平面方形をなす断熱性の基台21の上面に、圧縮機23、凝縮器ファン24Aが付設された空冷式の凝縮器24等からなる冷凍装置22が載置されるとともに、下面側に冷却器25が吊り下げて取り付けられ、冷凍装置22と冷却器25とが冷媒配管により循環接続された構造となっている。冷却器25は、背面側が少し下がった斜め姿勢で取り付けられている。
一方、機械室16の底面、言い換えると冷蔵室12の天井壁12Aにおける奥端寄りの位置には、基台21よりも一回り小さい窓孔18が形成され、上記した冷凍ユニット20の基台21が、冷却器25を窓孔18の下面側に通しつつ同窓孔18を塞いで取り付けられている。
In the machine room 16, independent refrigeration units 20 are provided corresponding to the refrigerator compartment 12 and the freezer compartment 13, respectively. Taking the refrigerator compartment 12 side as an example, the refrigeration unit 20 includes an air-cooled condenser 24 and the like in which a compressor 23 and a condenser fan 24A are attached to the upper surface of a heat-insulating base 21 having a flat square shape. While the refrigeration apparatus 22 is mounted, a cooler 25 is suspended and attached to the lower surface side, and the refrigeration apparatus 22 and the cooler 25 are circulated and connected by a refrigerant pipe. The cooler 25 is attached in an oblique posture with the back side slightly lowered.
On the other hand, a window hole 18 that is slightly smaller than the base 21 is formed at the bottom surface of the machine room 16, in other words, at a position near the far end of the ceiling wall 12 </ b> A of the refrigerator compartment 12, and the base 21 of the refrigeration unit 20 described above. However, it is attached by closing the window hole 18 while passing the cooler 25 through the lower surface side of the window hole 18.

冷蔵室12の天井部分における窓孔18の下面側には、図3に示すような、ドレンパンを兼ねた合成樹脂製のエアダクト30が張設され、その上方に冷却器室31が形成されている。エアダクト30の底面は、奥縁(図2の右側)に向けて下り勾配(冷却器25の傾斜角度とほぼ同じ)となるように形成され、手前側の領域にベルマウスからなる左右2個の吸込口32が設けられている。各吸込口32にはそれぞれ、ファンモータからなる冷却ファン34が装備され、吸込口32には、格子状のファンカバー35が取り付けられている。また、エアダクト30の奥縁と冷蔵室12の背面壁との間に吹出口36が形成されている。   A synthetic resin air duct 30 also serving as a drain pan is stretched on the lower surface side of the window hole 18 in the ceiling portion of the refrigerator compartment 12, and a cooler chamber 31 is formed above the air duct 30. . The bottom surface of the air duct 30 is formed so as to have a downward slope (substantially the same as the inclination angle of the cooler 25) toward the inner edge (right side in FIG. 2). A suction port 32 is provided. Each suction port 32 is equipped with a cooling fan 34 composed of a fan motor, and a lattice-shaped fan cover 35 is attached to the suction port 32. An air outlet 36 is formed between the inner edge of the air duct 30 and the back wall of the refrigerator compartment 12.

そして、冷凍装置22(圧縮機23、凝縮器ファン24A)を運転しつつ冷却ファン34を駆動すると、冷蔵室12の庫内空気が冷却ファン34によって吸込口32から冷却器室31内に吸引され、その空気が冷却器25を流通する間に熱交換によって冷気が生成され、その冷気が吹出口36から冷蔵室12の奥面に沿うようにして吹き出されることにより、冷蔵室12内に冷気が循環供給され、冷蔵室12内が冷却されるようになっている。
なお、冷凍室13側における冷却器室31の構造、冷凍ユニット20の配設構造並びに空気の循環流通形態は、上記した冷蔵室12側と同様である。
When the cooling fan 34 is driven while operating the refrigeration apparatus 22 (the compressor 23 and the condenser fan 24A), the air in the refrigerator compartment 12 is sucked into the cooler compartment 31 from the suction port 32 by the cooling fan 34. Cold air is generated by heat exchange while the air flows through the cooler 25, and the cold air is blown out from the outlet 36 along the inner surface of the refrigerator compartment 12. Is circulated and supplied so that the inside of the refrigerator compartment 12 is cooled.
In addition, the structure of the cooler chamber 31 on the freezer compartment 13 side, the arrangement structure of the freezer unit 20, and the circulation and circulation mode of air are the same as those on the refrigerator compartment 12 side.

基本的な冷却運転は、以下のようにして行われる。冷蔵室12と冷凍室13とには、それぞれ庫内温度を検知する庫内温度センサ27が設けられ、これらは例えば、各冷却器室31内における冷却器25の上流側に配されている。一方、図示しない設定部において、冷蔵室12の庫内設定温度TR(以下、冷蔵室設定温度TRともいう)と、冷凍室13の庫内設定温度TF(以下、冷凍室設定温度TFともいう)が入力できるようになっており、例えば冷蔵室12では「5℃程度」、冷凍室13では「−25℃程度」に設定される。
冷蔵室12と冷凍室13とではそれぞれ、冷却ファン34が駆動される一方、庫内温度センサ27で検知された庫内温度が、設定温度TR,TFの上限値に上昇したら、対応する冷凍ユニット20の圧縮機23が運転され、同設定温度TR,TFの下限値に下降したら圧縮機23が停止され、この動作が繰り返されることで、冷蔵室12と冷凍室13の庫内温度が、それぞれほぼ設定温度TR,TFに維持されるようになっている。
The basic cooling operation is performed as follows. The refrigerator compartment 12 and the freezer compartment 13 are each provided with an internal temperature sensor 27 for detecting the internal temperature, and these are disposed, for example, upstream of the cooler 25 in each cooler chamber 31. On the other hand, in a setting unit (not shown), the set temperature TR in the refrigerator compartment 12 (hereinafter also referred to as the refrigerator compartment set temperature TR) and the set temperature TF in the freezer compartment 13 (hereinafter also referred to as the freezer compartment set temperature TF). For example, in the refrigerator compartment 12, “5 ° C.” is set, and in the freezer compartment 13, “−25 ° C.” is set.
When the cooling fan 34 is driven in each of the refrigerator compartment 12 and the freezer compartment 13 and the internal temperature detected by the internal temperature sensor 27 rises to the upper limit values of the set temperatures TR and TF, the corresponding refrigeration unit. 20 compressor 23 is operated and the compressor 23 is stopped when the set temperature TR, TF is lowered to the lower limit value. By repeating this operation, the internal temperatures of the refrigerator compartment 12 and the freezer compartment 13 are changed. The temperature is substantially maintained at the set temperatures TR and TF.

また、各冷却器25等に付着した霜を除去するために、適宜に除霜運転が行われるようになっている。そのため、図2に示すように、冷却器25の下面にはシーズヒータからなる除霜ヒータ29が装備されている。
一方、エアダクト30の上面における冷却器25の下方に対応する位置から、冷却ファン34の装着位置にわたる領域には、アルミニウム板等の金属板38が張られている。
この金属板38上には、冷却ファン34付近を加熱するべくコードヒータからなるダクトヒータ40が装着され、詳細には、図3に示すように、各冷却ファン34(吸込口32)における冷却器25側の半分強の部分の回りを囲むような形態で配線されている。
Moreover, in order to remove the frost adhering to each cooler 25 grade | etc., A defrost operation is performed suitably. Therefore, as shown in FIG. 2, a defrost heater 29 including a sheathed heater is provided on the lower surface of the cooler 25.
On the other hand, a metal plate 38 such as an aluminum plate is stretched in a region extending from the position corresponding to the lower side of the cooler 25 on the upper surface of the air duct 30 to the mounting position of the cooling fan 34.
On the metal plate 38, a duct heater 40 comprising a cord heater is mounted to heat the vicinity of the cooling fan 34. Specifically, as shown in FIG. 3, the cooler 25 in each cooling fan 34 (suction port 32). It is wired in such a way that it surrounds a little more than half of the side.

除霜運転は基本的には、冷凍装置22(圧縮機23、凝縮器ファン24A)と冷却ファン34とを停止した状態で、除霜ヒータ29に通電して冷却器25を加熱することで行われ、溶融された除霜水はエアダクト30で受けられて流下したのち、同エアダクト30の下部位置に突設された排水管30Aから、冷蔵庫本体10の背面側に設けられた排水路42に導かれて排水される。このとき、ダクトヒータ40にも通電されて発熱し、主に冷却ファン34(ファンカバー35)付近の除霜が行われる。ダクトヒータ40は、冷却運転が開始される前に一旦通電が停止される。   The defrosting operation is basically performed by energizing the defrosting heater 29 and heating the cooler 25 with the refrigeration apparatus 22 (the compressor 23 and the condenser fan 24A) and the cooling fan 34 stopped. After the melted defrost water is received by the air duct 30 and flows down, it is led from the drain pipe 30A protruding at the lower position of the air duct 30 to the drain channel 42 provided on the back side of the refrigerator body 10. It is drained. At this time, the duct heater 40 is also energized to generate heat, and mainly defrosting in the vicinity of the cooling fan 34 (fan cover 35) is performed. The duct heater 40 is temporarily de-energized before the cooling operation is started.

さて本実施形態では、冷蔵室12に面した仕切壁11の表面に結露することを防止する手段が講じられている。具体的には、冷蔵室設定温度TRと冷凍室設定温度TFの差が所定温度(例えば10K)以上であることを条件に、冷却運転中において、当該冷凍冷蔵庫の設置位置の周囲温度と、冷蔵室設定温度TRとの差に応じて、ダクトヒータ40への通電を制御するようになっている。
そのため、マイクロコンピュータ、タイマ等を搭載したヒータ制御部50が設けられている。ヒータ制御部50の入力側には、予め設定された冷蔵室設定温度TRを取り込む冷蔵室設定温度取込部55と、予め設定された冷凍室設定温度TFを取り込む冷凍室設定温度取込部56と、当該冷凍冷蔵庫の設置位置の周囲温度を検知する周囲温度センサ57とが接続されている。また、同入力側には、当該冷蔵冷凍庫の運転状況に応じた信号を送出する運転状況検知部58が接続されている。
In the present embodiment, means for preventing condensation on the surface of the partition wall 11 facing the refrigerator compartment 12 is taken. Specifically, on the condition that the difference between the refrigerator compartment set temperature TR and the freezer compartment set temperature TF is equal to or higher than a predetermined temperature (for example, 10 K), the ambient temperature at the installation position of the refrigerator-freezer and the refrigerator The energization to the duct heater 40 is controlled according to the difference from the room set temperature TR.
Therefore, a heater control unit 50 equipped with a microcomputer, a timer and the like is provided. On the input side of the heater control unit 50, a refrigeration room set temperature take-in unit 55 that takes in a preset refrigeration room set temperature TR and a freezer compartment set temperature take-in unit 56 that takes in a preset freezer room set temperature TF. And the ambient temperature sensor 57 which detects the ambient temperature of the installation position of the said refrigerator-freezer is connected. In addition, an operation state detection unit 58 that sends a signal according to the operation state of the refrigerated freezer is connected to the input side.

ヒータ制御部50には、比較部51と、温度差演算部52と、通電率制御部53とが具備されている。比較部51は、運転状況検知部58により冷却運転が開始されるタイミングとなったときに、冷蔵室設定温度取込部55から取り込んだ冷蔵室設定温度TRと、冷凍室設定温度取込部56から取り込んだ冷凍室設定温度TFとを比較し、冷蔵室設定温度TRの方が、冷凍室設定温度TFよりも所定値(10K)以上大きい場合に演算指示信号を送出するように機能する。
温度差演算部52は、比較部51から演算指示信号が出された場合に、周囲温度センサ57で検知された周囲温度と、上記した冷蔵室設定温度取込部55から取り込んだ冷蔵室設定温度TRとの差を演算する。
The heater control unit 50 includes a comparison unit 51, a temperature difference calculation unit 52, and an energization rate control unit 53. The comparison unit 51 includes the refrigerating room set temperature TR fetched from the refrigerating room set temperature taking-in unit 55 and the freezer compartment set temperature taking-in unit 56 when the cooling operation is started by the operation state detecting unit 58. Is compared with the freezer compartment set temperature TF taken in, and the calculation function signal is transmitted when the freezer compartment set temperature TR is higher than the freezer compartment set temperature TF by a predetermined value (10K) or more.
When the calculation instruction signal is output from the comparison unit 51, the temperature difference calculation unit 52 and the ambient temperature detected by the ambient temperature sensor 57 and the refrigerator compartment set temperature fetched from the refrigerator compartment set temperature fetch unit 55 described above. Calculate the difference from TR.

通電率制御部53は、温度差演算部52で演算された温度差に応じて通電率を決定し、決定された通電率を、ダクトヒータ40に対して適用するようになっている。
通電率E(%)は、例えば100秒間でE秒がオンし、(100−E)秒がオフするものであり、「0%」から「40%」の5段階のパターンを有しており、周囲温度と冷蔵室設定温度TRとの差Dが小さいほど、通電率Eが大きいパターンが設定されるようになっている。具体的には、図5のグラフに示すように、D(温度差)<0のときはE(通電率)=40、0≦D<5のときはE=30、5≦D<10のときはE=20、10≦D<15のときはE=10、D≧15のときはE=0となっている。
The energization rate control unit 53 determines the energization rate according to the temperature difference calculated by the temperature difference calculation unit 52, and applies the determined energization rate to the duct heater 40.
The energization rate E (%) is, for example, that E seconds are turned on in 100 seconds and (100-E) seconds are turned off, and has a five-step pattern from “0%” to “40%”. As the difference D between the ambient temperature and the refrigerating room set temperature TR is smaller, a pattern having a larger energization rate E is set. Specifically, as shown in the graph of FIG. 5, E (energization rate) = 40 when D (temperature difference) <0, E = 30 when 0 ≦ D <5, and 5 ≦ D <10. When E = 20, 10 ≦ D <15, E = 10, and when D ≧ 15, E = 0.

続いて、本実施形態の作用を図6のフローチャートを参照して説明する。除霜運転が完了して冷却運転が開始されるタイミングとなると、冷蔵室設定温度取込部55から冷蔵室設定温度TRが、冷凍室設定温度取込部56から冷凍室設定温度TFがそれぞれ取り込まれ、比較部51において両設定温度TR,TFが比較される。冷蔵室設定温度TRの方が、冷凍室設定温度TFよりも所定値(10K)以上大きいと、温度差演算部52に向けて演算指示信号が送出される。
逆に、設定温度TR,TFの差が10K未満であると、ダクトヒータ40への通電は行われない。冷蔵室12と冷凍室13の設定温度TR,TFの差が小さければ、冷蔵室12に面した仕切壁11の表面温度が冷凍室13側の冷熱を受けて低くなる可能性が少なく、したがって結露を防ぐべく冷蔵室12内を昇温する必要がないとの趣旨である。
なお、冷却運転の開始に際しては、冷凍装置22の起動後、冷却ファン34を所定時間遅延させて駆動させることにより、急激な庫内温度の上昇を抑制している。
Next, the operation of this embodiment will be described with reference to the flowchart of FIG. When it is time to complete the defrosting operation and start the cooling operation, the refrigerator compartment set temperature take-in portion 55 takes in the refrigerator compartment set temperature TR, and the freezer compartment set temperature take-in portion 56 takes in the freezer compartment set temperature TF, respectively. Then, the comparison unit 51 compares the set temperatures TR and TF. If the refrigerator compartment set temperature TR is greater than the freezer compartment set temperature TF by a predetermined value (10K) or more, a calculation instruction signal is sent to the temperature difference calculation unit 52.
On the contrary, if the difference between the set temperatures TR and TF is less than 10K, the duct heater 40 is not energized. If the difference between the set temperatures TR and TF of the refrigerator compartment 12 and the freezer compartment 13 is small, the surface temperature of the partition wall 11 facing the refrigerator compartment 12 is less likely to be lowered due to the cold on the freezer compartment 13 side, and therefore dew condensation occurs. In order to prevent this, it is not necessary to raise the temperature in the refrigerator compartment 12.
At the start of the cooling operation, after the refrigeration apparatus 22 is started, the cooling fan 34 is driven with a delay of a predetermined time to suppress a sudden rise in the internal temperature.

上記のように冷蔵室12と冷凍室13の設定温度TR,TFの差が大きくて、温度差演算部52が演算指示信号を受けると、同温度差演算部52では、周囲温度センサ57で検知された周囲温度と、上記した冷蔵室設定温度取込部55で取り込まれた冷蔵室設定温度TRとの差Dが演算される。そうすると、通電率制御部53において、上記の演算された温度差Dに対応して通電率Eが決定され、冷却運転中に亘り、その決定された通電率Eによりダクトヒータ40に通電されることになる。   As described above, when the difference between the set temperatures TR and TF of the refrigerator compartment 12 and the freezer compartment 13 is large and the temperature difference calculation unit 52 receives the calculation instruction signal, the temperature difference calculation unit 52 detects it by the ambient temperature sensor 57. A difference D between the ambient temperature thus obtained and the refrigerating room set temperature TR taken in by the refrigerating room set temperature taking-in portion 55 is calculated. Then, the energization rate control unit 53 determines the energization rate E corresponding to the calculated temperature difference D, and the duct heater 40 is energized by the determined energization rate E during the cooling operation. Become.

冷却運転中において、冷蔵室12では、庫内温度が冷蔵室設定温度TRの上限値に上昇したら冷却器25による冷却動作が実行され、同設定温度TRの下限値まで下降したら冷却動作が停止され、この動作が繰り返されるのであるが、上記のようにダクトヒータ40に通電されると、冷蔵室12の天井部に張られたエアダクト30が加熱されることにより、冷蔵室12の庫内温度が上昇し、その結果、冷却動作が実行される時間が長くなる。冷却動作が実行されるということは、庫内空気が低温状態にある冷却器25を通過しつつ冷蔵室12内に循環流通するのであり、この間、冷却器25に着霜することで除湿効果が得られ、すなわち冷蔵室12内の湿度が低下し、結果、冷蔵室12に面した仕切壁11の表面に結露することが抑制される。   During the cooling operation, in the refrigerator compartment 12, when the internal temperature rises to the upper limit value of the refrigerator compartment set temperature TR, the cooling operation by the cooler 25 is executed, and when it falls to the lower limit value of the preset temperature TR, the cooling operation is stopped. This operation is repeated, but when the duct heater 40 is energized as described above, the air duct 30 stretched on the ceiling of the refrigerator compartment 12 is heated, so that the internal temperature of the refrigerator compartment 12 rises. As a result, the time during which the cooling operation is performed becomes longer. The fact that the cooling operation is executed means that the internal air circulates and circulates in the refrigerator compartment 12 while passing through the cooler 25 in a low temperature state. During this time, the defrosting effect is obtained by frosting the cooler 25. In other words, the humidity in the refrigerator compartment 12 is reduced, and as a result, condensation on the surface of the partition wall 11 facing the refrigerator compartment 12 is suppressed.

以上のように本実施形態によれば、冷蔵室12の庫内設定温度TRと冷凍室13の庫内設定温度TFとの差が所定値(10K)以上ある場合、すなわち冷蔵室12に面した仕切壁11の表面が冷凍室13側の冷熱の影響を受けて低温状態にあると見なされる際には、冷却運転中において、冷蔵室12の天井部で冷却器室31を形成するべく張られたエアダクト30に装着されたダクトヒータ40に通電されてエアダクト30が加熱される。それにより冷蔵室12の庫内温度が上昇するために冷却動作が実行される時間が長くなり、庫内空気が冷却器25を通過することに伴う除湿効果によって冷蔵室12の庫内湿度が低下し、冷蔵室12側の仕切壁11への結露が防止される。   As described above, according to the present embodiment, when the difference between the set temperature TR in the refrigerator compartment 12 and the set temperature TF in the freezer compartment 13 is a predetermined value (10K) or more, that is, the refrigerator compartment 12 is faced. When the surface of the partition wall 11 is considered to be in a low temperature state due to the influence of the cold on the freezer compartment 13 side, it is stretched to form the cooler chamber 31 at the ceiling of the refrigerator compartment 12 during the cooling operation. The duct heater 40 mounted on the air duct 30 is energized to heat the air duct 30. As a result, the internal temperature of the refrigerator compartment 12 rises, so that the time during which the cooling operation is performed becomes long, and the internal humidity of the refrigerator compartment 12 decreases due to the dehumidification effect that accompanies the passage of the internal air through the cooler 25. In addition, condensation on the partition wall 11 on the refrigerator compartment 12 side is prevented.

ここで、周囲温度と冷蔵室設定温度TRとの差が小さいほど、庫外からの熱侵入による冷蔵室12の温度上昇が少なく、したがってダクトヒータ40の発熱よる補助が多く必要であり、逆に周囲温度と冷蔵室設定温度TRとの差が大きくなれば、庫外からの熱侵入による冷蔵室12側の温度上昇が多くなることで、ダクトヒータ40の発熱よる補助が少なくて済むという事情がある。
そこで本実施形態では、周囲温度と冷蔵室設定温度TRとの差が小さいほどダクトヒータ40に対する通電率を高くして発熱量が大きくなるようにし、すなわち必要に応じたダクトヒータ40の発熱量を得るようにして、消費電力を最小限に抑えている。またダクトヒータ40の発熱量が多過ぎて冷蔵室12内が過剰昇温されると、逆に冷却動作の実行時間が長くなり過ぎて冷凍装置22の運転用の電力も余分に必要となるが、この実施形態では過剰な冷却動作も防止される。
結果、電力消費を極力抑えた上で冷蔵室12に面した仕切壁11へ結露することを抑制できる。
Here, the smaller the difference between the ambient temperature and the refrigerating room set temperature TR, the smaller the temperature rise of the refrigerating room 12 due to heat intrusion from the outside of the cabinet. Therefore, more assistance from the heat generated by the duct heater 40 is necessary. If the difference between the temperature and the set temperature TR of the refrigerator compartment becomes large, the temperature rise on the side of the refrigerator compartment 12 due to the heat intrusion from the outside of the cabinet increases, and there is a situation that the assistance due to the heat generated by the duct heater 40 can be reduced.
Therefore, in the present embodiment, the smaller the difference between the ambient temperature and the refrigerator compartment set temperature TR, the higher the energization rate for the duct heater 40 and the greater the amount of heat generated, that is, the amount of heat generated by the duct heater 40 as required. In this way, power consumption is kept to a minimum. In addition, if the duct heater 40 generates too much heat and the inside of the refrigerator compartment 12 is excessively heated, the cooling operation execution time becomes too long, and extra power for operating the refrigeration apparatus 22 is required. In this embodiment, excessive cooling operation is also prevented.
As a result, it is possible to suppress dew condensation on the partition wall 11 facing the refrigerator compartment 12 while suppressing power consumption as much as possible.

<実施形態2>
上記実施形態では、冷蔵室12の昇温を補助する手段として、冷蔵室12の天井部において冷却器室31を形成するべく張られたエアダクト30に装着されたダクトヒータ40を用いたのであるが、実施形態2では、上記したダクトヒータ40を装備していない形式の冷凍冷蔵庫にも適用するべく、図2及び図4の鎖線に示すように、除霜運転時において冷却器25を加熱することに用いる除霜ヒータ29を、昇温補助用のヒータとして採用している。ヒータ制御部50を含む他の構造については、上記実施形態1と同様である。
<Embodiment 2>
In the above embodiment, the duct heater 40 attached to the air duct 30 stretched to form the cooler chamber 31 in the ceiling portion of the refrigerator compartment 12 is used as means for assisting the temperature rise of the refrigerator compartment 12, In the second embodiment, as shown by the chain line in FIGS. 2 and 4, it is used to heat the cooler 25 during the defrosting operation so as to be applied to a refrigerator-freezer that is not equipped with the duct heater 40 described above. A defrosting heater 29 is employed as a heater for assisting temperature increase. Other structures including the heater control unit 50 are the same as those in the first embodiment.

実施形態2の作用を簡単に述べると、以下のようである。冷蔵室12の庫内設定温度TRと冷凍室13の庫内設定温度TFとの差が所定値(10K)以上あって、冷蔵室12に面した仕切壁11の表面が低温状態にあると見なされる際には、冷却運転中において、冷却器25に装着された除霜ヒータ29に通電されて発熱される。これにより、エアダクト30を挟んで冷蔵室12の庫内温度が上昇するために冷却動作が実行される時間が長くなり、同じく庫内空気が冷却器25を通過することに伴う除湿効果によって冷蔵室12の庫内湿度が低下し、冷蔵室12側の仕切壁11への結露が防止される。   The operation of the second embodiment will be briefly described as follows. The difference between the set temperature TR in the refrigerator compartment 12 and the set temperature TF in the freezer compartment 13 is not less than a predetermined value (10K), and the surface of the partition wall 11 facing the refrigerator compartment 12 is considered to be in a low temperature state. During the cooling operation, the defrost heater 29 attached to the cooler 25 is energized to generate heat. Thereby, since the internal temperature of the refrigerator compartment 12 rises across the air duct 30, the time for which the cooling operation is executed is lengthened, and the refrigerator compartment is also caused by the dehumidifying effect accompanying the passage of the internal air through the cooler 25. The humidity in the cabinet 12 is reduced, and condensation on the partition wall 11 on the refrigerator compartment 12 side is prevented.

また、除霜ヒータ29を発熱させるに当たり、同じく通電率を制御して必要に応じた除霜ヒータ29の発熱量を得るようにしており、電力消費を極力抑えた上で冷蔵室12に面した仕切壁11への結露することを抑制できる。
この実施形態2では特に、除霜運転機能を備えた冷凍冷蔵庫に必須の除霜ヒータ29を昇温補助用のヒータに兼用したから、コスト低減に寄与することができる。
Further, when the defrost heater 29 is caused to generate heat, the energization rate is similarly controlled so as to obtain a heat generation amount of the defrost heater 29 as necessary. The power consumption is suppressed as much as possible, and the refrigerator room 12 is faced. It is possible to suppress condensation on the partition wall 11.
In the second embodiment, in particular, the defrost heater 29, which is essential for a refrigerator-freezer having a defrosting operation function, is also used as a heater for assisting the temperature increase, which can contribute to cost reduction.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態では、昇温補助用のヒータ(ダクトヒータまたは除霜ヒータ)への通電率の決定を、冷却運転が開始されるタイミングでのみ行う場合を例示したが、冷却運転中、所定時間間隔ごとに通電率の見直しをするようにしてもよい。また、通電率の決定を、冷却運転が開始される直前に行うようにしてもよい。
(2)上記実施形態では、昇温補助用のヒータに対する通電率の変更は5段階に亘って行う場合を例示したが段階の数は任意である。また、通電率と、周囲温度と冷蔵室設定温度の差との関係についても、上記実施形態に例示したものに限らず、当該冷却貯蔵庫の使用形態等の条件に応じて任意に選定できる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the above embodiment, the case where the energization rate to the heater for raising the temperature (duct heater or defrost heater) is determined only at the timing when the cooling operation is started. The energization rate may be reviewed at each time interval. Further, the energization rate may be determined immediately before the cooling operation is started.
(2) In the above embodiment, the change of the energization rate for the heater for assisting the temperature increase is illustrated over five stages, but the number of stages is arbitrary. Further, the relationship between the energization rate and the difference between the ambient temperature and the refrigerator compartment set temperature is not limited to that exemplified in the above embodiment, but can be arbitrarily selected according to conditions such as the usage form of the cooling storage.

(3)ヒータの通電制御の要否を見極める冷蔵室設定温度と冷凍室設定温度との差は、上記実施形態に例示した10Kに限らず、任意に設定できる。
(4)昇温補助用のヒータの発熱量を制御する手段としては、上記実施形態に例示したヒータへの通電率を変更すること以外に、ヒータへの供給電力を変更する等の他の手段を用いてもよい。
(5)昇温補助用ヒータとしては、上記実施形態に例示したダクトヒータ、除霜ヒータ以外に、別のヒータを準備するようにしてもよい。
(3) The difference between the refrigerator compartment set temperature and the freezer compartment set temperature for determining whether or not the heater energization control is necessary is not limited to 10K exemplified in the above embodiment, and can be arbitrarily set.
(4) As a means for controlling the heat generation amount of the heater for assisting temperature increase, other means such as changing the power supplied to the heater in addition to changing the energization rate to the heater exemplified in the above embodiment. May be used.
(5) As the temperature increase assist heater, another heater may be prepared in addition to the duct heater and the defrost heater exemplified in the above embodiment.

(6)上記実施形態では、冷蔵室と冷凍室とに独立した冷凍サイクルが個別に装備された形式のものを例示したが、本発明は、冷蔵室と冷凍室の各冷却器が、圧縮機を有する共通の冷凍装置と循環接続されるとともに、各冷却器への冷媒の流通の可否を切り替える弁機構が備えられており、各冷却器は、圧縮機が運転された状態において、弁機構による同冷却器への冷媒の流通とその停止とに伴って、冷却動作の実行とその停止とが制御される形式のものにも、同様に適用することができる。
(7)さらに本発明は、上記実施形態に例示した冷凍冷蔵庫に限らず、本体内に複数の貯蔵室が区分して形成されて、互いに異なった設定温度に冷却可能とされた冷却貯蔵庫全般に適用可能である。
(6) In the above embodiment, the type in which the refrigeration chamber and the freezer compartment are individually equipped with independent refrigeration cycles is exemplified. However, in the present invention, each cooler of the refrigerator compartment and the freezer compartment is a compressor. Are connected to a common refrigeration apparatus, and a valve mechanism for switching the flow of refrigerant to each cooler is provided. Each cooler is operated by a valve mechanism in a state where the compressor is operated. The present invention can be similarly applied to a type in which execution and stop of the cooling operation are controlled in accordance with the circulation and stop of the refrigerant to the cooler.
(7) Further, the present invention is not limited to the refrigerator-freezer exemplified in the above embodiment, and is generally applied to a cooling storehouse in which a plurality of storage chambers are formed in the main body and can be cooled to different set temperatures. Applicable.

10…本体(貯蔵庫本体) 11…仕切壁 12…冷蔵室(庫内設定温度が高い方の貯蔵室) 13…冷凍室(庫内設定温度が低い方の貯蔵室) 20…冷凍ユニット 22…冷凍装置 25…冷却器 27…庫内温度センサ 29…除霜ヒータ 30…エアダクト 31…冷却器室 32…吸込口 34…冷却ファン 36…吹出口 40…ダクトヒータ 50…ヒータ制御部(ヒータ制御手段) 51…比較部 52…温度差演算部 53…通電率制御部 55…冷蔵室設定温度取込部 56…冷凍室設定温度取込部 57…周囲温度センサ TR…冷蔵室設定温度 TF…冷凍室設定温度   DESCRIPTION OF SYMBOLS 10 ... Main body (storage main body) 11 ... Partition wall 12 ... Refrigeration room (storage room with higher set temperature in the storage) 13 ... Freezing room (storage room with lower set temperature in the storage) 20 ... Refrigeration unit 22 ... Freezing Apparatus 25 ... Cooler 27 ... Inside temperature sensor 29 ... Defrost heater 30 ... Air duct 31 ... Cooler chamber 32 ... Suction port 34 ... Cooling fan 36 ... Air outlet 40 ... Duct heater 50 ... Heater control section (heater control means) 51 ... Comparison part 52 ... Temperature difference calculation part 53 ... Conductivity control part 55 ... Refrigerating room set temperature taking part 56 ... Freezer room setting temperature taking part 57 ... Ambient temperature sensor TR ... Refrigerating room set temperature TF ... Freezer room setting temperature

Claims (4)

断熱箱体からなる貯蔵庫本体内には複数の貯蔵室が断熱性の仕切壁により区分して形成され、各貯蔵室には、冷凍サイクルの一部を構成する冷却器と、同冷却器を通過しつつ当該貯蔵室内に循環流を生じさせる冷却ファンとがそれぞれ設けられるとともに、互いに高低異なる庫内設定温度が設定されるようになっており、
各貯蔵室では、庫内温度センサで検知された庫内温度が対応する庫内設定温度よりも高いか低いかに応じて前記冷却器の冷却動作を実行しまたは停止することを繰り返すことにより、庫内が対応する庫内設定温度に維持されるようにした冷却貯蔵庫において、
庫内設定温度が高い方の貯蔵室内を昇温するべく同貯蔵室に設けられたヒータと、
当該冷却貯蔵庫の設置位置の周囲温度を検知する周囲温度センサと、
高い方の庫内設定温度と低い方の庫内設定温度との差が所定値以上であることを条件に、周囲温度と高い方の庫内設定温度との差に基づき同差が小さいほど前記ヒータの発熱量が大きくなるように制御するヒータ制御手段と、
が具備されていることを特徴とする冷却貯蔵庫。
A plurality of storage chambers are formed in the storage body consisting of a heat insulating box by dividing by a heat insulating partition wall, and each storage chamber passes through a cooler constituting a part of the refrigeration cycle and the same cooler. However, a cooling fan that generates a circulation flow in the storage chamber is provided, and a set temperature in the cabinet that is different from each other is set.
In each storage room, by repeatedly executing or stopping the cooling operation of the cooler according to whether the internal temperature detected by the internal temperature sensor is higher or lower than the corresponding internal set temperature, In the cooling storage where the inside is maintained at the corresponding internal set temperature,
A heater provided in the storage chamber to raise the temperature of the storage chamber having a higher internal set temperature;
An ambient temperature sensor for detecting the ambient temperature at the installation location of the cooling storage;
On the condition that the difference between the higher chamber set temperature and the lower chamber set temperature is a predetermined value or more, the smaller the difference based on the difference between the ambient temperature and the higher chamber set temperature, the more Heater control means for controlling the heating value of the heater to increase,
The cooling storage characterized by comprising.
前記ヒータ制御手段は、
高い方の庫内設定温度と低い方の庫内設定温度とを比較してその差が所定値以上である場合に演算指示信号を送出する比較部と、
前記演算指示信号を受けた場合に周囲温度と高い方の庫内設定温度との差を演算する温度差演算部と、
前記温度差演算部の演算値に基づき同演算値が小さいほど前記ヒータへの通電率が大となるように制御する通電率制御部と、
から構成されていることを特徴とする請求項1記載の冷却貯蔵庫。
The heater control means includes
A comparison unit that compares the higher chamber set temperature and the lower chamber set temperature and sends a calculation instruction signal when the difference is equal to or greater than a predetermined value;
A temperature difference calculation unit that calculates the difference between the ambient temperature and the higher internal set temperature when receiving the calculation instruction signal;
An energization rate control unit that controls the energization rate to the heater to be larger as the calculated value is smaller based on the calculated value of the temperature difference calculating unit;
The cooling storage according to claim 1, comprising:
前記各貯蔵室の天井部にはドレンパンを兼ねたエアダクトが張設されることで前記冷却器が収容された冷却器室が形成されるとともに、前記エアダクトには前記冷却ファンが装着され、冷却運転時には前記冷却ファンの駆動に伴い前記冷却器と熱交換して生成された冷気が貯蔵室内に循環供給される一方、前記冷却器に装着された除霜ヒータにより同冷却器を加熱して着霜を除去する除霜運転が行われるようになっており、かつ前記エアダクトにおける前記冷却ファンの配設位置の近傍には、前記除霜運転時に併せて発熱されるダクトヒータが装着されているものであって、
前記ダクトヒータが、庫内設定温度が高い方の貯蔵室内を昇温するべく設けられた前記ヒータであることを特徴とする請求項1または請求項2記載の冷却貯蔵庫。
An air duct that also serves as a drain pan is stretched on the ceiling of each storage chamber to form a cooler chamber that houses the cooler, and the cooling fan is attached to the air duct to perform cooling operation. Sometimes, as the cooling fan is driven, cold air generated by heat exchange with the cooler is circulated and supplied into the storage chamber, while the defrost heater attached to the cooler is heated to form frost. A defrosting operation for removing air is performed, and a duct heater that generates heat at the time of the defrosting operation is mounted in the vicinity of the position of the cooling fan in the air duct. And
The cooling storage according to claim 1 or 2, wherein the duct heater is the heater provided to raise the temperature in the storage chamber having a higher internal set temperature.
前記各貯蔵室の天井部にはドレンパンを兼ねたエアダクトが張設されることで前記冷却器が収容された冷却器室が形成され、冷却運転時には前記冷却ファンの駆動に伴い前記冷却器と熱交換して生成された冷気が貯蔵室内に循環供給される一方、前記冷却器には除霜ヒータが装着されて同除霜ヒータにより前記冷却器を加熱して着霜を除去する除霜運転が行われるようになっているものであって、
前記除霜ヒータが、庫内設定温度が高い方の貯蔵室内を昇温するべく設けられた前記ヒータであることを特徴とする請求項1または請求項2記載の冷却貯蔵庫。
An air duct that also functions as a drain pan is stretched on the ceiling of each storage chamber to form a cooler chamber that houses the cooler. During the cooling operation, the cooler and the heat are While the cold air generated by replacement is circulated and supplied into the storage chamber, a defrosting operation is performed in which a defrost heater is attached to the cooler and the cooler is heated by the defrost heater to remove frost. Which is supposed to be done,
The cooling depot according to claim 1 or 2, wherein the defrosting heater is the heater provided to raise the temperature in the storage chamber having a higher internal set temperature.
JP2009117726A 2009-05-14 2009-05-14 Cooling storage Pending JP2010266123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117726A JP2010266123A (en) 2009-05-14 2009-05-14 Cooling storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117726A JP2010266123A (en) 2009-05-14 2009-05-14 Cooling storage

Publications (1)

Publication Number Publication Date
JP2010266123A true JP2010266123A (en) 2010-11-25

Family

ID=43363249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117726A Pending JP2010266123A (en) 2009-05-14 2009-05-14 Cooling storage

Country Status (1)

Country Link
JP (1) JP2010266123A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154534A (en) * 2011-01-25 2012-08-16 Hoshizaki Electric Co Ltd Cooling storage
CN103062978A (en) * 2013-01-30 2013-04-24 合肥美菱股份有限公司 Refrigerator condensation preventing heating control device and control method
CN106766648A (en) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 For detecting the method that whether temperature anomaly article is put into refrigerator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154534A (en) * 2011-01-25 2012-08-16 Hoshizaki Electric Co Ltd Cooling storage
CN103062978A (en) * 2013-01-30 2013-04-24 合肥美菱股份有限公司 Refrigerator condensation preventing heating control device and control method
CN103062978B (en) * 2013-01-30 2015-07-01 合肥美菱股份有限公司 Refrigerator condensation preventing heating control device and control method
CN106766648A (en) * 2016-11-23 2017-05-31 青岛海尔股份有限公司 For detecting the method that whether temperature anomaly article is put into refrigerator

Similar Documents

Publication Publication Date Title
JP4954484B2 (en) Cooling storage
US9243834B2 (en) Refrigerator
KR101771721B1 (en) Refrigerator and its defrost control method
JP2008075964A (en) Defrosting device of cooling device
DK2757335T3 (en) Refrigerator with defrost and control method
JPH11311473A (en) Method for controlling refrigerator
JP2006250495A (en) Cooling storage box
JP2010266123A (en) Cooling storage
JP2001349659A (en) Refrigerator
JP2013200084A (en) Cooling storage
JP2007292378A (en) Low temperature storage
JP5722160B2 (en) Cooling storage
JP2015143579A (en) refrigerator
JP5008440B2 (en) Cooling storage
JP5656494B2 (en) refrigerator
JP5576668B2 (en) Cooling storage
JP2010243058A (en) Cooling storage
JP4189299B2 (en) Cooling storage
JP5957761B2 (en) Cooling storage
JP5670792B2 (en) Cooling storage
JP2010181085A (en) Cooling storage
JP6037214B2 (en) Low temperature showcase
JP3600009B2 (en) Refrigerator control method
JP2008075963A (en) Defrosting device for cooling device
JP6667383B2 (en) Cooling storage