JP5957761B2 - Cooling storage - Google Patents

Cooling storage Download PDF

Info

Publication number
JP5957761B2
JP5957761B2 JP2012069335A JP2012069335A JP5957761B2 JP 5957761 B2 JP5957761 B2 JP 5957761B2 JP 2012069335 A JP2012069335 A JP 2012069335A JP 2012069335 A JP2012069335 A JP 2012069335A JP 5957761 B2 JP5957761 B2 JP 5957761B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerator compartment
compartment
freezer
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012069335A
Other languages
Japanese (ja)
Other versions
JP2013200082A (en
Inventor
裕文 柳
裕文 柳
彰男 市川
彰男 市川
一博 海老原
一博 海老原
弘之 藤原
弘之 藤原
武雄 東
武雄 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012069335A priority Critical patent/JP5957761B2/en
Publication of JP2013200082A publication Critical patent/JP2013200082A/en
Application granted granted Critical
Publication of JP5957761B2 publication Critical patent/JP5957761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、仕切壁にて区画された冷凍室と冷蔵室を備えて成る冷却貯蔵庫に関するものである。   The present invention relates to a cold storage comprising a freezer compartment and a refrigerator compartment partitioned by a partition wall.

従来より冷凍室と冷蔵室を備えたこの種冷却貯蔵庫では、例えば圧縮機と、凝縮器と、キャピラリチューブを介して接続された冷蔵室蒸発器と、他のキャピラリチューブを介して接続された冷凍室蒸発器とにて冷媒回路が構成されている。そして、圧縮機から吐出された冷媒を凝縮器にて放熱した後、三方弁を介して一方のキャピラリチューブが接続された冷蔵室蒸発器、若しくは、他方のキャピラリチューブが接続された冷凍室蒸発器のそれぞれにおいて蒸発させ、圧縮機に帰還する冷凍サイクルとされていた。   Conventionally, in this kind of cold storage having a freezing room and a refrigerating room, for example, a compressor, a condenser, a refrigerating room evaporator connected via a capillary tube, and a freezing connected via another capillary tube. A refrigerant circuit is composed of the chamber evaporator. And after radiating the refrigerant | coolant discharged from the compressor with a condenser, the refrigerator compartment evaporator to which one capillary tube was connected via the three-way valve, or the freezer compartment evaporator to which the other capillary tube was connected The refrigeration cycle was evaporated in each of these and returned to the compressor.

この場合、それぞれの蒸発器に接続されるキャピラリチューブは、任意の口径、長さにて構成されており、これによって、それぞれの蒸発器における蒸発温度を設定し、それぞれ冷蔵室、冷凍室内を所定の温度帯に冷却する。   In this case, the capillary tubes connected to the respective evaporators are configured with arbitrary diameters and lengths, thereby setting the evaporation temperatures in the respective evaporators and setting the predetermined temperatures in the refrigerator compartment and the freezer compartment, respectively. Cool to the temperature zone.

また、冷蔵室及び冷凍室内には、庫内温度を検出する庫内温度センサがそれぞれ設けられており、各室内がそれぞれに設定された冷却温度範囲となるように、三方弁及び圧縮機の制御が行われるものであった(例えば、特許文献1参照)。   In addition, the refrigerator temperature chamber and the freezer compartment are each provided with an internal temperature sensor for detecting the internal temperature, and the control of the three-way valve and the compressor is performed so that each indoor is within the set cooling temperature range. (For example, refer to Patent Document 1).

特許第3922891号公報Japanese Patent No. 3922891

ここで、冷凍室と冷蔵室は断熱箱体内を仕切壁にて区画することによりそれぞれ構成され、冷凍室は例えば−20℃程の冷凍温度域に冷却され、冷蔵室は+4℃程の冷蔵温度域に冷却される。この仕切壁は当然に断熱性を有するもので構成されるが、どうしても冷凍室からの冷却作用を受けるため、その冷蔵室側の面は冷蔵室よりも低い温度となってしまう。   Here, the freezing room and the refrigerating room are each configured by partitioning the inside of the heat insulation box with a partition wall, the freezing room is cooled to a freezing temperature range of, for example, about −20 ° C., and the refrigerating room has a refrigerating temperature of about + 4 ° C. Cooled to area. Of course, this partition wall is made of a material having heat insulation properties, but since it is inevitably cooled by the freezer compartment, the surface on the refrigerator compartment side is at a lower temperature than the refrigerator compartment.

そのため、外部から冷蔵室内に進入した水分や収納物品から蒸散した水分が仕切壁の冷蔵室側の面に結露と成って付着するようになる。そして、特に冷蔵室が冷凍室の下側に構成されている場合、この露が下方の冷蔵室内に滴下し、収納物品を汚損してしまう不都合があった。   For this reason, moisture that has entered the refrigerator compartment from the outside or moisture that has evaporated from the stored articles adheres to the surface of the partition wall on the refrigerator compartment side with condensation. In particular, when the refrigerator compartment is configured below the freezer compartment, the dew drops into the refrigerator compartment below, and the stored articles are contaminated.

そこで、従来より仕切壁の冷蔵室側の面(その内側)に冷蔵室結露防止ヒータ(電気ヒータ)を取り付けて加熱することにより、仕切壁の冷蔵室側の面の温度が下がらないようにし、結露を防止する対策が取られているが、常時通電していたため、省エネルギーに反するものとなっていた。   Therefore, by attaching and heating a cold room condensation prevention heater (electric heater) on the cold wall side surface (inside) of the partition wall from the past, the temperature of the cold wall side surface of the partition wall is not lowered, Measures to prevent dew condensation have been taken, but since it was always energized, it was against energy saving.

本発明は、係る従来の技術的課題を解決するためになされたものであり、仕切壁の冷蔵室側の面を加熱するヒータの通電を的確に制御することができる冷却貯蔵庫を提供することを目的とする。   This invention is made in order to solve the conventional technical subject which concerns, and provides the cooling storage which can control accurately electricity supply of the heater which heats the surface at the side of the refrigerator compartment of a partition wall. Objective.

上記課題を解決するために請求項1の発明の冷却貯蔵庫は、冷凍室とその下側の冷蔵室とを仕切壁にて区画形成して成るものにおいて、仕切壁の冷蔵室側の面を加熱するためのヒータと、冷凍室及び冷蔵室の温度をそれぞれ検出する冷凍室温度センサ及び冷蔵室温度センサと、外気温度を検出する外気温度センサと、冷凍室温度センサおよび冷蔵室温度センサの出力に基づいてヒータの通電を制御する制御手段とを備え、この制御手段は、各温度センサが検出する冷凍室と冷蔵室の温度差に基づき、当該温度差が小さいときは下げる方向でヒータの通電率を制御し、外気温度センサの出力に基づき、当該外気温度センサが検出する外気温度が高いときに上げる方向でヒータの通電率を制御することを特徴とする。 In order to solve the above-mentioned problems, the cooling storage of the invention of claim 1 is formed by partitioning a freezing room and a refrigeration room below it with a partition wall. To the output of a freezer temperature sensor and a refrigerator temperature sensor for detecting the temperature of the freezer compartment and the refrigerator compartment, an outside air temperature sensor for detecting the outside air temperature, and the output of the freezer temperature sensor and the refrigerator compartment temperature sensor, respectively. Control means for controlling the energization of the heater based on the temperature difference between the freezer compartment and the refrigeration room detected by each temperature sensor, and when the temperature difference is small, the control means And controlling the energization rate of the heater in a direction to increase when the outside air temperature detected by the outside air temperature sensor is high based on the output of the outside air temperature sensor .

更に、請求項の発明の冷却貯蔵庫は、上記発明において制御手段は、冷凍室と冷蔵室の温度差が所定の値より小さく、且つ、外気温度が所定の低温度以下である場合、ヒータへの通電を停止することを特徴とする。 Furthermore, in the cooling storage of the invention according to claim 2 , in the above invention, the control means sends the heater to the heater when the temperature difference between the freezer compartment and the refrigerator compartment is smaller than a predetermined value and the outside air temperature is a predetermined low temperature or less. This is characterized in that the energization of is stopped.

そして、請求項の発明の冷却貯蔵庫は、上記各発明において冷凍室を冷却する冷凍室蒸発器と冷蔵室を冷却する冷蔵室蒸発器とを有し、圧縮機にて圧縮された冷媒をそれぞれ減圧手段を介して冷凍室蒸発器及び冷蔵室蒸発器に分配供給することにより、各室を冷却することを特徴とする。 And the cooling storage of the invention of claim 3 has the freezer compartment evaporator which cools a freezer compartment in each above-mentioned invention, and the refrigerator compartment evaporator which cools a refrigerator compartment, respectively, and has cooled refrigerant compressed with a compressor, respectively Each chamber is cooled by being distributed and supplied to the freezer evaporator and the refrigerator refrigerator through the decompression means.

冷凍室と冷蔵室を区画する仕切壁の冷蔵室側の面への結露は、冷凍室からの冷却作用によって発生するものであるから、冷凍室と冷蔵室との温度差に影響され、温度差が小さいほど発生し難くなる。   Condensation on the surface on the refrigerator compartment side of the partition wall that separates the refrigerator compartment and the refrigerator compartment is caused by the cooling action from the refrigerator compartment, so it is affected by the temperature difference between the refrigerator compartment and the refrigerator compartment. The smaller the is, the less likely it is to occur.

そこで、請求項1の発明では冷凍室とその下側の冷蔵室とを仕切壁にて区画形成して成る冷却貯蔵庫において、仕切壁の冷蔵室側の面を加熱するためのヒータと、冷凍室及び冷蔵室の温度をそれぞれ検出する冷凍室温度センサ及び冷蔵室温度センサと、各温度センサの出力に基づいてヒータの通電を制御する制御手段とを備え、この制御手段は、各温度センサが検出する冷凍室と冷蔵室の温度差に基づき、当該温度差が小さいときは下げる方向でヒータの通電率を制御するようにしたので、冷凍室と冷蔵室との温度差が小さく、仕切壁の冷蔵室側の面に結露が発生し難い状況の場合は、制御手段によりヒータの通電率が下げられることになる。   Accordingly, in the first aspect of the invention, in a cooling storage formed by partitioning the freezer compartment and the lower refrigerator compartment with a partition wall, a heater for heating the surface of the partition wall on the refrigerator compartment side, and the freezer compartment And a freezer compartment temperature sensor and a refrigerator compartment temperature sensor for detecting the temperature of the refrigerator compartment, respectively, and a control means for controlling the energization of the heater based on the output of each temperature sensor, which is detected by each temperature sensor. Based on the temperature difference between the freezer compartment and the refrigerator compartment, when the temperature difference is small, the heater energization rate is controlled in the direction of decreasing, so the temperature difference between the freezer compartment and the refrigerator compartment is small and the partition wall is refrigerated. In a situation where condensation is unlikely to occur on the room side surface, the energization rate of the heater is lowered by the control means.

これにより、仕切壁の冷蔵室側の面への結露を効果的に解消しながら、ヒータの消費電力を削減することが可能となる。また、冷蔵室内の負荷も抑制されるので、これらにより、省エネルギーに寄与することができるようになる。   Thereby, it is possible to reduce the power consumption of the heater while effectively eliminating the condensation on the surface of the partition wall on the refrigerator compartment side. Moreover, since the load in a refrigerator compartment is also suppressed, these can contribute to energy saving.

一方、冷却貯蔵庫の外気温度が高い場合は、絶対湿度が高くなり、冷蔵室に侵入する空気中に含まれる水分も多くなるため、仕切壁の冷蔵室側の面に結露し易くなる。   On the other hand, when the outside air temperature of the cooling storage is high, the absolute humidity increases, and the moisture contained in the air entering the refrigerator compartment increases, so that condensation tends to occur on the surface of the partition wall on the refrigerator compartment side.

そこで、請求項の発明では上記発明に加えて外気温度を検出する外気温度センサを設け、制御手段は、外気温度センサの出力に基づき、当該外気温度センサが検出する外気温度が高いときに上げる方向でヒータの通電率を制御するようにしたので、外気温度が低い状況ではヒータの通電率を抑えておき、外気温度が高くなって仕切壁の冷蔵室側の面への結露が発生し易くなった場合に、制御手段によりヒータの通電率が上げられることになる。これにより、仕切壁の冷蔵室側の面への結露を効果的に解消しながら、ヒータの消費電力をより的確に削減することが可能となり、一層の省エネ化を実現することができるようになる。 Therefore, the invention of claim 1 is provided with an outside air temperature sensor for detecting the outside air temperature in addition to the above invention, and the control means raises the outside air temperature detected by the outside air temperature sensor based on the output of the outside air temperature sensor. Since the heater energization rate is controlled by the direction, the heater energization rate is kept low in situations where the outside air temperature is low, and the outside air temperature rises and condensation tends to occur on the surface of the partition wall on the refrigerator compartment side. In this case, the energization rate of the heater is increased by the control means. Accordingly, it is possible to more accurately reduce the power consumption of the heater while effectively eliminating the condensation on the surface of the partition wall on the refrigerator compartment side, and further energy saving can be realized. .

更に、請求項の発明では上記発明に加えて制御手段は、冷凍室と冷蔵室の温度差が所定の値より小さく、且つ、外気温度が所定の低温度以下である場合、ヒータへの通電を停止するようにしたので、仕切壁の冷蔵室側の面への結露が最も発生し難い状況下ではヒータへの通電を断つことで、より一層の省エネ化を図ることが可能となる。 Further, in the invention of claim 2 , in addition to the above-mentioned invention, the control means supplies power to the heater when the temperature difference between the freezer compartment and the refrigerator compartment is smaller than a predetermined value and the outside air temperature is not more than a predetermined low temperature. Therefore, it is possible to achieve further energy saving by cutting off the power to the heater in a situation where condensation on the surface of the partition wall on the refrigerator compartment side is least likely to occur.

この場合、請求項の発明のように冷凍室と冷蔵室を冷凍室蒸発器と冷蔵室蒸発器によりそれぞれ冷却する冷却貯蔵庫においては、冷凍室と冷蔵室がそれぞれの冷却温度範囲に精度良く冷却されるものであるが、そのような冷却貯蔵庫において上記各発明は特に有効なものとなる。 In this case, as in the third aspect of the invention, in the cooling storage that cools the freezing room and the refrigerating room by the freezing room evaporator and the refrigerating room evaporator, respectively, the freezing room and the refrigerating room are accurately cooled to the respective cooling temperature ranges. However, the above inventions are particularly effective in such a cooling storage.

本発明を適用した冷却貯蔵庫の扉を開放した状態の斜視図である。It is a perspective view of the state where the door of the cooling storage which applied the present invention was opened. 図1の冷却貯蔵庫の縦断側面図である。It is a vertical side view of the cooling storage of FIG. 図2のドレンパン部分の拡大図である。It is an enlarged view of the drain pan part of FIG. 図1の冷却貯蔵庫の冷媒回路図である。It is a refrigerant circuit figure of the cooling storage of FIG. 図1の冷却貯蔵庫の制御装置の電気回路のブロック図である。It is a block diagram of the electric circuit of the control apparatus of the cooling storage of FIG. 図5の制御装置が実行する通常冷却運転を説明するフローチャートである。It is a flowchart explaining the normal cooling operation which the control apparatus of FIG. 5 performs. 図5の制御装置におる冷蔵室結露防止ヒータの通電率制御を説明する図である。It is a figure explaining the electricity supply rate control of the refrigerator compartment condensation prevention heater in the control apparatus of FIG.

以下、本発明の実施の形態について詳細に説明する。図1は本発明を適用した冷却貯蔵庫1の扉を開放した状態の斜視図を示している。実施例の冷却貯蔵庫1は、ホテルやレストランの厨房等に設置される縦型業務用冷凍冷蔵庫であり、前面に開口する断熱箱体2により構成されている。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1: has shown the perspective view of the state which open | released the door of the cooling storage 1 to which this invention is applied. The cooling storage 1 according to the embodiment is a vertical commercial refrigerator-freezer installed in a kitchen of a hotel or a restaurant, and includes a heat insulating box 2 that opens to the front.

図1の冷却貯蔵庫1は、断熱箱体2内を断熱性の仕切壁2A、2Bにて区画することにより貯蔵室としての冷凍室(F)3と冷蔵室(R)4とが形成されている。本実施例では、断熱箱体2の上部を仕切壁2Aにて左右に区画し、仕切壁2Aにて区画された一側(この場合図1の向かって左側)を更に仕切壁2Bにて上下に区画することにより、断熱箱体2内の一側(向かって左側)上部が冷凍室3、それ以外の他側(向かって右側)上部から下部全域(冷凍室3の下側)が連続した冷蔵室4とされ、向かって左上の冷凍室3とそれ以外の冷蔵室4とは相互に冷気の流通が不能に構成される。即ち、下部の冷蔵室4は冷凍室3及び各仕切壁2A、2Bより下側に構成されている。   In the cooling storage 1 of FIG. 1, a freezer compartment (F) 3 and a refrigerator compartment (R) 4 as storage compartments are formed by partitioning the inside of the heat insulation box 2 with heat insulating partition walls 2A and 2B. Yes. In this embodiment, the upper portion of the heat insulating box 2 is divided into left and right by a partition wall 2A, and one side (in this case, the left side in FIG. 1) partitioned by the partition wall 2A is further vertically moved by a partition wall 2B. By dividing into two, the upper part of one side (toward the left side) in the heat insulating box 2 is the freezer compartment 3, and the other part (toward the right side) is continuous from the upper part to the lower part (the lower side of the freezer room 3). The refrigeration chamber 4 is configured such that the upper left freezing chamber 3 and the other refrigeration chambers 4 are configured to be incapable of circulating cold air. That is, the lower refrigerator compartment 4 is configured below the freezer compartment 3 and the partition walls 2A, 2B.

そして、冷凍室3の前面開口は、断熱箱体2の一側上部に枢支された断熱扉8にて開閉自在に閉塞されると共に、冷蔵室4の前面開口は、断熱箱体2の他側上部、他側下部、一側下部のそれぞれに独立して枢支された各断熱扉9にて開閉自在に閉塞される。これにより、断熱箱体2の前面開口は、上下に設けられた二組の観音開き式の扉8、9、9、9にて開閉自在に閉塞されることとなる。   The front opening of the freezer compartment 3 is closed so as to be freely opened and closed by a heat insulating door 8 pivotally supported on one side upper part of the heat insulating box 2, and the front opening of the refrigerator compartment 4 is opened in addition to the heat insulating box 2. The heat insulating doors 9 are pivotally supported independently on the side upper part, the other side lower part, and the one side lower part, respectively, so that they can be opened and closed. Thereby, the front opening of the heat insulation box 2 is closed by two sets of double doors 8, 9, 9, 9 provided at the top and bottom so as to be freely opened and closed.

尚、図中10は、仕切壁2Bと同じ高さの位置で断熱箱体2の前面開口部を上下に区画し、扉8、9が閉じたときにそれらの裏面と当接して密着させるための中仕切である。   In addition, 10 in the figure is for partitioning the front opening of the heat insulating box 2 up and down at the same height as the partition wall 2B, so that the doors 8 and 9 are in close contact with each other when the doors 8 and 9 are closed. It is a partition.

冷凍室3の上部には、冷却貯蔵庫1の冷却装置16を構成する冷凍室蒸発器5が配設されており、この冷凍室蒸発器5及びその前側近傍に取り付けられた冷凍室送風機7F(図5)により、冷凍室3内は所定の冷凍室冷却温度範囲に冷却される。また、冷蔵室4の上部にも同じく冷却装置16を構成する冷蔵室蒸発器6が配設されており、この冷蔵室蒸発器6及びその前側近傍に取り付けられた冷蔵室送風機7Rにより、冷蔵室4内は所定の冷蔵室冷却温度範囲に冷却される。尚、冷凍室3、冷蔵室4の配置や容積比率は、これに限定されるものではなく、相互に冷気の流通が不能とされていれば良い。   The freezer compartment evaporator 5 which comprises the cooling device 16 of the cooling storage 1 is arrange | positioned at the upper part of the freezer compartment 3, This freezer compartment evaporator 5 and the freezer compartment blower 7F (FIG. 7) attached to the front side vicinity. 5), the inside of the freezer compartment 3 is cooled to a predetermined freezer compartment cooling temperature range. Further, a refrigeration room evaporator 6 constituting the cooling device 16 is also arranged at the upper part of the refrigeration room 4, and the refrigeration room is blown by the refrigeration room evaporator 6 and a refrigeration room blower 7R attached in the vicinity of the front side thereof. The inside of 4 is cooled to a predetermined refrigerator compartment cooling temperature range. In addition, arrangement | positioning and volume ratio of the freezer compartment 3 and the refrigerator compartment 4 are not limited to this, The flow of cold air should just be made impossible mutually.

ここで、図2は断熱箱体2の他側(向かって右側)に位置する冷蔵室4側の冷却貯蔵庫1の縦断側面図を示しており、当該図中において冷蔵室蒸発器6及び冷蔵室送風機7Rの下方に取り付けられた20は、冷蔵室蒸発器6が配置された冷却室21と冷蔵室4とを区画して冷蔵室蒸発器6からのドレン水を受けて排出するためのアルミニウム製のドレンパンである。このドレンパン20部分の詳細構造を図3の拡大図に示す。この図において50はドレンパン20の下側に配置された樹脂製の蒸発器カバーである。これらドレンパン20及び蒸発器カバー50は後方が開放されている。また、冷蔵室送風機7Rはファンケース55内に収納されており、当該冷蔵室送風機7Rの下側に対応する部分のドレンパン20及び蒸発器カバー50は開口し、特に冷蔵室送風機7Rに対応する部分の蒸発器カバー50はスリット状のファンカバー50Aとされている。そして、冷蔵室送風機7Rによって冷蔵室4内から冷却室21に吸い込まれた冷気は、冷蔵室蒸発器6と熱交換した後、冷却室21後方から冷蔵室4内に吐出される。   Here, FIG. 2 shows a vertical side view of the cooling storage 1 on the side of the refrigeration room 4 located on the other side (right side) of the heat insulation box 2, in which the refrigeration room evaporator 6 and the refrigeration room. 20 attached below the blower 7R is made of aluminum for partitioning the cooling chamber 21 where the refrigerator compartment evaporator 6 is disposed and the refrigerator compartment 4 to receive and discharge drain water from the refrigerator compartment evaporator 6. The drain pan. The detailed structure of the drain pan 20 is shown in the enlarged view of FIG. In this figure, reference numeral 50 denotes a resin evaporator cover disposed below the drain pan 20. The drain pan 20 and the evaporator cover 50 are open at the rear. Further, the refrigerator compartment fan 7R is housed in the fan case 55, and the drain pan 20 and the evaporator cover 50 corresponding to the lower side of the refrigerator compartment fan 7R are opened, and particularly the part corresponding to the refrigerator compartment fan 7R. The evaporator cover 50 is a slit-shaped fan cover 50A. Then, the cold air sucked into the cooling chamber 21 from the inside of the refrigerator compartment 4 by the refrigerator compartment fan 7 </ b> R exchanges heat with the refrigerator compartment evaporator 6, and then is discharged into the refrigerator compartment 4 from the rear of the cooling chamber 21.

尚、当該ドレンパン20、蒸発器カバー50、ファンケース55及び冷却室21の構成は、図示しないが冷凍室3における冷凍室蒸発器5、冷凍室送風機7Fについても同様とされている。   The drain pan 20, the evaporator cover 50, the fan case 55, and the cooling chamber 21 are configured in the same manner for the freezer evaporator 5 and the freezer blower 7F in the freezer compartment 3, although not shown.

そして、断熱箱体2の天面には、前面、両側面、後面を構成するパネル11にて機械室12が画成されており、この機械室12内には、上記各蒸発器5、6と共に冷却装置16を構成する圧縮機13や凝縮器14、更には、凝縮器用送風機15等が配設される。   A machine room 12 is defined on the top surface of the heat insulation box 2 by a panel 11 constituting a front surface, both side surfaces, and a rear surface, and the evaporators 5, 6 are contained in the machine room 12. At the same time, a compressor 13 and a condenser 14 that constitute the cooling device 16 and a condenser blower 15 and the like are disposed.

また、冷凍室蒸発器5には当該冷凍室蒸発器5への着霜を融解して霜取を行うための冷凍室霜取ヒータ46が取り付けられ、更に当該冷凍室蒸発器5の所定の霜取復帰温度(例えば+10℃)を検出するための冷凍室霜取復帰温度センサ41が取り付けられている。更に、冷凍室蒸発器5下側に位置するドレンパン20には当該ドレンパン20及び冷凍室送風機7Fの氷結を融解、若しくは、融解に寄与する氷結融解ヒータとして機能する冷凍室ドレンパンヒータ48(図5)が取り付けられており、冷凍室送風機7Fが取り付けられたファンケース55には、これも冷凍室送風機7Fの氷結を融解、若しくは、融解に寄与する氷結融解ヒータとして機能する冷凍室ファンケースヒータ49が取り付けられている。   The freezer compartment evaporator 5 is provided with a freezer compartment defrosting heater 46 for melting the frost on the freezer compartment evaporator 5 and performing defrosting. A freezer compartment defrosting temperature sensor 41 for detecting the recovery temperature (for example, + 10 ° C.) is attached. Further, the drain pan 20 located below the freezer evaporator 5 has a freezer drain pan heater 48 (FIG. 5) that functions as an ice melting heater that melts or contributes to the freezing of the drain pan 20 and the freezer blower 7F. Is attached to the fan case 55 to which the freezer compartment fan 7F is attached, and a freezer compartment fan case heater 49 that functions as an ice melting and melting heater that also melts or contributes to freezing of the freezer compartment fan 7F. It is attached.

一方、冷蔵室蒸発器6には当該冷蔵室蒸発器6への着霜を融解して霜取を行うための冷蔵室霜取ヒータ47が取り付けられ、更に当該冷蔵室蒸発器6の所定の霜取復帰温度(例えば+10℃)を検出するための冷蔵室霜取復帰温度センサ42が取り付けられている。更に、冷蔵室蒸発器6下側に位置するドレンパン20の裏(下)面には当該ドレンパン20及び冷蔵室送風機7Rの氷結を融解、若しくは、融解に寄与する氷結融解ヒータとして機能する冷蔵室ドレンパンヒータ51が取り付けられており、冷蔵室送風機7Rが取り付けられたファンケース55には、これも冷蔵室送風機7Rの氷結を融解、若しくは、融解に寄与する氷結融解ヒータとして機能する冷蔵室ファンケースヒータ52が取り付けられている。   On the other hand, the refrigerator compartment evaporator 6 is provided with a refrigerator compartment defrost heater 47 for melting and defrosting the frost on the refrigerator compartment evaporator 6, and further, a predetermined frost of the refrigerator compartment evaporator 6. A refrigerating room defrosting temperature sensor 42 for detecting the recovery temperature (for example, + 10 ° C.) is attached. Further, on the back (lower) surface of the drain pan 20 located on the lower side of the refrigerating room evaporator 6, the refrigerating room drain pan functioning as a freezing and melting heater that melts or contributes to the freezing of the drain pan 20 and the refrigerating room blower 7R. The fan case 55 to which the heater 51 is attached and the refrigerator compartment fan 7R is attached to the refrigerator compartment fan case heater that also functions as an ice melting and melting heater that melts or contributes to the melting of the refrigerator compartment fan 7R. 52 is attached.

更に、仕切壁2A、2Bの冷蔵室4側の面の内側には本発明におけるヒータとしての冷蔵室結露防止ヒータ53が取り付けられている。この冷蔵室結露防止ヒータ53は、仕切壁2A、2Bの冷蔵室4側の面を加熱するヒータであり、温度の低い冷凍室3からの冷却作用により、仕切壁2A、2Bの冷蔵室4側の面に結露が発生することを防止するものである。   Furthermore, a refrigerator compartment condensation prevention heater 53 as a heater in the present invention is attached to the inside of the surface of the partition walls 2A, 2B on the refrigerator compartment 4 side. The refrigerating room condensation prevention heater 53 is a heater that heats the surface of the partition walls 2A and 2B on the side of the refrigerating room 4 and by the cooling action from the freezer compartment 3 having a low temperature, the refrigerating room 4 side of the partition walls 2A and 2B. This prevents the occurrence of condensation on the surface.

ここで、図4の冷媒回路図を参照して冷却貯蔵庫1の冷媒回路について説明する。圧縮機13の冷媒吐出側に凝縮器14が接続され、この凝縮器14の冷媒下流側には、上記冷凍室3を冷却する冷凍室蒸発器5と、冷蔵室4を冷却する冷蔵室蒸発器6がそれぞれ減圧手段としてのキャピラリチューブ18、19を介して接続されている。各キャピラリチューブ18、19は、それぞれ冷凍室3、又は、冷蔵室4における蒸発温度を考慮し、任意の口径、長さのものに選定されている。   Here, the refrigerant circuit of the cooling storage 1 will be described with reference to the refrigerant circuit diagram of FIG. 4. A condenser 14 is connected to the refrigerant discharge side of the compressor 13, and a freezer compartment evaporator 5 that cools the freezer compartment 3 and a refrigerator compartment evaporator that cools the refrigerator compartment 4 are disposed downstream of the condenser 14. 6 are connected via capillary tubes 18 and 19 as decompression means. Each capillary tube 18 and 19 is selected to have an arbitrary diameter and length in consideration of the evaporation temperature in the freezer compartment 3 or the refrigerator compartment 4.

本実施例では、各蒸発器5、6への冷媒供給を制御する流路切換手段としての三方弁17により、圧縮機13にて圧縮された冷媒をキャピラリチューブ18を介して冷凍室蒸発器5、若しくは、キャピラリチューブ19を介して冷蔵室蒸発器6に分配供給可能とされる。即ち、三方弁17を切換制御することによって、各蒸発器5、6の内の何れか一方のみに選択的に冷媒を供給する状態と、冷凍室蒸発器5及び冷蔵室蒸発器6の双方に冷媒を供給する状態とを実現可能とされる。   In this embodiment, the refrigerant compressed by the compressor 13 is passed through the capillary tube 18 through the capillary tube 18 by the three-way valve 17 as a flow path switching means for controlling the refrigerant supply to the evaporators 5 and 6. Alternatively, it can be distributed and supplied to the refrigerator compartment evaporator 6 via the capillary tube 19. That is, by switching and controlling the three-way valve 17, the refrigerant is selectively supplied to only one of the evaporators 5 and 6, and both the freezer evaporator 5 and the refrigerator compartment evaporator 6 are supplied. The state of supplying the refrigerant can be realized.

また、本実施例では、三方弁17によって各蒸発器5、6のうちの何れか一方のみに冷媒が供給された場合、必ず、供給された側の蒸発器が設けられた室の温度が所定時間内に冷却温度範囲から下に逸脱し、逸脱した方の蒸発器5、又は、6への冷媒の流入が停止(サーモオフ)される設定とされているものとする。   In this embodiment, when the refrigerant is supplied to only one of the evaporators 5 and 6 by the three-way valve 17, the temperature of the chamber in which the supplied evaporator is provided is always predetermined. It is assumed that the cooling temperature is deviated from the cooling temperature range in time and the flow of refrigerant into the deviating evaporator 5 or 6 is stopped (thermo-off).

そして、各蒸発器5、6の冷媒流出側に接続された冷媒配管22、23は、対応するそれぞれのキャピラリチューブ18、19と熱交換可能に配設されて、その端部は合流部24に接続される。当該合流部24には、両蒸発器5、6から流出され、合流された冷媒を圧縮機13に帰還させる吸込配管25が接続される。   And the refrigerant | coolant piping 22 and 23 connected to the refrigerant | coolant outflow side of each evaporator 5 and 6 is arrange | positioned so that heat exchange with each corresponding capillary tube 18 and 19 is carried out, The edge part serves as the junction part 24. Connected. The junction 24 is connected to a suction pipe 25 that returns the refrigerant that has flowed out of the evaporators 5 and 6 and returned to the compressor 13.

次に、図5の電気回路のブロック図を参照して冷却貯蔵庫1の制御手段を構成する制御装置40について説明する。制御装置40は汎用のマイクロコンピュータにより構成されており、記憶手段としてのメモリ26を備え、時限手段としてのタイマ27等をその機能として有している。   Next, the control apparatus 40 which comprises the control means of the cooling storage 1 is demonstrated with reference to the block diagram of the electric circuit of FIG. The control device 40 is constituted by a general-purpose microcomputer, and includes a memory 26 as a storage unit, and has a timer 27 as a time limit unit as its function.

そして、制御装置40の入力側には、冷凍室3、冷蔵室4の設定温度TF、TRや当該設定温度を含む冷却温度範囲を任意に設定可能とするコントロールパネル(入力手段)28と、冷凍室3の温度を検出する冷凍室温度センサ(冷凍室温度検出手段。貯蔵室温度センサ)29と、冷蔵室4の温度を検出する冷蔵室温度センサ(冷蔵室温度検出手段。貯蔵室温度センサ)30と、外気温度を検出する外気温度センサ(外気温度検出手段)32が接続されている。尚、コントロールパネル28は冷凍室3の設定温度TFを、−20℃を中心として例えば−22℃〜−18℃の冷凍温度範囲で任意に設定可能とされており、冷蔵室4の設定温度TRは、+4℃を中心として例えば+2℃〜+6℃の冷蔵温度範囲で任意に設定可能とされている。また、コントロールパネル28では、上記以外にも各種設定を変更することが可能であり、また、各種情報や警報の表示を行うための表示器(警報手段)も備えている。   On the input side of the control device 40, a control panel (input means) 28 that can arbitrarily set the set temperatures TF and TR of the freezer compartment 3 and the refrigerator compartment 4 and a cooling temperature range including the set temperature, a freezer A freezer temperature sensor (freezer temperature detection means; storage room temperature sensor) 29 for detecting the temperature of the room 3 and a refrigerating room temperature sensor (refrigeration room temperature detection means. Storage room temperature sensor) for detecting the temperature of the refrigerating room 4. 30 and an outside air temperature sensor (outside air temperature detecting means) 32 for detecting the outside air temperature are connected. The control panel 28 can arbitrarily set the set temperature TF of the freezer compartment 3 within a freezing temperature range of, for example, −22 ° C. to −18 ° C. centering on −20 ° C., and the set temperature TR of the refrigerator compartment 4. Can be arbitrarily set within a refrigeration temperature range of, for example, + 2 ° C. to + 6 ° C., centering on + 4 ° C. In addition to the above, the control panel 28 can change various settings, and also includes a display (alarm means) for displaying various information and alarms.

また、制御装置40の出力側には、圧縮機13と、三方弁17と、冷凍室送風機7Fと、冷蔵室送風機7Rと、凝縮器用送風機15が接続されている。本実施例では、圧縮機13(圧縮機のモータ)は、インバータ装置31を介して接続されており、これによって制御装置40は圧縮機13の運転と停止に加え、圧縮機13の運転周波数を下限値(G1:例えば30Hz)から上限値(G2:例えば80Hz)の間で任意に、リニアに制御可能とされる。   Moreover, the compressor 13, the three-way valve 17, the freezer compartment blower 7F, the refrigerating compartment blower 7R, and the condenser blower 15 are connected to the output side of the control device 40. In this embodiment, the compressor 13 (compressor motor) is connected via the inverter device 31, whereby the control device 40 sets the operation frequency of the compressor 13 in addition to the operation and stop of the compressor 13. It can be arbitrarily controlled linearly between the lower limit value (G1: for example 30 Hz) and the upper limit value (G2: for example 80 Hz).

更に、制御装置40の入力側には、前記冷凍室霜取復帰温度センサ41と、冷蔵室霜取復帰温度センサ42と、冷凍室送風機7Fの通電電流を検出する冷凍室送風機カレントトランス43と、冷蔵室送風機7Rの通電電流を検出する冷蔵室送風機カレントトランス44が接続されている。更にまた、制御装置40の出力側には、前記冷凍室霜取ヒータ46と、冷蔵室霜取ヒータ47と、冷蔵室結露防止ヒータ53と、冷凍室ドレンパンヒータ48と、冷凍室ファンケースヒータ49と、冷蔵室ドレンパンヒータ51と、冷蔵室ファンケースヒータ52が接続されている。   Further, on the input side of the control device 40, the freezing room defrosting return temperature sensor 41, the refrigerating room defrosting return temperature sensor 42, the freezing room blower current transformer 43 for detecting the energization current of the freezing room blower 7F, A cold room blower current transformer 44 is connected to detect the energization current of the cold room blower 7R. Furthermore, on the output side of the control device 40, the freezer compartment defrost heater 46, the refrigerator compartment defrost heater 47, the refrigerator compartment condensation prevention heater 53, the freezer compartment drain pan heater 48, and the freezer compartment fan case heater 49. The refrigerator compartment drain pan heater 51 and the refrigerator compartment fan case heater 52 are connected.

制御装置40は、実施例では半導体スイッチング素子を用いて、これらヒータ46、47、48、49、51、52、53の通電率を0%〜100%の間でデューティー制御可能とされている。即ち、制御装置40は後述する通常冷却運転中に、所定時間毎に圧縮機13を停止し、両霜取ヒータ46、47、両ドレンパンヒータ48、51、両ファンケースヒータ49、52に通電して両蒸発器5、6の霜取運転を実行する。そして、各蒸発器5、6の温度が所定の霜取復帰温度に上昇したら霜取運転を終了する。また、制御装置40は冷蔵室結露防止ヒータ53に通電して仕切壁2A、2Bの冷蔵室4側の面への結露の発生を防止する。この冷蔵室結露防止ヒータ53の制御については後に詳述する。   In the embodiment, the control device 40 can control the duty ratio of the heaters 46, 47, 48, 49, 51, 52, 53 between 0% and 100% using a semiconductor switching element. That is, the control device 40 stops the compressor 13 every predetermined time during the normal cooling operation described later, and energizes both defrost heaters 46 and 47, both drain pan heaters 48 and 51, and both fan case heaters 49 and 52. The defrosting operation of both evaporators 5 and 6 is executed. And if the temperature of each evaporator 5 and 6 rises to predetermined defrosting return temperature, a defrost operation will be complete | finished. Further, the control device 40 energizes the refrigerating room condensation prevention heater 53 to prevent the occurrence of condensation on the surface of the partition walls 2A, 2B on the refrigerating room 4 side. The control of the refrigerator compartment condensation prevention heater 53 will be described in detail later.

以上の構成で、次にフローチャートを参照しながら実施例の冷却貯蔵庫1の動作について説明する。   With the above configuration, the operation of the cooling storage 1 of the embodiment will be described next with reference to the flowchart.

(1)通常冷却運転
制御装置40は、電源が投入されると圧縮機13と各送風機7F、7R、15を運転して通常冷却運転を開始する。図6のフローチャートはこの通常冷却運転を示しており、制御装置40はこの通常冷却運転により冷凍室3及び冷蔵室4のそれぞれが冷却温度範囲となるように圧縮機13と三方弁17の制御を行う。
(1) Normal cooling operation When the power is turned on, the control device 40 starts the normal cooling operation by operating the compressor 13 and each of the fans 7F, 7R, and 15. The flowchart of FIG. 6 shows this normal cooling operation, and the control device 40 controls the compressor 13 and the three-way valve 17 so that each of the freezer compartment 3 and the refrigerator compartment 4 falls within the cooling temperature range by this normal cooling operation. Do.

即ち、コントロールパネル28にて冷凍室3の設定温度TF(例えば、−20℃)が設定されると、当該設定温度TFを含む該設定温度TFの上下の範囲で冷凍室冷却温度範囲が設定される。この場合、冷凍室冷却温度範囲は、例えば冷凍室下限温度TFL(設定温度TF−2℃)以上、冷凍室上限温度TFH(設定温度TF+2℃)以下の温度範囲となる。同様にコントロールパネル28にて冷蔵室4の設定温度TR(例えば、+4℃)が設定されると、当該設定温度TRを含む該設定温度TRの上下の範囲で冷蔵室冷却温度範囲が設定される。この場合、冷蔵室冷却温度範囲は、例えば冷蔵室下限温度TRL(設定温度TR−2℃)以上、冷蔵室上限温度TRH(設定温度TR+2℃)以下の温度範囲となる。尚、上記ディファレンシャル温度(2℃)はコントロールパネル28にて変更することができる。   That is, when the set temperature TF (for example, −20 ° C.) of the freezer compartment 3 is set by the control panel 28, the freezer compartment cooling temperature range is set within a range above and below the set temperature TF including the set temperature TF. The In this case, the freezer compartment cooling temperature range is, for example, a temperature range between the freezer compartment lower limit temperature TFL (set temperature TF-2 ° C.) and the freezer compartment upper limit temperature TFH (set temperature TF + 2 ° C.). Similarly, when the set temperature TR (for example, + 4 ° C.) of the refrigerator compartment 4 is set on the control panel 28, the refrigerator compartment cooling temperature range is set within the range above and below the preset temperature TR including the preset temperature TR. . In this case, the refrigerating room cooling temperature range is, for example, a temperature range of the refrigerating room lower limit temperature TRL (set temperature TR-2 ° C.) or higher and the refrigerating room upper limit temperature TRH (set temperature TR + 2 ° C.) or lower. The differential temperature (2 ° C.) can be changed by the control panel 28.

三方弁17が両方の蒸発器5、6に冷媒を供給する状態であるものとすると、圧縮機13から吐出された高温冷媒は、凝縮器14にて凝縮された後、三方弁17を経て冷凍室蒸発器5側のキャピラリチューブ18と、冷蔵室蒸発器6側のキャピラリチューブ19とに分流されて流入する。各キャピラリチューブ18、19にて減圧された冷媒は、それぞれ対応する蒸発器5、6に流入し、そこで蒸発して冷却作用を発揮する。   Assuming that the three-way valve 17 is in a state of supplying refrigerant to both the evaporators 5 and 6, the high-temperature refrigerant discharged from the compressor 13 is condensed by the condenser 14 and then refrigerated via the three-way valve 17. The flow is divided and flows into the capillary tube 18 on the chamber evaporator 5 side and the capillary tube 19 on the refrigerator compartment evaporator 6 side. The refrigerant decompressed by the capillary tubes 18 and 19 flows into the corresponding evaporators 5 and 6, respectively, where they evaporate and exhibit a cooling action.

また、各送風機7F、7Rが運転されると、下方の冷凍室3、冷蔵室4から冷気が吸引され、後方の蒸発器5、6に吐出される。この冷気は蒸発器5、6とそれぞれ熱交換し、冷却された後、ドレンパン20の後方から各室3、4に吐出される。これにより、冷凍室3内及び冷蔵室4内をそれぞれ冷却する。   Further, when each blower 7F, 7R is operated, cold air is sucked from the freezer compartment 3 and the refrigerator compartment 4 below and discharged to the evaporators 5 and 6 at the rear. The cold air exchanges heat with the evaporators 5 and 6, and after cooling, is discharged from the back of the drain pan 20 into the chambers 3 and 4. Thereby, the inside of the freezer compartment 3 and the refrigerator compartment 4 are each cooled.

各蒸発器5、6にて蒸発した低温冷媒は、蒸発器5、6から流出した後、各冷媒配管22、23にそれぞれ流入し、キャピラリチューブ18、19の比較的高い温度の冷媒が流れる部分と熱交換した後、合流部24にて合流して吸込配管25より圧縮機13に帰還する。   The low-temperature refrigerant evaporated in the evaporators 5 and 6 flows out of the evaporators 5 and 6 and then flows into the refrigerant pipes 22 and 23, respectively, where the relatively high temperature refrigerant flows in the capillary tubes 18 and 19. After the heat exchange, the merging portion 24 joins and returns to the compressor 13 through the suction pipe 25.

制御装置40は図6のステップS1で冷凍室温度センサ29が検出する冷凍室3の温度が前記冷凍室上限温度TFH(設定温度TF+2℃)以上か否か判断し、以上であればステップS8に進み、今度は冷蔵室温度センサ30が検出する冷蔵室4の温度が前記冷蔵室上限温度TRH(設定温度TR+2℃)以上か否か判断し、以上であればステップS11に進んで三方弁17を両蒸発器5、6に冷媒を流す状態に制御する。また、このステップS11で制御装置40は、冷凍室3と冷蔵室4の現在の温度と設定温度TF、TRとの偏差eに基づくPID演算結果から操作量を決定し(冷凍室と冷蔵室で操作量の大きい方)圧縮機13の運転周波数を制御する(PID制御)。   The controller 40 determines whether or not the temperature of the freezer compartment 3 detected by the freezer temperature sensor 29 in step S1 of FIG. 6 is equal to or higher than the freezer compartment upper limit temperature TFH (set temperature TF + 2 ° C.). Next, it is determined whether the temperature of the refrigerator compartment 4 detected by the refrigerator compartment temperature sensor 30 is equal to or higher than the refrigerator compartment upper limit temperature TRH (set temperature TR + 2 ° C.). If so, the process proceeds to step S11 and the three-way valve 17 is turned on. Control is performed so that the refrigerant flows through both the evaporators 5 and 6. In step S11, the control device 40 determines the operation amount from the PID calculation result based on the deviation e between the current temperature of the freezer compartment 3 and the refrigerator compartment 4 and the set temperature TF, TR (in the freezer compartment and the refrigerator compartment). The operation frequency of the compressor 13 is controlled (PID control).

尚、制御装置40はステップS8で冷蔵室4の温度が冷蔵室上限温度TRHより低い場合はステップS9に進み、冷蔵室4の温度が前記冷蔵室下限温度TRL以下か否か判断し、以下である場合にはステップS13に進んで三方弁17を冷凍室蒸発器5のみに流す状態に切り換える。また、圧縮機13は冷凍室3の温度に基づくPID制御となる。尚、ステップS9で冷蔵室4の温度が冷蔵室下限温度TRLより高い場合には、制御装置40はステップS10に進み、現在冷蔵室蒸発器6に冷媒を流して冷却中か否か判断し、流している場合(即ち、下限温度まで温度を下げている途中)にはステップS11に進み、流していない場合(即ち、上限温度まで温度が上がる途中)にはステップS13に進む。   When the temperature of the refrigerator compartment 4 is lower than the refrigerator upper limit temperature TRH in step S8, the control device 40 proceeds to step S9, determines whether or not the temperature of the refrigerator compartment 4 is equal to or lower than the refrigerator compartment lower limit temperature TRL. In some cases, the process proceeds to step S13, and the three-way valve 17 is switched to a state in which only the freezer evaporator 5 is allowed to flow. Further, the compressor 13 performs PID control based on the temperature of the freezer compartment 3. If the temperature of the refrigerator compartment 4 is higher than the refrigerator compartment lower limit temperature TRL in step S9, the control device 40 proceeds to step S10 and determines whether or not the refrigerant is currently being cooled by flowing the refrigerant into the refrigerator compartment evaporator 6, If it is flowing (that is, while the temperature is being lowered to the lower limit temperature), the process proceeds to step S11. If it is not flowing (that is, the temperature is being increased to the upper limit temperature), the process proceeds to step S13.

図6のステップS1で冷凍室3の温度が冷凍室上限温度TFH(設定温度TF+2℃)より低い場合、ステップS2に進み、冷凍室3の温度が前記冷凍室下限温度TFL(設定温度TF−2℃)以下か否か判断し、以下であればステップS4に進み、冷蔵室4の温度が冷蔵室上限温度TRH(設定温度TR+2℃)以上か否か判断し、以上であればステップS12に進んで三方弁17を冷蔵室蒸発器6のみに冷媒を流す状態に制御する。また、このステップS12で制御装置40は冷蔵室4の温度に基づいて圧縮機13の運転周波数をPID制御する。   When the temperature of the freezer compartment 3 is lower than the freezer upper limit temperature TFH (set temperature TF + 2 ° C.) in step S1 of FIG. 6, the process proceeds to step S2, and the temperature of the freezer compartment 3 is changed to the freezer compartment lower limit temperature TFL (set temperature TF-2). If it is below, the process proceeds to step S4, and it is determined whether the temperature of the refrigerating room 4 is equal to or higher than the refrigerating room upper limit temperature TRH (set temperature TR + 2 ° C.). Then, the three-way valve 17 is controlled so as to allow the refrigerant to flow only into the refrigerator compartment evaporator 6. In step S <b> 12, the control device 40 performs PID control on the operating frequency of the compressor 13 based on the temperature of the refrigerator compartment 4.

また、制御装置40はステップS4で冷蔵室4の温度が冷蔵室上限温度TRHより低い場合はステップS5に進み、冷蔵室4の温度が冷蔵室下限温度TRL以下か否か判断し、以下である場合にはステップS7に進んで三方弁17を何れの蒸発器にも冷媒を流さない状態に閉じ、圧縮機13を停止する。尚、ステップS5で冷蔵室4の温度が冷蔵室下限温度TRLより高い場合には、制御装置40はステップS6に進み、現在冷蔵室蒸発器6に冷媒を流して冷却中か否か判断し、流している場合(即ち、下限温度まで温度を下げている途中)にはステップS12に進み、流していない場合(即ち、上限温度まで温度が上がる途中)にはステップS7に進む。   If the temperature of the refrigerator compartment 4 is lower than the refrigerator upper limit temperature TRH in step S4, the control device 40 proceeds to step S5, determines whether or not the temperature of the refrigerator compartment 4 is equal to or lower than the refrigerator compartment lower limit temperature TRL. In this case, the process proceeds to step S7, where the three-way valve 17 is closed so that no refrigerant flows through any of the evaporators, and the compressor 13 is stopped. When the temperature of the refrigerator compartment 4 is higher than the refrigerator compartment lower limit temperature TRL in step S5, the control device 40 proceeds to step S6 and determines whether or not the refrigerant is currently cooled by flowing the refrigerant into the refrigerator compartment evaporator 6, If it is flowing (that is, while the temperature is being lowered to the lower limit temperature), the process proceeds to step S12. If it is not flowing (that is, the temperature is being increased to the upper limit temperature), the process proceeds to step S7.

また、ステップS2で冷凍室3の温度が冷凍室下限温度TFL(設定温度TF−2℃)より高い場合、制御装置40はステップS3に進み、現在冷凍室蒸発器5に冷媒を流して冷却中か否か判断し、流している場合(即ち、下限温度まで温度を下げている途中)にはステップS8に進み、流していない場合(即ち、上限温度まで温度が上がる途中)にはステップS4に進む。このような圧縮機13と三方弁17の制御により、制御装置40は冷凍室3及び冷蔵室4の温度が前記冷凍室冷却温度範囲(設定温度TF:−20℃を中心とした−22℃〜−18℃の範囲)及び冷蔵室冷却温度範囲(設定温度TR:+4℃を中心とした2℃〜+6℃の範囲)にそれぞれ入るように制御する。   When the temperature of the freezer compartment 3 is higher than the freezer compartment lower limit temperature TFL (set temperature TF-2 ° C.) in step S2, the control device 40 proceeds to step S3 and is currently cooling by flowing the refrigerant into the freezer compartment evaporator 5. If it is flowing (that is, while the temperature is being lowered to the lower limit temperature), the process proceeds to step S8. If not flowing (that is, the temperature is being raised to the upper limit temperature), the process proceeds to step S4. move on. By controlling the compressor 13 and the three-way valve 17 as described above, the control device 40 allows the temperatures of the freezer compartment 3 and the refrigerator compartment 4 to be within the freezer compartment cooling temperature range (set temperature TF: −22 ° C. centering on −20 ° C. -18 ° C range) and refrigerator compartment cooling temperature range (set temperature TR: 2 ° C to + 6 ° C centered on + 4 ° C).

(2)冷蔵室結露防止ヒータの制御
制御装置40は上述したように冷凍室3を冷凍室冷却温度範囲に、冷蔵室4を冷蔵室冷却温度範囲にそれぞれ制御するので、前述したように仕切壁2A、2Bは冷蔵室4より温度の低い冷凍室3から冷却作用を受け、その冷蔵室4側の面は冷蔵室4の温度よりも低くなってしまう。そのため、そのままでは断熱扉9の開放時に冷蔵室4内に侵入した空気(外気)中の水分や冷蔵室4内に収納された物品から蒸散した水分が仕切壁2A、2Bの冷蔵室4側の面に結露となって付着する。この露はやがて冷凍室3及び各仕切壁2A、2Bの下側(下部全域)に構成されている下方の冷蔵室4内に滴となって落下するため、当該下方の冷蔵室4内に収納した物品が露で汚損されてしまう。
(2) Control of the refrigerator compartment condensation prevention heater As described above, the control device 40 controls the freezer compartment 3 to the freezer compartment cooling temperature range and the refrigerator compartment 4 to the refrigerator compartment cooling temperature range. 2A and 2B receive a cooling action from the freezer compartment 3 whose temperature is lower than that of the refrigerator compartment 4, and the surface of the refrigerator compartment 4 side becomes lower than the temperature of the refrigerator compartment 4. Therefore, as it is, moisture in the air (outside air) that has entered the refrigerating chamber 4 when the heat insulating door 9 is opened and water that has evaporated from the articles stored in the refrigerating chamber 4 are on the refrigerating chamber 4 side of the partition walls 2A and 2B. It adheres to the surface as condensation. Since this dew eventually drops as a drop in the freezer compartment 4 and the lower refrigerator compartment 4 formed on the lower side of the partition walls 2A and 2B (the entire lower part), it is stored in the lower refrigerator compartment 4. Will be soiled with dew.

一方で、冷凍室3と冷蔵室4を区画する仕切壁2A、2Bの冷蔵室4側の面への結露は、冷凍室3からの冷却作用によって発生するものであるから、冷凍室3と冷蔵室4との温度差に影響され、温度差が小さいほど発生し難くなる。また、冷却貯蔵庫1の外気温度が高い場合は、絶対湿度が高くなり、冷蔵室4に侵入する空気中に含まれる水分も多くなるため、仕切壁2A、2Bの冷蔵室4側の面に結露し易くなる。   On the other hand, the dew condensation on the surfaces of the partition walls 2A, 2B partitioning the freezer compartment 3 and the refrigerator compartment 4 on the side of the refrigerator compartment 4 is caused by the cooling action from the freezer compartment 3, so It is affected by the temperature difference with the chamber 4 and is less likely to occur as the temperature difference is smaller. Further, when the outside temperature of the cooling storage 1 is high, the absolute humidity increases, and the moisture contained in the air entering the refrigerator compartment 4 also increases, so dew condensation occurs on the surface of the partition walls 2A, 2B on the refrigerator compartment 4 side. It becomes easy to do.

そこで、制御装置40は冷蔵室結露防止ヒータ53に通電して発熱させ、各仕切壁2A、2Bの冷蔵室4側の面の温度が下がらないようにするものであるが、その場合、制御装置40は常時通電するのでは無く、実施例では冷凍室温度センサ29、冷蔵室温度センサ30及び外気温度センサ32の出力に基づき、冷凍室温度センサ29が検出する冷凍室3の温度と冷蔵室温度センサ30が検出する冷蔵室4の温度との差(温度差)と、外気温度センサ32が検出する外気温度に基づき、冷凍室3と冷蔵室4の温度差が小さいときは下げる方向で、外気温度が高いときには上げる方向で冷蔵室結露防止ヒータ53の通電率を制御する。   Therefore, the control device 40 energizes the refrigerating room condensation prevention heater 53 to generate heat so that the temperature of the surfaces of the partition walls 2A and 2B on the refrigerating room 4 side does not drop. 40 is not always energized, but in the embodiment, based on the outputs of the freezer temperature sensor 29, the refrigerator temperature sensor 30, and the outside air temperature sensor 32, the temperature of the freezer 3 and the refrigerator temperature detected by the freezer temperature sensor 29. Based on the difference (temperature difference) between the temperature of the refrigerating chamber 4 detected by the sensor 30 and the outside air temperature detected by the outside air temperature sensor 32, the outside air is reduced in the direction of decreasing when the temperature difference between the freezer compartment 3 and the refrigerating chamber 4 is small. When the temperature is high, the energization rate of the refrigerator compartment condensation prevention heater 53 is controlled in the direction of increasing.

具体的には、図7に示すように通電率を変更する。図7は制御装置40のメモリ26に予め設定された冷蔵室結露防止ヒータ53の通電率に関するデータを格納したテーブルである。実施例の場合、制御装置40は外気温度が+25℃(所定の低温度)以下の場合、冷凍室3と冷蔵室4との温度差(冷蔵室4の温度(R)−冷凍室3の温度(F)。以下同じ)が27℃以上の場合、冷蔵室結露防止ヒータ53の通電率を60%とする。また、温度差が10℃以上27℃未満の場合、通電率を30%に低下させる。更に、温度差が10℃(所定の値)未満の場合は通電率を更に0%に下げる。即ち、温度差が10℃(所定の値)より小さく、且つ、外気温度が+25℃(所定の低温度)以下の場合、制御装置40は冷蔵室結露防止ヒータ53への通電を停止(非通電)とする。   Specifically, the energization rate is changed as shown in FIG. FIG. 7 is a table in which data relating to the energization rate of the refrigerator compartment condensation prevention heater 53 set in advance in the memory 26 of the control device 40 is stored. In the case of the embodiment, when the outside air temperature is + 25 ° C. (predetermined low temperature) or less, the control device 40 has a temperature difference between the freezer compartment 3 and the refrigerator compartment 4 (temperature of the refrigerator compartment 4 (R) −temperature of the refrigerator compartment 3). (F). The same applies hereinafter) is 27 ° C. or higher, the energization rate of the refrigerator-dew condensation prevention heater 53 is set to 60%. Moreover, when a temperature difference is 10 degreeC or more and less than 27 degreeC, an electricity supply rate is reduced to 30%. Further, when the temperature difference is less than 10 ° C. (predetermined value), the energization rate is further reduced to 0%. That is, when the temperature difference is smaller than 10 ° C. (predetermined value) and the outside air temperature is + 25 ° C. (predetermined low temperature) or less, the control device 40 stops energizing the cold room dew condensation prevention heater 53 (non-energized) ).

また、外気温度が+25℃より高く、+35℃より低い場合、冷凍室3と冷蔵室4との温度差が27℃以上の場合、冷蔵室結露防止ヒータ53の通電率を80%とする。また、温度差が10℃以上27℃未満の場合、通電率を50%に低下させる。更に、温度差が10℃未満の場合は通電率を更に20%に下げる。即ち、外気温度が+25℃以下のときよりも全体的に通電率を上昇させる。   When the outside air temperature is higher than + 25 ° C. and lower than + 35 ° C., and the temperature difference between the freezer compartment 3 and the refrigerator compartment 4 is 27 ° C. or more, the energization rate of the refrigerator compartment condensation prevention heater 53 is set to 80%. Moreover, when a temperature difference is 10 degreeC or more and less than 27 degreeC, an electricity supply rate is reduced to 50%. Furthermore, when the temperature difference is less than 10 ° C., the energization rate is further reduced to 20%. That is, the energization rate is increased as a whole as compared with when the outside air temperature is + 25 ° C. or lower.

更に、外気温度が+35℃以上の場合、冷凍室3と冷蔵室4との温度差が27℃以上の場合、冷蔵室結露防止ヒータ53の通電率を100%、即ち、連続通電とする。また、温度差が10℃以上27℃未満の場合、通電率を70%に低下させる。更に、温度差が10℃未満の場合は通電率を更に40%に下げる。即ち、外気温度が+25℃より高く、+35℃より低いときよりも全体的に通電率を上昇させる。   Further, when the outside air temperature is + 35 ° C. or higher, and the temperature difference between the freezer compartment 3 and the refrigerator compartment 4 is 27 ° C. or higher, the energization rate of the refrigerator compartment dew condensation prevention heater 53 is set to 100%, that is, continuous energization. Moreover, when a temperature difference is 10 degreeC or more and less than 27 degreeC, an electricity supply rate is reduced to 70%. Furthermore, when the temperature difference is less than 10 ° C., the energization rate is further reduced to 40%. That is, the overall energization rate is increased as compared to when the outside air temperature is higher than + 25 ° C. and lower than + 35 ° C.

このように本発明では制御装置40が、冷凍室温度センサ29と冷蔵室温度センサ30が検出する冷凍室3と冷蔵室4の温度差に基づき、当該温度差が小さいときは下げる方向で冷蔵室結露防止ヒータ53の通電率を制御するようにしたので、冷凍室3と冷蔵室4との温度差が小さく、仕切壁2A、2Bの冷蔵室4側の面に結露が発生し難い状況の場合は、制御装置40により冷蔵室結露防止ヒータ53の通電率が下げられることになる。   As described above, in the present invention, the control device 40 is based on the temperature difference between the freezer compartment 3 and the refrigerator compartment 4 detected by the freezer compartment temperature sensor 29 and the refrigerator compartment temperature sensor 30, and when the temperature difference is small, the refrigerator compartment is lowered. Since the power supply rate of the dew condensation prevention heater 53 is controlled, the temperature difference between the freezer compartment 3 and the refrigerator compartment 4 is small, and it is difficult for condensation to occur on the surface of the partition walls 2A and 2B on the refrigerator compartment 4 side. As a result, the control device 40 reduces the energization rate of the refrigerating room condensation prevention heater 53.

これにより、仕切壁2A、2Bの冷蔵室4側の面への結露を効果的に解消しながら、冷蔵室結露防止ヒータ53の消費電力を削減することが可能となる。また、その分冷蔵室4内の負荷(ヒータ53の発熱)も抑制されることになるので、これらにより、省エネルギーに寄与することができるようになる。   Accordingly, it is possible to reduce power consumption of the refrigerator compartment dew condensation prevention heater 53 while effectively eliminating condensation on the surface of the partition walls 2A and 2B on the refrigerator compartment 4 side. Moreover, since the load in the refrigerator compartment 4 (heat generation of the heater 53) is also suppressed accordingly, it is possible to contribute to energy saving.

また、制御装置40は外気温度センサ32が検出する外気温度が高いときに上げる方向で冷蔵室結露防止ヒータ53の通電率を制御するようにしたので、外気温度が低い状況では冷蔵室結露防止ヒータ53の通電率を抑えておき、外気温度が高くなって仕切壁2A、2Bの冷蔵室4側の面への結露が発生し易くなった場合に、冷蔵室結露防止ヒータ53の通電率が上げられることになる。これにより、仕切壁2A、2Bの冷蔵室4側の面への結露を効果的に解消しながら、冷蔵室結露防止ヒータ53の消費電力をより的確に削減することが可能となり、一層の省エネ化を実現することができるようになる。   Further, since the controller 40 controls the energization rate of the refrigerator compartment dew condensation prevention heater 53 in a direction to increase when the outside air temperature detected by the outside air temperature sensor 32 is high, the refrigerator cold room condensation prevention heater in a situation where the outside air temperature is low. When the energization rate of the refrigerating room dew condensation prevention heater 53 is increased when the outside air temperature becomes high and condensation easily occurs on the surface of the partition walls 2A and 2B on the refrigerating room 4 side. Will be. As a result, it is possible to more accurately reduce the power consumption of the refrigerating room dew condensation prevention heater 53 while effectively eliminating the dew condensation on the surface of the partition walls 2A and 2B on the refrigerating room 4 side. Can be realized.

更に、制御装置40は、冷凍室3と冷蔵室4の温度差が所定の値(前記10℃)より小さく、且つ、外気温度が所定の低温度(前記+25℃)以下である場合、冷蔵室結露防止ヒータ53への通電を停止するので、仕切壁2A、2Bの冷蔵室4側の面への結露が最も発生し難い状況下では冷蔵室結露防止ヒータ53への通電を断ち、より一層の省エネ化を図ることが可能となる。   Further, when the temperature difference between the freezer compartment 3 and the refrigerator compartment 4 is smaller than a predetermined value (the above 10 ° C.) and the outside air temperature is a predetermined low temperature (the above + 25 ° C.) or less, the control device 40 Since the power supply to the dew condensation prevention heater 53 is stopped, the power supply to the refrigerating room dew condensation prevention heater 53 is cut off in a situation where condensation on the surface of the partition walls 2A and 2B on the side of the refrigerating room 4 is most unlikely to occur. Energy saving can be achieved.

また、実施例のように冷凍室3と冷蔵室4を冷凍室蒸発器5と冷蔵室蒸発器6によりそれぞれ冷却する冷却貯蔵庫1においては、冷凍室3と冷蔵室4がそれぞれの冷却温度範囲に精度良く冷却されることになる。従って、本発明のように温度差に基づいて冷蔵室結露防止ヒータ53の通電率を制御することは、省エネ上極めて有効なものとなる。   Moreover, in the cooling storage 1 which cools the freezer compartment 3 and the refrigerator compartment 4 by the freezer evaporator 5 and the refrigerator compartment evaporator 6 like an Example, respectively, the freezer compartment 3 and the refrigerator compartment 4 are in each cooling temperature range. It will be cooled accurately. Therefore, controlling the energization rate of the refrigerator compartment condensation prevention heater 53 based on the temperature difference as in the present invention is extremely effective in terms of energy saving.

尚、実施例では冷凍室3と冷蔵室4との温度差と外気温度の双方に基づいて冷蔵室結露防止ヒータ53の通電率を制御するようにしたが、請求項1の発明では冷凍室3と冷蔵室4の温度差のみでも良く、請求項4の発明では外気温度のみでも良い。   In the embodiment, the energization rate of the refrigerator compartment condensation prevention heater 53 is controlled on the basis of both the temperature difference between the freezer compartment 3 and the refrigerator compartment 4 and the outside air temperature. Only the temperature difference between the refrigerator compartment 4 and the refrigerator compartment 4 may be used. In the invention of claim 4, only the outside air temperature may be used.

また、実施例では冷凍室3及び冷蔵室4のそれぞれに冷凍室蒸発器5及び冷蔵室蒸発器6が配設された冷却貯蔵庫で本発明を説明したが、請求項5以外の発明ではそれに限らず、単一の蒸発器と熱交換した冷気を例えば冷凍室に供給し、冷蔵室へはダンパ等で供給量を調整された冷気を供給するものであっても良い。その場合は、単一の蒸発器で各室を冷却することになるが、係る場合における蒸発器への冷媒の供給/停止は、圧縮機13の運転/停止によって行うものも本発明に含まれるものとする。   Further, in the embodiment, the present invention has been described with the cooling storages in which the freezing room evaporator 5 and the refrigerating room evaporator 6 are disposed in the freezing room 3 and the refrigerating room 4, respectively, but the invention other than claim 5 is not limited thereto. Instead, the cool air exchanged with a single evaporator may be supplied to, for example, a freezing room, and the cold air whose supply amount is adjusted by a damper or the like may be supplied to the refrigerating room. In that case, each chamber is cooled by a single evaporator. In such a case, supply / stop of the refrigerant to the evaporator is also included in the present invention by performing operation / stop of the compressor 13. Shall.

また、実施例では断熱箱体2内の向かって左上のみに冷凍室3を構成したが、それに限らず、断熱箱体2内を水平な仕切壁にて上下に完全に区画し、冷凍室と冷蔵室を上下に画成した冷却貯蔵庫にも本発明は有効である。   Moreover, although the freezer compartment 3 was comprised only in the upper left toward the inside of the heat insulation box 2 in the Example, not only that but the inside of the heat insulation box 2 was completely divided up and down by the horizontal partition wall, The present invention is also effective for a cooling storage room in which the refrigerator compartment is vertically defined.

更に、実施例では半導体スイッチング素子を用いて冷蔵室結露防止ヒータ53の通電率をデューティー制御するようにしたが、それに限らず、通常のリレー等を用いて通電をON−OFF制御しても良い。但し、その場合はリレーのON/OFF回数の制限を考慮し、例えば2時間のうちの何分(又は何十分)通電する等で通電率を制御し、更に、一定の切り換え間隔も確保すると良い。   Further, in the embodiment, the semiconductor energization rate of the refrigerating room condensation prevention heater 53 is duty-controlled using a semiconductor switching element. However, the present invention is not limited to this, and the energization may be controlled on and off using a normal relay or the like. . However, in that case, considering the limitation on the number of ON / OFF times of the relay, for example, it is preferable to control the energization rate by energizing for several minutes (or enough) of 2 hours, and to secure a certain switching interval. .

1 冷却貯蔵庫
2 断熱箱体
2A、2B 仕切壁
3 冷凍室
4 冷蔵室
5 冷凍室蒸発器
6 冷蔵室蒸発器
8、9 断熱扉
13 圧縮機
14 凝縮器
17 三方弁
18、19 キャピラリチューブ
29 冷凍室温度センサ(冷凍室温度検出手段)
30 冷蔵室温度センサ(冷蔵室温度検出手段)
32 外気温度センサ(外気温度検出手段)
40 制御装置(制御手段)
53 冷蔵室結露防止ヒータ(ヒータ)
DESCRIPTION OF SYMBOLS 1 Cooling storage 2 Heat insulation box 2A, 2B Partition wall 3 Freezer room 4 Refrigerating room 5 Freezer room evaporator 6 Cold room evaporator 8, 9 Thermal insulation door 13 Compressor 14 Condenser 17 Three-way valve 18, 19 Capillary tube 29 Freezer room Temperature sensor (freezer temperature detection means)
30 Cold room temperature sensor (refrigeration room temperature detection means)
32 Outside temperature sensor (outside temperature detection means)
40 Control device (control means)
53 Refrigerating Room Condensation Prevention Heater (Heater)

Claims (3)

冷凍室とその下側の冷蔵室とを仕切壁にて区画形成して成る冷却貯蔵庫において、
前記仕切壁の前記冷蔵室側の面を加熱するためのヒータと、
前記冷凍室及び冷蔵室の温度をそれぞれ検出する冷凍室温度センサ及び冷蔵室温度センサと
外気温度を検出する外気温度センサと、
前記冷凍室温度センサおよび前記冷蔵室温度センサの出力に基づいて前記ヒータの通電を制御する制御手段とを備え、
該制御手段は、前記各温度センサが検出する前記冷凍室と冷蔵室の温度差に基づき、当該温度差が小さいときは下げる方向で前記ヒータの通電率を制御し、前記外気温度センサの出力に基づき、当該外気温度センサが検出する前記外気温度が高いときに上げる方向で前記ヒータの通電率を制御することを特徴とする冷却貯蔵庫。
In the cold storage compartment formed by partitioning the freezer compartment and the refrigerator compartment below it with partition walls,
A heater for heating the surface of the partition wall on the refrigerator compartment side;
A freezer temperature sensor and a refrigerating room temperature sensor for detecting temperatures of the freezing room and the refrigerating room, respectively ;
An outside temperature sensor for detecting the outside temperature;
Control means for controlling energization of the heater based on outputs of the freezer temperature sensor and the refrigerator temperature sensor;
The control means controls the energization rate of the heater in a decreasing direction when the temperature difference is small, based on the temperature difference between the freezer compartment and the refrigerator compartment detected by the temperature sensors, and outputs the output of the outside temperature sensor. Based on this , the cooling storage is characterized in that the energization rate of the heater is controlled in a direction to increase when the outside air temperature detected by the outside air temperature sensor is high .
前記制御手段は、前記冷凍室と冷蔵室の温度差が所定の値より小さく、且つ、外気温度が所定の低温度以下である場合、前記ヒータへの通電を停止することを特徴とする請求項に記載の冷却貯蔵庫。 The said control means stops the electricity supply to the said heater, when the temperature difference of the said freezer compartment and a refrigerator compartment is smaller than predetermined value, and external temperature is below a predetermined low temperature. The cooling storage according to 1 . 前記冷凍室を冷却する冷凍室蒸発器と前記冷蔵室を冷却する冷蔵室蒸発器とを有し、圧縮機にて圧縮された冷媒をそれぞれ減圧手段を介して前記冷凍室蒸発器及び冷蔵室蒸発器に分配供給することにより、各室を冷却することを特徴とする請求項1または2に記載の冷却貯蔵庫。 A freezer compartment evaporator that cools the freezer compartment and a refrigerator compartment evaporator that cools the refrigerator compartment, and the refrigerant compressed by the compressor is evaporated through the decompression means, respectively. The cooling storage according to claim 1 or 2 , wherein each chamber is cooled by being distributed and supplied to a vessel.
JP2012069335A 2012-03-26 2012-03-26 Cooling storage Active JP5957761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069335A JP5957761B2 (en) 2012-03-26 2012-03-26 Cooling storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069335A JP5957761B2 (en) 2012-03-26 2012-03-26 Cooling storage

Publications (2)

Publication Number Publication Date
JP2013200082A JP2013200082A (en) 2013-10-03
JP5957761B2 true JP5957761B2 (en) 2016-07-27

Family

ID=49520455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069335A Active JP5957761B2 (en) 2012-03-26 2012-03-26 Cooling storage

Country Status (1)

Country Link
JP (1) JP5957761B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7545831B2 (en) 2020-08-11 2024-09-05 日立グローバルライフソリューションズ株式会社 refrigerator
WO2022034698A1 (en) * 2020-08-11 2022-02-17 日立グローバルライフソリューションズ株式会社 Refrigerator
CN115615095A (en) * 2021-07-15 2023-01-17 博西华电器(江苏)有限公司 Refrigerator and anti-condensation method for same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087086B2 (en) * 2001-07-27 2008-05-14 日立アプライアンス株式会社 refrigerator
JP2006010278A (en) * 2004-06-29 2006-01-12 Toshiba Corp Refrigerator
JP2005283119A (en) * 2005-05-27 2005-10-13 Sanyo Electric Co Ltd Refrigerator
JP2010243058A (en) * 2009-04-06 2010-10-28 Hoshizaki Electric Co Ltd Cooling storage
JP5184451B2 (en) * 2009-06-29 2013-04-17 シャープ株式会社 refrigerator

Also Published As

Publication number Publication date
JP2013200082A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
JP6687384B2 (en) refrigerator
EP2578970B1 (en) Refrigerator
JP2017190936A (en) refrigerator
JP2008075964A (en) Defrosting device of cooling device
JP2006250378A (en) Cooling storage
JP2013200084A (en) Cooling storage
JP2009085503A (en) Refrigerator
JP6752107B2 (en) refrigerator
CN107543351B (en) Refrigerator and control method thereof
JP5957761B2 (en) Cooling storage
JP5975379B2 (en) Cooling storage
JP2006266585A (en) Refrigerator
JP6109520B2 (en) refrigerator
JP2018031487A (en) Refrigerated / refrigerated showcase
JP6143458B2 (en) refrigerator
JP2007292427A (en) Refrigerator
JP5637746B2 (en) Cooling storage
JP2010266123A (en) Cooling storage
JP2015143579A (en) refrigerator
JP6037214B2 (en) Low temperature showcase
JP2013200081A (en) Cooling storage
JP2014005953A (en) Refrigerator
JP2008075963A (en) Defrosting device for cooling device
JP2012063026A (en) Refrigerator
JP2017166745A (en) refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150318

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160602

R151 Written notification of patent or utility model registration

Ref document number: 5957761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151