JP2010265790A - Manufacturing system of electromagnetic fuel injection valve and manufacturing method of the same - Google Patents

Manufacturing system of electromagnetic fuel injection valve and manufacturing method of the same Download PDF

Info

Publication number
JP2010265790A
JP2010265790A JP2009116760A JP2009116760A JP2010265790A JP 2010265790 A JP2010265790 A JP 2010265790A JP 2009116760 A JP2009116760 A JP 2009116760A JP 2009116760 A JP2009116760 A JP 2009116760A JP 2010265790 A JP2010265790 A JP 2010265790A
Authority
JP
Japan
Prior art keywords
fuel injection
valve
electromagnetic fuel
distribution chamber
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116760A
Other languages
Japanese (ja)
Inventor
Masahito Nakamura
雅人 中村
Koji Kitamura
浩二 北村
Daisuke Sato
大輔 佐藤
Tetsuya Koike
哲也 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2009116760A priority Critical patent/JP2010265790A/en
Publication of JP2010265790A publication Critical patent/JP2010265790A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing system of electromagnetic fuel injection valves, enabling efficient break-in operation of the electromagnetic fuel injection valves. <P>SOLUTION: The manufacturing system includes a distribution chamber 60 in which the plurality of electromagnetic fuel injection valves I after an assembling process are mounted, and a tank 70 storing break-in operation liquid L. The distribution chamber 60 is connected to a first supply pipe line 61 and a second supply pipe line 62 via a selector valve 63 so that the first supply pipe line 61 and the second supply pipe line 62 can selectively communicate with the distribution chamber 60 by the selector valve 63. The first supply pipe line 61 is connected to a pressurized-air supply device 69 for pressurizing and supplying air, and the second supply pipe line 62 is connected to a break-in operation liquid supply device 74 for supplying the break-in operation liquid L in the tank 70. Dry break-in operation of the electromagnetic fuel injection valves I using the pressurized air and wet break-in operation using the break-in operation liquid can be performed in combination. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,エンジンに燃料を供給する電磁式燃料噴射弁の製造システムその製造方法に関し,特に,組立工程後の複数の電磁式燃料噴射弁が装着される分配チャンバと,馴らし運転液を貯留するタンクと,このタンク内の馴らし運転液を前記分配チャンバに加圧供給する馴らし運転液供給装置と,前記分配チャンバから前記複数の電磁式燃料噴射弁に馴らし運転液を供給しながら電磁式燃料噴射弁の馴らし運転を行う際,電磁式燃料噴射弁から噴射された馴らし運転液を回収して前記タンクに戻す馴らし運転液回収装置とを備える電磁式燃料噴射弁の製造システム及びその製造方法に関する。   The present invention relates to a manufacturing system for an electromagnetic fuel injection valve for supplying fuel to an engine and a manufacturing method thereof, and more particularly, a distribution chamber in which a plurality of electromagnetic fuel injection valves after an assembly process is mounted, and a conditioned operating fluid are stored. A tank, a conditioned operating fluid supply device that pressurizes and supplies the conditioned operating fluid in the tank to the distribution chamber, and an electromagnetic fuel injection while supplying the conditioned operating fluid from the distribution chamber to the plurality of electromagnetic fuel injection valves The present invention relates to an electromagnetic fuel injection valve manufacturing system including a conditioned operating fluid recovery device that recovers a conditioned operating fluid injected from an electromagnetic fuel injection valve and returns it to the tank when the valve is conditioned.

電磁式燃料噴射弁を,その組立工程後,馴らし運転することで,実際の使用状態での性能の初期劣化を防ぐことが従来一般に知られている(下記特許文献1参照)。   Conventionally, it is generally known that an initial deterioration of performance in an actual use state is prevented by operating the electromagnetic fuel injection valve after the assembly process (see Patent Document 1 below).

特開2006−348829号公報JP 2006-348829 A

また電磁式燃料噴射弁の馴らし運転時には,安全性及び作業環境を重視して燃料は使用せず,特別な馴らし運転液(例えば,クレンゾル)を電磁式燃料噴射弁に流すようにしている。しかしながら,その馴らし運転液は,実際のエンジン運転時に使用する燃料に比して粘性が高いため,電磁式燃料噴射弁内の弁ばねのエージング効果はあるものゝ,摺動面や突き当て面の馴染み性(面の切削痕などの凹凸部の平滑化)が低い。このため,エンジンへの実装使用中に,電磁式燃料噴射弁の作動応答性が変化し,これにより燃料噴射流量特性が変化するという不都合を招くことになる。このような不都合を回避するためには,電磁式燃料噴射弁の馴らし運転を長時間実施すればよいが,それによれば,馴らし運転の能率低下により工場からの製品出荷が遅くなるという,別の不都合を招くことになる。   Also, during the acclimatization operation of the electromagnetic fuel injection valve, the fuel is not used with emphasis on safety and work environment, and a special acclimatization operation liquid (for example, clean sol) is allowed to flow through the electromagnetic fuel injection valve. However, the conditioned running fluid has a higher viscosity than the fuel used during actual engine operation. Therefore, although the aging effect of the valve spring in the electromagnetic fuel injection valve is present, the sliding surface and the abutting surface Familiarity (smoothing of uneven parts such as surface cut marks) is low. For this reason, the operation responsiveness of the electromagnetic fuel injection valve changes during mounting on the engine, which causes a disadvantage that the fuel injection flow rate characteristic changes. In order to avoid such inconvenience, the acclimatization operation of the electromagnetic fuel injection valve may be carried out for a long time. According to this, the product shipment from the factory is slowed down due to a decrease in the efficiency of the acclimatization operation. It will cause inconvenience.

本発明は,かゝる事情に鑑みてなされたもので,電磁式燃料噴射弁の能率の良い馴らし運転を可能にする電磁式燃料噴射弁の製造システム及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an electromagnetic fuel injection valve manufacturing system and a method for manufacturing the electromagnetic fuel injection valve that enable efficient habituation operation of the electromagnetic fuel injection valve. To do.

上記目的を達成するために,本発明は,組立工程後の複数の電磁式燃料噴射弁が装着される分配チャンバと,馴らし運転液を貯留するタンクと,このタンク内の馴らし運転液を前記分配チャンバに加圧供給する馴らし運転液供給装置と,前記分配チャンバから前記複数の電磁式燃料噴射弁に馴らし運転液を供給しながら電磁式燃料噴射弁の馴らし運転を行う際,電磁式燃料噴射弁から噴射された馴らし運転液を回収して前記タンクに戻す馴らし運転液回収装置とを備える電磁式燃料噴射弁の製造システムであって,前記分配チャンバに第1供給管路及び第2供給管路を切換弁を介して接続して,その切換弁により前記第1供給管路及び第2供給管路を選択的に分配チャンバに連通可能にし,前記第1供給管路には空気を加圧供給し得る加圧空気供給装置を接続する一方,前記第2供給管路には前記馴らし運転液供給装置を接続したことを第1の特徴とする。   In order to achieve the above object, the present invention provides a distribution chamber in which a plurality of electromagnetic fuel injection valves after assembly steps are mounted, a tank for storing a conditioned operating fluid, and a conditioned operating fluid in the tank. A conditioned operating fluid supply device for supplying pressurized pressure to the chamber, and an electromagnetic fuel injector for performing a conditioned operation of the electromagnetic fuel injector while supplying operating fluid from the distribution chamber to the plurality of electromagnetic fuel injectors A system for manufacturing an electromagnetic fuel injection valve comprising a conditioned operating fluid recovery device that recovers the conditioned operating fluid injected from the tank and returns it to the tank, wherein the distribution chamber is provided with a first supply line and a second supply line. Are connected via a switching valve, and the switching valve enables the first supply line and the second supply line to selectively communicate with the distribution chamber, and air is pressurized to the first supply line. Possible pressurized air While connecting the feeder, the the second supply conduit to the first, characterized in that connected to the running-liquid supply unit.

また本発明は,第1の特徴に加えて,前記分配チャンバ及び前記馴らし運転液回収装置間に,前記電磁式燃料噴射弁を迂回するバイパス管路を接続し,このバイパス管路に開閉弁を設けたことを第2の特徴とする。尚,前記開閉弁は,後述する本発明の実施例中の第3開閉弁81に対応する。   According to the present invention, in addition to the first feature, a bypass conduit that bypasses the electromagnetic fuel injection valve is connected between the distribution chamber and the conditioned operating fluid recovery device, and an open / close valve is connected to the bypass conduit. The provision is the second feature. The on-off valve corresponds to a third on-off valve 81 in an embodiment of the present invention described later.

さらに本発明は,第1の特徴の電磁式燃料噴射弁の製造システムを実施するに当たり,前記切換弁により第1供給管路を分配チャンバに連通させて,この分配チャンバから前記複数の電磁式燃料噴射弁に空気を加圧供給しながらそれらの馴らし運転を行うドライ馴らし運転工程と,このドライ馴らし運転後,前記切換弁を切り換えて第2供給管路を分配チャンバに連通させて,この分配チャンバから前記複数の電磁式燃料噴射弁に馴らし運転液を加圧供給しながらそれらの馴らし運転を行うウエット馴らし運転工程とを順次実行することを第3の特徴とする。   Furthermore, the present invention provides the electromagnetic fuel injection valve manufacturing system according to the first feature by connecting the first supply pipe line to the distribution chamber by the switching valve, and from the distribution chamber to the plurality of electromagnetic fuel fuels. A dry habituation operation process in which the acclimation operation is performed while supplying air to the injection valve under pressure, and after the dry habituation operation, the switching valve is switched to connect the second supply line to the distribution chamber. A third feature is that a wet conditioned operation process is performed in which the acclimated operation fluid is pressurized and supplied to the plurality of electromagnetic fuel injection valves and the acclimated operation is sequentially performed.

さらにまた本発明は,第3の特徴に加えて,前記ウエット馴らし運転工程後に,前記各電磁式燃料噴射弁における弁ばねのセット荷重の調整を行う弁ばね調整工程を実行することを第4の特徴とする。   Furthermore, in addition to the third feature of the present invention, the fourth feature is that a valve spring adjusting step for adjusting a set load of the valve spring in each electromagnetic fuel injection valve is performed after the wet-conditioned operation step. Features.

本発明の第1の特徴によれば,切換弁の切り換えにより,加圧空気供給装置を分配チャンバに連通させたり,馴らし運転液供給装置を分配チャンバに連通させたりすることにより,加圧空気を用いた燃料噴射弁のドライ馴らし運転と,馴らし運転液を用いた燃料噴射弁のウエット馴らし運転とを組合せて行うことができ,これにより燃料噴射弁内の摺動面及び突き当て面の良好な馴染み性及びその馴染み面の洗浄を短時間に能率よく行うことができる。しかも,複数の燃料噴射弁を分配チャンバに接続して,複数の燃料噴射弁を同時に馴らし運転することができるので,その馴らし運転の能率向上を大幅に図ることができる。   According to the first feature of the present invention, the pressurized air is supplied by connecting the pressurized air supply device to the distribution chamber by switching the switching valve, or by connecting the conditioned operating fluid supply device to the distribution chamber. The dry acclimation operation of the used fuel injection valve and the wet acclimation operation of the fuel injection valve using the acclimation operation liquid can be performed in combination, thereby improving the sliding surface and the abutting surface in the fuel injection valve. The familiarity and cleaning of the familiar surface can be efficiently performed in a short time. In addition, since a plurality of fuel injection valves can be connected to the distribution chamber and the plurality of fuel injection valves can be habituated and operated at the same time, the efficiency of the habituation operation can be greatly improved.

本発明の第2の特徴によれば,馴らし運転終了後,燃料噴射弁を分配チャンバから取り外す際には,予めバイパス管路を導通状態にすると共に,切換弁を介して加圧空気供給装置を分配チャンバに連通させることにより,加圧空気により,分配チャンバ内に溜まった馴らし運転液をバイパス管路を通して馴らし運転液回収装置へ押し出し,分配チャンバ内を清掃することができる。したがって次いで燃料噴射弁を取り外したとき,分配チャンバの燃料噴射弁接続口から馴らし運転液の無用な流出を防ぐことができる。   According to the second feature of the present invention, when the fuel injection valve is removed from the distribution chamber after completion of the habituation operation, the bypass line is made conductive in advance, and the pressurized air supply device is connected via the switching valve. By communicating with the distribution chamber, the conditioned operating liquid accumulated in the distribution chamber can be conditioned by the compressed air and pushed out to the operating liquid recovery device through the bypass line to clean the inside of the distribution chamber. Therefore, when the fuel injection valve is subsequently removed, it is possible to prevent an unnecessary outflow of the operating fluid from the fuel injection valve connection port of the distribution chamber.

本発明の第3の特徴によれば,燃料噴射弁のドライ馴らし運転とウエット馴らし運転とを順次実行することにより,燃料噴射弁内の摺動面及び突き当て面の良好な馴染み性,その馴染み面の洗浄を短時間に能率よく行うことができる。   According to the third aspect of the present invention, the dry habituation operation and the wet habituation operation of the fuel injection valve are sequentially performed, so that the sliding surface and the abutting surface in the fuel injection valve have good familiarity, and the familiarity thereof. The surface can be cleaned efficiently in a short time.

本発明の第4の特徴によれば,弁ばねのセット荷重の調整後に,燃料噴射流量の調整を行うことにより,燃料噴射流量特性の精度向上を図ることができる。   According to the fourth feature of the present invention, the fuel injection flow rate characteristics can be improved by adjusting the fuel injection flow rate after adjusting the set load of the valve spring.

本発明により製造される電磁式燃料噴射弁の縦断面図。The longitudinal cross-sectional view of the electromagnetic fuel injection valve manufactured by this invention. 本発明の電磁式燃料噴射弁の製造システムを実施する工程チャート。The process chart which implements the manufacturing system of the electromagnetic fuel injection valve of this invention. 本発明の電磁式燃料噴射弁の製造システムにおける馴らし運転装置の概要図。1 is a schematic diagram of a habituation operation device in the electromagnetic fuel injection valve manufacturing system of the present invention.

本発明の実施の形態を,添付図面に示す本発明の好適な実施例に基づいて以下に説明する。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings.

先ず,図1において,本発明により製造される電磁式燃料噴射弁I(以下,単に燃料噴射弁Iという。)の説明より始める。燃料噴射弁Iの弁ハウジング2は,前端部に弁座8を有する円筒状の弁座部材3と,この弁座部材3の後端部外周面に圧入して液密に溶接される,磁性体よりなる可動コア収容筒体4と,この可動コア収容筒体4の後端に同軸状に液密に溶接される非磁性筒6と,この非磁性筒6の内周面に嵌合して固定される固定コア5と,この固定コア5の後端に同軸状に連結される燃料入口筒26とで構成され,その燃料入口筒26の入口には燃料フィルタ27が装着される。   First, referring to FIG. 1, the description starts with an explanation of an electromagnetic fuel injection valve I manufactured according to the present invention (hereinafter simply referred to as a fuel injection valve I). The valve housing 2 of the fuel injection valve I has a cylindrical valve seat member 3 having a valve seat 8 at the front end, and is press-fitted into the outer peripheral surface of the rear end of the valve seat member 3 and is liquid-tightly welded. A movable core housing cylinder 4 made of a body, a nonmagnetic cylinder 6 coaxially and liquid-tightly welded to the rear end of the movable core housing cylinder 4, and an inner peripheral surface of the nonmagnetic cylinder 6 The fixed core 5 is fixed to the rear end of the fixed core 5 and the fuel inlet cylinder 26 is coaxially connected to the rear end of the fixed core 5. A fuel filter 27 is attached to the inlet of the fuel inlet cylinder 26.

弁座部材3には,円錐状の弁座8の中心部を貫通する弁孔7と,弁座8の後端に連なる円筒状のガイド孔9とが設けられる。   The valve seat member 3 is provided with a valve hole 7 penetrating the center of the conical valve seat 8 and a cylindrical guide hole 9 connected to the rear end of the valve seat 8.

非磁性筒6の前端部には,固定コア5と嵌合しない部分がガイド部6aとして残され,そのガイド部6aから弁座部材3に至る弁ハウジング2内に弁組立体Vが収容される。この弁組立体Vは,前記ガイド孔9に摺動自在に嵌合されて弁座8に対し開閉動作する球状の弁体16と,ガイド部6aに摺動自在に嵌合されると共に可動コア収容筒体4に収容される円筒状の可動コア12と,この可動コア12及び弁体16間を連結する杆部17とよりなっている。その杆部17は可動コア12と一体に成形されると共に,弁体16に溶接して固着され,可動コア12は,固定コア5の前端吸引面に対向するように配置される。   A portion that does not fit with the fixed core 5 remains as a guide portion 6 a at the front end portion of the nonmagnetic cylinder 6, and the valve assembly V is accommodated in the valve housing 2 extending from the guide portion 6 a to the valve seat member 3. . The valve assembly V includes a spherical valve body 16 that is slidably fitted in the guide hole 9 and opens / closes with respect to the valve seat 8, and a slidably fitted to the guide portion 6a and a movable core. A cylindrical movable core 12 accommodated in the accommodating cylinder 4 and a flange portion 17 connecting the movable core 12 and the valve body 16 are provided. The flange portion 17 is formed integrally with the movable core 12 and is fixed by welding to the valve body 16, and the movable core 12 is disposed so as to face the front end suction surface of the fixed core 5.

弁組立体Vには,可動コア12の後端面から弁体16の手前で終わる縦孔19と,この縦孔19を,杆部17の外周面に連通する複数の横孔20と,弁体16の外周面に形成されて上記横孔20に連なる複数の面取り部16aとが設けられる。縦孔19の途中には,その内壁から隆起した環状のばね座24が設けられる。   The valve assembly V includes a vertical hole 19 that ends from the rear end surface of the movable core 12 before the valve body 16, a plurality of horizontal holes 20 that communicate with the outer peripheral surface of the flange portion 17, and a valve body. A plurality of chamfered portions 16 a formed on the outer peripheral surface of the 16 and continuing to the lateral hole 20 are provided. An annular spring seat 24 raised from the inner wall is provided in the middle of the vertical hole 19.

固定コア5は,弁組立体Vの縦孔19と連通する縦孔21を中心部に有しており,この縦孔21に,すり割り付きで拡径弾性を有するパイプ状のリテーナ23が圧入される。このリテーナ23と前記ばね座24との間に弁ばね22が縮設され,これにより弁組立体Vは,その弁体16の弁座8との着座方向に付勢される。可動コア12の内周面には,高硬度で円筒状のストッパ部材14が圧入して固着される。前記弁ばね22は,このストッパ部材14の中空部を貫通するように配置される。   The fixed core 5 has a vertical hole 21 communicating with the vertical hole 19 of the valve assembly V at the center, and a pipe-like retainer 23 that is slotted and has a diameter expansion elasticity is press-fitted into the vertical hole 21. Is done. The valve spring 22 is contracted between the retainer 23 and the spring seat 24, whereby the valve assembly V is urged in the seating direction of the valve body 16 with the valve seat 8. A high-hardness cylindrical stopper member 14 is press-fitted and fixed to the inner peripheral surface of the movable core 12. The valve spring 22 is disposed so as to penetrate the hollow portion of the stopper member 14.

ストッパ部材14は,その外端を可動コア12の後端吸引面から僅かに突出させていて,通常,弁組立体Vの開弁ストロークに相当する間隙を存して固定コア5の前端吸引面と対置される。したがって,ストッパ部材14が固定コア12の前端吸引面に当接する弁組立体Vの開弁時でも固定コア5及び可動コア12間には空隙が存在する。弁組立体Vの開弁ストロークは,可動コア収容筒体4及び弁座部材3相互の軸方向突き当て面間に介装されるシム15の選択によって調整される。   The stopper member 14 has its outer end slightly protruded from the rear end suction surface of the movable core 12, and usually the front end suction surface of the fixed core 5 with a gap corresponding to the valve opening stroke of the valve assembly V. Is opposed to. Therefore, a gap exists between the fixed core 5 and the movable core 12 even when the valve assembly V in which the stopper member 14 contacts the front end suction surface of the fixed core 12 is opened. The valve opening stroke of the valve assembly V is adjusted by selecting a shim 15 interposed between the axial abutting surfaces of the movable core housing cylinder 4 and the valve seat member 3.

弁ハウジング2の外周にはコイル組立体28が嵌装される。このコイル組立体28は,非磁性筒6に嵌合するボビン29と,これに巻装されるコイル30とからなっており,このコイル組立体28を収容する磁性体のコイルハウジング31により可動コア収容筒体4及び固定コア5間が磁気的に接続される。具体的には,コイルハウジング31の前端には,小径の連結筒部31aが段部31bを介して一体に形成されており,この連結筒部31aが可動コア収容筒体4の外周面に嵌合して溶接され,コイルハウジング31の後端部は,C字状又は環状のヨーク35を介して固定コア5の外周面に連結される。   A coil assembly 28 is fitted on the outer periphery of the valve housing 2. The coil assembly 28 includes a bobbin 29 fitted to the non-magnetic cylinder 6 and a coil 30 wound around the bobbin 29. A movable core is formed by a magnetic coil housing 31 that houses the coil assembly 28. The housing cylinder 4 and the fixed core 5 are magnetically connected. Specifically, a small-diameter connecting cylinder part 31 a is integrally formed at the front end of the coil housing 31 via a step part 31 b, and the connecting cylinder part 31 a is fitted to the outer peripheral surface of the movable core housing cylinder 4. The rear end of the coil housing 31 is connected to the outer peripheral surface of the fixed core 5 via a C-shaped or annular yoke 35.

弁座部材3の前端面には,前記弁孔7に連通する複数の燃料噴孔11を有するインジェクタプレート10がレーザ溶接により液密に接合される。このインジェクタプレート10の前面外周部を覆う円筒状の合成樹脂製キャップ42が弁座部材3及び可動コア収容筒体4の前端部外周に嵌装される。このキャップ42の後端面と,前記コイルハウジング31の段部31bとの間にOリング等のシール部材41を保持するシール溝43が画成される。シール部材41は,エンジンの吸気系部材に設けられる取り付け孔に電磁式燃料噴射弁Iの前端部を嵌装したとき,その取り付け孔の内周面に密接して,その取り付け孔をシールするものである。   An injector plate 10 having a plurality of fuel injection holes 11 communicating with the valve hole 7 is joined to the front end surface of the valve seat member 3 by laser welding. A cylindrical synthetic resin cap 42 that covers the outer periphery of the front surface of the injector plate 10 is fitted on the outer periphery of the front end of the valve seat member 3 and the movable core housing cylinder 4. A seal groove 43 that holds a seal member 41 such as an O-ring is defined between the rear end surface of the cap 42 and the step portion 31 b of the coil housing 31. The sealing member 41 seals the mounting hole in close contact with the inner peripheral surface of the mounting hole when the front end portion of the electromagnetic fuel injection valve I is fitted in the mounting hole provided in the intake system member of the engine. It is.

コイルハウジング31の後半部から燃料入口筒26の端部近傍に亙り,それらの外周面に射出成形による硬質合成樹脂製の被覆体32が形成される。その際,被覆体32の中間部には,一側方に突出するカプラ34が一体成形され,このカプラ34は,コイル30に連なる給電用端子33を保持する。燃料入口筒26の外周には,被覆体32の後端と,前記燃料フィルタ27が後端に有するフランジ27aとによりシール溝50が画成され,このシール溝50にOリング等のシール部材51が装着される。このOリング51は,燃料噴射弁Iを燃料レールの燃料分配キャップ(図示せず)に接続する際,その燃料分配キャップの内周面に密接するものである。   From the latter half of the coil housing 31 to the vicinity of the end of the fuel inlet cylinder 26, a hard synthetic resin coating 32 is formed on the outer peripheral surface thereof by injection molding. At this time, a coupler 34 protruding in one side is integrally formed at the intermediate portion of the covering body 32, and the coupler 34 holds a power feeding terminal 33 connected to the coil 30. A seal groove 50 is defined on the outer periphery of the fuel inlet cylinder 26 by a rear end of the covering 32 and a flange 27a which the fuel filter 27 has at the rear end. A seal member 51 such as an O-ring is formed in the seal groove 50. Is installed. The O-ring 51 is in close contact with the inner peripheral surface of the fuel distribution cap when the fuel injection valve I is connected to a fuel distribution cap (not shown) of the fuel rail.

而して,エンジンの運転中,燃料ポンプから燃料レールに供給される高圧燃料は,電磁式燃料噴射弁Iの燃料入口筒26に分配され,燃料フィルタ27の濾網で濾過された後,固定コア5,弁組立体Vの中空部及び弁座部材3内を満たすことになる。このとき,コイル30の消磁状態では,弁ばね22の付勢力で弁組立体Vは前方に押圧され,弁体16を弁座8に着座させているので,上記燃料は弁座部材3内で待機させられる。   Thus, during operation of the engine, the high-pressure fuel supplied from the fuel pump to the fuel rail is distributed to the fuel inlet cylinder 26 of the electromagnetic fuel injection valve I, filtered through the filter screen of the fuel filter 27, and then fixed. The core 5 and the hollow portion of the valve assembly V and the inside of the valve seat member 3 are filled. At this time, in the demagnetized state of the coil 30, the valve assembly V is pressed forward by the biasing force of the valve spring 22, and the valve body 16 is seated on the valve seat 8. It is made to wait.

コイル30を通電により励磁すると,それにより生ずる磁束Fが固定コア5からヨーク35,コイルハウジング31及び可動コア収容筒体4を経て可動コア12へ,そして固定コア5へとを順次走り,これに伴い発生する磁力により可動コア12が弁ばね22のセット荷重に抗して固定コア5に吸引され,弁体16が弁座部材3の弁座8から離座するので,弁座部材3内の高圧燃料は,弁座8に沿って弁孔7側に進み,燃料噴孔11から微粒化しながら噴射される。   When the coil 30 is energized by energization, the magnetic flux F generated thereby runs sequentially from the fixed core 5 to the movable core 12 through the yoke 35, the coil housing 31 and the movable core housing cylinder 4, and to the fixed core 5. The movable core 12 is attracted to the fixed core 5 against the set load of the valve spring 22 by the magnetic force generated, and the valve body 16 is separated from the valve seat 8 of the valve seat member 3. The high-pressure fuel advances along the valve seat 8 toward the valve hole 7 and is injected while being atomized from the fuel injection hole 11.

次に,この燃料噴射弁Iの製造システムについて,図2に沿って説明する。
〔組立工程S1〕
最初にこの組立工程S1で燃料噴射弁Iの組立を行う。但し,この組立工程S1では,弁ばね22のセット荷重を規定の値より充分に弱くしておくようリテーナ23を固定コア5の縦孔21に比較的浅く圧入しておき,また燃料入口筒26への燃料フィルタ27の装着は行わない。次に馴らし運転工程S2に移る。
〔馴らし運転工程S2〕
この馴らし運転工程S2では,図3に示す馴らし運転装置を使用する。この馴らし運転装置は,組立工程S1後の複数の燃料噴射弁Iの後端部(燃料入口筒26側)が接続される分配チャンバ60と,上記複数の燃料噴射弁Iの前端部(インジェクタプレート10側)が接続される回収チャンバ75と,分配チャンバ60の一端部に切換弁63を介して接続される第1供給管路61及び第2供給管路62とを備える。上記切換弁63は,第1及び第2供給管路61,62を選択的に分配チャンバ60に連通させることができる。
Next, the manufacturing system of the fuel injection valve I will be described with reference to FIG.
[Assembly process S1]
First, the fuel injection valve I is assembled in this assembly step S1. However, in this assembly step S1, the retainer 23 is press-fitted relatively shallowly into the vertical hole 21 of the fixed core 5 so that the set load of the valve spring 22 is sufficiently weaker than a specified value, and the fuel inlet cylinder 26 The fuel filter 27 is not attached to. Next, it moves to the acclimation operation step S2.
[Training operation step S2]
In the habituation operation step S2, the habituation operation device shown in FIG. 3 is used. This acclimation operation device includes a distribution chamber 60 to which rear ends (on the fuel inlet cylinder 26 side) of the plurality of fuel injection valves I after the assembly step S1 are connected, and front ends (injector plates) of the plurality of fuel injection valves I. 10) and a first supply line 61 and a second supply line 62 connected to one end of the distribution chamber 60 via a switching valve 63. The switching valve 63 can selectively connect the first and second supply pipes 61 and 62 to the distribution chamber 60.

第1供給管路61の上流端は,製造工場の空気取り入れ口64に開口しており,第1供給管路61には,この空気取り入れ口64側から前記切換弁63に向かって順に,空気取り入れ口64から取り入れた空気を加圧するコンプレッサ65,第1開閉弁66,コンプレッサ65の吐出圧力を燃料噴射弁Iの通常の噴射圧力に調整する第1レギュレータ弁67及び第1フィルタ68が設けられる。   The upstream end of the first supply pipe 61 opens into the air intake 64 of the manufacturing factory. The first supply pipe 61 has air in this order from the air intake 64 toward the switching valve 63. A compressor 65 for pressurizing the air taken in from the intake 64, a first on-off valve 66, a first regulator valve 67 for adjusting the discharge pressure of the compressor 65 to the normal injection pressure of the fuel injection valve I, and a first filter 68 are provided. .

一方,第2供給管路62の上流端は,馴らし運転液Lを貯留するタンク70の液面下に配設されるストレーナ83に接続され,第2供給管路62には,このストレーナ83側から前記切換弁63に向かって順に,このストレーナ83から馴らし運転液Lを汲み上げて加圧する液体ポンプ71,この液体ポンプ71の吐出圧力を燃料噴射弁Iの通常の噴射圧力に調整する第2レギュレータ弁72及び第2開閉弁73が設けられる。   On the other hand, the upstream end of the second supply pipe 62 is connected to a strainer 83 disposed below the liquid level of the tank 70 that stores the conditioned operating liquid L. The second supply pipe 62 is connected to the strainer 83 side. From the strainer 83 to the switching valve 63, the liquid pump 71 pumps up the operating liquid L and pressurizes it, and the second regulator adjusts the discharge pressure of the liquid pump 71 to the normal injection pressure of the fuel injection valve I. A valve 72 and a second on-off valve 73 are provided.

また回収チャンバ75の底部には,前記タンク70に終端を開放する回収管路76が接続され,この回収管路76には第2フィルタ77及び気液分離器78が設けられ,気液分離器78により分離された液体を前記タンク70に送るようになっている。   The bottom of the recovery chamber 75 is connected to a recovery line 76 that opens to the tank 70, and the recovery line 76 is provided with a second filter 77 and a gas-liquid separator 78. The liquid separated by 78 is sent to the tank 70.

さらに前記分配チャンバ60と回収チャンバ75又は回収管路76との間に,前記燃料噴射弁Iを迂回してバイパス管路80が接続され,このバイパス管路80には第3開閉弁81が設けられる。   Further, a bypass conduit 80 is connected between the distribution chamber 60 and the recovery chamber 75 or the recovery conduit 76, bypassing the fuel injection valve I, and a third on-off valve 81 is provided in the bypass conduit 80. It is done.

分配チャンバ60及び回収チャンバ75の一側には,それらに接続される複数の燃料噴射弁Iを作動すべく噴射信号を発する噴射信号出力手段82が配設される。   On one side of the distribution chamber 60 and the collection chamber 75, an injection signal output means 82 that emits an injection signal to operate a plurality of fuel injection valves I connected thereto is disposed.

以上において,空気取り口64,コンプレッサ65,第1開閉弁66,第1レギュレータ弁67及び第1フィルタ68は加圧空気供給装置69を構成し,またタンク70,液体ポンプ71,第2レギュレータ弁72及び第2開閉弁73は馴らし運転液供給装置74を構成し,また回収チャンバ75,回収管路76,第2フィルタ77及び気液分離器78は馴らし運転液回収装置79を構成する。   In the above, the air inlet 64, the compressor 65, the first on-off valve 66, the first regulator valve 67, and the first filter 68 constitute the pressurized air supply device 69, and the tank 70, the liquid pump 71, the second regulator valve 72. The second on-off valve 73 constitutes a conditioned operating fluid supply device 74, and the recovery chamber 75, the recovery conduit 76, the second filter 77 and the gas-liquid separator 78 constitute a conditioned operating fluid recovery device 79.

而して,燃料噴射弁Iの馴らし運転に際しては,先ず第1,第2,第3開閉弁66,73,81を閉じ状態にして,複数の燃料噴射弁Iの後端部を分配チャンバ60,前端部を回収チャンバ75にそれぞれ接続し,またこれら燃料噴射弁Iのカプラ34に噴射信号出力手段82を接続する。   Thus, during the acclimation operation of the fuel injection valve I, first, the first, second, and third on-off valves 66, 73, 81 are closed, and the rear end portions of the plurality of fuel injection valves I are placed in the distribution chamber 60. The front end portion is connected to the recovery chamber 75, and the injection signal output means 82 is connected to the coupler 34 of the fuel injection valve I.

次に,切換弁63を,第1供給管路61及び分配チャンバ60の連通側に切り換えると共に第1開閉弁66を開いた状態でコンプレッサ65及び噴射信号出力手段82を作動する。すると,空気取り入れ口64から取り入れた空気は,コンプレッサ65により加圧され,第1レギュレータ弁67により調圧され,第1フィルタ68で濾過された後,切換弁63を経て分配チャンバ60内に供給され,作動中の複数の燃料噴射弁Iへと供給されるので,各燃料噴射弁Iは,上記空気を噴孔11から回収チャンバ75に向かって断続的に噴射する。   Next, the switching valve 63 is switched to the communication side of the first supply pipe 61 and the distribution chamber 60, and the compressor 65 and the injection signal output means 82 are operated with the first on-off valve 66 open. Then, the air taken in from the air intake 64 is pressurized by the compressor 65, regulated by the first regulator valve 67, filtered by the first filter 68, and then supplied into the distribution chamber 60 through the switching valve 63. Then, since the fuel is supplied to the plurality of operating fuel injection valves I, each fuel injection valve I injects the air intermittently from the injection hole 11 toward the recovery chamber 75.

こうして複数の燃料噴射弁Iをドライ状態で馴らし運転を実行すると,弁組立体Vと弁ハウジング2との摺動面や,弁体16と弁座8,ストッパ部材14と固定コア12のとの突き当て面の切削痕などの凹凸部の平滑化が効果的に行われ,良好な馴染み性を早期に得ることができる。この間,各燃料噴射弁Iを通過する空気は,弁内部で発生した微細な摩耗粉と共に回収チャンバ75に噴射され,第2フィルタ77で濾過された後,気液分離器78から大気に放出される。   When the plurality of fuel injection valves I are acclimated and operated in a dry state in this manner, the sliding surfaces of the valve assembly V and the valve housing 2, the valve body 16 and the valve seat 8, the stopper member 14, and the fixed core 12 Smoothing of uneven parts such as cutting traces on the abutting surface is effectively performed, and good familiarity can be obtained at an early stage. During this time, the air passing through each fuel injection valve I is injected into the recovery chamber 75 together with fine wear powder generated inside the valve, filtered by the second filter 77, and then released from the gas-liquid separator 78 to the atmosphere. The

このようなドライ状態で馴らし運転を所定時間,例えば30〜40秒間実行した後,噴射信号出力手段82を作動状態にしたまゝで,今度は切換弁63を第1供給管路61及び分配チャンバ60の連通側に切り換えると共に第2開閉弁73を開いた状態で液体ポンプ71を作動する。すると,タンク70内の馴らし運転液Lは,液体ポンプ71によりストレーナ83を通して汲み上げられて加圧され,第2供給管路62を通して分配チャンバ60に供給され,作動中の複数の燃料噴射弁Iへと供給されるので,各燃料噴射弁Iは,上記馴らし運転液Lを噴孔11から回収チャンバ75に向かって断続的に噴射する。   After the running-in operation in such a dry state is performed for a predetermined time, for example, 30 to 40 seconds, the switching valve 63 is now connected to the first supply line 61 and the distribution chamber while the injection signal output means 82 is in an activated state. The liquid pump 71 is operated with the second on-off valve 73 open while switching to the communication side 60. Then, the conditioned operating liquid L in the tank 70 is pumped up and pressurized through the strainer 83 by the liquid pump 71 and supplied to the distribution chamber 60 through the second supply pipe 62 to the plurality of operating fuel injection valves I. Therefore, each fuel injection valve I intermittently injects the conditioned operating liquid L from the injection hole 11 toward the recovery chamber 75.

こうして複数の燃料噴射弁Iをウエット状態で馴らし運転を実行すると,弁組立体Vと弁ハウジング2との摺動面や,弁体16と弁座8,ストッパ部材14と固定コア12のとの突き当て面の馴染み面を馴染み運転液Lにより洗浄することができる。各燃料噴射弁Iから回収チャンバ75に噴射された馴らし運転液Lは,第2フィルタ77で濾過され,気液分離器78で空気を分離された後,タンク70へと戻される。このようなウエット状態での馴らし運転を所定時間,例えば5分間実行する。   When the plurality of fuel injection valves I are acclimated in the wet state, the sliding surfaces of the valve assembly V and the valve housing 2, the valve body 16 and the valve seat 8, the stopper member 14 and the fixed core 12 are connected. The familiar surface of the abutting surface can be washed with the familiar operating liquid L. The conditioned operating liquid L injected from each fuel injection valve I to the recovery chamber 75 is filtered by the second filter 77, air is separated by the gas-liquid separator 78, and then returned to the tank 70. The conditioned operation in such a wet state is executed for a predetermined time, for example, 5 minutes.

複数の燃料噴射弁Iの馴らし運転が終了したなら,第2開閉弁73を閉じ状態にして,切換弁63を第1供給管路61及び分配チャンバ60の連通側に切り換え,第1開閉弁66及び第3開閉弁81を開き状態にする。こうすると,コンプレッサ65から圧送される空気が分配チャンバ60に供給され,分配チャンバ60に溜まっていた馴らし運転液Lをバイパス管路80へ押し流すことができる。バイパス管路80に移った馴らし運転液Lは,第2フィルタ77で濾過され,気液分離器78で空気を分離された後,タンク70に戻される。   When the conditioning operation of the plurality of fuel injection valves I is completed, the second on-off valve 73 is closed, the switching valve 63 is switched to the communication side of the first supply pipe 61 and the distribution chamber 60, and the first on-off valve 66 And the 3rd on-off valve 81 is made into an open state. In this way, the air pumped from the compressor 65 is supplied to the distribution chamber 60, and the conditioned operating liquid L accumulated in the distribution chamber 60 can be pushed away to the bypass line 80. The conditioned operating liquid L transferred to the bypass line 80 is filtered by the second filter 77, air is separated by the gas-liquid separator 78, and then returned to the tank 70.

こうして分配チャンバ60内を清掃した後,分配チャンバ60及び回収チャンバ75から複数の燃料噴射弁Iを取り外し,またそれらから噴射信号出力手段82を外す。このとき,分配チャンバ60の燃料噴射弁接続口から馴らし運転液Lが流出することを防ぐことができる。   After the inside of the distribution chamber 60 is cleaned in this way, the plurality of fuel injection valves I are removed from the distribution chamber 60 and the collection chamber 75, and the injection signal output means 82 is removed therefrom. At this time, the operating fluid L can be prevented from flowing out from the fuel injection valve connection port of the distribution chamber 60.

次いで,馴らし運転すべき新たな燃料噴射弁Iを分配チャンバ60及び回収チャンバ75に接続すると共に,それらに噴射信号出力手段82を接続する。以後,同様な要領で馴らし運転を行う。   Next, a new fuel injection valve I to be habituated is connected to the distribution chamber 60 and the recovery chamber 75, and an injection signal output means 82 is connected to them. Thereafter, acclimation is performed in the same manner.

このように,燃料噴射弁Iのドライ馴らし運転とウエット馴らし運転とを順次実行することにより,燃料噴射弁I内の摺動面及び突き当て面の良好な馴染み性の確保,並びにその馴染み面の洗浄を短時間に能率よく行うことができる。実際のテストによれば,燃料噴射弁Iの同一の馴らし状態を得るのに,本発明によるドライ及びウエットの総合馴らし運転時間は,従来のウエット馴らし運転のみ行う場合の略2分の1に短縮させることができた。しかも,複数の燃料噴射弁Iを分配チャンバ60及び回収チャンバ75に接続して,複数の燃料噴射弁Iを同時に馴らし運転することができるので,その馴らし運転の大幅な能率向上を達成することができる。   As described above, by sequentially performing the dry acclimation operation and the wet acclimation operation of the fuel injection valve I, it is possible to ensure good conformability of the sliding surface and the abutting surface in the fuel injection valve I, and Cleaning can be performed efficiently in a short time. According to the actual test, in order to obtain the same habituation state of the fuel injection valve I, the total habituation operation time of dry and wet according to the present invention is shortened to about one-half that in the case of performing only conventional habituation operation. I was able to. In addition, since the plurality of fuel injection valves I can be connected to the distribution chamber 60 and the recovery chamber 75 and the plurality of fuel injection valves I can be habituated and operated at the same time, a significant improvement in efficiency of the habituation operation can be achieved. it can.

またこのときの各燃料噴射弁Iの弁ばね22の荷重は,正規のセット荷重より弱く設定されるので,噴射信号出力手段82の比較的小さい出力により各燃料噴射弁Iを軽快に作動させることができ,噴射信号出力手段82での消費電力の削減に寄与し得る。   Further, since the load of the valve spring 22 of each fuel injector I at this time is set to be weaker than the normal set load, each fuel injector I can be operated lightly by the relatively small output of the injection signal output means 82. This can contribute to reduction of power consumption in the injection signal output means 82.

馴らし運転工程S2後は,図2の燃料噴射流量調整工程S3へ移る。
〔燃料噴射流量調整工程S3〕
この燃料噴射流量調整工程S3では,燃料噴射弁Iにおいて,固定コア5の縦孔21へのリテーナ23の圧入を適度に進めることにより,弁ばね22のセット荷重を所定値に調整し,その上で,その燃料噴射弁Iを一回もしくは所定の複数回作動させたときの燃料噴射流量を所定値通りに調整する。このように,弁ばね22のセット荷重の調整後に,燃料噴射流量の調整を行うことにより,燃料噴射流量特性の精度向上を図ることができる。この燃料噴射流量調整工程S3後は性能試験工程S4へ移る。
〔性能試験工程S4〕
この性能試験工程S4では,燃料入口筒26に一定の液圧を加えて,弁体16の閉弁状態での液密状態を検査し,その後,最終組立工程S5へ移る。
〔最終組立工程S5〕
この最終組立工程S5では,燃料噴射弁Iの燃料入口筒26に燃料フィルタ27を装着する。以上により燃料噴射弁Iは製造される。
After the habituation operation step S2, the process proceeds to the fuel injection flow rate adjustment step S3 in FIG.
[Fuel injection flow rate adjustment step S3]
In this fuel injection flow rate adjustment step S3, in the fuel injection valve I, the set load of the valve spring 22 is adjusted to a predetermined value by appropriately advancing the press-fit of the retainer 23 into the vertical hole 21 of the fixed core 5. Thus, the fuel injection flow rate when the fuel injection valve I is operated once or a predetermined plurality of times is adjusted according to a predetermined value. As described above, by adjusting the fuel injection flow rate after adjusting the set load of the valve spring 22, it is possible to improve the accuracy of the fuel injection flow rate characteristic. After the fuel injection flow rate adjustment step S3, the process proceeds to the performance test step S4.
[Performance test process S4]
In this performance test step S4, a constant fluid pressure is applied to the fuel inlet cylinder 26 to inspect the fluid tightness of the valve body 16 in the closed state, and then the process proceeds to the final assembly step S5.
[Final assembly process S5]
In this final assembly step S5, a fuel filter 27 is attached to the fuel inlet cylinder 26 of the fuel injection valve I. Thus, the fuel injection valve I is manufactured.

本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば,分配チャンバ60及び回収チャンバ75に接続する燃料噴射弁Iの複数の個数は任意である。   The present invention is not limited to the above embodiment, and various design changes can be made without departing from the scope of the invention. For example, the number of the fuel injection valves I connected to the distribution chamber 60 and the collection chamber 75 is arbitrary.

I・・・・・電磁式燃料噴射弁
L・・・・・馴らし運転液
V・・・・・弁組立体
2・・・・・弁ハウジング
16・・・・弁体
22・・・・弁ばね
61・・・・第1供給管路
62・・・・第2供給管路
63・・・・切換弁
69・・・・加圧空気供給装置
70・・・・タンク
74・・・・馴らし運転液供給装置
79・・・・馴らし運転液回収装置
80・・・・バイパス管路
81・・・・開閉弁(第3開閉弁)
I ... Electromagnetic fuel injection valve L ... Conditioned operating fluid V ... Valve assembly 2 ... Valve housing 16 ... Valve body 22 ... Valve Spring 61 ··· First supply pipeline 62 ··· Second supply pipeline 63 ··· Switch valve 69 ··· Pressurized air supply device 70 ··· Tank 74 ··· Acclimatization Operating fluid supply device 79 .. Acclimatized operating fluid recovery device 80... Bypass pipe 81... Open / close valve (third on-off valve)

Claims (4)

組立工程(S1)後の複数の電磁式燃料噴射弁(I)が装着される分配チャンバ(60)と,馴らし運転液(L)を貯留するタンク(70)と,このタンク(70)内の馴らし運転液(L)を前記分配チャンバ(60)に加圧供給する馴らし運転液供給装置(74)と,前記分配チャンバ(60)から前記複数の電磁式燃料噴射弁(I)に馴らし運転液(L)を供給しながら電磁式燃料噴射弁(I)の馴らし運転を行った際,電磁式燃料噴射弁(I)から噴射された馴らし運転液(L)を回収して前記タンク(70)に戻す馴らし運転液回収装置(79)とを備える電磁式燃料噴射弁の製造システムであって,
前記分配チャンバ(60)に第1供給管路(61)及び第2供給管路(62)を切換弁(63)を介して接続して,その切換弁(63)により前記第1供給管路(61)及び第2供給管路(62)を選択的に分配チャンバ(60)に連通可能にし,前記第1供給管路(61)には空気を加圧供給し得る加圧空気供給装置(69)を接続する一方,前記第2供給管路(62)には前記馴らし運転液供給装置(74)を接続したことを特徴とする電磁式燃料噴射弁の製造システム。
A distribution chamber (60) in which a plurality of electromagnetic fuel injection valves (I) after the assembly step (S1) are mounted, a tank (70) for storing the conditioned operating fluid (L), and a tank (70) A conditioned operating fluid supply device (74) that pressurizes and supplies the conditioned operating fluid (L) to the distribution chamber (60), and an operating fluid acclimated from the distribution chamber (60) to the plurality of electromagnetic fuel injection valves (I). When the acclimation operation of the electromagnetic fuel injection valve (I) is performed while supplying (L), the acclimation operation liquid (L) injected from the electromagnetic fuel injection valve (I) is recovered and the tank (70) An electromagnetic fuel injection valve manufacturing system comprising a conditioned operating fluid recovery device (79) for returning to
A first supply line (61) and a second supply line (62) are connected to the distribution chamber (60) via a switching valve (63), and the first supply line is connected by the switching valve (63). (61) and the second supply pipe (62) can selectively communicate with the distribution chamber (60), and the first supply pipe (61) can be pressurized and supplied with air. 69), and the conditioned operating fluid supply device (74) is connected to the second supply pipe (62).
請求項1記載の電磁式燃料噴射弁の製造システムにおいて,
前記分配チャンバ(60)及び前記馴らし運転液回収装置(79)間に,前記電磁式燃料噴射弁(I)を迂回するバイパス管路(80)を接続し,このバイパス管路(80)に開閉弁(81)を設けたことを特徴とする電磁式燃料噴射弁の製造システム。
In the electromagnetic fuel injection valve manufacturing system according to claim 1,
A bypass line (80) that bypasses the electromagnetic fuel injection valve (I) is connected between the distribution chamber (60) and the conditioned operating fluid recovery device (79), and the bypass line (80) is opened and closed. A system for manufacturing an electromagnetic fuel injection valve, comprising a valve (81).
請求項1記載の電磁式燃料噴射弁の製造システムを実施するに当たり,
前記切換弁(63)により第1供給管路(61)を分配チャンバ(60)に連通させて,この分配チャンバ(60)から前記複数の電磁式燃料噴射弁(I)に空気を加圧供給しながらそれらの馴らし運転を行うドライ馴らし運転工程と,このドライ馴らし運転後,前記切換弁(63)を切り換えて第2供給管路(62)を分配チャンバ(60)に連通させて,この分配チャンバ(60)から前記複数の電磁式燃料噴射弁(I)に馴らし運転液を加圧供給しながらそれらの馴らし運転を行うウエット馴らし運転工程とを順次実行することを特徴とする電磁式燃料噴射弁の製造方法。
In carrying out the electromagnetic fuel injection valve manufacturing system according to claim 1,
The switching valve (63) causes the first supply pipe (61) to communicate with the distribution chamber (60), and air is pressurized and supplied from the distribution chamber (60) to the plurality of electromagnetic fuel injection valves (I). However, after the dry habituation operation for performing the habituation operation, and after the dry habituation operation, the switching valve (63) is switched so that the second supply pipe (62) communicates with the distribution chamber (60). An electromagnetic fuel injection characterized by sequentially performing a wet conditioned operation step of performing an acclimation operation of the plurality of electromagnetic fuel injection valves (I) from the chamber (60) while supplying an operating fluid under pressure. Manufacturing method of valve.
請求項3記載の電磁式燃料噴射弁の製造方法において,
前記ウエット馴らし運転工程後に,前記各電磁式燃料噴射弁(I)における弁ばね(22)のセット荷重の調整を行う弁ばね調整工程を実行することを特徴とする電磁式燃料噴射弁の製造方法。
In the manufacturing method of the electromagnetic fuel injection valve according to claim 3,
A method of manufacturing an electromagnetic fuel injection valve, comprising: performing a valve spring adjustment step of adjusting a set load of a valve spring (22) in each electromagnetic fuel injection valve (I) after the wet acclimation operation step. .
JP2009116760A 2009-05-13 2009-05-13 Manufacturing system of electromagnetic fuel injection valve and manufacturing method of the same Pending JP2010265790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116760A JP2010265790A (en) 2009-05-13 2009-05-13 Manufacturing system of electromagnetic fuel injection valve and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116760A JP2010265790A (en) 2009-05-13 2009-05-13 Manufacturing system of electromagnetic fuel injection valve and manufacturing method of the same

Publications (1)

Publication Number Publication Date
JP2010265790A true JP2010265790A (en) 2010-11-25

Family

ID=43362974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116760A Pending JP2010265790A (en) 2009-05-13 2009-05-13 Manufacturing system of electromagnetic fuel injection valve and manufacturing method of the same

Country Status (1)

Country Link
JP (1) JP2010265790A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102116239A (en) * 2011-03-01 2011-07-06 纪卿 Pneumatic detection platform for electronic injection device
WO2012115036A1 (en) * 2011-02-25 2012-08-30 本田技研工業株式会社 In-cylinder pressure detecting device of direct injection type internal combustion engine
JPWO2013183306A1 (en) * 2012-06-08 2016-01-28 本田技研工業株式会社 Fuel injection device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012115036A1 (en) * 2011-02-25 2012-08-30 本田技研工業株式会社 In-cylinder pressure detecting device of direct injection type internal combustion engine
CN103380357A (en) * 2011-02-25 2013-10-30 本田技研工业株式会社 In-cylinder pressure detecting device of direct injection type internal combustion engine
CN103380357B (en) * 2011-02-25 2016-03-02 本田技研工业株式会社 The cylinder pressure pick-up unit of fuel-direct-jetting type internal combustion engine
JP6054862B2 (en) * 2011-02-25 2016-12-27 本田技研工業株式会社 In-cylinder pressure detection device for a direct fuel injection internal combustion engine
US9587612B2 (en) 2011-02-25 2017-03-07 Honda Motor Co., Ltd. In-cylinder pressure detecting device of direct injection type internal combustion engine
CN102116239A (en) * 2011-03-01 2011-07-06 纪卿 Pneumatic detection platform for electronic injection device
JPWO2013183306A1 (en) * 2012-06-08 2016-01-28 本田技研工業株式会社 Fuel injection device

Similar Documents

Publication Publication Date Title
US10655580B2 (en) High pressure fuel supply pump
CN101029695B (en) Electromagnetic actuator performing quick response
JP2008516150A (en) Reducing agent injection device for exhaust pipe in internal combustion engine
JP2010019263A (en) High pressure fuel pump
JP2006194237A (en) Electromagnetic actuator
US20090297375A1 (en) Electromagnetic valve, fluid pump having the valve, and fluid injector having the valve
JP2010174849A (en) Solenoid valve and fuel injection valve
US8707765B2 (en) Fuel vapor leak detection device
JP2010265790A (en) Manufacturing system of electromagnetic fuel injection valve and manufacturing method of the same
JP2006336594A (en) Fuel filter
US20200318592A1 (en) Device for controlling high-pressure fuel supply pump, and high-pressure fuel supply pump
JP2006299855A (en) Fluid control valve
US8317157B2 (en) Automobile high pressure pump solenoid valve
JP2009209907A (en) Fuel injection device
US20140352664A1 (en) Flow limiting system
JP3896997B2 (en) Fuel supply device
JP2008128228A (en) Fuel adjustment and filtering device for high-pressure pump
JP6233158B2 (en) Fuel supply system
JP2009016296A (en) Gas supply unit
JP2009257511A (en) Electromagnetic actuator
JP2008138650A (en) Solenoid valve, and fuel injection device using it
JP2008163772A (en) Fuel control valve
JP2008063952A (en) Solenoid fuel injection valve
GB2563244A (en) Diesel HP pump with debris collector
JP2005307750A (en) Fuel injection valve