JP2010265244A - Phosphine compound, and catalyst comprising the phosphine compound and transition metal compound - Google Patents

Phosphine compound, and catalyst comprising the phosphine compound and transition metal compound Download PDF

Info

Publication number
JP2010265244A
JP2010265244A JP2009120104A JP2009120104A JP2010265244A JP 2010265244 A JP2010265244 A JP 2010265244A JP 2009120104 A JP2009120104 A JP 2009120104A JP 2009120104 A JP2009120104 A JP 2009120104A JP 2010265244 A JP2010265244 A JP 2010265244A
Authority
JP
Japan
Prior art keywords
group
compound
substituted
phosphine compound
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009120104A
Other languages
Japanese (ja)
Other versions
JP5544756B2 (en
Inventor
Masaichi Nishiyama
正一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2009120104A priority Critical patent/JP5544756B2/en
Publication of JP2010265244A publication Critical patent/JP2010265244A/en
Application granted granted Critical
Publication of JP5544756B2 publication Critical patent/JP5544756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly selective and highly active catalyst useful for aryl amine synthesis, biaryl synthesis, substituted styrene derivative synthesis and the like. <P>SOLUTION: The catalyst comprises a phosphine compound represented by formula (1) and a transition metal compound. In the formula, R<SP>1</SP>and R<SP>2</SP>are each independently a hydrogen atom, alkyl group, cycloalkyl group, alkoxy group, amino group, or substituted or unsubstituted phenyl group; R is an alkyl group, a cycloalkyl group or a substituted or unsubstituted phenyl group; and M is an optionally substituted linear or branched 1-8C alkylene group or a -CH<SB>2</SB>CH<SB>2</SB>-O-CH<SB>2</SB>CH<SB>2</SB>- group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規なホスフィン化合物に関するものである。更に詳しくは、各種の反応の触媒となる遷移金属錯体触媒中の配位子として有用なホスフィン化合物、及び該ホスフィン化合物と遷移金属化合物からなる芳香族アミン、ビアリール、置換スチレン誘導体合成用触媒に関する。   The present invention relates to a novel phosphine compound. More specifically, the present invention relates to a phosphine compound useful as a ligand in a transition metal complex catalyst serving as a catalyst for various reactions, and a catalyst for synthesizing aromatic amine, biaryl, and substituted styrene derivatives composed of the phosphine compound and a transition metal compound.

従来、パラジウム等の遷移金属錯体は、各種反応の触媒となることが知られている(例えば、辻二郎著 Palladium Reagents and Catalysts,1995年)。遷移金属錯体は遷移金属化合物と配位子からなる化合物であるが、配位子は触媒反応の活性及び選択性を制御する上で極めて重要な役割を有している。これまでに炭素−炭素(又はヘテロ元素)結合反応で報告されている配位子としては、トリ(tert−ブチル)ホスフィン(例えば、特許文献1,非特許文献1参照)、ジアルキルホスフィノ基が置換したフェロセン誘導体(例えば、特許文献2,非特許文献2参照)、2−ジシクロヘキシルホスフィノ−1,1’−ビフェニル誘導体(例えば、特許文献3参照)等のリン系配位子、1,3−ビス−(2,6−ジイソプロピルフェニル)イミダゾリニウム塩等(例えば、非特許文献3参照)のカルベン系配位子が知られている。   Conventionally, it is known that transition metal complexes such as palladium serve as catalysts for various reactions (for example, Palladium Reagents and Catalysts, 1995). The transition metal complex is a compound composed of a transition metal compound and a ligand, and the ligand has an extremely important role in controlling the activity and selectivity of the catalytic reaction. Examples of ligands that have been reported so far in carbon-carbon (or heteroelement) bonding reactions include tri (tert-butyl) phosphine (see, for example, Patent Document 1 and Non-Patent Document 1), and dialkylphosphino groups. Phosphorus ligands such as substituted ferrocene derivatives (see, for example, Patent Document 2 and Non-Patent Document 2), 2-dicyclohexylphosphino-1,1′-biphenyl derivatives (for example, see Patent Document 3), 1,3 Carbene-based ligands such as -bis- (2,6-diisopropylphenyl) imidazolinium salt (see, for example, Non-Patent Document 3) are known.

一方、炭素−炭素(又はヘテロ元素)結合反応以外の反応で、2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル(通称、BINAP)、6,6’位がある連結基を通して結合した1,1’−ビフェニル構造の二座配位子が、不斉合成反応(特に不斉水素化反応)の配位子として報告されている(例えば、特許文献4,5参照)。   On the other hand, in a reaction other than a carbon-carbon (or heteroelement) bonding reaction, a linking group having 2,2′-bis (diphenylphosphino) -1,1′-binaphthyl (commonly known as BINAP) and 6,6′-position A bidentate ligand having a 1,1′-biphenyl structure bonded through a ligand has been reported as a ligand for asymmetric synthesis reaction (particularly asymmetric hydrogenation reaction) (see, for example, Patent Documents 4 and 5).

特開平10−139742号公報JP 10-139742 A 特開2000−247990号公報JP 2000-247990 A US2002/156295号公報US2002 / 156295 特許4167899号公報Japanese Patent No. 4167899 特開2000−154156号公報JP 2000-154156 A

Journal of American Chemical Society,122(17),4020−4028(2000)Journal of American Chemical Society, 122 (17), 4020-4028 (2000) Journal of American Chemical Society,130,6586−6596(2008)Journal of American Chemical Society, 130, 6586-6596 (2008) Angew. Chem. Int.Ed., 46,2768−2813(2007)Angew. Chem. Int. Ed. , 46, 2768-2813 (2007)

トリ(tert−ブチル)ホスフィンを配位子とする遷移金属触媒は、極めて高活性であることが知られているものの、トリ(tert−ブチル)ホスフィン自身が酸素で容易に酸化される特徴を有していることから扱いづらい欠点をもっている。一方、その他の配位子は、比較的酸素に安定であるものの、反応活性がトリ(tert−ブチル)ホスフィンを配位子とする遷移金属触媒より低活性である欠点を有していた。特に、トリアリールアミン類、中でもアリールクロライド原料からのトリアリールアミン類の合成、及びビフェニル化合物の合成の際には、空気中及び酸素に安定で、且つ高活性な触媒の開発が望まれていた。   Although transition metal catalysts having tri (tert-butyl) phosphine as a ligand are known to have extremely high activity, tri (tert-butyl) phosphine itself has a characteristic of being easily oxidized with oxygen. It has a drawback that is difficult to handle. On the other hand, other ligands have a defect that the reaction activity is lower than that of a transition metal catalyst having tri (tert-butyl) phosphine as a ligand, although it is relatively stable to oxygen. In particular, in the synthesis of triarylamines, especially triarylamines from aryl chloride raw materials, and the synthesis of biphenyl compounds, it has been desired to develop catalysts that are stable in air and oxygen and that are highly active. .

本発明者らは、上記課題を解決するため鋭意検討を行った結果、6,6’位同士が結合することにより環構造を形成したビフェニル系単座配位子である上記一般式(1)で表されるホスフィン化合物が遷移金属錯体の配位子として極めて優れていることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have obtained the general formula (1), which is a biphenyl monodentate ligand in which a ring structure is formed by bonding the 6,6 ′ positions to each other. The present inventors have found that the represented phosphine compound is extremely excellent as a ligand of a transition metal complex, and have completed the present invention.

即ち、本発明は、下記一般式(1)で表されるホスフィン化合物及び該ホスフィン化合物と遷移金属化合物からなる触媒に関するものである。   That is, the present invention relates to a phosphine compound represented by the following general formula (1) and a catalyst comprising the phosphine compound and a transition metal compound.

Figure 2010265244
Figure 2010265244

(式中、R,Rは、各々独立して水素原子、直鎖、分岐若しくは環状のアルキル基、アルコキシ基、アミノ基、置換若しくは無置換のフェニル基を表し、Rは、直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換のフェニル基を表す。また、Mは、置換基を有していても良い直鎖状若しくは分岐状の炭素数1〜8のアルキレン基、又は−CHCH−O−CHCH−基を表す。)
以下、本発明を更に詳細に説明する。
(Wherein R 1 and R 2 each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group, an alkoxy group, an amino group, a substituted or unsubstituted phenyl group, and R represents a linear, Represents a branched or cyclic alkyl group, a substituted or unsubstituted phenyl group, and M represents a linear or branched alkylene group having 1 to 8 carbon atoms which may have a substituent, or -CH. 2 CH 2 -O-CH 2 CH 2 - represents a group).
Hereinafter, the present invention will be described in more detail.

上記一般式(1)のR,Rである直鎖、分岐若しくは環状のアルキル基は特に制限はないが、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基、シクロヘキシル基、n−へプチル基、2−エチルヘキシル基、アダマンチル基等の炭素数1〜10のアルキル基等を挙げることができる。 The linear, branched or cyclic alkyl group as R 1 and R 2 in the general formula (1) is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. , Sec-butyl group, tert-butyl group, n-pentyl group, n-hexyl group, cyclohexyl group, n-heptyl group, 2-ethylhexyl group, adamantyl group and the like, and the like. be able to.

また、アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、n−ペントキシ基、n−ヘキシルオキシ基、n−へプチルオキシ基、2−エチルヘキシルオキシ基等が挙げられる。   Examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, n-pentoxy group, n-hexyloxy group, n-heptyloxy group, 2 -An ethylhexyloxy group etc. are mentioned.

アミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基等が挙げられる。   Examples of the amino group include a dimethylamino group, a diethylamino group, and a diphenylamino group.

置換若しくは無置換のフェニル基としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、2−メトキシフェニル基、3−メトキシフェニル基、4−メトキシフェニル基、あるいは縮合したナフチル基等が挙げられる。   Examples of the substituted or unsubstituted phenyl group include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2-methoxyphenyl group, 3-methoxyphenyl group, 4-methoxyphenyl group, and condensed naphthyl. Groups and the like.

上記一般式(1)のRは、直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換のフェニル基であり、例えば、R,Rで例示した置換基を例示することができる。中でも嵩高く、電子供与性の置換基であるtert−ブチル基、シクロヘキシル基、アダマンチル基が高い触媒活性を有する点でより好ましい。 R in the general formula (1) is a linear, branched or cyclic alkyl group, a substituted or unsubstituted phenyl group, and examples thereof include the substituents exemplified for R 1 and R 2 . Among them, bulky and electron donating substituents such as tert-butyl group, cyclohexyl group, and adamantyl group are more preferable because of high catalytic activity.

上記一般式(1)で表されるホスフィン化合物は、6,6’位が−O−M−O−を経由して環を形成した新規ホスフィン化合物である。   The phosphine compound represented by the general formula (1) is a novel phosphine compound in which the 6,6′-position forms a ring via —O—M—O—.

置換基Mは、置換基を有していても良い直鎖状若しくは分岐状の炭素数1〜8のアルキレン基、又は−CHCH−O−CHCH−基を表す。置換基を有していても良い直鎖状若しくは分岐状の炭素数1〜8のアルキレン基としては、具体的に、メチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基等の直鎖状のアルキレン基、及び2−ヒドロキシプロパン−1,3−ジイル基、ヘキサン−2,5−ジイル基、2,3−メチレンジオキシブタン−1,4−ジイル基等の分岐状のアルキレン基が挙げられる。 The substituent M represents a linear or branched alkylene group having 1 to 8 carbon atoms which may have a substituent, or a —CH 2 CH 2 —O—CH 2 CH 2 — group. Specific examples of the linear or branched alkylene group having 1 to 8 carbon atoms which may have a substituent include a methylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, Linear alkylene group such as octylene group, and 2-hydroxypropane-1,3-diyl group, hexane-2,5-diyl group, 2,3-methylenedioxybutane-1,4-diyl group, etc. A branched alkylene group is mentioned.

上記一般式(1)で表されるホスフィン化合物は、遷移金属化合物と組み合わせることにより、各種のアリールアミン合成、ビアリール合成、置換スチレン誘導体等の炭素−炭素結合反応、炭素−ヘテロ元素結合反応の触媒として非常に有効である。中でも下記L1〜L14に記載したホスフィン化合物が、触媒活性の面でより好ましい。   The phosphine compound represented by the above general formula (1) is combined with a transition metal compound to produce various arylamine synthesis, biaryl synthesis, carbon-carbon bond reactions such as substituted styrene derivatives, and catalysts for carbon-heteroelement bonding reactions. As very effective. Among these, phosphine compounds described in the following L1 to L14 are more preferable in terms of catalytic activity.

Figure 2010265244
Figure 2010265244

以下に、本発明の化合物の製造法について説明する。   Below, the manufacturing method of the compound of this invention is demonstrated.

例えば、特開2004−10583号公報に従い、3−ブロモアニソールから2−ヨード−3−ブロモ−アニソールを合成し、2−メトキシフェニルボロン酸との鈴木−宮浦カップリングを行うことにより、2−ブロモ−6,6’−ジメトキシ−1,1’−ビフェニルを合成する。次に、n−ブチルリチウム/クロロジアルキルホスフィン(又はクロロジアリールホスフィン)で処理することにより、2−ジアルキルホスフィノ(又はジアリールホスフィノ)−6,6’−ジメトキシ−1,1’−ビフェニルを合成することができる。その後、三臭化ホウ素で処理することにより、メチル基を脱保護し、引き続き、所望のジブロモアルカン、ビス(2−クロロエチル)エーテル等と反応させることにより、一般式(1)で表されるホスフィン化合物を合成することができる。   For example, according to Japanese Patent Application Laid-Open No. 2004-10583, 2-iodo-3-bromo-anisole is synthesized from 3-bromoanisole, and Suzuki-Miyaura coupling with 2-methoxyphenylboronic acid is performed. -6,6'-dimethoxy-1,1'-biphenyl is synthesized. Next, 2-dialkylphosphino (or diarylphosphino) -6,6′-dimethoxy-1,1′-biphenyl is synthesized by treatment with n-butyllithium / chlorodialkylphosphine (or chlorodiarylphosphine). can do. Thereafter, the methyl group is deprotected by treating with boron tribromide, and subsequently reacting with the desired dibromoalkane, bis (2-chloroethyl) ether, etc., to give a phosphine represented by the general formula (1). Compounds can be synthesized.

このようにして得られた一般式(1)で表されるホスフィン化合物は、配位子として遷移金属化合物と組み合わせることにより、各種反応の触媒となる。例えば、ハロゲン化アリールとアミンからアリールアミンの合成、ハロゲン化アリールとアリールボロン試薬等とのカップリングによるビアリールの合成、又はハロゲン化アリールとオレフィン類との反応による置換スチレン類の合成等の反応を挙げることができる。これらの反応において、ハロゲン化アリールの代わりにアリールスルホネートを用いることもできる。   The phosphine compound represented by the general formula (1) thus obtained becomes a catalyst for various reactions by being combined with a transition metal compound as a ligand. For example, reactions such as synthesis of arylamines from aryl halides and amines, synthesis of biaryls by coupling of aryl halides with aryl boron reagents, etc., or synthesis of substituted styrenes by reaction of aryl halides with olefins, etc. Can be mentioned. In these reactions, an aryl sulfonate can be used in place of the aryl halide.

これらの触媒反応の条件は特に限定されるものではないが、遷移金属化合物はハロゲン化アリール等の基質に対して0.001〜10モル%、配位子は遷移金属化合物に対して0.8〜5.0モル%を用い、反応に不活性な溶媒中(例えば、トルエン、キシレン等の芳香族溶媒、テトラハイドロフラン、ジメトキシエタン、1,4−ジオキサン、シクロペンチルメチルエーテル等のエーテル溶媒、ジメチルスルホキシド、ジメチルホルムアミド等の非極性溶媒等)、反応温度20〜160℃、反応時間0.5〜48時間、窒素あるいはアルゴン等の不活性ガス雰囲気下で通常行われる。   The conditions for these catalytic reactions are not particularly limited, but the transition metal compound is 0.001 to 10 mol% relative to the substrate such as aryl halide, and the ligand is 0.8 relative to the transition metal compound. In an inert solvent for reaction (for example, an aromatic solvent such as toluene and xylene, an ether solvent such as tetrahydrofuran, dimethoxyethane, 1,4-dioxane, cyclopentylmethyl ether, dimethyl) Nonpolar solvents such as sulfoxide and dimethylformamide), a reaction temperature of 20 to 160 ° C., a reaction time of 0.5 to 48 hours, and usually carried out in an inert gas atmosphere such as nitrogen or argon.

遷移金属化合物として特に制限はないが、例えば、ヘキサクロロパラジウム(IV)酸ナトリウム四水和物、ヘキサクロロパラジウム(IV)酸カリウム等の4価パラジウム化合物類、塩化パラジウム(II)、臭化パラジウム(II)、酢酸パラジウム(II)、パラジウム(II)アセチルアセトナート、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロテトラアンミンパラジウム(II)、ジクロロ(シクロオクタ−1,5−ジエン)パラジウム(II)、パラジウム(II)トリフルオロアセテート等の2価パラジウム化合物類、トリス(ジベンジリデンアセトン)二パラジウム(0)、トリス(ジベンジリデンアセトン)二パラジウム(0)クロロホルム錯体、テトラキス(トリフェニルホスフィン)パラジウム(0)等の0価パラジウム化合物類等が挙げられる。また、酢酸ニッケル、塩化ニッケル、(N,N,N’,N’−テトラメチルエチレンジアミン)ニッケルジクロライド、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ニッケルジクロライド、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケルジクロライド、[1,4−ビス(ジフェニルホスフィノ)ブタン]ニッケルジクロライド、ビス(シクロペンタジエニル)ニッケル等のニッケル化合物が挙げられる。中でも活性・選択性の観点から、パラジウム化合物が好ましい。   Although there is no restriction | limiting in particular as a transition metal compound, For example, tetravalent palladium compounds, such as sodium hexachloro palladium (IV) acid tetrahydrate and hexachloro palladium (IV) potassium, palladium (II) chloride, palladium bromide (II ), Palladium (II) acetate, palladium (II) acetylacetonate, dichlorobis (benzonitrile) palladium (II), dichlorobis (acetonitrile) palladium (II), dichlorobis (triphenylphosphine) palladium (II), dichlorotetraamminepalladium ( II), divalent palladium compounds such as dichloro (cycloocta-1,5-diene) palladium (II), palladium (II) trifluoroacetate, tris (dibenzylideneacetone) dipalladium (0), tris ( ) Dipalladium (0) chloroform complex, tetrakis (triphenylphosphine) palladium (0) 0-valent palladium compounds such as and the like. Also, nickel acetate, nickel chloride, (N, N, N ′, N′-tetramethylethylenediamine) nickel dichloride, [1,1′-bis (diphenylphosphino) ferrocene] nickel dichloride, [1,3-bis ( And nickel compounds such as [diphenylphosphino) propane] nickel dichloride, [1,4-bis (diphenylphosphino) butane] nickel dichloride, bis (cyclopentadienyl) nickel. Of these, palladium compounds are preferred from the viewpoint of activity and selectivity.

一般式(1)で表されるホスフィン化合物は、C点群の軸不斉を有しているため、(R)体又は(S)体の光学活性体が存在する。上記ホスフィン化合物を反応に使用する際には、ラセミ体であっても、いずれか一方の光学活性体であっても構わない。 Since the phosphine compound represented by the general formula (1) has C 2 point group axial asymmetry, an optically active substance of (R) form or (S) form exists. When the phosphine compound is used in the reaction, it may be a racemate or any one of the optically active substances.

また、一般式(1)で表されるホスフィン化合物は、公知の方法によりポリスチレン等に固定化、又はマイクロカプセル化(例えば、特開2002−253972号公報)により高分子担体に固定化しても構わない。また、シリカゲル等の無機担体にシランカップリング剤を用いて固定化したものを使用しても構わない(例えば、Journal of American Chemical Society,125,4688−4689(2003))。   Further, the phosphine compound represented by the general formula (1) may be immobilized on polystyrene or the like by a known method, or may be immobilized on a polymer carrier by microencapsulation (for example, JP-A No. 2002-253972). Absent. Moreover, you may use what was fix | immobilized using the silane coupling agent to inorganic supports, such as a silica gel (for example, Journal of American Chemical Society, 125, 4688-4690 (2003)).

本発明のホスフィン化合物は、パラジウム等の遷移金属化合物に対して優れた配位子となり、アリールアミン合成、ビアリール合成、置換スチレン誘導体合成等の各種触媒反応において、高選択性及び高活性を示すものである。   The phosphine compound of the present invention is an excellent ligand for transition metal compounds such as palladium, and exhibits high selectivity and high activity in various catalytic reactions such as arylamine synthesis, biaryl synthesis, and substituted styrene derivative synthesis. It is.

化合物AのH−NMRチャート(CDCl)を示す。 1 H-NMR chart (CDCl 3 ) of Compound A is shown. 化合物BのH−NMRチャート(acetone−d)を示す。 1 H-NMR chart (acetone-d 6 ) of Compound B is shown. 化合物CのH−NMRチャート(CDCl)を示す。 1 H-NMR chart (CDCl 3 ) of Compound C is shown. 化合物DのH−NMRチャート(Methanol−d)を示す。 1 H-NMR chart (Methanol-d 4 ) of Compound D is shown. 化合物L3のH−NMRチャート(CDCl)を示す。 1 H-NMR chart (CDCl 3 ) of Compound L3 is shown.

以下、本発明を実施例に基づき更に詳細に解説するが、本発明はこれらに限定されるものではない。なお、実施例で得られた化合物の同定は、H−NMR測定、及びFDMS測定により行った。H−NMR測定はバリアン社製 Gemini200、FDMS測定は日立製作所製 M−80Bを使用して実施した。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited to these. In addition, the identification of the compound obtained in the Example was performed by 1 H-NMR measurement and FDMS measurement. 1 H-NMR measurement was performed using Gemini 200 manufactured by Varian, and FDMS measurement was performed using Hitachi M-80B.

Figure 2010265244
Figure 2010265244

合成例1
(1)化合物Aの合成
50mlシュレンク管に、窒素雰囲気下、2,2,6,6,−テトラメチルピペリジン 3.01g(21.3mmol)、脱水テトラハイドロフラン 30mlを加えた後、反応液をドライアイス−メタノール浴で−78℃に冷却し、1.6Mのn−ブチルリチウム/ヘキサン溶液を12.6ml添加した。その後、同温度で30分、更に0℃で30分攪拌した(反応液A)。次に、100mlシュレンク管に、塩化亜鉛 2.86g(21.0mmol)とテトラハイドロフラン 50mlを加え、塩化亜鉛を溶解させた後(僅かに白濁している)、反応液を−78℃に冷却した。その後、1.6M tert−ブチルリチウム/ヘプタン溶液を27ml(42.9mmol)添加し、引き続き同温度で30分攪拌した(反応液B)。
Synthesis example 1
(1) Synthesis of Compound A After adding 3.01, 2,6,6, -tetramethylpiperidine (3.01 g) and 30 ml of dehydrated tetrahydrofuran to a 50 ml Schlenk tube under a nitrogen atmosphere, The solution was cooled to −78 ° C. in a dry ice-methanol bath, and 12.6 ml of 1.6 M n-butyllithium / hexane solution was added. Thereafter, the mixture was stirred at the same temperature for 30 minutes and further at 0 ° C. for 30 minutes (reaction liquid A). Next, 2.86 g (21.0 mmol) of zinc chloride and 50 ml of tetrahydrofuran are added to a 100 ml Schlenk tube to dissolve the zinc chloride (slightly cloudy), and then the reaction solution is cooled to −78 ° C. did. Thereafter, 27 ml (42.9 mmol) of 1.6 M tert-butyllithium / heptane solution was added, and subsequently stirred at the same temperature for 30 minutes (reaction solution B).

次に、300mlナス型フラスコに、先に調製した反応液Aを加え、反応液をドライアイス−メタノール浴で−78℃に冷却した。そこに、反応液Bを滴下し、更に同温度で30分及び0℃で2時間攪拌した。次に、3−メトキシアニソール 1.89g(10.2mmol)/テトラハイドロフラン 15mlからなる溶液を−78℃で加え、更に−30℃で14時間攪拌した。次に、同温度でヨウ素 17.69g(69.7mmol)/テトラハイドロフラン 60mlからなる溶液を加えた。その後、室温で1時間攪拌してから21%のチオ硫酸ナトリウム水溶液 85mlを加え、反応を終了させた。得られた反応液にクロロホルム 100mlを加え、有機層を抽出した。得られた有機層は、硫酸マグネシウムで乾燥の後、シリカゲルクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=10/1体積比)にて精製した。目的の留分は、濃縮後、更にヘキサンで再結晶することにより1.3gの化合物Aを単離した。化合物の同定は、H−NMR(CDCl)により行った(図1参照)。 Next, the previously prepared reaction solution A was added to a 300 ml eggplant-shaped flask, and the reaction solution was cooled to -78 ° C in a dry ice-methanol bath. The reaction liquid B was dripped there, and also it stirred at the same temperature for 30 minutes and 0 degreeC for 2 hours. Next, a solution consisting of 1.89 g (10.2 mmol) of 3-methoxyanisole / 15 ml of tetrahydrofuran was added at −78 ° C., and the mixture was further stirred at −30 ° C. for 14 hours. Next, a solution consisting of 17.69 g (69.7 mmol) of iodine / 60 ml of tetrahydrofuran was added at the same temperature. Then, after stirring at room temperature for 1 hour, 85 ml of 21% sodium thiosulfate aqueous solution was added to terminate the reaction. 100 ml of chloroform was added to the obtained reaction solution, and the organic layer was extracted. The obtained organic layer was dried over magnesium sulfate and purified by silica gel chromatography (eluent: hexane / ethyl acetate = 10/1 volume ratio). The target fraction was concentrated and further recrystallized with hexane to isolate 1.3 g of Compound A. The compound was identified by 1 H-NMR (CDCl 3 ) (see FIG. 1).

(2)化合物Bの合成
50mlシュレンク管に、窒素雰囲気下、化合物A 1.21g(3.6mmol)、o−メトキシフェニルボロン酸 0.596g(3.942mmol)、20%炭酸ナトリウム水溶液 6.3g(12.2mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.182g(0.158mmol)及びジメトキシエタン 25mlを加えた後、90℃で48時間加熱攪拌した。室温まで冷却後、クロロホルムを添加して有機層を抽出し、有機層を飽和食塩水で処理した後、硫酸マグネシウムで乾燥した。濃縮後、シリカゲルクロマトグラフィー(溶出液:トルエン/酢酸エチル=10/1体積比)にて精製することにより、目的とする化合物Bを0.77g(収率66%,無色油状物)単離した。化合物の同定は、H−NMRにより行った(図2参照)。
(2) Synthesis of Compound B In a 50 ml Schlenk tube, under a nitrogen atmosphere, Compound A 1.21 g (3.6 mmol), o-methoxyphenylboronic acid 0.596 g (3.942 mmol), 20% aqueous sodium carbonate solution 6.3 g (12.2 mmol), 0.182 g (0.158 mmol) of tetrakis (triphenylphosphine) palladium and 25 ml of dimethoxyethane were added, and the mixture was heated and stirred at 90 ° C. for 48 hours. After cooling to room temperature, chloroform was added to extract the organic layer, and the organic layer was treated with saturated brine and then dried over magnesium sulfate. After concentration, 0.77 g (yield 66%, colorless oil) of the desired compound B was isolated by purification with silica gel chromatography (eluent: toluene / ethyl acetate = 10/1 volume ratio). . Compound identification was performed by 1 H-NMR (see Figure 2).

(3)化合物Cの合成
窒素雰囲気中、100mlシュレンク管に、化合物B 1.40g(4.78mmol)及びテトラハイドロフラン 25mlを加えた後、反応液を−78℃に冷却した。その反応液に、n−ブチルリチウム/ヘキサン溶液(1.6mol/l) 3.6mlを同温度で滴下・熟成し、更にクロロジシクロヘキシルホスフィン/テトラハイドロフラン溶液(11.7wt%溶液)を12.0ml(5.95mmol)滴下した。室温で一晩攪拌した後、飽和塩化アンモニウム水溶液 25mlを滴下して反応を終了させた。有機層を分液し、硫酸マグネシウムで乾燥した後、シリカゲルクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=10/1体積比)にて精製することにより、無色結晶として化合物Cを880mg(収率45%)単離した。化合物の同定は、H−NMRにより行なった(図3参照)。
(3) Synthesis of Compound C In a nitrogen atmosphere, 1.40 g (4.78 mmol) of Compound B and 25 ml of tetrahydrofuran were added to a 100 ml Schlenk tube, and then the reaction solution was cooled to −78 ° C. To the reaction solution, 3.6 ml of n-butyllithium / hexane solution (1.6 mol / l) was dropped and aged at the same temperature, and further a chlorodicyclohexylphosphine / tetrahydrofuran solution (11.7 wt% solution) was added to 12. 0 ml (5.95 mmol) was added dropwise. After stirring overnight at room temperature, 25 ml of saturated aqueous ammonium chloride solution was added dropwise to terminate the reaction. The organic layer was separated, dried over magnesium sulfate, and purified by silica gel chromatography (eluent: hexane / ethyl acetate = 10/1 volume ratio) to give 880 mg of compound C as colorless crystals (yield 45). %) Isolated. The compound was identified by 1 H-NMR (see FIG. 3).

実施例1(化合物L3の合成)
合成例1で得た化合物C 0.83g(2.0mmol)を脱水ジクロロメタン 18mlに溶かした後、反応液を−78℃に冷却した。次に、1mol/l 三臭化ホウ素ジクロロメタン溶液 6.1ml(6.1mmol)をシリンジにて滴下し、同温度で1時間、更に室温で48時間攪拌した後、氷冷下、水 10mlを滴下して反応を終了させた。
Example 1 (Synthesis of Compound L3)
After 0.83 g (2.0 mmol) of Compound C obtained in Synthesis Example 1 was dissolved in 18 ml of dehydrated dichloromethane, the reaction solution was cooled to −78 ° C. Next, 6.1 ml (6.1 mmol) of a 1 mol / l boron tribromide dichloromethane solution was added dropwise with a syringe, and the mixture was stirred at the same temperature for 1 hour and further at room temperature for 48 hours. The reaction was terminated.

生成した沈殿を濾過・洗浄した後、得られた沈殿をシリカゲルクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=2/1体積比、引続きメタノール)で精製することにより、ジヒドロキシ体の化合物Dを白色粉末として590mg(収率76%)単離した。化合物の同定は、H−NMRにより行なった(図4参照)。 The produced precipitate was filtered and washed, and then the obtained precipitate was purified by silica gel chromatography (eluent: hexane / ethyl acetate = 2/1 volume ratio, subsequently methanol) to obtain dihydroxy compound D as a white powder. 590 mg (yield 76%) was isolated. The compound was identified by 1 H-NMR (see FIG. 4).

次に、50mlナス型フラスコに、化合物D 560mg(1.47mmol)、炭酸カリウム 1.02g(7.38mmol)及びジメチルホルムアミド 15mlを窒素雰囲気下加え、室温下で30分間攪拌した。その後、1−ブロモ−4−クロロブタンをシリンジにて190μl滴下した後、同温度で24時間、更に60℃で47時間攪拌した。   Next, 560 mg (1.47 mmol) of Compound D, 1.02 g (7.38 mmol) of potassium carbonate and 15 ml of dimethylformamide were added to a 50 ml eggplant-shaped flask under a nitrogen atmosphere, and the mixture was stirred at room temperature for 30 minutes. Thereafter, 190 μl of 1-bromo-4-chlorobutane was dropped with a syringe, followed by stirring at the same temperature for 24 hours and further at 60 ° C. for 47 hours.

水 20mlを加えて反応を終了させ、ジエチルエーテル 30mlで抽出した。得られた有機層を常法処理した後、濃縮した。得られた残渣は、シリカゲルクロマトグラフィー(溶出液:ヘキサン/酢酸エチル=20/1体積比)で精製することにより、化合物L3を無色粉末として0.18g(収率28%)単離した。化合物の同定は、H−NMR(図5参照)及びFDMSにより行った。 The reaction was terminated by adding 20 ml of water, and extracted with 30 ml of diethyl ether. The obtained organic layer was treated in a conventional manner and then concentrated. The obtained residue was purified by silica gel chromatography (eluent: hexane / ethyl acetate = 20/1 volume ratio) to isolate 0.18 g (yield 28%) of Compound L3 as a colorless powder. The compound was identified by 1 H-NMR (see FIG. 5) and FDMS.

FDMS(m/e):436   FDMS (m / e): 436

Figure 2010265244
Figure 2010265244

なお、化合物L3のトルエン溶液(0.5wt%)を空気中、2日間室温で攪拌したが、31P−NMR上、酸化されたピークは検出されなかった。 In addition, although the toluene solution (0.5 wt%) of compound L3 was stirred in air at room temperature for 2 days, no oxidized peak was detected on 31 P-NMR.

実施例2
200mlナス型フラスコに、窒素雰囲気下、ブロモベンゼン 6.24g(40mmol)、3−メチルジフェニルアミン 7.32g(40mmol)、ナトリウム−tert−ブトキシド 4.99g(52mmol)、トルエン 45mlを添加した。次に、20mlシュレンク管中で、酢酸パラジウム 6.6mgと配位子として化合物L3 26mg(化合物L3/パラジウム=2/1モル比)、及びトルエン 5mlからなる混合物を60℃で30分加熱攪拌した溶液を調製した。その内、1.6ml(ブロモベンゼンに対してパラジウムは0.025mol%に相当する)を、シリンジにて先に調製した反応液に滴下し、100℃で3時間加熱攪拌した。室温まで冷却後、水 25mlを加えて有機層を分離した。有機層は、トリフェニルアミンを内部標準とするガスクロマトグラフィー分析により、目的物である3−メチルトリフェニルアミンの収率及びターンオーバー数(生成物−mol/Pd−mol/hr)を分析した。結果を表1に示す。
Example 2
Under a nitrogen atmosphere, 6.24 g (40 mmol) of bromobenzene, 7.32 g (40 mmol) of 3-methyldiphenylamine, 4.99 g (52 mmol) of sodium tert-butoxide, and 45 ml of toluene were added to a 200 ml eggplant type flask. Next, in a 20 ml Schlenk tube, 6.6 mg of palladium acetate, 26 mg of compound L3 (compound L3 / palladium = 2/1 molar ratio) as a ligand, and 5 ml of toluene were heated and stirred at 60 ° C. for 30 minutes. A solution was prepared. Among them, 1.6 ml (palladium corresponds to 0.025 mol% with respect to bromobenzene) was dropped into the previously prepared reaction solution with a syringe, and the mixture was heated and stirred at 100 ° C. for 3 hours. After cooling to room temperature, 25 ml of water was added to separate the organic layer. The organic layer was analyzed for yield and turnover number of 3-methyltriphenylamine (product-mol / Pd-mol / hr) by gas chromatography analysis using triphenylamine as an internal standard. . The results are shown in Table 1.

比較例1〜2
配位子を、2−ジシクロヘキシルホスフィノ−1,1’−ビフェニル(特許文献3に記載)、2−2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシ−1,1’−ビフェニル(特許文献3に記載。別名、SPhosとも言う。)に代えて、実施例2に準じてアミノ化を行った。結果を表1に示す。
Comparative Examples 1-2
The ligand is 2-dicyclohexylphosphino-1,1′-biphenyl (described in Patent Document 3), 2-dicyclohexylphosphino-2 ′, 6′-dimethoxy-1,1′-biphenyl (Patent Document) The amination was carried out in accordance with Example 2 instead of (also called SPhos). The results are shown in Table 1.

実施例3(化合物L2の合成)
1−ブロモ−4−クロロブタンを1−ブロモ−3−クロロプロパンに代えた以外は、実施例1と同様の反応を行い、化合物L2を123mg(収率19.8%)単離した。
Example 3 (Synthesis of Compound L2)
Except that 1-bromo-4-chlorobutane was replaced with 1-bromo-3-chloropropane, the same reaction as in Example 1 was performed, and 123 mg (yield 19.8%) of compound L2 was isolated.

Figure 2010265244
Figure 2010265244

実施例4
ブロモベンゼンをクロロベンゼン 4.48g(40mmol)に代えた以外は、実施例2と同様な反応を行った。分析の結果、3−メチルトリフェニルアミンの収率は29.4%であった。結果を表1に示す。
Example 4
The same reaction as in Example 2 was carried out except that bromobenzene was replaced with 4.48 g (40 mmol) of chlorobenzene. As a result of analysis, the yield of 3-methyltriphenylamine was 29.4%. The results are shown in Table 1.

実施例5
化合物L3を実施例3で合成した化合物L2に代え、実施例2に準じて反応を行った。ガスクロマトグラフィー分析の結果、3−メチルトリフェニルアミンの収率は52.2%であった。
Example 5
The reaction was conducted according to Example 2, replacing Compound L3 with Compound L2 synthesized in Example 3. As a result of gas chromatography analysis, the yield of 3-methyltriphenylamine was 52.2%.

実施例6(4−メチル−1,1’−ビフェニルの合成)
100mlナス型フラスコに、クロロベンゼン 1.0g(8.93mmol)、4−トリルボロン酸 1.28g(9.41mmol)、ジメトキシエタン 20ml及び20wt%炭酸ナトリウム 14.1g(26.6mmol)を加えた。次に、20mlシュレンク管中で、酢酸パラジウム 6.6mgと配位子として化合物L3 26mg(化合物L3/パラジウム=2/1モル比)、及びトルエン 5mlからなる混合物を60℃で30分加熱攪拌した溶液を調製した。その内、1.6ml(ブロモベンゼンに対してパラジウムは0.16mol%に相当する)を、シリンジにて先に調製した反応液に滴下し、還流下で6時間加熱攪拌した。室温まで冷却後、有機層を分液した。有機層をガスクロマトグラフィーにて分析した結果、4−メチル−1,1’−ビフェニルの収率は99%以上であった。
Example 6 (Synthesis of 4-methyl-1,1'-biphenyl)
To a 100 ml eggplant-shaped flask, 1.0 g (8.93 mmol) of chlorobenzene, 1.28 g (9.41 mmol) of 4-tolylboronic acid, 20 ml of dimethoxyethane and 14.1 g (26.6 mmol) of 20 wt% sodium carbonate were added. Next, in a 20 ml Schlenk tube, 6.6 mg of palladium acetate, 26 mg of compound L3 (compound L3 / palladium = 2/1 molar ratio) as a ligand, and 5 ml of toluene were heated and stirred at 60 ° C. for 30 minutes. A solution was prepared. Among them, 1.6 ml (palladium corresponds to 0.16 mol% with respect to bromobenzene) was dropped into the previously prepared reaction solution with a syringe, and the mixture was heated and stirred for 6 hours under reflux. After cooling to room temperature, the organic layer was separated. As a result of analyzing the organic layer by gas chromatography, the yield of 4-methyl-1,1′-biphenyl was 99% or more.

Claims (7)

下記一般式(1)で表されるホスフィン化合物。
Figure 2010265244
(式中、R,Rは、各々独立して水素原子、直鎖、分岐若しくは環状のアルキル基、アルコキシ基、アミノ基、置換若しくは無置換のフェニル基を表し、Rは、直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換のフェニル基を表す。また、Mは、置換基を有していても良い直鎖状若しくは分岐状の炭素数1〜8のアルキレン基、又は−CHCH−O−CHCH−基を表す。)
A phosphine compound represented by the following general formula (1).
Figure 2010265244
(Wherein, R 1, R 2 are each independently a hydrogen atom, a straight-chain, branched or cyclic alkyl group, an alkoxy group, an amino group, a substituted or unsubstituted phenyl group, R represents a straight-chain, Represents a branched or cyclic alkyl group, a substituted or unsubstituted phenyl group, and M represents a linear or branched alkylene group having 1 to 8 carbon atoms which may have a substituent, or -CH. 2 CH 2 -O-CH 2 CH 2 - represents a group).
Rが、シクロヘキシル基、tert−ブチル基、1−アダマンチル基、フェニル基、o−トリル基、2,6−ジメチルフェニル基、2,4,6−トリメチルフェニル基であることを特徴とする請求項1に記載のホスフィン化合物。 The R is a cyclohexyl group, tert-butyl group, 1-adamantyl group, phenyl group, o-tolyl group, 2,6-dimethylphenyl group, 2,4,6-trimethylphenyl group. 1. The phosphine compound according to 1. 上記一般式(1)において、2’位が水素原子であることを特徴とする請求項1乃至2に記載のホスフィン化合物。 The phosphine compound according to claim 1 or 2, wherein the 2'-position in the general formula (1) is a hydrogen atom. 下記L1〜L14であることを特徴とする請求項1に記載のホスフィン化合物。
Figure 2010265244
It is the following L1-L14, The phosphine compound of Claim 1 characterized by the above-mentioned.
Figure 2010265244
請求項1乃至4に記載のホスフィン化合物及び遷移金属化合物からなることを特徴とする芳香族アミン、ビアリール、及び置換スチレン誘導体合成用触媒。 A catalyst for synthesizing aromatic amines, biaryls, and substituted styrene derivatives, comprising the phosphine compound according to claim 1 and a transition metal compound. 遷移金属化合物がパラジウム化合物であることを特徴とする請求項5に記載の芳香族アミン、ビアリール、及び置換スチレン誘導体合成用触媒。 6. The catalyst for synthesizing aromatic amines, biaryls, and substituted styrene derivatives according to claim 5, wherein the transition metal compound is a palladium compound. 請求項5又は6に記載の触媒を用いて、芳香族アミン、ビアリール、及び置換スチレン誘導体を合成する際に、その基質であるアリールハライドが、アリールクロライドであることを特徴とする芳香族アミン、ビアリール、及び置換スチレン誘導体の製造方法。 An aromatic amine, characterized in that when the catalyst according to claim 5 or 6 is used to synthesize an aromatic amine, a biaryl, and a substituted styrene derivative, the aryl halide that is a substrate thereof is an aryl chloride, A method for producing biaryl and substituted styrene derivatives.
JP2009120104A 2009-05-18 2009-05-18 Phosphine compound and catalyst comprising the phosphine compound and a transition metal compound Active JP5544756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009120104A JP5544756B2 (en) 2009-05-18 2009-05-18 Phosphine compound and catalyst comprising the phosphine compound and a transition metal compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120104A JP5544756B2 (en) 2009-05-18 2009-05-18 Phosphine compound and catalyst comprising the phosphine compound and a transition metal compound

Publications (2)

Publication Number Publication Date
JP2010265244A true JP2010265244A (en) 2010-11-25
JP5544756B2 JP5544756B2 (en) 2014-07-09

Family

ID=43362581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120104A Active JP5544756B2 (en) 2009-05-18 2009-05-18 Phosphine compound and catalyst comprising the phosphine compound and a transition metal compound

Country Status (1)

Country Link
JP (1) JP5544756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516300A (en) * 2011-11-09 2012-06-27 中山大学 Phosphine ligands, enantiomers or racemates thereof, and preparation methods of above
CN106831862A (en) * 2016-12-20 2017-06-13 中山大学 Axial chirality monophosphorus ligand of one class chirality bridging and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509513A (en) * 1999-09-20 2003-03-11 ザ ペン ステイト リサーチ ファンデーション Chiral phosphines, their transition metal complexes and their use in asymmetric reactions
JP2006206570A (en) * 2004-12-27 2006-08-10 Nippon Synthetic Chem Ind Co Ltd:The METHOD FOR PRODUCING OPTICALLY ACTIVE beta-HYDROXYAMINO ACID DERIVATIVE
CN101230075A (en) * 2008-02-22 2008-07-30 武汉大学 Central chirality induced axial chirality diphosphine ligand and method for synthesizing same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003509513A (en) * 1999-09-20 2003-03-11 ザ ペン ステイト リサーチ ファンデーション Chiral phosphines, their transition metal complexes and their use in asymmetric reactions
JP2006206570A (en) * 2004-12-27 2006-08-10 Nippon Synthetic Chem Ind Co Ltd:The METHOD FOR PRODUCING OPTICALLY ACTIVE beta-HYDROXYAMINO ACID DERIVATIVE
CN101230075A (en) * 2008-02-22 2008-07-30 武汉大学 Central chirality induced axial chirality diphosphine ligand and method for synthesizing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102516300A (en) * 2011-11-09 2012-06-27 中山大学 Phosphine ligands, enantiomers or racemates thereof, and preparation methods of above
CN106831862A (en) * 2016-12-20 2017-06-13 中山大学 Axial chirality monophosphorus ligand of one class chirality bridging and preparation method thereof
CN106831862B (en) * 2016-12-20 2021-01-15 中山大学 Chiral bridged axial chiral monophosphine ligand and preparation method thereof

Also Published As

Publication number Publication date
JP5544756B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US6562989B2 (en) Catalyst for aromatic C—O, C—N, and C—C bond formation
CA2611791A1 (en) Stable cyclic (alkyl)(amino) carbenes as ligands for transition metal catalysts
CN110240616B (en) Tribiaryl monophosphine ligands, methods for their preparation and use in catalytic coupling reactions
JP2007045742A (en) Manufacturing method of transition metal complex and transition metal complex
US9096626B2 (en) Monophosphorus ligands and their use in cross-coupling reactions
ES2283850T3 (en) NEW CARBEN-NICKEL COMPLEXES, -PALADIO AND -PLATINO, ITS PRODUCTION AND USE IN CATALYTIC REACTIONS.
US8772520B2 (en) Preparation of a metal complex
JP5544756B2 (en) Phosphine compound and catalyst comprising the phosphine compound and a transition metal compound
JP4360096B2 (en) Optically active quaternary ammonium salt, method for producing the same, and method for producing optically active α-amino acid derivative using the same as phase transfer catalyst
US11434253B2 (en) Enantiopure terphenyls with two ortho-atropisomeric axes
WO2017193288A1 (en) Synthesis of phosphine ligands bearing tunable linkage: methods of their use in catalysis
JP4413507B2 (en) Pincer metal complex, method for producing the same, and pincer metal complex catalyst
JP6869614B2 (en) Phosphine compound and a catalyst for coupling using this as a ligand
JP2008143857A (en) Method for producing benzofluorene derivative and its intermediate
CN110627831A (en) Bibiaryl acetal phosphines, their preparation and use in coupling reactions
US6706905B1 (en) Method for producing palladium complex compound
JP5023720B2 (en) Method for producing halogenated biphenyls
JP5568976B2 (en) Polysubstituted phosphine compound and catalyst containing the phosphine compound
Cho Direct and Modular Access to Functionalized Arenes and Cyclohexenes Mediated by Deprotonative C–H Zincation
CN111056986A (en) Preparation method of 1, 3-dicarbazolyl benzene
US20020165411A1 (en) Sterically hindered phosphine ligands and uses thereof
CN111039848A (en) Preparation method of 4, 4&#39; -dicarbazolylbiphenyl
CN117069755A (en) Preparation method of benzofuran chiral disilicide compound
O'Neill Applications of oxidative boron Heck-type reactions and the development of novel tridentate NHC-amidate-alkoxide containing palladium (II) catalysts
JP2006335712A (en) Method for producing triarylamine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140428

R151 Written notification of patent or utility model registration

Ref document number: 5544756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151