JP2010264854A - Device for control of vehicle driving system - Google Patents

Device for control of vehicle driving system Download PDF

Info

Publication number
JP2010264854A
JP2010264854A JP2009117256A JP2009117256A JP2010264854A JP 2010264854 A JP2010264854 A JP 2010264854A JP 2009117256 A JP2009117256 A JP 2009117256A JP 2009117256 A JP2009117256 A JP 2009117256A JP 2010264854 A JP2010264854 A JP 2010264854A
Authority
JP
Japan
Prior art keywords
misfire
vibration suppression
suppression control
engine
execution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009117256A
Other languages
Japanese (ja)
Inventor
Shigenori Takahashi
茂規 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2009117256A priority Critical patent/JP2010264854A/en
Publication of JP2010264854A publication Critical patent/JP2010264854A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To determine the presence of a misfire of an engine with high accuracy even during execution of vibration damping control controlling a second MG (motor generator) to suppress vibration of a power transmission system, in a hybrid vehicle loaded with the engine, and first and second MGs. <P>SOLUTION: When comparing engine rotation fluctuation information (engine rotation fluctuation or information having relevance thereto) with a misfire decision value to perform misfire decision determining the presence of the misfire of the engine 11, this controller determines that the engine rotation fluctuation becomes small during the execution of the vibration damping control, and changes the misfire decision value during the execution of the vibration damping control to a misfire decision value easy to be determined that the misfire is present as compared to a normal misfire decision value (a misfire decision value during a stop of the vibration damping control). Thereby, it is possible to determine the presence of the misfire of the engine 11 with high accuracy even during the execution of the vibration damping control, so that it can be prevented that a state that the engine rotation fluctuation becomes small due to an effect of the vibration damping control is erroneously determined as the misfire absence though the misfire actually occurs. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関と第1のモータジェネレータと車輪の駆動軸とを動力分割機構を介して連結すると共に、該駆動軸に第2のモータジェネレータを連結した車両駆動システムの制御装置に関する発明である。   The present invention relates to a control device for a vehicle drive system in which an internal combustion engine, a first motor generator, and a wheel drive shaft are connected via a power split mechanism, and a second motor generator is connected to the drive shaft. is there.

近年、低燃費、低排気エミッションの社会的要請からハイブリッド車の需要が増大している。現在、市販されているハイブリッド車においては、例えば、特許文献1(特開2001−329884号公報)に記載されているように、エンジン(内燃機関)と、主に発電機として使用される第1のMG(モータジェネレータ)と、主に車輪を駆動する第2のMGとを備え、エンジンと第1のMGと車輪の駆動軸とを動力分割機構(例えば遊星ギヤ機構)を介して連結すると共に、第2のMGと車輪の駆動軸とを連結した方式のものがある。   In recent years, the demand for hybrid vehicles has increased due to the social demand for low fuel consumption and low exhaust emissions. In a hybrid vehicle currently on the market, for example, as described in Patent Document 1 (Japanese Patent Laid-Open No. 2001-329884), an engine (internal combustion engine) and a first used mainly as a generator are used. MG (motor generator) and a second MG that mainly drives the wheels, and connects the engine, the first MG, and the drive shaft of the wheels via a power split mechanism (for example, a planetary gear mechanism). There is a system in which the second MG and the drive shaft of the wheel are connected.

また、特許文献2(特開2001−65402号公報)に記載されているように、エンジンの出力軸にMGを直接連結した方式のものもある。この特許文献2では、エンジンのトルク変動を打ち消すようにMGのトルクを補正する制振制御を実行し、この制振制御の実行中にMGのトルク補正量(エンジンのトルク変動を反映した情報)を失火判定値と比較してエンジンの失火の有無を判定するようにしている。   Further, as described in Patent Document 2 (Japanese Patent Laid-Open No. 2001-65402), there is a system in which MG is directly connected to an output shaft of an engine. In Patent Document 2, vibration suppression control for correcting MG torque is performed so as to cancel engine torque fluctuation, and MG torque correction amount (information reflecting engine torque fluctuation) during execution of this vibration damping control. Is compared with a misfire determination value to determine whether or not the engine has misfired.

特開2001−329884号公報JP 2001-329884 A 特開2001−65402号公報JP 2001-65402 A

ところで、上記特許文献1のように、エンジンと第1のMGと車輪の駆動軸とを動力分割機構を介して連結すると共に第2のMGと車輪の駆動軸とを連結したハイブリッド車は、動力伝達系が複雑な構成になっているため、例えば、動力伝達系の共振周波数領域(例えば車速50km/h付近)で定常走行した場合に、動力伝達系が共振して駆動軸の捩じれ振動や車輪(タイヤ)の回転変動が増大する定常サージが発生する可能性がある。   By the way, as in Patent Document 1, a hybrid vehicle in which the engine, the first MG, and the drive shaft of the wheel are connected via a power split mechanism and the second MG and the drive shaft of the wheel are connected to each other. Since the transmission system has a complicated configuration, for example, when the vehicle travels steadily in the resonance frequency region of the power transmission system (for example, near a vehicle speed of 50 km / h), the power transmission system resonates and the torsional vibration of the drive shaft and wheels There is a possibility that a steady surge in which the rotation fluctuation of the (tire) increases will occur.

この対策として、本発明者は、動力伝達系の振動(駆動軸の捩じれ振動や車輪の回転変動)を抑制するように第2のMGのトルクを制御する制振制御を実行するシステムを研究しているが、この研究過程で次のような新たな課題が判明した。   As a countermeasure against this, the present inventor has studied a system that executes vibration suppression control for controlling the torque of the second MG so as to suppress vibration of the power transmission system (torsional vibration of the drive shaft and wheel rotation fluctuation). However, the following new problems were found in this research process.

図3に示すように、エンジンと第1のMGと車輪の駆動軸とを動力分割機構を介して連結したハイブリッド車は、同一条件(例えば、同じエンジン出力、同じ車速)で走行しても、動力伝達系の振動を抑制する制振制御の実行中は、該制振制御の停止中に比べてエンジン回転変動が抑えられて小さくなる傾向がある。このため、制振制御の実行中に、エンジン回転変動を通常の失火判定値(制振制御の停止中と同じ失火判定値)と比較して失火の有無を判定する失火判定を行うと、実際には失火が発生しているにも拘らず、制振制御の影響でエンジン回転変動が小さくなった状態を失火無しと誤判定して、失火検出率が低下する可能性がある。   As shown in FIG. 3, a hybrid vehicle in which the engine, the first MG, and the drive shaft of the wheel are connected via a power split mechanism can run under the same conditions (for example, the same engine output and the same vehicle speed) During execution of vibration suppression control that suppresses vibration of the power transmission system, engine rotation fluctuations tend to be suppressed and become smaller than when vibration suppression control is stopped. For this reason, if the misfire determination is performed during the execution of the vibration suppression control, the engine rotation fluctuation is compared with the normal misfire determination value (the same misfire determination value as when the vibration suppression control is stopped) to determine the presence or absence of misfire. However, there is a possibility that the misfire detection rate is lowered by misjudging that there is no misfire when the engine rotation fluctuation becomes small due to the vibration suppression control even though misfire has occurred.

尚、上記特許文献2の技術(エンジンのトルク変動を打ち消すようにMGのトルクを補正する制振制御の実行中にMGのトルク補正量を失火判定値と比較してエンジンの失火の有無を判定する技術)を利用して、動力伝達系の振動を抑制するように第2のMGのトルクを制御する制振制御の実行中に第2のMGのトルク補正量を失火判定値と比較しても、エンジンの失火の有無を精度良く判定することができない。   In addition, the technique of the above-mentioned Patent Document 2 (determines whether or not the engine misfires by comparing the MG torque correction amount with the misfire determination value during execution of the vibration suppression control for correcting the MG torque so as to cancel the engine torque fluctuation. The second MG torque correction amount is compared with the misfire determination value during the execution of the vibration suppression control for controlling the torque of the second MG so as to suppress the vibration of the power transmission system. However, the presence or absence of engine misfire cannot be accurately determined.

そこで、本発明が解決しようとする課題は、動力伝達系の振動を抑制する制振制御の実行中でも、内燃機関の失火の有無を精度良く判定することができて、失火検出率を向上させることができる車両駆動システムの制御装置を提供することにある。   Thus, the problem to be solved by the present invention is to improve the misfire detection rate by accurately determining whether or not the internal combustion engine has misfired even during execution of vibration suppression control that suppresses vibration of the power transmission system. An object of the present invention is to provide a control device for a vehicle drive system capable of performing

上記課題を解決するために、請求項1に係る発明は、内燃機関と第1のモータジェネレータと車輪の駆動軸とを動力分割機構を介して連結すると共に該駆動軸に第2のモータジェネレータを連結した車両駆動システムの制御装置において、所定の制振制御実行条件が成立したときに動力伝達系の振動を抑制するように第2のモータジェネレータを制御する制振制御を実行する制振制御手段と、内燃機関の回転変動又はこれに関連性のある情報に基づいて該内燃機関の失火の有無を判定する失火判定手段とを備え、この失火判定手段によって、制振制御の実行中と停止中との間で失火の有無を判定する際の判定条件を切り換えるようにしたものである。   In order to solve the above-mentioned problems, an invention according to claim 1 is configured to connect an internal combustion engine, a first motor generator, and a drive shaft of a wheel via a power split mechanism, and to attach a second motor generator to the drive shaft. In the control device for the connected vehicle drive system, vibration suppression control means for executing vibration suppression control for controlling the second motor generator so as to suppress vibration of the power transmission system when a predetermined vibration suppression control execution condition is satisfied. And misfire determination means for determining the presence or absence of misfire of the internal combustion engine based on rotational fluctuations of the internal combustion engine or information related thereto, and during the vibration suppression control being executed and stopped by the misfire determination means. The determination conditions for determining the presence or absence of misfire are switched between.

この構成では、動力伝達系の振動(例えば、駆動軸の捩じれ振動や車輪の回転変動)を抑制する制振制御の実行中は、制振制御の影響で内燃機関の回転変動が小さくなると判断して、失火の有無を判定する際の判定条件を、制振制御の実行中に適した判定条件に切り換えることができる。これにより、動力伝達系の振動を抑制する制振制御の実行中でも、内燃機関の失火の有無を精度良く判定することが可能となり、実際には失火が発生しているにも拘らず、制振制御の影響で内燃機関の回転変動が小さくなった状態を失火無しと誤判定することを防止でき、失火検出率を向上させることができる。尚、判定条件の切り換えは、例えば、失火判定パラメータ(内燃機関の回転変動又はこれに関連性のある情報)を評価するための失火判定値を変更するようにしても良いし、失火判定パラメータを補正するようにしても良い。   In this configuration, it is determined that the rotational fluctuation of the internal combustion engine is reduced due to the influence of the vibration damping control during the execution of the vibration damping control that suppresses the vibration of the power transmission system (for example, the torsional vibration of the drive shaft and the rotational fluctuation of the wheel). Thus, the determination condition for determining the presence or absence of misfire can be switched to a determination condition suitable for execution of vibration suppression control. This makes it possible to accurately determine whether or not the internal combustion engine has misfired even during execution of vibration suppression control that suppresses vibrations in the power transmission system. It is possible to prevent a misjudgment that there is no misfire in a state where the rotational fluctuation of the internal combustion engine has become small due to the influence of the control, and to improve the misfire detection rate. For example, the determination condition may be switched by changing a misfire determination value for evaluating a misfire determination parameter (rotational fluctuation of the internal combustion engine or information related thereto), or by changing the misfire determination parameter. You may make it correct | amend.

この場合、請求項2のように、制振制御の実行中に判定条件を該制振制御の停止中よりも失火有りと判定し易くなる方向に変更すると良い。このようにすれば、制振制御の影響で内燃機関の回転変動が小さくなった状態を失火無しと誤判定することを確実に防止することができる。   In this case, as in the second aspect, the determination condition may be changed during the execution of the vibration suppression control so that it is easier to determine that there is a misfire than when the vibration suppression control is stopped. In this way, it is possible to reliably prevent erroneous determination that there is no misfire in a state where the rotational fluctuation of the internal combustion engine has become small due to the influence of vibration suppression control.

更に、請求項3のように、制振制御の実行中に該制振制御の状態に応じて判定条件を設定するようにしても良い。このようにすれば、制振制御の状態(例えば、第2のMGのトルク補正量やトルク指令値等)に応じて失火判定パラメータ(内燃機関の回転変動又はこれに関連性のある情報)に及ぼす影響が変化するのに対応して、判定条件を変化させて適正な判定条件を設定することができる。   Further, as in the third aspect, the determination condition may be set in accordance with the state of the vibration suppression control during the execution of the vibration suppression control. In this way, the misfire determination parameter (rotational fluctuation of the internal combustion engine or information related thereto) according to the state of vibration suppression control (for example, the torque correction amount of the second MG, the torque command value, etc.). Corresponding to the change in the influence, it is possible to set appropriate determination conditions by changing the determination conditions.

図1は本発明の一実施例におけるハイブリッド車の駆動システム全体の概略構成図である。FIG. 1 is a schematic configuration diagram of an entire drive system for a hybrid vehicle according to an embodiment of the present invention. 図2は制振制御を説明するブロック図である。FIG. 2 is a block diagram illustrating vibration suppression control. 図3の(a)と(b)は制振制御によるエンジン回転変動の変化を説明する共線図である。FIGS. 3A and 3B are collinear diagrams for explaining changes in engine rotation fluctuations due to vibration suppression control. 図4は制振制御ルーチンの処理の流れを説明するフローチャートである。FIG. 4 is a flowchart for explaining the flow of processing of the vibration suppression control routine. 図5は失火判定ルーチンの処理の流れを説明するフローチャートである。FIG. 5 is a flowchart for explaining the processing flow of the misfire determination routine.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてハイブリッド車の駆動システム全体の概略構成を説明する。内燃機関であるエンジン11と第1のモータジェネレータ(以下「第1のMG」と表記する)12と第2のモータジェネレータ(以下「第2のMG」と表記する)13が搭載され、エンジン11と第2のMG13が車輪14を駆動する動力源となる。エンジン11のクランク軸15の動力は、動力分割機構である遊星ギヤ機構16で二系統に分割される。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of the entire hybrid vehicle drive system will be described with reference to FIG. An engine 11 that is an internal combustion engine, a first motor generator (hereinafter referred to as “first MG”) 12, and a second motor generator (hereinafter referred to as “second MG”) 13 are mounted. The second MG 13 serves as a power source for driving the wheels 14. The power of the crankshaft 15 of the engine 11 is divided into two systems by a planetary gear mechanism 16 that is a power split mechanism.

この遊星ギヤ機構16は、サンギヤとピニオンギヤとリングギヤ(いずれも図示せず)とから構成されている。ピニオンギヤには、キャリア(図示せず)を介してエンジン11のクランク軸15が連結され、サンギヤには、主に発電機として使用する第1のMG12の回転軸が連結されている。   The planetary gear mechanism 16 includes a sun gear, a pinion gear, and a ring gear (all not shown). A crankshaft 15 of the engine 11 is connected to the pinion gear via a carrier (not shown), and a rotation shaft of the first MG 12 mainly used as a generator is connected to the sun gear.

また、リングギヤには、ペラ軸17(駆動軸)が連結され、このペラ軸17の動力がデファレンシャルギヤや車軸等(いずれも図示せず)を介して車輪14に伝達される。第2のMG13の回転軸は、減速ギヤ機構18を介してペラ軸17に連結されている。本実施例では、第1のMG12と第2のMG13と遊星ギヤ機構16とペラ軸17と減速ギヤ機構18等の動力伝達系部品がユニット化された1つのトランスアッシユニット19が搭載されている。   Further, the ring gear is connected to a peller shaft 17 (drive shaft), and the power of the peller shaft 17 is transmitted to the wheel 14 via a differential gear, an axle, or the like (none of which is shown). The rotating shaft of the second MG 13 is connected to the propeller shaft 17 via the reduction gear mechanism 18. In the present embodiment, a single transformer assembly unit 19 in which power transmission system parts such as the first MG 12, the second MG 13, the planetary gear mechanism 16, the peller shaft 17, and the reduction gear mechanism 18 are unitized is mounted. .

第1のMG12と第2のMG13は、パワーコントロールユニット20を介してバッテリ21に接続されている。このパワーコントロールユニット20には、第1のMG12を駆動する第1のインバータ22と、第2のMG13を駆動する第2のインバータ23が設けられ、各MG12,13は、それぞれインバータ22,23を介してバッテリ21と電力を授受するようになっている。エンジン11には、クランク軸15が所定クランク角回転する毎にパルス信号を出力するクランク角センサ24が取り付けられ、このクランク角センサ24の出力信号に基づいてクランク角やエンジン回転速度が検出される。また、第1のMG12と第2のMG13には、それぞれロータの回転位置を検出する回転位置センサ32,33が取り付けられ、これらの回転位置センサ32,33の出力信号に基づいて第1のMG12の回転速度と第2のMG13の回転速度が検出される。   The first MG 12 and the second MG 13 are connected to the battery 21 via the power control unit 20. The power control unit 20 is provided with a first inverter 22 that drives the first MG 12 and a second inverter 23 that drives the second MG 13. Each MG 12, 13 has an inverter 22, 23. Via the battery 21, power is exchanged. A crank angle sensor 24 that outputs a pulse signal every time the crankshaft 15 rotates a predetermined crank angle is attached to the engine 11, and the crank angle and the engine rotation speed are detected based on the output signal of the crank angle sensor 24. . The first MG 12 and the second MG 13 are provided with rotational position sensors 32 and 33 for detecting the rotational position of the rotor, respectively, and the first MG 12 is based on the output signals of these rotational position sensors 32 and 33. And the rotation speed of the second MG 13 are detected.

ハイブリッドECU25は、ハイブリッド車全体を総合的に制御するコンピュータであり、アクセル開度を検出するアクセルセンサ26、シフトレバーの操作位置を検出するシフトスイッチ27、ブレーキ操作を検出するブレーキスイッチ28、車速を検出する車速センサ29等の各種のセンサやスイッチの出力信号を読み込んで車両の運転状態を検出する。このハイブリッドECU25は、エンジン11の運転を制御するエンジンECU30と、第1及び第2のインバータ22,23を制御して第1及び第2のMG12,13の運転を制御するMGECU31との間で制御信号やデータ信号を送受信し、各ECU30,31によって車両の運転状態に応じてエンジン11と第1のMG12と第2のMG13の運転を制御する。   The hybrid ECU 25 is a computer that comprehensively controls the entire hybrid vehicle, and includes an accelerator sensor 26 that detects an accelerator opening, a shift switch 27 that detects an operation position of a shift lever, a brake switch 28 that detects a brake operation, and a vehicle speed. The output signals of various sensors and switches such as the vehicle speed sensor 29 to be detected are read to detect the driving state of the vehicle. The hybrid ECU 25 is controlled between the engine ECU 30 that controls the operation of the engine 11 and the MGECU 31 that controls the operation of the first and second MGs 12 and 13 by controlling the first and second inverters 22 and 23. Signals and data signals are transmitted and received, and the ECUs 30, 31 control the operation of the engine 11, the first MG 12, and the second MG 13 in accordance with the driving state of the vehicle.

例えば、発進時や低負荷時(エンジン11の燃費効率が悪い領域)は、エンジン11を停止状態に維持して、バッテリ21の電力で第2のMG13を駆動し、この第2のMG13の動力のみで車輪14を駆動して走行するモータ走行を行う。   For example, at the time of starting or at a low load (a region where the fuel efficiency of the engine 11 is poor), the engine 11 is maintained in a stopped state, the second MG 13 is driven by the power of the battery 21, and the power of the second MG 13 is Only the motor travels by driving the wheel 14 and traveling.

エンジン11を始動する場合には、バッテリ21の電力で第1のMG12を駆動し、この第1のMG12の動力を遊星ギヤ機構16を介してエンジン11のクランク軸15に伝達することで、クランク軸15を回転駆動してエンジン11を始動する。   When starting the engine 11, the first MG 12 is driven by the electric power of the battery 21, and the power of the first MG 12 is transmitted to the crankshaft 15 of the engine 11 via the planetary gear mechanism 16. The shaft 11 is rotationally driven to start the engine 11.

通常走行時には、エンジン11の燃費効率が最大となるように、エンジン11のクランク軸15の動力を遊星ギヤ機構16によって第1のMG12側とペラ軸17側の二系統に分割し、その一方の系統の出力でペラ軸17を駆動して車輪14を駆動し、他方の系統の出力で第1のMG12を駆動して第1のMG12で発電し、その発電電力で第2のMG13を駆動して第2のMG13の動力でも車輪14を駆動する。更に、急加速時には、第1のMG12の発電電力の他にバッテリ21の電力も第2のMG13に供給して、第2のMG13の駆動分を増加させる。   During normal driving, the power of the crankshaft 15 of the engine 11 is divided into two systems, the first MG 12 side and the propeller shaft 17 side, by the planetary gear mechanism 16 so that the fuel efficiency of the engine 11 is maximized. The wheel shaft 14 is driven by driving the propeller shaft 17 by the output of the system, the first MG 12 is driven by the output of the other system, the first MG 12 is generated, and the second MG 13 is driven by the generated power. The wheel 14 is also driven by the power of the second MG 13. Further, at the time of rapid acceleration, in addition to the power generated by the first MG 12, the power of the battery 21 is also supplied to the second MG 13 to increase the driving amount of the second MG 13.

減速時や制動時には、車輪14の動力で第2のMG13を駆動して第2のMG13を発電機として作動させることで、車両の運動エネルギを第2のMG13で電力に変換してバッテリ21に回収して充電する。   At the time of deceleration or braking, the second MG 13 is driven by the power of the wheels 14 to operate the second MG 13 as a generator, so that the kinetic energy of the vehicle is converted into electric power by the second MG 13 and is supplied to the battery 21. Collect and charge.

また、ハイブリッドECU25(及び/又はMGECU31)は、後述する図4の制振制御ルーチンを実行することで、所定の制振制御実行条件が成立したときに動力伝達系の振動(ペラ軸17の捩じれ振動や車輪14の回転変動)を抑制するように第2のMG13を制御する制振制御を実行する。   Further, the hybrid ECU 25 (and / or the MGECU 31) executes a vibration suppression control routine of FIG. 4 to be described later, so that the vibration of the power transmission system (the twist of the peller shaft 17 is twisted) when a predetermined vibration suppression control execution condition is satisfied. Vibration suppression control for controlling the second MG 13 is executed so as to suppress vibration and rotational fluctuation of the wheels 14).

具体的には、図2に示すように、回転位置センサ33で検出した第2のMG13の回転速度ωmg2 に所定の係数ρを乗算して車速算出値Vopを求める。ここで、係数ρは、減速ギヤ機構18やデファレンシャルギヤの減速比、車輪14の半径等によって決まる値である。   Specifically, as shown in FIG. 2, the vehicle speed calculation value Vop is obtained by multiplying the rotation speed ωmg2 of the second MG 13 detected by the rotation position sensor 33 by a predetermined coefficient ρ. Here, the coefficient ρ is a value determined by the reduction gear mechanism 18 and the reduction gear ratio of the differential gear, the radius of the wheel 14, and the like.

更に、第2のMG13の最終トルク指令値Tmg2 と車速算出値Vopとに基づいて推定車速Vbodyを求め、この推定車速Vbodyと車速算出値Vopとの偏差を小さくするようにPI制御又はPID制御等により所定のフィードバックゲインKfbを用いてトルク補正量Tfbを算出することで、車輪14に連結されたペラ軸17の捩じれを抑えるようにトルク補正量Tfbを設定する。   Further, the estimated vehicle speed Vbody is obtained based on the final torque command value Tmg2 of the second MG 13 and the vehicle speed calculated value Vop, and PI control or PID control is performed so as to reduce the deviation between the estimated vehicle speed Vbody and the vehicle speed calculated value Vop. By calculating the torque correction amount Tfb using the predetermined feedback gain Kfb, the torque correction amount Tfb is set so as to suppress the twisting of the propeller shaft 17 connected to the wheel 14.

このトルク補正量Tfbを用いて第2のMG13のトルク指令値Tmg2 を補正して最終トルク指令値Tmg2 を求め、この最終トルク指令値Tmg2 を実現するように第2のMG13を制御することで、動力伝達系の振動(ペラ軸17の捩じれ振動や車輪14の回転変動)を抑制するように第2のMG13を制御する制振制御を実行する。   By correcting the torque command value Tmg2 of the second MG 13 using this torque correction amount Tfb to obtain the final torque command value Tmg2, and controlling the second MG 13 so as to realize this final torque command value Tmg2. Vibration suppression control for controlling the second MG 13 is executed so as to suppress vibration of the power transmission system (torsional vibration of the peller shaft 17 and rotational fluctuation of the wheel 14).

更に、ハイブリッドECU25(及び/又はエンジンECU30)は、後述する図5の失火判定ルーチンを実行することで、エンジン回転変動情報(エンジン回転変動又はこれに関連性のある情報)に基づいてエンジン11の失火の有無を判定する。   Further, the hybrid ECU 25 (and / or the engine ECU 30) executes a misfire determination routine of FIG. 5 described later, thereby allowing the engine 11 to change based on the engine rotation fluctuation information (engine rotation fluctuation or information related thereto). Determine if there is a misfire.

具体的には、所定タイミング毎(例えば所定の失火判定クランク角区間毎)にクランク角センサ24の出力信号に基づいてエンジン11のクランク軸15が30CA回転するのに要した時間T30(以下「30CA時間T30」と表記する)を算出して、今回の30CA時間T30(i) と前回の30CA時間T30(i-1) との差である時間変化量DMFをエンジン回転速度低下量の情報(エンジン回転変動情報)として算出し、この時間変化量DMFを所定の失火判定値と比較してエンジン11の失火の有無を判定する。   Specifically, a time T30 (hereinafter referred to as “30CA”) required for the crankshaft 15 of the engine 11 to rotate 30 CA based on the output signal of the crank angle sensor 24 at every predetermined timing (for example, every predetermined misfire determination crank angle section). The time change amount DMF, which is the difference between the current 30CA time T30 (i) and the previous 30CA time T30 (i-1), is calculated as information on the engine speed reduction amount (engine Rotation fluctuation information), and the time change amount DMF is compared with a predetermined misfire determination value to determine whether or not the engine 11 has misfired.

しかし、図3に示すように、エンジン11と第1のMG12とペラ軸17とを遊星ギヤ機構16を介して連結したハイブリッド車は、同一条件(例えば、同じエンジン出力、同じ車速)で走行しても、動力伝達系の振動を抑制する制振制御の実行中は、該制振制御の停止中に比べてエンジン回転変動が抑えられて小さくなる傾向がある。このため、制振制御の実行中に、エンジン回転変動情報である時間変化量DMFを通常の失火判定値(制振制御の停止中と同じ失火判定値)と比較して失火の有無を判定する失火判定を行うと、実際には失火が発生しているにも拘らず、制振制御の影響でエンジン回転変動が小さくなった状態を失火無しと誤判定して、失火検出率が低下する可能性がある。   However, as shown in FIG. 3, a hybrid vehicle in which the engine 11, the first MG 12, and the peller shaft 17 are connected via the planetary gear mechanism 16 runs under the same conditions (for example, the same engine output and the same vehicle speed). However, during execution of vibration suppression control that suppresses vibration of the power transmission system, fluctuations in engine rotation tend to be suppressed and become smaller than when vibration suppression control is stopped. For this reason, during execution of vibration suppression control, the time change amount DMF, which is engine rotation fluctuation information, is compared with a normal misfire determination value (the same misfire determination value as when vibration suppression control is stopped) to determine the presence or absence of misfire. When misfire judgment is performed, the misfire detection rate may be reduced by misjudging that there is no misfire when the engine rotation fluctuation has been reduced due to vibration suppression control despite the fact that misfire has actually occurred. There is sex.

この対策として、本実施例では、動力伝達系の振動を抑制する制振制御の実行中と停止中との間で失火の有無を判定する際の判定条件を切り換えるようにしている。   As a countermeasure, in this embodiment, the determination condition for determining the presence or absence of misfire is switched between the execution and the stop of the vibration suppression control for suppressing the vibration of the power transmission system.

具体的には、制振制御の停止中は、通常の失火判定値を設定する。一方、制振制御の実行中は、制振制御の影響でエンジン回転変動が小さくなると判断して、制振制御の実行中の失火判定値を通常の失火判定値(制振制御の停止中の失火判定値)よりも小さい値に設定することで、制振制御の実行中の失火判定値を通常の失火判定値よりも失火有りと判定し易くなる方向に変更して、制振制御の実行中に適した失火判定値に切り換える。   Specifically, a normal misfire determination value is set while vibration suppression control is stopped. On the other hand, during the execution of the vibration suppression control, it is determined that the engine rotation fluctuation becomes small due to the influence of the vibration suppression control, and the misfire determination value during the execution of the vibration suppression control is changed to the normal misfire determination value (when the vibration suppression control is stopped). By setting the value to a value smaller than the misfire determination value), the misfire determination value during execution of vibration suppression control is changed to a direction that makes it easier to determine that there is a misfire than the normal misfire determination value, and the vibration suppression control is executed. Switch to the appropriate misfire judgment value.

以下、ハイブリッドECU25(及び/又はMGECU31)が実行する図4の制振制御ルーチンと、ハイブリッドECU25(及び/又はエンジンECU30)が実行する図5の失火判定ルーチンの処理内容を説明する。   The processing contents of the vibration suppression control routine of FIG. 4 executed by the hybrid ECU 25 (and / or MGECU 31) and the misfire determination routine of FIG. 5 executed by the hybrid ECU 25 (and / or the engine ECU 30) will be described below.

[制振制御]
図4に示す制振制御ルーチンは、ハイブリッドECU25(及び/又はMGECU31)の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう制振制御手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、所定の制振制御実行条件が成立しているか否かを判定する。ここで、制振制御実行条件は、例えば、次の(1) 〜(4) の条件のうちのいずれか1つを満たすことである。
[Vibration control]
The vibration suppression control routine shown in FIG. 4 is repeatedly executed at a predetermined cycle while the hybrid ECU 25 (and / or MGECU 31) is powered on, and serves as a vibration suppression control means in the claims. When this routine is started, first, in step 101, it is determined whether or not a predetermined vibration suppression control execution condition is satisfied. Here, the vibration suppression control execution condition is, for example, satisfying any one of the following conditions (1) to (4).

(1) エンジン始動時(例えばクランキング中)であること
(2) エンジン停止時(例えばエンジン回転降下期間中)であること
(3) 所定車速領域(例えば動力伝達系の共振周波数領域)であること
(4) 要求トルク急変時(例えばアクセル開度の急変時)であること
(1) At engine start (eg during cranking)
(2) When the engine is stopped (for example, during the engine speed reduction period)
(3) It must be within the specified vehicle speed range (for example, the resonance frequency range of the power transmission system).
(4) When the required torque changes suddenly (for example, when the accelerator opening changes suddenly)

上記(1) 〜(4) の条件のうちのいずれか1つを満たせば、制振制御実行条件が成立するが、上記(1) 〜(4) の条件を全て満たさなければ、制振制御実行条件が不成立となる。
このステップ101で、制振制御実行条件が不成立と判定された場合には、ステップ102以降の制振制御に関する処理を実行することなく、本ルーチンを終了する。
If any one of the above conditions (1) to (4) is satisfied, the vibration suppression control execution condition is satisfied. If all the conditions (1) to (4) are not satisfied, the vibration suppression control is performed. The execution condition is not satisfied.
If it is determined in step 101 that the vibration suppression control execution condition is not satisfied, this routine ends without executing the processing related to vibration suppression control in step 102 and subsequent steps.

一方、上記ステップ101で、制振制御実行条件が成立していると判定された場合には、ステップ102以降の制振制御に関する処理を次のようにして実行する。まず、ステップ102で、回転位置センサ33で検出した第2のMG13の回転速度ωmg2 に所定の係数ρ(減速ギヤ機構18やデファレンシャルギヤの減速比、車輪14の半径等によって決まる値)を乗算して車速算出値Vopを求める。
Vop=ρ×ωmg2
On the other hand, when it is determined in step 101 that the vibration suppression control execution condition is satisfied, the processing related to vibration suppression control after step 102 is executed as follows. First, in step 102, the rotational speed ωmg2 of the second MG 13 detected by the rotational position sensor 33 is multiplied by a predetermined coefficient ρ (a value determined by the reduction gear mechanism 18 or the reduction gear ratio of the differential gear, the radius of the wheel 14, etc.). To obtain the vehicle speed calculation value Vop.
Vop = ρ × ωmg2

この後、ステップ103に進み、第2のMG13の最終トルク指令値Tmg2 と車速算出値Vopとに基づいて推定車速Vbodyを求めた後、ステップ104に進み、推定車速Vbodyと車速算出値Vopとの偏差を小さくするようにPI制御又はPID制御等により所定のフィードバックゲインKfbを用いてトルク補正量Tfbを算出することで、車輪14に連結されたペラ軸17の捩じれを抑えるようにトルク補正量Tfbを設定する。   Thereafter, the process proceeds to step 103, where the estimated vehicle speed Vbody is obtained based on the final torque command value Tmg2 of the second MG 13 and the vehicle speed calculated value Vop. Then, the process proceeds to step 104, where the estimated vehicle speed Vbody and the vehicle speed calculated value Vop are calculated. By calculating the torque correction amount Tfb using a predetermined feedback gain Kfb by PI control or PID control so as to reduce the deviation, the torque correction amount Tfb is suppressed so as to suppress the twist of the peller shaft 17 connected to the wheel 14. Set.

この後、ステップ105に進み、トルク補正量Tfbを用いて第2のMG13のトルク指令値Tmg2 を補正して最終トルク指令値Tmg2 を求める。
Tmg2 =Tmg2 −Tfb
Thereafter, the routine proceeds to step 105, where the torque command value Tmg2 of the second MG 13 is corrected using the torque correction amount Tfb to obtain the final torque command value Tmg2.
Tmg2 = Tmg2 -Tfb

この後、ステップ106に進み、最終トルク指令値Tmg2 を実現するように第2のMG13を制御することで、動力伝達系の振動(ペラ軸17の捩じれ振動や車輪14の回転変動)を抑制するように第2のMG13を制御する制振制御を実行する。   Thereafter, the routine proceeds to step 106, where the second MG 13 is controlled so as to realize the final torque command value Tmg2, thereby suppressing the vibration of the power transmission system (torsional vibration of the propeller shaft 17 and rotational fluctuation of the wheel 14). Thus, the vibration suppression control for controlling the second MG 13 is executed.

[失火判定]
図5に示す失火判定ルーチンは、ハイブリッドECU25(及び/又はエンジンECU30)の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう失火判定手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ201で、所定タイミング毎(例えば所定の失火判定クランク角区間毎)にクランク角センサ24の出力信号に基づいてエンジン11のクランク軸15が30CA回転するのに要した時間である30CA時間T30を算出した後、ステップ202に進み、今回の30CA時間T30(i) と前回の30CA時間T30(i-1) との差である時間変化量DMF(エンジン回転速度低下量の情報)を算出する。
[Misfire detection]
The misfire determination routine shown in FIG. 5 is repeatedly executed at a predetermined cycle while the hybrid ECU 25 (and / or the engine ECU 30) is turned on, and serves as misfire determination means in the claims. When this routine is started, first, at step 201, the crankshaft 15 of the engine 11 rotates 30 CA at a predetermined timing (for example, every predetermined misfire determination crank angle section) based on the output signal of the crank angle sensor 24. After calculating the 30 CA time T30, which is the time required for the operation, the routine proceeds to step 202, where the time change amount DMF (engine rotation) which is the difference between the current 30 CA time T30 (i) and the previous 30 CA time T30 (i-1) is calculated. Information on the speed reduction amount) is calculated.

この後、ステップ203に進み、制振制御の実行中であるか否かを判定する。その結果、制振制御の実行中ではない(つまり制振制御の停止中)と判定された場合には、ステップ204に進み、通常の失火判定値を設定する。   Thereafter, the process proceeds to step 203, and it is determined whether or not the vibration suppression control is being executed. As a result, if it is determined that the vibration suppression control is not being executed (that is, the vibration suppression control is stopped), the routine proceeds to step 204 where a normal misfire determination value is set.

一方、上記ステップ203で、制振制御の実行中であると判定された場合には、制振制御の影響でエンジン回転変動が小さくなると判断して、ステップ204に進み、制振制御の実行中の失火判定値を通常の失火判定値(つまり制振制御の停止中の失火判定値)よりも小さい値に設定することで、制振制御の実行中の失火判定値を通常の失火判定値よりも失火有りと判定し易くなる方向に変更して、制振制御の実行中に適した失火判定値に切り換える。   On the other hand, if it is determined in step 203 that the vibration suppression control is being executed, it is determined that the engine rotation fluctuation is reduced due to the influence of the vibration suppression control, and the process proceeds to step 204 where the vibration suppression control is being executed. By setting the misfire judgment value of the vehicle to a value smaller than the normal misfire judgment value (that is, the misfire judgment value when vibration suppression control is stopped), the misfire judgment value during execution of vibration suppression control is Is changed to a direction that makes it easy to determine that there is a misfire, and is switched to a misfire determination value that is suitable during execution of vibration suppression control.

この際、制振制御による第2のMG13のトルク補正量Tfbに応じて制振制御の実行中の失火判定値をマップ又は数式等により算出する。制振制御の実行中の失火判定値のマップは、例えば、制振制御による第2のMG13のトルク補正量Tfbが大きくなるほど制振制御の実行中の失火判定値が小さくなるように設定されている。これにより、制振制御による第2のMG13のトルク補正量が大きくなるほど、エンジン回転変動が小さくなって時間変化量DMFが小さくなるのに対応して、制振制御の実行中の失火判定値を小さくするように変更する。   At this time, a misfire determination value during execution of the vibration suppression control is calculated by a map or a mathematical formula according to the torque correction amount Tfb of the second MG 13 by the vibration suppression control. The misfire determination value map during execution of vibration suppression control is set, for example, such that the misfire determination value during execution of vibration suppression control decreases as the torque correction amount Tfb of the second MG 13 by vibration suppression control increases. Yes. As a result, the misfire determination value during execution of the vibration suppression control is reduced corresponding to the fact that as the torque correction amount of the second MG 13 by vibration suppression control increases, the engine rotation fluctuation decreases and the time change amount DMF decreases. Change to make it smaller.

上記ステップ204又は上記ステップ205で失火判定値を設定した後、ステップ206に進み、時間変化量DMF(エンジン回転速度低下量の情報)が失火判定値よりも大きいか否かを判定する。その結果、時間変化量DMFが失火判定値以下であると判定された場合には、エンジン回転速度低下量が小さいと判断して、ステップ207に進み、失火無しと判定して、本ルーチンを終了する。   After the misfire determination value is set in step 204 or step 205, the process proceeds to step 206, where it is determined whether or not the time change amount DMF (information on the engine rotation speed decrease amount) is larger than the misfire determination value. As a result, when it is determined that the time change amount DMF is equal to or less than the misfire determination value, it is determined that the engine speed reduction amount is small, the process proceeds to step 207, it is determined that there is no misfire, and this routine is terminated. To do.

これに対して、上記ステップ206で、時間変化量DMFが失火判定値よりも大きいと判定された場合には、エンジン回転速度低下量が大きいと判断して、ステップ208に進み、失火有りと判定する。尚、連続して時間変化量DMFが失火判定値よりも大きいと判定された回数(連続回数)が所定値を越えたときに失火有りと判定するようにしたり、或は、所定期間内に時間変化量DMFが失火判定値よりも大きいと判定された回数(積算回数)が所定値を越えたときに失火有りと判定するようにしても良い。   On the other hand, if it is determined in step 206 that the time change amount DMF is larger than the misfire determination value, it is determined that the engine rotational speed decrease amount is large, and the process proceeds to step 208, where it is determined that misfire is present. To do. It should be noted that when the number of times that the time change amount DMF is continuously determined to be larger than the misfire determination value (the number of consecutive times) exceeds a predetermined value, it is determined that there is a misfire, or The misfire may be determined to be present when the number of times that the change amount DMF is determined to be larger than the misfire determination value (the number of integration) exceeds a predetermined value.

失火有りと判定された場合には、運転席のインストルメントパネルに設けられた警告ランプ(図示せず)を点灯したり、或は、運転席のインストルメントパネルの警告表示部(図示せず)に警告表示して運転者に警告すると共に、その失火の情報をハイブリッドECU25又はエンジンECU30のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ハイブリッドECU25又はエンジンECU30の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶して、本ルーチンを終了する。   If it is determined that there is a misfire, a warning lamp (not shown) provided on the instrument panel of the driver's seat is turned on, or a warning display section (not shown) of the instrument panel of the driver's seat A warning is displayed to warn the driver, and the misfire information is stored in rewritable nonvolatile memory such as a backup RAM (not shown) of the hybrid ECU 25 or the engine ECU 30 (data stored even when the hybrid ECU 25 or the engine ECU 30 is turned off). Is stored in a rewritable memory), and this routine is terminated.

以上説明した本実施例では、エンジン11の失火判定を行う際に、動力伝達系の振動を抑制する制振制御の実行中は、制振制御の影響でエンジン回転変動が小さくなると判断して、制振制御の実行中に適した失火判定値に切り換えるようにしたので、制振制御の実行中でも、エンジン11の失火の有無を精度良く判定することが可能となり、実際には失火が発生しているにも拘らず、制振制御の影響でエンジン回転変動が小さくなった状態を失火無しと誤判定することを防止でき、失火検出率を向上させることができる。   In the present embodiment described above, when the misfire determination of the engine 11 is performed, it is determined that the engine rotation fluctuation is reduced due to the influence of the vibration suppression control during the vibration suppression control for suppressing the vibration of the power transmission system. Since the misfire determination value is switched to a suitable value during execution of vibration suppression control, it is possible to accurately determine whether or not the engine 11 has misfired even during execution of vibration suppression control. In spite of this, it is possible to prevent a misjudgment that there is no misfire in a state in which fluctuations in engine rotation have become small due to the influence of vibration suppression control, and the misfire detection rate can be improved.

また、本実施例では、制振制御の実行中の失火判定値を通常の失火判定値(制振制御の停止中の失火判定値)よりも小さい値に設定することで、制振制御の実行中の失火判定値を通常の失火判定値よりも失火有りと判定し易くなる方向に変更するようにしたので、制振制御の実行中に、制振制御の影響でエンジン回転変動が小さくなった状態を失火無しと誤判定することを確実に防止することができる。   In this embodiment, the misfire determination value during execution of the vibration suppression control is set to a value smaller than the normal misfire determination value (misfire determination value during the vibration suppression control stop), thereby executing the vibration suppression control. Since the misfire judgment value in the center is changed to a direction that makes it easier to judge that there is misfire than the normal misfire judgment value, the engine rotation fluctuation is reduced due to the influence of the vibration suppression control during the vibration suppression control. It can be reliably prevented that the state is erroneously determined as no misfire.

更に、本実施例では、制振制御の実行中に第2のMG13のトルク補正量Tfbに応じて失火判定値を設定するようにしたので、第2のMG13のトルク補正量Tfbに応じてエンジン回転変動が変化して時間変化量DMFが変化するのに対応して、失火判定値を変化させて適正な失火判定値を設定することができる。   Furthermore, in the present embodiment, the misfire determination value is set according to the torque correction amount Tfb of the second MG 13 during execution of the vibration suppression control, so that the engine according to the torque correction amount Tfb of the second MG 13 is set. The misfire determination value can be changed to set an appropriate misfire determination value in response to the change in rotation and the time change amount DMF.

尚、上記実施例では、制振制御の実行中に、第2のMG13のトルク補正量Tfbに応じて失火判定値を設定するようにしたが、第2のMG13の最終トルク指令値Tmg2 や、推定車速Vbodyと車速算出値Vopとの偏差等、制振制御の状態を反映したパラメータに応じて失火判定値を設定するようにしても良い。   In the above-described embodiment, the misfire determination value is set according to the torque correction amount Tfb of the second MG 13 during execution of the vibration suppression control, but the final torque command value Tmg2 of the second MG 13 and The misfire determination value may be set according to a parameter reflecting the state of the vibration suppression control, such as a deviation between the estimated vehicle speed Vbody and the calculated vehicle speed Vop.

しかしながら、本発明は、必ずしも制振制御の実行中に該制振制御の状態(第2のMG13のトルク補正量Tfb等)に応じて失火判定値を設定する必要はなく、制振制御の実行中に失火判定値を所定値(通常の失火判定値よりも失火有りと判定し易くなる値)に固定して、ハイブリッドECU25(及び/又はエンジンECU30)の演算負荷を軽減するようにしても良い。   However, according to the present invention, it is not always necessary to set the misfire determination value according to the state of the vibration suppression control (such as the torque correction amount Tfb of the second MG 13) during execution of the vibration suppression control. The misfire determination value may be fixed to a predetermined value (a value that makes it easier to determine that there is misfire than the normal misfire determination value) to reduce the calculation load of the hybrid ECU 25 (and / or the engine ECU 30). .

また、上記実施例では、時間変化量DMFを失火判定値と比較して失火の有無を判定するようにしたが、失火判定方法を適宜変更しても良く、例えば、エンジン回転変動量を失火判定値と比較して失火の有無を判定するようにしても良い。更に、動力伝達系の振動を抑制する制振制御の方法を適宜変更しても良い。   In the above embodiment, the time change amount DMF is compared with the misfire determination value to determine the presence or absence of misfire. However, the misfire determination method may be changed as appropriate, for example, the engine rotation fluctuation amount is determined as the misfire determination. You may make it determine the presence or absence of misfire by comparing with a value. Furthermore, the vibration suppression control method for suppressing the vibration of the power transmission system may be changed as appropriate.

また、上記実施例では、制振制御の実行中と停止中との間で失火の有無を判定する際の判定条件を切り換える方法として、失火判定値を変更するようにしたが、これに限定されず、例えば、失火判定パラメータ(時間変化量DMFやエンジン回転変動量)を補正するようにしても良い。   Further, in the above embodiment, the misfire determination value is changed as a method of switching the determination condition when determining the presence or absence of misfire between the execution of vibration suppression control and the stop, but the present invention is not limited to this. Instead, for example, a misfire determination parameter (time change amount DMF or engine rotation fluctuation amount) may be corrected.

11…エンジン(内燃機関)、12…第1のMG、13…第2のMG、14…車輪、16…遊星ギヤ機構(動力分割機構)、17…ペラ軸(駆動軸)、18…減速ギヤ機構、21…バッテリ、24…クランク角センサ、25…ハイブリッドECU(制振制御手段,失火判定手段)、30…エンジンECU、31…MGECU   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... 1st MG, 13 ... 2nd MG, 14 ... Wheel, 16 ... Planetary gear mechanism (power split mechanism), 17 ... Peller shaft (drive shaft), 18 ... Reduction gear Mechanism: 21 ... Battery, 24 ... Crank angle sensor, 25 ... Hybrid ECU (vibration suppression control means, misfire determination means), 30 ... Engine ECU, 31 ... MG ECU

Claims (3)

内燃機関と第1のモータジェネレータと車輪の駆動軸とを動力分割機構を介して連結すると共に該駆動軸に第2のモータジェネレータを連結した車両駆動システムの制御装置において、
所定の制振制御実行条件が成立したときに動力伝達系の振動を抑制するように前記第2のモータジェネレータを制御する制振制御を実行する制振制御手段と、
前記内燃機関の回転変動又はこれに関連性のある情報に基づいて該内燃機関の失火の有無を判定する失火判定手段とを備え、
前記失火判定手段は、前記制振制御の実行中と停止中との間で前記失火の有無を判定する際の判定条件を切り換えることを特徴とする車両駆動システムの制御装置。
In a control device for a vehicle drive system in which an internal combustion engine, a first motor generator, and a drive shaft of a wheel are connected via a power split mechanism and a second motor generator is connected to the drive shaft.
Vibration suppression control means for executing vibration suppression control for controlling the second motor generator so as to suppress vibration of the power transmission system when a predetermined vibration suppression control execution condition is satisfied;
Misfire determination means for determining the presence or absence of misfire of the internal combustion engine based on the rotational fluctuation of the internal combustion engine or information related thereto,
The control apparatus for a vehicle drive system characterized in that the misfire determination means switches a determination condition for determining the presence or absence of the misfire between the execution of the vibration suppression control and the stop.
前記失火判定手段は、前記制振制御の実行中に前記判定条件を該制振制御の停止中よりも失火有りと判定し易くなる方向に変更する手段を有することを特徴とする請求項1に記載の車両駆動システムの制御装置。   The said misfire determination means has a means to change the said determination conditions during execution of the said vibration suppression control to the direction which makes it easier to determine that there exists misfire than when the vibration suppression control is stopped. The control apparatus of the vehicle drive system as described. 前記失火判定手段は、前記制振制御の実行中に該制振制御の状態に応じて前記判定条件を設定する手段を有することを特徴とする請求項1又は2に記載の車両駆動システムの制御装置。   3. The vehicle drive system control according to claim 1, wherein the misfire determination unit includes a unit that sets the determination condition according to a state of the vibration suppression control during execution of the vibration suppression control. apparatus.
JP2009117256A 2009-05-14 2009-05-14 Device for control of vehicle driving system Pending JP2010264854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009117256A JP2010264854A (en) 2009-05-14 2009-05-14 Device for control of vehicle driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009117256A JP2010264854A (en) 2009-05-14 2009-05-14 Device for control of vehicle driving system

Publications (1)

Publication Number Publication Date
JP2010264854A true JP2010264854A (en) 2010-11-25

Family

ID=43362254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009117256A Pending JP2010264854A (en) 2009-05-14 2009-05-14 Device for control of vehicle driving system

Country Status (1)

Country Link
JP (1) JP2010264854A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054116A1 (en) * 2012-10-02 2014-04-10 トヨタ自動車株式会社 Vehicle and vehicle control method
US9545920B2 (en) 2014-11-27 2017-01-17 Toyota Jidosha Kabushiki Kaisha Misfire determination device for internal combustion engine
DE102020104290A1 (en) * 2019-03-29 2020-10-01 Toyota Jidosha Kabushiki Kaisha Misfire detection device for an internal combustion engine, misfire detection system for an internal combustion engine, data analysis device, controller for an internal combustion engine, method of detecting a misfire of an internal combustion engine, and reception executing device
US11319891B2 (en) 2019-03-29 2022-05-03 Toyota Jidosha Kabushiki Kaisha Misfire detection device for internal combustion engine, misfire detection system for internal combustion engine, data analyzer, controller for internal combustion engine, method for detecting misfire of internal combustion engine, and reception execution device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054116A1 (en) * 2012-10-02 2014-04-10 トヨタ自動車株式会社 Vehicle and vehicle control method
JPWO2014054116A1 (en) * 2012-10-02 2016-08-25 トヨタ自動車株式会社 Vehicle and vehicle control method
US9545920B2 (en) 2014-11-27 2017-01-17 Toyota Jidosha Kabushiki Kaisha Misfire determination device for internal combustion engine
DE102020104290A1 (en) * 2019-03-29 2020-10-01 Toyota Jidosha Kabushiki Kaisha Misfire detection device for an internal combustion engine, misfire detection system for an internal combustion engine, data analysis device, controller for an internal combustion engine, method of detecting a misfire of an internal combustion engine, and reception executing device
CN111749787A (en) * 2019-03-29 2020-10-09 丰田自动车株式会社 Misfire detection device, system and method for internal combustion engine, data analysis device, control device for internal combustion engine, and reception execution device
DE102020104290B4 (en) * 2019-03-29 2021-01-28 Toyota Jidosha Kabushiki Kaisha Misfire detection device for an internal combustion engine, misfire detection system for an internal combustion engine, data analysis device, controller for an internal combustion engine, method of detecting a misfire of an internal combustion engine, and reception executing device
US11268469B2 (en) 2019-03-29 2022-03-08 Toyota Jidosha Kabushiki Kaisha Misfire detection device for internal combustion engine, misfire detection system for internal combustion engine, data analysis device, controller for internal combustion engine, method for detecting misfire of internal combustion engine, and reception execution device
US11319891B2 (en) 2019-03-29 2022-05-03 Toyota Jidosha Kabushiki Kaisha Misfire detection device for internal combustion engine, misfire detection system for internal combustion engine, data analyzer, controller for internal combustion engine, method for detecting misfire of internal combustion engine, and reception execution device

Similar Documents

Publication Publication Date Title
JP4337829B2 (en) Misfire determination device, hybrid vehicle, and misfire determination method
US7607499B2 (en) Hybrid vehicle controller
JP4449942B2 (en) Control device for hybrid electric vehicle
JP2008024287A (en) Control device of hybrid electric vehicle
JP4577582B2 (en) Hybrid vehicle power control system
JP4623168B2 (en) Misfire detection device and misfire detection method for internal combustion engine
JP2010264852A (en) Device for control of vehicle driving system
JP2008013041A (en) Stop controller for internal combustion engine
JP2007055287A (en) Hybrid vehicle
JP3622576B2 (en) Powertrain control device
JP2010264854A (en) Device for control of vehicle driving system
WO2008075479A1 (en) Device and method for controlling vehicle
JP2012126194A (en) Control device of electric vehicle
EP3725624B1 (en) Hybrid vehicle control method and hybrid vehicle control device
KR20070050997A (en) Controller and controling method for hybrid electric vehicle&#39;s command toqrue
JP4457939B2 (en) Internal combustion engine abnormality determination device and internal combustion engine abnormality determination method
JP4888455B2 (en) Vehicle control apparatus and control method
JP2010126064A (en) Misfire determination device for internal combustion engine and misfire determination method for internal combustion engine
JP6020178B2 (en) Hybrid vehicle motor control device
JP2012215178A (en) Misfire determination device for internal combustion engine
JP5044479B2 (en) Internal combustion engine misfire determination device, vehicle, and internal combustion engine misfire determination method
JP2010069949A (en) Hybrid car and method for controlling the same
JP5895434B2 (en) Internal combustion engine operating state detection device
JP2010106814A (en) Misfire determination device for internal combustion engine
JP2019093883A (en) Vehicular control apparatus