JP2010264356A - Stirring method and stirring apparatus for high viscous liquid - Google Patents

Stirring method and stirring apparatus for high viscous liquid Download PDF

Info

Publication number
JP2010264356A
JP2010264356A JP2009116317A JP2009116317A JP2010264356A JP 2010264356 A JP2010264356 A JP 2010264356A JP 2009116317 A JP2009116317 A JP 2009116317A JP 2009116317 A JP2009116317 A JP 2009116317A JP 2010264356 A JP2010264356 A JP 2010264356A
Authority
JP
Japan
Prior art keywords
stirring
liquid
treated
viscosity
stirring shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009116317A
Other languages
Japanese (ja)
Inventor
Masaaki Sugiwaki
正晃 杉脇
Toshiaki Okuno
利昭 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009116317A priority Critical patent/JP2010264356A/en
Publication of JP2010264356A publication Critical patent/JP2010264356A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stirring method and a stirring apparatus for preventing roll-up of a liquid to a stirring shaft or the rise of the liquid on the inner wall of a stirring tank when the high viscous liquid is stirred in the stirring tank. <P>SOLUTION: In the method of stirring the liquid 2 to be treated in the stirring tank 3 by rotating a helical ribbon blade 7 with the rotation of the stirring shaft 5 using the stirring apparatus 1 provided with the cylindrical stirring tank 3 in which a liquid 2 to be treated is charged and stored, the stirring shaft 5 arranged inside the stirring tank 3 and the helical ribbon blade 7 attached to the stirring shaft 5, when the stirring shaft 5 is positively rotated, the helical ribbon blade 7 is rotated in the direction scraping up the liquid 2 to be treated and when the viscosity of the liquid 2 to be treated is ≥100 Pa s, the stirring shaft 5 is reversely rotated in the direction that the helical ribbon blade 7 scrapes down the liquid 2 to be treated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、攪拌槽内で高粘度液を攪拌する時における液の攪拌槽内壁へのせり上がりや攪拌軸への巻き上がりを防止し、攪拌槽内をむらなく攪拌する方法及びその攪拌装置に関する。   The present invention relates to a method of stirring the inside of the stirring tank uniformly and preventing the liquid from rising to the inner wall of the stirring tank or rolling up to the stirring shaft when stirring the high viscosity liquid in the stirring tank. .

従来より、円筒状反応槽を備え、各種被処理液の混合、分散、及び反応操作を行う各種の攪拌装置が提案されている。特に接着剤、粘着剤の製造においては、高粘度の被処理液の撹拌が必須となる観点から種々工夫を凝らしたものが提案されている。
例えば、数Pa・s〜数千Pa・sレベルの高い粘度範囲においては、攪拌槽内に配設された攪拌軸と、該攪拌軸に取り付けられたヘリカルリボン翼とを備えた攪拌槽が使用されることが多い。しかし、一般的に、高粘度液・非ニュートン性流体における攪拌では被処理液の攪拌槽内壁へのせり上がり現象や、いわゆるワイゼンベルグ現象と呼ばれる攪拌軸への巻き上がり現象が起きやすく、これはヘリカルリボン翼による攪拌においても言える。
上記の現象が攪拌槽で起こると、被処理液が攪拌槽の内壁にせり上がるとともに攪拌軸に巻き上がるため、良好な攪拌・混合ができず未反応部分が生じ、結果として分子量や特性等において不均一なものができてしまう。また、十分な攪拌がなされていないことから、攪拌槽内壁や攪拌軸及び攪拌翼の周囲に被処理液が付着、固化して攪拌性能をさらに低下させる。
上記の対策として、特許文献1〜3のように、邪魔板を利用するものがある。いずれも、攪拌槽内壁付近の被処理液の上下循環混合を促進させることにより、上記のせり上がり現象を防止するためのものと言える。
Conventionally, various stirring devices that have a cylindrical reaction vessel and perform mixing, dispersion, and reaction operations of various liquids to be treated have been proposed. In particular, in the production of adhesives and pressure-sensitive adhesives, products that have been devised in various ways have been proposed from the viewpoint that stirring of a high-viscosity liquid to be treated is essential.
For example, in a high viscosity range of several Pa · s to several thousand Pa · s level, a stirring tank equipped with a stirring shaft disposed in the stirring tank and a helical ribbon blade attached to the stirring shaft is used. Often done. However, in general, when stirring in a high viscosity liquid or non-Newtonian fluid, the phenomenon that the liquid to be treated rises to the inner wall of the stirring tank or the so-called Weisenberg phenomenon is likely to occur on the stirring shaft. The same can be said for stirring with a ribbon blade.
When the above phenomenon occurs in the agitation tank, the liquid to be treated rises on the inner wall of the agitation tank and winds up on the agitation shaft, so that a good agitation / mixing cannot be performed, resulting in an unreacted part. Uneven things will be produced. In addition, since the agitation is not sufficiently performed, the liquid to be treated adheres to and solidifies around the inner wall of the agitation tank, the agitation shaft, and the agitation blade, thereby further reducing the agitation performance.
As said countermeasure, there exists a thing using a baffle plate like patent documents 1-3. In any case, it can be said that the above-mentioned rising phenomenon is prevented by promoting the vertical circulation mixing of the liquid to be treated in the vicinity of the inner wall of the stirring tank.

特開2002−282667号公報JP 2002-282667 A 特開2005−46752号公報JP 2005-46752 A 特開平8−266881号公報Japanese Patent Laid-Open No. 8-266881

しかしながら、前記した邪魔板を利用して攪拌槽内壁へのせり上がりを防止しようとすると、高粘度液・非ニュートン性液体は邪魔板等を基点として新たにせり上がりを起こしてしまい、結果として、攪拌槽内壁へのせり上がりを防止する事は出来ない。また、攪拌軸への巻き上がりを考慮した技術ではなく、巻き上がりも防止できない。
更にこれらの邪魔板は、反応時に生成したゲル状物質が邪魔板に付着して均一な反応を阻害するほか、邪魔板を起因とする滞留部が生じて問題となることもある。
However, when trying to prevent the above-mentioned baffle plate from rising to the inner wall of the stirring tank, the high viscosity liquid / non-Newtonian liquid causes a new rise from the baffle plate or the like as a base point. It is not possible to prevent the rising to the inner wall of the stirring tank. In addition, this is not a technique that takes into consideration the hoisting of the stirring shaft, and the hoisting cannot be prevented.
Furthermore, these baffle plates may cause problems because the gel-like substance generated during the reaction adheres to the baffle plates to inhibit a uniform reaction, and a stagnant portion due to the baffle plates is generated.

本発明は、上記の問題を解決するためになされたものであり、攪拌槽内で高粘度液を攪拌する時における液の攪拌槽の内壁へのせり上がり及び攪拌軸への巻き上がりを防止し、攪拌槽内をむらなく攪拌する方法及び攪拌装置に関する。   The present invention has been made to solve the above problems, and prevents the liquid from rising up to the inner wall of the stirring tank and from being rolled up to the stirring shaft when the high viscosity liquid is stirred in the stirring tank. The present invention also relates to a method for stirring the inside of the stirring tank uniformly and a stirring device.

上記目的を達成するため、請求項1の攪拌方法は、被処理液が投入、貯留される円筒状攪拌槽と、攪拌槽内に配設された攪拌軸と、攪拌軸に取り付けられたヘリカルリボン翼と、を備えた攪拌装置を使用して攪拌軸の回転によりヘリカルリボン翼を回転させて攪拌槽内の被処理液を攪拌する方法において、前記攪拌軸を正回転させると、前記ヘリカルリボン翼が前記被処理液を掻き上げる方向に回転し、前記被処理液の粘度が100Pa・s以上の時には、前記ヘリカルリボン翼が前記被処理液を掻き下げる方向に、前記攪拌軸を逆回転させることを特徴とする。   In order to achieve the above object, the stirring method according to claim 1 includes a cylindrical stirring tank into which a liquid to be treated is charged and stored, a stirring shaft disposed in the stirring tank, and a helical ribbon attached to the stirring shaft. In the method of stirring the liquid to be treated in the stirring tank by rotating the helical ribbon blade by rotating the stirring shaft using a stirring device equipped with a blade, and when the stirring shaft is rotated forward, the helical ribbon blade Rotates in the direction to scrape the liquid to be treated, and when the viscosity of the liquid to be treated is 100 Pa · s or more, the helical ribbon blade rotates the stirring shaft in the direction to scrape the liquid to be treated. It is characterized by.

また、請求項2の攪拌方法は、前記被処理液の粘度は攪拌の進行に従って高くなり、前記被処理液の粘度が100Pa・s未満である間は前記攪拌軸を正回転させ、前記被処理液の粘度が100Pa・sとなった時点を基準として前記攪拌軸の回転を逆回転に切り替えることを特徴とする。   Further, in the stirring method according to claim 2, the viscosity of the liquid to be treated increases as the stirring progresses, and while the viscosity of the liquid to be treated is less than 100 Pa · s, the stirring shaft is rotated in the forward direction, The rotation of the stirring shaft is switched to the reverse rotation based on the time point when the viscosity of the liquid reaches 100 Pa · s.

また、請求項3の攪拌装置は、被処理液が投入、貯留される円筒状攪拌槽と、前記攪拌槽内に配設された攪拌軸と、前記攪拌軸に取り付けられたヘリカルリボン翼と、を備えた攪拌装置において、前記被処理液の粘度が100Pa・s未満の時は、前記ヘリカルリボン翼が前記被処理液を掻き上げる方向に前記攪拌軸を正回転させるとともに、被処理液の粘度が100Pa・s以上の時は、ヘリカルリボン翼が被処理液を掻き下げる方向に前記攪拌軸を逆回転させることを特徴とする。   The stirring device according to claim 3 is a cylindrical stirring tank into which a liquid to be treated is charged and stored, a stirring shaft disposed in the stirring tank, a helical ribbon blade attached to the stirring shaft, When the viscosity of the liquid to be processed is less than 100 Pa · s, the helical ribbon blade rotates the stirring shaft in a direction to scoop up the liquid to be processed, and the viscosity of the liquid to be processed Is 100 Pa · s or more, the helical ribbon blade rotates the agitation shaft in the reverse direction so as to scrape the liquid to be treated.

請求項1の攪拌方法では、被処理液の粘度が100Pa・s以上の時には、ヘリカルリボン翼が前記被処理液を掻き下げる方向に攪拌軸を逆回転させる。ここで、後述するようにこの高粘度域では攪拌軸を正回転させても逆回転させても攪拌効率に差はない。よって、攪拌効率を低下させることなく、この高粘度域で攪拌軸を正回転させると起こり易い被処理液の攪拌槽内壁へのせり上がり及び攪拌軸への巻き上がりを防止して攪拌槽内をむらなく攪拌することができる。   In the stirring method according to the first aspect, when the viscosity of the liquid to be treated is 100 Pa · s or more, the helical ribbon blade rotates the stirring shaft in the direction of scraping the liquid to be treated. Here, as will be described later, in this high viscosity region, there is no difference in stirring efficiency regardless of whether the stirring shaft is rotated forward or backward. Therefore, without lowering the stirring efficiency, if the stirring shaft is rotated forward in this high viscosity region, the liquid to be treated, which is likely to occur, is prevented from rising up to the inner wall of the stirring tank and rolling up to the stirring shaft. It can be stirred evenly.

また、請求項2に係る攪拌方法では、被処理液の粘度は攪拌の進行に従って高くなるが、被処理液の粘度が100Pa・s未満の場合は攪拌軸を正回転させるので、後述するように逆回転させるより効率のよい攪拌を行うことができる。また、被処理液の粘度が100Pa・sとなった時点を基準として攪拌軸の回転を逆回転に切り替えるので、攪拌効率を低下させることなく、この高粘度域で攪拌軸を正回転させると起こり易い被処理液の攪拌槽内壁へのせり上がり及び攪拌軸への巻き上がりを防止して攪拌槽内をむらなく攪拌することができる。   In the agitation method according to claim 2, the viscosity of the liquid to be treated increases as the agitation progresses. However, when the viscosity of the liquid to be treated is less than 100 Pa · s, the agitation shaft is rotated forward. More efficient stirring can be performed by reverse rotation. In addition, since the rotation of the stirring shaft is switched to the reverse rotation based on the time when the viscosity of the liquid to be treated reaches 100 Pa · s, it occurs when the stirring shaft is rotated forward in this high viscosity region without lowering the stirring efficiency. It is possible to prevent the liquid to be treated from easily rising on the inner wall of the stirring tank and from being rolled up to the stirring shaft, and to stir the inside of the stirring tank evenly.

また、請求項3に係る攪拌装置では、円筒状攪拌槽内に貯留された被処理液の粘度が100Pa・s未満の時は攪拌軸を正回転させるので、逆回転させるよりも効率の良い攪拌を行うことができる。また、被処理液の粘度が100Pa・s以上の時は、ヘリカルリボン翼が被処理液を掻き下げる方向に攪拌軸を逆回転させるので、攪拌効率を低下させることなく、この高粘度域で攪拌軸を正回転させると起こり易い被処理液の攪拌槽内壁へのせり上がり及び攪拌軸への巻き上がりを防止して攪拌槽内をむらなく攪拌させることができる。   Further, in the stirring device according to claim 3, when the viscosity of the liquid to be processed stored in the cylindrical stirring tank is less than 100 Pa · s, the stirring shaft is rotated forward, so that the stirring is more efficient than the reverse rotation. It can be performed. When the viscosity of the liquid to be treated is 100 Pa · s or higher, the helical ribbon blade rotates the agitation shaft in the direction to scrape the liquid to be treated, so that the agitation is performed in this high viscosity region without lowering the agitation efficiency. When the shaft is rotated in the forward direction, the liquid to be treated, which is likely to occur when the shaft is rotated forward, can be prevented from rising up to the inner wall of the stirring tank and to the stirring shaft, and the stirring tank can be uniformly stirred.

本実施形態の攪拌槽を模式的に表す正面断面図である。It is front sectional drawing which represents typically the stirring tank of this embodiment. 本実施形態の攪拌槽を模式的に表す平面図で、図1のA−A’矢視図である。FIG. 2 is a plan view schematically showing the stirring tank of the present embodiment, and is a view taken along arrow A-A ′ of FIG. 1. 各粘度条件における攪拌軸の回転方向の違いによる攪拌効率の違いを検証するためのシミュレーションに際し、攪拌槽内で濃度変化をトレースした個所を示す説明図である。It is explanatory drawing which shows the location which traced the density | concentration change in the stirring tank in the case of the simulation for verifying the difference in stirring efficiency by the difference in the rotation direction of the stirring shaft in each viscosity condition. 粘度1Pa・sの被処理液を正回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid of viscosity 1Pa * s by normal rotation. 粘度1Pa・sの被処理液を逆回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid with a viscosity of 1 Pa.s by reverse rotation. 粘度10Pa・sの被処理液を正回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid with a viscosity of 10 Pa.s by forward rotation. 粘度10Pa・sの被処理液を逆回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid of viscosity 10Pa * s by reverse rotation. 粘度100Pa・sの被処理液を正回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid of viscosity 100Pa * s by normal rotation. 粘度100Pa・sの被処理液を逆回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid with a viscosity of 100 Pa.s by reverse rotation. 粘度1000Pa・sの被処理液を正回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid with a viscosity of 1000 Pa.s by forward rotation. 粘度1000Pa・sの被処理液を逆回転で攪拌した場合の攪拌効率に係るシミュレーション結果を示すグラフである。It is a graph which shows the simulation result which concerns on the stirring efficiency at the time of stirring the to-be-processed liquid with a viscosity of 1000 Pa.s by reverse rotation. 各粘度条件における正逆回転による攪拌効率の違いについて、シミュレーション結果をまとめたグラフである。It is the graph which put together the simulation result about the difference in the stirring efficiency by the forward / reverse rotation in each viscosity condition. 攪拌軸の回転方向の違いにより被処理液が付着する攪拌槽内壁の壁面高さが異なる実験結果を模式的に示す説明図である。It is explanatory drawing which shows typically the experimental result from which the wall surface height of the stirring tank inner wall to which a to-be-processed liquid adheres by the difference in the rotation direction of a stirring shaft.

以下、本発明の一実施形態について、図面に従って説明する。
図1及び図2において、本実施形態の攪拌装置1には、各種の被処理液2が投入、貯留される円筒形の攪拌槽3が備えられている。本実施形態における被処理液2は、攪拌等により力を加え続けると粘度が上昇するタイプの非ニュートン性流体であり、例えば、ポリマー溶液に各種添加剤を添加して生成される粘着剤溶液である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
1 and 2, the stirring device 1 of the present embodiment is provided with a cylindrical stirring tank 3 into which various liquids 2 to be treated are charged and stored. The liquid to be treated 2 in the present embodiment is a non-Newtonian fluid of a type whose viscosity increases when force is continuously applied by stirring or the like, for example, an adhesive solution generated by adding various additives to a polymer solution. is there.

攪拌槽3は、円筒胴と、該円筒胴の下端部に取り付けた断面形状が半楕円形の底板とからなる。攪拌槽3の中心部には、攪拌軸5が攪拌槽3の円筒胴と同芯状に垂設されている。
攪拌軸5には図示しないモータが連結されており、攪拌軸5はこのモータを介して正逆可能(正回転は図2のR方向である)に回転される。また、攪拌軸5は攪拌槽3に貯留された被処理液2の液面を上方向へ貫通するため、攪拌軸5の回転により巻き上がり現象が起こりうる。
また、攪拌軸5の下端部に腕木6が設けられている。そして、攪拌軸5と腕木6には、2条のヘリカルリボン翼7が取り付けられている。ヘリカルリボン翼7は攪拌軸5の軸方向に沿うように設けられ、その外縁部は攪拌槽3の内壁近傍となるよう配されている。攪拌軸5を正回転させると、ヘリカルリボン翼7はその翼上面付近の被処理液2を掻き上げる方向に回転する。一方、攪拌軸5を逆回転させると、ヘリカルリボン翼7は、その翼下面付近の被処理液2を掻き下げる方向に回転する。
The agitation tank 3 includes a cylindrical body and a bottom plate having a semi-elliptical cross section attached to the lower end of the cylindrical body. A stirring shaft 5 is suspended from the central portion of the stirring tank 3 so as to be concentric with the cylindrical body of the stirring tank 3.
A motor (not shown) is connected to the agitation shaft 5, and the agitation shaft 5 is rotated in such a manner that the agitation shaft 5 can rotate forward and backward (normal rotation is in the R direction in FIG. 2). In addition, since the stirring shaft 5 penetrates the liquid surface of the liquid 2 to be treated stored in the stirring tank 3 upward, a winding phenomenon may occur due to the rotation of the stirring shaft 5.
A brace 6 is provided at the lower end of the stirring shaft 5. Two helical ribbon blades 7 are attached to the stirring shaft 5 and the arm 6. The helical ribbon blade 7 is provided so as to be along the axial direction of the stirring shaft 5, and the outer edge portion thereof is arranged near the inner wall of the stirring tank 3. When the stirring shaft 5 is rotated in the forward direction, the helical ribbon blade 7 rotates in a direction for scooping up the liquid 2 to be processed near the upper surface of the blade. On the other hand, when the stirring shaft 5 is rotated in the reverse direction, the helical ribbon blade 7 rotates in a direction to scrape the liquid 2 to be treated near the lower surface of the blade.

〔攪拌効率の検証〕
続いて、前記のように構成された攪拌装置1を使用して攪拌槽3内に投入された被処理液2の攪拌を行う場合に被処理液2の粘度及びヘリカルリボン翼7の回転方向が異なると攪拌性能がどれほど異なるのか検証するためのシミュレーション解析を行った。このシミュレーション解析は、図1及び図2に示す本実施形態の攪拌装置1と同様の構成を有する解析モデルに基づく。
なお、シミュレーションは、次の条件下で行った。
解析ソフトプログラム :Fluent(ANSYS社製)
ヘリカルリボン翼の回転数 :20min−1
被処理液の比重 :水と同等
[Verification of stirring efficiency]
Subsequently, when the liquid 2 to be processed that has been put into the stirring tank 3 is stirred using the stirring device 1 configured as described above, the viscosity of the liquid 2 to be processed and the rotational direction of the helical ribbon blade 7 are determined. A simulation analysis was conducted to verify how different the stirring performance is. This simulation analysis is based on an analysis model having the same configuration as that of the stirring apparatus 1 of the present embodiment shown in FIGS.
The simulation was performed under the following conditions.
Analysis software program: Fluent (manufactured by ANSYS)
Number of rotations of helical ribbon wing: 20 min −1
Specific gravity of liquid to be treated: equivalent to water

図3に示すように、このシミュレーションでは、まず攪拌槽内において底C、攪拌軸付近D及びGなど任意の7点を選んだ。その上で各粘度の被処理液を投入、貯留後、攪拌軸を上記速度で回転させている状態の攪拌槽内に、被処理液と同粘度のトレーサー液を滴下し、前記7点における濃度変化を追跡した。そしてトレーサー液を滴下後、攪拌を進めるに連れ7点の相対濃度が1になるまでの時間を、攪拌槽内の濃度が均一になる時間として求め、攪拌性をみる指標としている。被処理液の粘度は、1Pa・s、10Pa・s、100Pa・s、1000Pa・sの各条件についてシミュレーションした。   As shown in FIG. 3, in this simulation, first, arbitrary seven points such as the bottom C and the vicinity of the stirring axis D and G were selected in the stirring tank. Then, after adding and storing the liquid to be treated of each viscosity, a tracer liquid having the same viscosity as the liquid to be treated is dropped into the stirring tank in a state where the stirring shaft is rotated at the above speed, and the concentration at the seven points Change was tracked. Then, after dropping the tracer solution, the time until the relative concentration at 7 points becomes 1 as stirring is determined as the time when the concentration in the stirring tank becomes uniform, and this is used as an index for checking the stirring property. The viscosity of the liquid to be treated was simulated under each condition of 1 Pa · s, 10 Pa · s, 100 Pa · s, and 1000 Pa · s.

前記のシミュレーションを行ったところ、図4乃至図11に示す結果が得られた。図4及び図5から明らかなように、被処理液の粘度が1Pa・sの場合、攪拌槽内が均一となるのは、攪拌軸を正回転させる場合が100s程度であるのに対し、逆回転させる場合は300s程度かかり、逆回転させるより正回転させる方が攪拌効率がよい。   When the simulation was performed, the results shown in FIGS. 4 to 11 were obtained. As is apparent from FIGS. 4 and 5, when the viscosity of the liquid to be treated is 1 Pa · s, the inside of the stirring tank is uniform, whereas the case where the stirring shaft is rotated forward is about 100 s. When rotating, it takes about 300 s, and stirring efficiency is better when rotating forward than when rotating backward.

また、図6及び図7から明らかなように、被処理液の粘度が10Pa・sの場合、攪拌槽内が均一となるのは、攪拌軸を正回転させる場合が100s程度であるのに対し、逆回転させる場合は150s程度かかり、逆回転させるより正回転させる方が攪拌効率がよい。   Further, as apparent from FIGS. 6 and 7, when the viscosity of the liquid to be treated is 10 Pa · s, the inside of the stirring tank is uniform, whereas the case where the stirring shaft is rotated forward is about 100 s. In the case of reverse rotation, it takes about 150 seconds, and the forward rotation is better than the reverse rotation for better stirring efficiency.

また、図8及び図9から明らかなように、被処理液の粘度が100Pa・sの場合、攪拌槽内が均一となるのは、攪拌軸を正回転させる場合も逆回転させる場合も300s程度で、正回転させる場合と逆回転させる場合の攪拌効率に差はない。   As is clear from FIGS. 8 and 9, when the viscosity of the liquid to be treated is 100 Pa · s, the inside of the stirring tank is uniform because the stirring shaft is rotated forward or backward for about 300 seconds. Thus, there is no difference in the stirring efficiency between the forward rotation and the reverse rotation.

また、図10及び図11から明らかなように、被処理液の粘度が1000Pa・sの場合、攪拌槽内が均一となるのは、正回転させる場合も逆回転させる場合も50s程度で、正回転と逆回転の攪拌効率に差はない。   Further, as apparent from FIGS. 10 and 11, when the viscosity of the liquid to be treated is 1000 Pa · s, the inside of the stirring tank is uniform in about 50 s both in the forward rotation and in the reverse rotation. There is no difference in the stirring efficiency between rotation and reverse rotation.

図12に示すようにシミュレーション結果をまとめると、被処理液の粘度が1Pa・s及び10Pa・sの場合では攪拌軸を正回転させる方が逆回転させるよりも攪拌効率が良かった。一方、被処理液の粘度が100Pa・s及び1000Pa・sの場合では両者に差がでなかった。これは、以下の理由によると考えられる。
攪拌軸を正回転させると、ヘリカルリボン翼が被処理液を掻き上げる方向に回転することにより、攪拌槽の内壁付近で被処理液の上昇流が起き、それが液面付近で攪拌槽の中心方向へ押しやられて攪拌軸付近で吸い込まれ、下降流となるという循環流が生まれる。一方、攪拌軸を逆回転させると、ヘリカルリボン翼が被処理液を掻き下げる方向に回転することにより、攪拌槽内壁付近で被処理液の下降流が起き、それが攪拌槽の底付近で中心部に押しやられ、攪拌軸付近で上昇するという循環流が生まれる。
When the simulation results are summarized as shown in FIG. 12, when the viscosity of the liquid to be treated is 1 Pa · s and 10 Pa · s, the stirring efficiency is better when the stirring shaft is rotated forward than when it is rotated backward. On the other hand, when the viscosity of the liquid to be treated was 100 Pa · s and 1000 Pa · s, there was no difference between the two. This is considered to be due to the following reason.
When the stirring shaft is rotated in the forward direction, the helical ribbon blade rotates in the direction of scooping up the liquid to be processed, so that an upward flow of the liquid to be processed occurs near the inner wall of the stirring tank, which is the center of the stirring tank near the liquid surface. It is pushed in the direction, sucked in the vicinity of the stirring shaft, and a circulating flow is created that becomes a downward flow. On the other hand, when the agitation shaft is rotated in the reverse direction, the helical ribbon blade rotates in a direction to scrape the liquid to be treated, thereby causing a downward flow of the liquid to be treated near the inner wall of the stirring tank, which is centered near the bottom of the stirring tank. This creates a circulating flow that is pushed by the part and rises near the stirring axis.

ここで、重力に逆らう方向の流れであるため攪拌槽内の攪拌効率に強い関係があるとされる上昇流の強さを比較する。攪拌軸を正回転させた場合の攪拌槽内壁付近の上昇流は、ヘリカルリボン翼が直接掻き上げることによるものであるのに対し、攪拌軸を逆回転させた場合の攪拌軸付近の上昇流はヘリカルリボン翼の掻き下げによる下降流が、逃げ場を求めて上昇する2次的なものである。このため、攪拌軸を正回転させた場合の上昇流の方が逆回転させた場合の上昇流よりも強いと考えられる。
ここで、攪拌槽内でヘリカルリボン翼を回転させることによる上記循環流は、被処理液が比較的低粘度(例えば10Pa・s以下)の場合に顕著に現れるが、被処理液が高粘度になるほど弱まり、攪拌槽内の流動性への影響も小さくなっていく傾向がみられる。
このことから、循環流の勢いの大きな低粘度液ほど、攪拌軸の正逆回転の違いによる上昇流の強さの違いが大きいことにより、攪拌軸を正回転させた場合と逆回転させた場合の攪拌効率に大きな違いが生まれると考えられる。一方、被処理液が高粘度になるほど、循環流は緩やかになって正逆回転の違いによる上昇流の強さの違いも小さくなるため、この攪拌効率の差は狭まっていき、100Pa・sを基準になくなるものと考えられる。
Here, the strength of the upward flow, which is considered to have a strong relationship with the agitation efficiency in the agitation tank, is compared because the flow is in a direction against gravity. The upward flow near the inner wall of the stirring tank when the stirring shaft is rotated forward is due to the helical ribbon blade directly scooping up, whereas the upward flow near the stirring shaft when the stirring shaft is rotated backward is The downward flow caused by the helical ribbon wing scraping is a secondary one that rises in search of a refuge. For this reason, it is considered that the upward flow when the stirring shaft is rotated forward is stronger than the upward flow when the stirring shaft is rotated backward.
Here, the circulation flow by rotating the helical ribbon blade in the stirring tank appears remarkably when the liquid to be treated has a relatively low viscosity (for example, 10 Pa · s or less), but the liquid to be treated has a high viscosity. The tendency to become weaker and the influence on the fluidity in the agitation tank tend to decrease.
For this reason, the lower the viscosity of the circulating flow, the greater the difference in the strength of the upward flow due to the difference in forward and reverse rotation of the stirring shaft, and the reverse rotation of the stirring shaft. It is thought that there will be a big difference in the stirring efficiency. On the other hand, the higher the viscosity of the liquid to be treated, the gentler the circulating flow and the smaller the difference in the strength of the upward flow due to the difference between the forward and reverse rotations. Therefore, the difference in the stirring efficiency is narrowed to 100 Pa · s. It is thought that it will disappear from the standard.

〔比較実験1〕
次に、攪拌軸5を正逆回転させることにより、被処理液2の攪拌槽3内壁へのせり上がり及び攪拌軸5への巻き上がりの起こり方にどのような違いがあるかを検証するため、上記の攪拌装置1の実験機を用い、比較実験を行った。
この比較実験は、次の条件下で行った。
実験機の容量 :2L
ヘリカルリボン翼7の回転数:20min−1
被処理液2の比重 :水と同等
[Comparative Experiment 1]
Next, in order to verify the difference in how the liquid to be treated 2 rises to the inner wall of the stirring tank 3 and rolls up to the stirring shaft 5 by rotating the stirring shaft 5 forward and backward. A comparative experiment was performed using the experimental device of the stirring device 1 described above.
This comparative experiment was performed under the following conditions.
Experimental machine capacity: 2L
Number of rotations of the helical ribbon blade 7: 20 min −1
Specific gravity of liquid 2 to be treated: equivalent to water

この比較実験では、被処理液2を同量貯留させた攪拌槽3を二つ用意し、一方では攪拌軸5を正回転、もう片方では逆回転させて攪拌させた。そして、被処理液2の粘度が100Pa・sの時に、被処理液2が攪拌槽3内壁面に付着する高さ及び攪拌軸5に付着する高さについて、正逆回転の比較を行った。
図13に示すように、攪拌軸5を正回転させた攪拌槽3(図13の右側)における被処理液2の液面は、攪拌槽3中心部では低く、攪拌槽3内壁付近では高くなった。一方、攪拌軸5を逆回転させた攪拌槽3(図13の左側)における被処理液2の液面高さは攪拌槽3内で均一だった。この違いにより、被処理液2が付着した攪拌槽3内壁の壁面高さは攪拌軸5を正回転させた方が逆回転させるよりも格段に高くなった。
また、被処理液2が付着した攪拌軸5の高さは、図13では現れていないが、攪拌軸5を正回転させる方が、逆回転させるよりも高かった。
In this comparative experiment, two stirring tanks 3 storing the same amount of the liquid 2 to be processed were prepared, and the stirring shaft 5 was rotated forward and the other was rotated reversely and stirred. Then, when the viscosity of the liquid to be treated 2 was 100 Pa · s, the height of the liquid to be treated 2 attached to the inner wall surface of the stirring tank 3 and the height of the liquid to be attached to the stirring shaft 5 were compared in forward and reverse rotation.
As shown in FIG. 13, the liquid level of the liquid 2 to be treated in the stirring tank 3 (right side in FIG. 13) in which the stirring shaft 5 is rotated forward is low at the center of the stirring tank 3 and high near the inner wall of the stirring tank 3. It was. On the other hand, the liquid level of the liquid 2 to be treated in the stirring tank 3 (left side in FIG. 13) in which the stirring shaft 5 was rotated in the reverse direction was uniform in the stirring tank 3. Due to this difference, the wall height of the inner wall of the agitation tank 3 to which the liquid 2 to be treated was attached was markedly higher when the agitation shaft 5 was rotated forward than when it was reversely rotated.
Further, although the height of the stirring shaft 5 to which the liquid 2 to be treated is attached does not appear in FIG. 13, the forward rotation of the stirring shaft 5 was higher than the reverse rotation.

〔比較実験2〕
比較実験2は、被処理液の粘度が1000Pa・sの時に上記比較を行ったこと以外は比較実験1と同様に行った。
攪拌軸3を正回転させた場合も逆回転させた場合も、被処理液2が付着した攪拌槽3の壁面高さは被処理液2の粘度が100Pa・sの時に行った比較実験1と同程度であった。一方、攪拌軸を正回転させた場合における被処理液2が付着した攪拌軸5の高さは、液粘度が100Pa・sの時よりも高くなった。一方、逆回転させた場合の攪拌軸5の付着高さは100Pa・sの時と同程度だった。
[Comparison experiment 2]
Comparative experiment 2 was performed in the same manner as comparative experiment 1 except that the above comparison was performed when the viscosity of the liquid to be treated was 1000 Pa · s.
Whether the stirring shaft 3 is rotated forward or backward, the height of the wall surface of the stirring tank 3 to which the liquid to be treated 2 adheres is the same as that of Comparative Experiment 1 performed when the viscosity of the liquid 2 to be treated is 100 Pa · s. It was about the same. On the other hand, when the stirring shaft was rotated forward, the height of the stirring shaft 5 to which the liquid 2 to be treated adhered was higher than when the liquid viscosity was 100 Pa · s. On the other hand, the adhering height of the stirring shaft 5 in the reverse rotation was about the same as that at 100 Pa · s.

以上より、被処理液2の粘度が100Pa・sの時も1000Pa・sの時も、攪拌軸5を逆回転させることにより、正回転させる場合に比べて被処理液2の攪拌槽3内壁へのせり上がり及び攪拌軸5への巻き上がりを緩和させることができることを確認した。   As described above, when the viscosity of the liquid to be treated 2 is 100 Pa · s and 1000 Pa · s, the stirring shaft 5 is rotated backward to the inner wall of the stirring tank 3 of the liquid 2 to be treated as compared with the case of normal rotation. It was confirmed that the uplift and the winding up to the stirring shaft 5 can be alleviated.

なお、上記せり上がり現象の緩和は、攪拌軸5を正回転させる場合と逆回転させる場合の攪拌槽3内壁付近の被処理液2の液面高さの違いによるものだが、これは上述した攪拌槽3内の循環流の方向の違いに起因するとみられる。
また、攪拌軸5を正回転させる方が逆回転させるよりも攪拌軸5付近の液面が低くなるにも関わらず攪拌軸5を逆回転させることで巻き上がり現象を緩和できたのは、上述したように被処理液2の粘度が100Pa・s、1000Pa・sの場合の上記循環流の影響が比較的小さなためと考えられる。すなわち、この高粘度域では、攪拌軸5を正回転させて起こる循環流である攪拌軸5付近の下降流よりも、ヘリカルリボン翼7が被処理液2を掻き上げることにより起こる液面付近の上昇流の方が、巻き上がり現象の有無に、より大きな影響を及ぼしていると考えられる。
In addition, the relaxation of the above-mentioned rising phenomenon is due to the difference in the liquid level of the liquid 2 to be treated in the vicinity of the inner wall of the agitation tank 3 when the agitation shaft 5 is rotated in the forward direction and in the reverse direction. It seems that it originates in the difference in the direction of the circulating flow in the tank 3. FIG.
Moreover, although the direction of rotating the agitation shaft 5 in the forward direction is lower than the amount of liquid in the vicinity of the agitation shaft 5 in the reverse direction, the roll-up phenomenon can be alleviated by rotating the agitation shaft 5 in the reverse direction. Thus, it is considered that the influence of the circulating flow is relatively small when the viscosity of the liquid to be treated 2 is 100 Pa · s and 1000 Pa · s. That is, in this high viscosity region, the helical ribbon blades 7 scrape the liquid 2 to be treated near the liquid surface rather than the downward flow in the vicinity of the stirring shaft 5, which is a circulating flow generated by rotating the stirring shaft 5 forward. It is considered that the upward flow has a greater influence on the presence or absence of the roll-up phenomenon.

以上説明したように、本実施形態に係る攪拌方法では、円筒状攪拌槽3内の被処理液2を攪拌する方法において、攪拌槽3内に配設された攪拌軸5を正回転させるとヘリカルリボン翼7が被処理液2を掻き上げる方向に回転し、被処理液2の粘度が100Pa・s以上の時には、ヘリカルリボン翼7が被処理液2を掻き下げる方向に攪拌軸5を逆回転させる。そして、この高粘度域では攪拌軸5を正回転させても逆回転させても攪拌効率は変わらない。よって、攪拌効率を低下させることなく、この高粘度域においてヘリカルリボン翼7が攪拌軸5を正回転させた場合に現れる被処理液2の攪拌槽3内壁へのせり上がり及び攪拌軸5への巻き上がりを防止しつつ、攪拌槽3内をむらなく攪拌できる。   As explained above, in the stirring method according to the present embodiment, when the stirring shaft 5 disposed in the stirring tank 3 is rotated forward in the method of stirring the liquid 2 to be processed in the cylindrical stirring tank 3, the helical When the ribbon blade 7 rotates in the direction to scrape the liquid to be treated 2 and the viscosity of the liquid to be treated 2 is 100 Pa · s or more, the helical ribbon blade 7 reversely rotates the stirring shaft 5 in the direction to scrape the liquid to be treated 2. Let In this high viscosity region, the stirring efficiency does not change even if the stirring shaft 5 is rotated forward or backward. Therefore, without lowering the stirring efficiency, the helical ribbon blade 7 rises to the inner wall of the stirring tank 3 and appears on the stirring shaft 5 when the helical ribbon blade 7 rotates the stirring shaft 5 in this high viscosity region. The inside of the agitation tank 3 can be evenly stirred while preventing roll-up.

また、被処理液2の粘度は攪拌の進行に従って高くなるが、被処理液2の粘度が100Pa・s未満の場合は、攪拌軸5を正回転させることによって、逆回転させるより効率のよい攪拌を行うことができる。また、粘度が100Pa・sとなった時点を基準として攪拌軸5の回転を逆回転に切り換えるので、攪拌効率を低下させることなく、この高粘度域で現れる被処理液2の攪拌軸5への巻き上がり及び攪拌槽3内壁へのせり上がりを防止しつつ、攪拌槽3内をむらなく攪拌できる。   Further, the viscosity of the liquid to be treated 2 increases as the stirring proceeds, but when the viscosity of the liquid to be treated 2 is less than 100 Pa · s, the stirring shaft 5 is rotated forward so that the stirring is more efficient than the reverse rotation. It can be performed. In addition, since the rotation of the stirring shaft 5 is switched to the reverse rotation based on the time point when the viscosity becomes 100 Pa · s, the liquid 2 to be treated that appears in this high viscosity region is not applied to the stirring shaft 5 without lowering the stirring efficiency. The inside of the agitation tank 3 can be uniformly stirred while preventing rolling up and rising to the inner wall of the agitation tank 3.

また、本実施形態に係る攪拌装置では、円筒状攪拌槽3内に貯留された被処理液2の粘度が100Pa・s未満の時は攪拌軸5を正回転させて逆回転よりも効率の良い攪拌を行うことができるとともに、100Pa・s以上の時は、攪拌軸5を逆回転させて、攪拌効率を低下させることなく、この高粘度域で現れる被処理液2の攪拌軸5への巻き上がりや攪拌槽3内壁へのせり上がりを防止しつつ攪拌槽3内をむらなく攪拌できる。   Further, in the stirring device according to this embodiment, when the viscosity of the liquid 2 to be processed stored in the cylindrical stirring tank 3 is less than 100 Pa · s, the stirring shaft 5 is rotated forward to be more efficient than reverse rotation. While stirring can be performed, when the pressure is 100 Pa · s or more, the stirring shaft 5 is rotated in the reverse direction, and the liquid 2 to be treated that appears in the high viscosity region is wound around the stirring shaft 5 without lowering the stirring efficiency. The inside of the agitation tank 3 can be uniformly agitated while preventing rising and rising to the inner wall of the agitation tank 3.

なお、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改良、変形が可能であることは勿論である。
例えば、被処理液2は、ニュートン性流体でもよいし、攪拌が進むに連れて粘度が下降するタイプの非ニュートン性流体でもよい。また、攪拌軸が攪拌槽の中心部からずれた位置にあっても巻き上がり現象は起こりうるため、中心部に設ける必要はない。へリカルリボン翼の外縁部は攪拌槽内壁近傍でなくても掻き上げ方向への回転によりせり上がりが起こりうるので、外縁部が内壁近傍になくてもよい。攪拌槽には、ヘリカルリボン翼と共にアンカー翼やパドル翼等の別形態の翼が併設されていても構わない。
In addition, this invention is not limited to the said embodiment, Of course, various improvement and deformation | transformation are possible in the range which does not deviate from the summary of this invention.
For example, the liquid 2 to be treated may be a Newtonian fluid or a non-Newtonian fluid of a type whose viscosity decreases as stirring proceeds. Moreover, even if the stirring shaft is located at a position deviated from the central portion of the stirring tank, the roll-up phenomenon can occur, and therefore it is not necessary to provide it at the central portion. Even if the outer edge portion of the helical ribbon blade is not in the vicinity of the inner wall of the stirring tank, the outer edge portion may not be in the vicinity of the inner wall because it can be lifted up by rotation in the scraping direction. In the agitation tank, other types of blades such as an anchor blade and a paddle blade may be provided together with the helical ribbon blade.

1 攪拌装置
2 被処理液
3 攪拌槽
5 攪拌軸
6 腕木
7 ヘリカルリボン翼
DESCRIPTION OF SYMBOLS 1 Stirring apparatus 2 Liquid to be processed 3 Stirring tank 5 Stirring shaft 6 Arm 7 Helical ribbon blade

Claims (3)

被処理液が投入、貯留される円筒状攪拌槽と、攪拌槽内に配設された攪拌軸と、攪拌軸に取り付けられたヘリカルリボン翼と、を備えた攪拌装置を使用して攪拌軸の回転によりヘリカルリボン翼を回転させて攪拌槽内の被処理液を攪拌する方法において、
前記攪拌軸を正回転させると、前記ヘリカルリボン翼が前記被処理液を掻き上げる方向に回転し、
前記被処理液の粘度が100Pa・s以上の時には、前記ヘリカルリボン翼が前記被処理液を掻き下げる方向に、前記攪拌軸を逆回転させることを特徴とする攪拌方法。
Using a stirring device equipped with a cylindrical stirring tank into which the liquid to be treated is charged and stored, a stirring shaft disposed in the stirring tank, and a helical ribbon blade attached to the stirring shaft, In the method of stirring the liquid to be treated in the stirring tank by rotating the helical ribbon blade by rotation,
When the stirring shaft is rotated in the forward direction, the helical ribbon blade rotates in the direction of scooping up the liquid to be treated,
When the viscosity of the liquid to be treated is 100 Pa · s or higher, the stirring method is characterized in that the helical ribbon blade reversely rotates the stirring shaft in a direction to scrape the liquid to be treated.
前記被処理液の粘度は攪拌の進行に従って高くなり、
前記被処理液の粘度が100Pa・s未満である間は前記攪拌軸を正回転させ、
前記被処理液の粘度が100Pa・sとなった時点を基準として前記攪拌軸の回転を逆回転に切り替えることを特徴とする請求項1に記載の攪拌方法。
The viscosity of the liquid to be treated increases as the stirring proceeds,
While the viscosity of the liquid to be treated is less than 100 Pa · s, the stirring shaft is rotated forward,
2. The stirring method according to claim 1, wherein the rotation of the stirring shaft is switched to the reverse rotation based on a point in time when the viscosity of the liquid to be treated reaches 100 Pa · s.
被処理液が投入、貯留される円筒状攪拌槽と、
前記攪拌槽内に配設された攪拌軸と、
前記攪拌軸に取り付けられたヘリカルリボン翼と、を備えた攪拌装置において、
前記被処理液の粘度が100Pa・s未満の時は、前記ヘリカルリボン翼が前記被処理液を掻き上げる方向に前記攪拌軸を正回転させるとともに、被処理液の粘度が100Pa・s以上の時は、ヘリカルリボン翼が被処理液を掻き下げる方向に前記攪拌軸を逆回転させることを特徴とする攪拌装置。
A cylindrical stirring tank into which the liquid to be treated is charged and stored;
A stirring shaft disposed in the stirring tank;
In a stirring device comprising a helical ribbon blade attached to the stirring shaft,
When the viscosity of the liquid to be treated is less than 100 Pa · s, the helical ribbon blade rotates the stirring shaft in a direction to scoop up the liquid to be treated, and the viscosity of the liquid to be treated is 100 Pa · s or more. Is a stirring device characterized in that the stirring shaft reversely rotates in the direction in which the helical ribbon blade scrapes the liquid to be treated.
JP2009116317A 2009-05-13 2009-05-13 Stirring method and stirring apparatus for high viscous liquid Pending JP2010264356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009116317A JP2010264356A (en) 2009-05-13 2009-05-13 Stirring method and stirring apparatus for high viscous liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009116317A JP2010264356A (en) 2009-05-13 2009-05-13 Stirring method and stirring apparatus for high viscous liquid

Publications (1)

Publication Number Publication Date
JP2010264356A true JP2010264356A (en) 2010-11-25

Family

ID=43361837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009116317A Pending JP2010264356A (en) 2009-05-13 2009-05-13 Stirring method and stirring apparatus for high viscous liquid

Country Status (1)

Country Link
JP (1) JP2010264356A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392802B1 (en) 2012-11-14 2014-05-08 주식회사 하도 An impeller
CN108858857A (en) * 2018-06-20 2018-11-23 南京汇龙橡胶制品有限公司 A kind of mixed stirring device of rubber production processing
CN110280168A (en) * 2019-07-10 2019-09-27 厦门大学嘉庚学院 A kind of blender and its working method
GB2577030A (en) * 2018-03-13 2020-03-18 705 Srl Scraper blade

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101392802B1 (en) 2012-11-14 2014-05-08 주식회사 하도 An impeller
GB2577030A (en) * 2018-03-13 2020-03-18 705 Srl Scraper blade
CN108858857A (en) * 2018-06-20 2018-11-23 南京汇龙橡胶制品有限公司 A kind of mixed stirring device of rubber production processing
CN110280168A (en) * 2019-07-10 2019-09-27 厦门大学嘉庚学院 A kind of blender and its working method
CN110280168B (en) * 2019-07-10 2024-04-12 厦门大学嘉庚学院 Stirrer and working method thereof

Similar Documents

Publication Publication Date Title
JP2010264356A (en) Stirring method and stirring apparatus for high viscous liquid
JP4805319B2 (en) Stirring device and stirring tank
JP5011192B2 (en) Stirrer
JP5413243B2 (en) Stirring apparatus and stirring method
US20100278007A1 (en) Stirring Apparatus
Takahashi et al. Laminar mixing in stirred tank agitated by an impeller inclined
CN113557079B (en) Stirring vane assembly and stirring tank
JP2014144447A (en) Slurry agitation device and method
JP2016087590A (en) Agitating device
JP2012040556A (en) Stirring method of fluid and arm rotation type sparger
JP2015066503A (en) Agitating device and agitating method
JP2017039075A (en) Solid-liquid agitation device
JP4974160B2 (en) Continuous degassing deaerator
JP5134468B2 (en) Stirrer
JP5618392B1 (en) Fluid stirring device and sand pump using the same
JP5062696B2 (en) Stirrer
JP2007083157A (en) Agitation apparatus
JP2014136203A (en) Agitator
JP2006087998A (en) Agitation method
JP2006289221A (en) Paddle blade and stirrer equipped with the paddle blade
JP6174937B2 (en) Rotating vessel for stirring
JP4432438B2 (en) Stirrer
JP2015171695A (en) Agitation device
JP4628232B2 (en) Slurry impeller
JP2017051924A (en) Agitation device