JP2010263873A - Primer set for detecting listeria bacteria - Google Patents

Primer set for detecting listeria bacteria Download PDF

Info

Publication number
JP2010263873A
JP2010263873A JP2009120420A JP2009120420A JP2010263873A JP 2010263873 A JP2010263873 A JP 2010263873A JP 2009120420 A JP2009120420 A JP 2009120420A JP 2009120420 A JP2009120420 A JP 2009120420A JP 2010263873 A JP2010263873 A JP 2010263873A
Authority
JP
Japan
Prior art keywords
gene
primer
monocytogenes
primer set
base sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009120420A
Other languages
Japanese (ja)
Other versions
JP5522623B2 (en
Inventor
Yoshihisa Miyamoto
敬久 宮本
Takashi Tanaka
孝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd, Kyushu University NUC filed Critical Meiji Milk Products Co Ltd
Priority to JP2009120420A priority Critical patent/JP5522623B2/en
Priority to PCT/JP2010/058305 priority patent/WO2010134499A2/en
Publication of JP2010263873A publication Critical patent/JP2010263873A/en
Application granted granted Critical
Publication of JP5522623B2 publication Critical patent/JP5522623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for specifically and quickly detecting and identifying the particularly virulent strain Listeria monocytogenes. <P>SOLUTION: Through classifying according to the single-nucleotide polymorphisms of hlyA gene, inlA gene, clpC gene and plcA gene, found in Listeria monocytogenes, and detecting a plurality of single-nucleotide polymorphisms, consisting of identified combinations classifiable according to the specific single-nucleotide permutations within the single-nucleotide polymorphism of each gene, the virulent strain belonging to the same group as the strain found in the clinical strain can be detected. In order to do this, PCR is applied, using, for example, a primer set comprising a primer having a specific base sequence and a primer having a specific base sequence. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リステリア モノサイトゲネス菌(Listeria monocytogenes)の検出に用いられるプライマーセットに関する。 The present invention relates to a primer set used for detection of Listeria monocytogenes .

リステリア菌は、動物や土壌などの環境中に広く常在しており、食肉や乳製品を中心とする様々な食品から高頻度に検出される。ところが、リステリア菌は低温増殖能や高食塩濃度耐性をもつため(五十君ら、2003)、食品の一次汚染はもちろん製造工程での二次汚染を防ぐことも困難である。食品が高濃度で本菌に汚染されていると、食品の低温保存中に増殖し、食中毒を引き起こす恐れがある。   Listeria monocytogenes is widely resident in environments such as animals and soil, and is frequently detected in various foods such as meat and dairy products. However, since Listeria monocytogenes has a low-temperature growth ability and a high salt concentration tolerance (50-kun et al., 2003), it is difficult to prevent secondary contamination in the manufacturing process as well as primary contamination of food. If food is contaminated with this bacteria at a high concentration, it may proliferate during cold storage of food and cause food poisoning.

分類学的にリステリア属には6菌種が知られているが、リステリア症の原因菌とされているのはリステリア モノサイトゲネス菌(L. monocytogenes)の1菌種だけである。本菌に感染した場合、成人は抵抗力が強いため、無症状感染や保菌状態となるが、新生児、高齢者及び免疫不全者などのハイリスク群では多くのリステリア症の発症がみられ、重症化した場合の致命率は30%と極めて高く、子宮内で胎児が感染すると死産や早産の原因となることが知られている(五十君ら、2003、2004)。 Taxonomically, six species of Listeria are known, but only one species of L. monocytogenes is the cause of listeriosis. When infected with this bacterium, adults have strong resistance, and asymptomatic infection and colonization are achieved, but many high-risk groups such as newborns, the elderly, and immunocompromised individuals have developed many listeriosis and are severe The fatality rate in the case of a baby is known to be extremely high at 30%, and it is known that when a fetus is infected in the womb, it can lead to stillbirth and premature birth (Igo et al., 2003, 2004).

リステリア菌に感染した場合、発症までに長時間を要し、個人差があるため(五十君、2004)、頻発して起こるリステリア症が同一の食品を介して発生した集団食中毒であるかを判断することは困難である。また、菌株によっては血清型による分類ができない場合があり、血清型による分類のみでは病原性の有無の判定や追跡調査が十分にできない。このような観点からも詳細な分類が必要である。   When infected with Listeria monocytogenes, it takes a long time to develop, and there are individual differences (Ichigo-kun, 2004), so determine whether frequent listeriosis is a mass food poisoning that occurs through the same food It is difficult. Moreover, depending on the strain, classification by serotype may not be possible, and determination of the presence or absence of pathogenicity and follow-up surveys cannot be performed sufficiently only by classification by serotype. From this point of view, detailed classification is necessary.

リステリア菌の同定・分類方法して、例えばRFLPによる分類(非特許文献1参照)やPFGEによる分類(非特許文献2参照)が提案されているが、実験操作に熟練を必要とし、操作が煩雑で長時間を要する。また、簡易迅速検出法として、hlyA遺伝子をPCRにより増幅するためのプライマーセットも報告されているが(非特許文献3)、対象となる内部塩基配列を有しない菌株には無効であり、100%のL. monocytogenesを検出できるわけでは無いとの報告がある(非特許文献4)。これらの方法以外にも、PCRによりL. monocytogenesを検出したり、血清型を判定したりする試みが数々行われているが(特許文献1,2、非特許文献5,6、7など)、病原性の高い菌株との関連性については把握されていない。 For example, classification by RFLP (see Non-Patent Document 1) and classification by PFGE (see Non-Patent Document 2) have been proposed as methods for identifying and classifying Listeria monocytogenes. However, experiments require skill and are complicated. Takes a long time. As a simple and rapid detection method, a primer set for amplifying the hlyA gene by PCR has also been reported (Non-patent Document 3), but it is ineffective for strains that do not have a target internal base sequence, and is 100% There is a report that L. monocytogenes cannot be detected (Non-patent Document 4). In addition to these methods, many attempts have been made to detect L. monocytogenes by PCR or determine the serotype (Patent Documents 1, 2, Non-Patent Documents 5, 6, 7, etc.) The relationship with highly pathogenic strains is not known.

また、inlA遺伝子を増幅する方法として、タカラバイオ株式会社やABI(Applied Biosystems)社からそれぞれ異なる内部塩基配列を標的とした遺伝子増幅用のキットが販売されている。しかし、リステリア菌以外の類縁菌をも検出される可能性が高かった。   As a method for amplifying the inlA gene, gene amplification kits targeting different internal base sequences are commercially available from Takara Bio Inc. and ABI (Applied Biosystems). However, there was a high possibility that related bacteria other than Listeria were also detected.

このような状況下において、本願発明者らはL. monocytogenesを迅速に検出するとともに、病原性の有無を含めて分類同定する方法を提案し、特願2006−144723号として特許出願を行っている(特許文献3、非特許文献8)。この方法は、hlyA遺伝子、clpC遺伝子、inlA遺伝子、plcA遺伝子においてそれぞれ見いだされる特徴的な一塩基置換(一塩基多型:SNP)を利用して分類する方法である(multi locus sequence typing(MLST)法)。 Under such circumstances, the present inventors have proposed a method for rapidly detecting L. monocytogenes and classifying and identifying including pathogenicity, and filed a patent application as Japanese Patent Application No. 2006-144723. (Patent Literature 3, Non-Patent Literature 8). This method is a method of classifying using the characteristic single nucleotide substitution (single nucleotide polymorphism: SNP) found in the hlyA gene, clpC gene, inlA gene, and plcA gene, respectively (multi locus sequence typing (MLST)). Law).

MLST法では、hlyA遺伝子、clpC遺伝子、inlA遺伝子、plcA遺伝子においてそれぞれ見いだされる特徴的な一塩基置換の類型によってグループ化される。これまでのところ、hlyA遺伝子における類型はグループ1〜グループ9の9つのグループに(特許文献3、図1参照)、clpC遺伝子における類型はグループ1〜グループ14の14のグループに(同文献、図2参照)、inlA遺伝子における類型はグループ1〜グループ17の17のグループに(同文献、図3参照)、plcA遺伝子における類型はグループ1〜21に分類される(同文献、図4参照)ことが明らかにされている。   In the MLST method, grouping is performed according to the characteristic single nucleotide substitution types found in the hlyA gene, the clpC gene, the inlA gene, and the plcA gene. So far, the types in the hlyA gene have been classified into nine groups from Group 1 to Group 9 (see Patent Document 3 and FIG. 1), and the types in the clpC gene have been classified into 14 groups from Group 1 to Group 14 (the same document, FIG. 1). 2), the types in the inlA gene are classified into 17 groups of groups 1 to 17 (see the same document, FIG. 3), and the types in the plcA gene are classified into groups 1 to 21 (see the same document, FIG. 4). Has been revealed.

これらのうちで、病原性が高いと推定される臨床株(臨床から分離されたL. monocytogenes)は、特許文献1の表1に示されているように、グループA〜Lの12のグループに分類される(同文献表1参照)。従って、検出されたリステリア菌におけるhlyA遺伝子、clpC遺伝子、inlA遺伝子、plcA遺伝子における特徴的な一塩基置換の類型(グループ)が、同文献の表1に示されたグループA〜Lに一致すれば、当該検出菌は病原性が高いと類推できる。また、このとき、従来から用いられてきた血清型による分類を加味して判断することも可能であるが、血清型による分類を加味した場合にも、病原性が高いと類推可能な菌株は、前記グループA〜Lの12グループに分類される(同文献、表1参照)。 Among these, clinical strains estimated to be highly pathogenic ( L. monocytogenes isolated from clinical practice) are classified into 12 groups of groups A to L as shown in Table 1 of Patent Document 1. Classification (see Table 1 of the same document). Therefore, if the detected single base substitution type (group) in the hlyA gene, clpC gene, inlA gene, and plcA gene in Listeria monocytogenes matches the groups A to L shown in Table 1 of the same literature. It can be inferred that the detected bacteria are highly pathogenic. In addition, at this time, it is also possible to judge by taking into account the classification by the serotype that has been used conventionally, but when taking into account the classification by serotype, the strain that can be inferred to be highly pathogenic, It is classified into 12 groups of the groups A to L (see the same document, Table 1).

すなわち、上記4つの遺伝子における特徴的な一塩基置換(SNP)を検出して、当該一塩基置換による類型を調べることにより、検出されたリステリア菌の病原性を推定できる。   That is, the pathogenicity of the detected Listeria monocytogenes can be estimated by detecting the characteristic single base substitution (SNP) in the above four genes and examining the type by the single base substitution.

特開平6−233699号公報JP-A-6-233699 特開2004−154141号公報JP 2004-154141 A 特開2007−312660号公報JP 2007-31660 A

Fukiko Ueda et al., Comparison of Genomic Structures in the Serovar 1/2a Listeria monocytogenes Isolated from Meats and Listeriosis Patients in Japan, Jpn. J. Infect. Dis., 58(2005), 289-293Fukiko Ueda et al., Comparison of Genomic Structures in the Serovar 1 / 2a Listeria monocytogenes Isolated from Meats and Listeriosis Patients in Japan, Jpn. J. Infect. Dis., 58 (2005), 289-293 Marc Yde, and Annie Genicot,Use of PFGE to characterize clonal relationships among Belgian clinical isolates of Listeria monocytogenes, J Med Microbiol, 53 (2004), 399-402Marc Yde, and Annie Genicot, Use of PFGE to characterize clonal relationships among Belgian clinical isolates of Listeria monocytogenes, J Med Microbiol, 53 (2004), 399-402 Lehner, et al., A rapid differentiation of Listeria monocytogenes by use of PCR-SSCP in the listeriolysin O (hlyA) locus, J. Microbiol. Med 34(1999), 165-171Lehner, et al., A rapid differentiation of Listeria monocytogenes by use of PCR-SSCP in the listeriolysin O (hlyA) locus, J. Microbiol. Med 34 (1999), 165-171 五十君静信,山本茂貴,牧野壮一ら、2003年 食品由来リステリア菌の健康に関する研究 平成14年度 総括・分担研究報告書Shigenobu Igo, Shigeki Yamamoto, Soichi Makino et al., 2003 Study on Health of Food-Derived Listeria Bacteria 2002 Summary and Research Report Rodriguez-Lazaro, D. et al., Simultaneous quantitive detection of Listeria spp. and Listeria monocytogenes using a duplex real-time PCR-based assay, FEMS. Microbiol. Lett., 233(2004), 257-267Rodriguez-Lazaro, D. et al., Simultaneous quantitive detection of Listeria spp. And Listeria monocytogenes using a duplex real-time PCR-based assay, FEMS. Microbiol. Lett., 233 (2004), 257-267 Thomas, E. J. G et al., Sensitive and Specific Detection of Listeria monocytogenes in Milk and Ground Beef with the Polymerase Chain Reaction, Appl. Environ. Microbiol., 57(1991), 2576-2580Thomas, E. J. G et al., Sensitive and Specific Detection of Listeria monocytogenes in Milk and Ground Beef with the Polymerase Chain Reaction, Appl.Environ.Microbiol., 57 (1991), 2576-2580 Monica K. Borucki and Douglas R. Call, Listeria monocytogenes Serotype Identification by PCR, Journal of Clinical Microbiology, Vol. 41, No. 12(2003), 5537-5540Monica K. Borucki and Douglas R. Call, Listeria monocytogenes Serotype Identification by PCR, Journal of Clinical Microbiology, Vol. 41, No. 12 (2003), 5537-5540 Ken-ichi Honjoh, Kumiko Fujihara et al., Subtyping of Listera monocytogenes Based on Nucleotide Polymorphism in the clpC, inlA, hlyA, and plcA Genes and Rapid Identification of L. monocytogenes Genetically Similar to Clinical Isolates, Food Sci. Technolo. Res., 14(6), 557-564, 2008Ken-ichi Honjoh, Kumiko Fujihara et al., Subtyping of Listera monocytogenes Based on Nucleotide Polymorphism in the clpC, inlA, hlyA, and plcA Genes and Rapid Identification of L. monocytogenes Genetically Similar to Clinical Isolates, Food Sci. Technolo. , 14 (6), 557-564, 2008

本願発明者らは、引き続き、臨床由来又は食品・環境由来のリステリア菌について追加調査を行ったところ、hlyA遺伝子の塩基配列をもとに見いだされた特定の塩基配列を有するプライマーを組み合わせることによっても、リステリア菌のみを特異的に検出できることを見いだし、本願発明を完成するに至った。   The inventors of the present application subsequently conducted an additional investigation on clinically derived or food / environment-derived Listeria, and also by combining primers having a specific nucleotide sequence found based on the nucleotide sequence of the hlyA gene. The inventors have found that only Listeria can be specifically detected, and have completed the present invention.

本発明においては、配列番号1に示す塩基配列を有するプライマーと配列番号12〜16及び18〜20に示す何れかの塩基配列を有するプライマーとからなるプライマーセット(表8におけるプライマーセットNo.1〜5及び7〜9の何れか)、若しくは配列番号11に示す塩基配列を有するプライマーと配列番号4に示す塩基配列を有するプライマーとからなるプライマーセット(表8におけるプライマーセットNo.12)を用いてPCR法(PCT−RT)法を適用することにしている。   In the present invention, a primer set consisting of a primer having the base sequence shown in SEQ ID NO: 1 and a primer having any one of the base sequences shown in SEQ ID NOS: 12-16 and 18-20 (primer set Nos. 1 to 1 in Table 8). 5 or 7-9), or a primer set (primer set No. 12 in Table 8) comprising a primer having the base sequence shown in SEQ ID NO: 11 and a primer having the base sequence shown in SEQ ID NO: 4 The PCR method (PCT-RT) method is applied.

これらのプライマーは、それぞれ試験した全てのL. monocytogenesで保存され、類縁菌であるL. ivanovii 及び L. seeligeri ではSNPの多い領域の塩基配列から見いだされたものである。配列番号1で示される塩基配列を有するプライマーをforward側のプライマーとして用いる際には、配列番号12〜16及び18〜20に示す何れかの塩基配列を有するプライマーがreverse側のプライマーとして用いられる。配列番号11で示される塩基配列を有するプライマーをreverse側のプライマーとして用いる際には、配列番号4に示される塩基配列を有するプライマーがforward側のプライマーとして用いられる。 These primers are conserved in all tested L. monocytogenes and are related bacteria L. ivanovii and L. In seeligeri , it was found from the base sequence of the region with many SNPs. When the primer having the base sequence represented by SEQ ID NO: 1 is used as the forward primer, the primer having any one of the base sequences shown in SEQ ID NOs: 12-16 and 18-20 is used as the reverse primer. When the primer having the base sequence shown by SEQ ID NO: 11 is used as the reverse primer, the primer having the base sequence shown by SEQ ID NO: 4 is used as the forward primer.

本発明によると、L. monocytogenesを特異的かつ迅速に検出することができる。 According to the present invention, L. monocytogenes can be detected specifically and rapidly.

hlyA遺伝子内の塩基配列に基づくL. monocytogenesの分類系統樹を示す図である。It is a figure which shows the classification phylogenetic tree of L. monocytogenes based on the base sequence in an hlyA gene. 新たに分類系統樹に追加された菌グループにおけるhlyA遺伝子の1126−1527(402bp)塩基部分のCLUSTAL W multiple sequence alignmentを示す図である。It is a figure which shows CLUSTAL W multiple sequence alignment of the 1126-1527 (402 bp) base part of the hlyA gene in the fungal group newly added to the classification phylogenetic tree. inlA遺伝子内の塩基配列に基づくL. monocytogenesの分類系統樹を示す図である。It is a figure which shows the taxonomic tree of L. monocytogenes based on the base sequence in an inlA gene. 新たに分類系統樹に追加された菌グループにおけるinlA遺伝子の1192−1799(608bp)塩基部分のCLUSTAL W multiple sequence alignmentの一部を示す図である。It is a figure which shows a part of CLUSTAL W multiple sequence alignment of the 1192-1799 (608 bp) base part of the inlA gene in the fungal group newly added to the classification phylogenetic tree. 図4の続図である。FIG. 5 is a continuation diagram of FIG. 4. clpC遺伝子内の塩基配列に基づくL. monocytogenesの分類系統樹を示す図である。It is a figure which shows the taxonomic tree of L. monocytogenes based on the base sequence in a clpC gene. 新たに分類系統樹に追加された菌グループにおけるclpC遺伝子の489−1124(636bp)塩基部分のCLUSTAL W multiple sequence alignmentを示す図である。It is a figure which shows CLUSTAL W multiple sequence alignment of the 489-1124 (636 bp) base part of the clpC gene in the fungi group newly added to the classification phylogenetic tree. plcA遺伝子内の塩基配列に基づくL. monocytogenesの分類系統樹を示す図である。It is a figure which shows the taxonomic tree of L. monocytogenes based on the base sequence in a plcA gene. 新たに分類系統樹に追加された菌グループにおけるplcA遺伝子の153−865(713bp)塩基部分のCLUSTAL W multiple sequence alignmentの一部を示す図である。It is a figure which shows a part of CLUSTAL W multiple sequence alignment of the 153-865 (713 bp) base part of the plcA gene in the fungal group newly added to the classification phylogenetic tree. 図9の続図である。FIG. 10 is a continuation diagram of FIG. 9. MLST57グループの分類系統樹を示す図である。It is a figure which shows the classification phylogenetic tree of MLST57 group. (a)(b)はプライマーセット7を用いたL. monocytogenes(一部)の検出における蛍光強度の増加曲線であって、(a)は積分値、同図(b)は微分値を示す。(c)はRT−PCR終了後の電気泳動図である。(c)の下部に記載された数字は菌株No.である。(A) (b) is an increase curve of the fluorescence intensity in the detection of L. monocytogenes (part) using the primer set 7, wherein (a) shows an integral value and (b) shows a differential value. (C) is an electrophoretogram after completion of RT-PCR. The numbers listed at the bottom of (c) are strain Nos. It is. (a)(b)はプライマーセット7を用いたL. monocytogenes(残部)の検出における蛍光強度の増加曲線であって、(a)は積分値、同図(b)は微分値を示す。(c)はRT−PCR終了後の電気泳動図である。(c)の下部に記載された数字は菌株No.である。(A) (b) is an increase curve of the fluorescence intensity in the detection of L. monocytogenes (remainder) using the primer set 7, wherein (a) shows an integral value and (b) shows a differential value. (C) is an electrophoretogram after completion of RT-PCR. The numbers listed at the bottom of (c) are strain Nos. It is. (a)(b)はプライマーセット7を用いたL. monocytogenes以外の菌の検出における蛍光強度の増加曲線であって、(a)は積分値、同図(b)は微分値を示す。(c)はRT−PCR終了後の電気泳動図である。(c)の下部に記載された数字は菌株No.である。(A) (b) is an increase curve of the fluorescence intensity in the detection of bacteria other than L. monocytogenes using the primer set 7, wherein (a) shows an integrated value and (b) shows a differential value. (C) is an electrophoretogram after completion of RT-PCR. The numbers listed at the bottom of (c) are strain Nos. It is. (a)はタカラバイオ社のキットを用いたL. monocytogenes(一部)の検出における蛍光強度の増加曲線(積分値)、(b)はRT−PCR終了後の電気泳動図である。(b)の下部に記載された数字は菌株No.である。(A) is an increase curve (integral value) of fluorescence intensity in the detection of L. monocytogenes (part) using a Takara Bio kit, and (b) is an electrophoretic diagram after completion of RT-PCR. The numbers listed at the bottom of (b) are strain No. It is. (a)はタカラバイオ社のキットを用いたL. monocytogenes(一部)の検出における蛍光強度の増加曲線(積分値)、(b)(c)はRT−PCR終了後の電気泳動図である。(b)(c)の下部に記載された数字は菌株No.である。(A) is an increase curve (integral value) of fluorescence intensity in detection of L. monocytogenes (part) using a Takara Bio kit, and (b) and (c) are electrophoretic diagrams after completion of RT-PCR. . (B) The numbers described at the bottom of (c) are the strain No. It is. (a)はタカラバイオ社のキットを用いたL. monocytogenes以外の菌の検出における蛍光強度の増加曲線(積分値)、(b)はRT−PCR終了後の電気泳動図である。(b)の下部に記載された数字は菌株No.である。(A) is an increase curve (integrated value) of fluorescence intensity in the detection of bacteria other than L. monocytogenes using a kit of Takara Bio Inc., and (b) is an electrophoretic diagram after completion of RT-PCR. The numbers listed at the bottom of (b) are strain No. It is. (a)はABI社のキットを用いたL. monocytogenes(一部)の検出における蛍光強度の増加曲線(積分値)、同図(c)はRT−PCR終了後の電気泳動図である。(b)の下部に記載された数字は菌株No.である。(A) is an increase curve (integral value) of fluorescence intensity in detection of L. monocytogenes (part) using an ABI kit, and (c) is an electrophoretic diagram after completion of RT-PCR. The numbers listed at the bottom of (b) are strain No. It is. (a)はABI社のキットを用いたL. monocytogenes(残部)の検出における蛍光強度の増加曲線(積分値)、(b)(c)はRT−PCR終了後の電気泳動図である。(b)(c)の下部に記載された数字は菌株No.である。(A) is an increase curve (integral value) of fluorescence intensity in the detection of L. monocytogenes (remainder) using an ABI kit, and (b) and (c) are electrophoretic diagrams after completion of RT-PCR. (B) The numbers described at the bottom of (c) are the strain No. It is. (a)はABI社のキットを用いたL. monocytogenes以外の菌の検出における蛍光強度の増加曲線(積分値)、同図(b)はRT−PCR終了後の電気泳動図である。(b)の下部に記載された数字は菌株No.である。(A) is an increase curve (integral value) of fluorescence intensity in the detection of bacteria other than L. monocytogenes using an ABI kit, and (b) is an electrophoretogram after completion of RT-PCR. The numbers listed at the bottom of (b) are strain No. It is.

本発明は、L. monocytogenes(以下、「リステリア菌」とのみ表記する場合がある)を検出する際に、リステリア菌のhlyA遺伝子における特徴的な一塩基変異部分を増幅させるために、配列番号1に示す塩基配列を有するプライマーと配列番号12〜16及び18〜20に示す何れかの塩基配列を有するプライマーとからなるプライマーセット、若しくは配列番号11に示す塩基配列を有するプライマーと配列番号4に示す塩基配列を有するプライマーとからなるプライマーセットを用いることに特徴がある。つまり、本発明のプライマーセットを用いてリステリア菌のhlyA遺伝子を増幅させる点が特許文献3に記載された方法と異なるものの、検出されたリステリア菌の分類・同定方法は、当該特許文献における考え方とは何ら異なるものではない。従って、本発明のプライマーセットを用いて増幅されたhlyA遺伝子をはじめ、clpC遺伝子、inlA遺伝子、plcA遺伝子における特徴的な一塩基置換の類型化(グループ化)は、特開2007−312660号公報に記載された方法と同一であり、本発明において、グループ化の説明部分は特開2007−312660号の記載が援用される。 In order to amplify a characteristic single nucleotide mutation in the hlyA gene of Listeria monocytogenes when detecting L. monocytogenes (hereinafter sometimes referred to only as “Listeria monocytogenes”), A primer set comprising a primer having the base sequence shown in FIG. 5 and a primer having any one of the base sequences shown in SEQ ID NOS: 12-16 and 18-20, or a primer having the base sequence shown in SEQ ID NO: 11 and shown in SEQ ID NO: 4 It is characterized in that a primer set comprising a primer having a base sequence is used. That is, although the point that amplifies the hlyA gene of Listeria monocytogenes using the primer set of the present invention is different from the method described in Patent Document 3, the method for classifying and identifying Listeria monocytogenes detected is based on the idea in the patent literature. Is not different. Therefore, a characteristic single nucleotide substitution type (grouping) in clpC gene, inlA gene, and plcA gene, including hlyA gene amplified using the primer set of the present invention, is disclosed in Japanese Patent Application Laid-Open No. 2007-31660. In the present invention, the description of Japanese Patent Application Laid-Open No. 2007-31660 is incorporated in the present invention.

本発明においてはhlyA遺伝子の増幅に、配列番号1に示す塩基配列を有するプライマー(forward)と配列番号12〜16及び18〜20に示す何れかの塩基配列を有するプライマー(reverse)とからなるプライマーセット(プライマーセットNo.1〜5及び7〜9)若しくは配列番号11に示す塩基配列を有するプライマー(reverse)と配列番号4に示す塩基配列を有するプライマー(forward)とからなるプライマーセット(プライマーセットNo.12)の何れかが用いられる。この中でも、プライマーセット7に示される配列番号1で示される塩基配列を有するプライマー(forward)と配列番号8で示される塩基配列を有するプライマー(reverse)のプライマーセットが好ましく用いられる。食中毒の原因菌とされる大腸菌O157を検出せず、広範囲のDNA濃度(0.0001〜100ng/ml)で検出することができる。   In the present invention, for the amplification of the hlyA gene, a primer comprising a primer having a base sequence shown in SEQ ID NO: 1 (forward) and a primer having a base sequence shown in any one of SEQ ID NOS: 12-16 and 18-20 (reverse) Primer set (primer set No. 1-5 and 7-9) or a primer set (primer set) comprising a primer (reverse) having the base sequence shown in SEQ ID NO: 11 and a primer (forward) having the base sequence shown in SEQ ID NO: 4 No. 12) is used. Among these, the primer set of the primer (forward) which has the base sequence shown by sequence number 1 shown in primer set 7 and the primer (reverse) which has the base sequence shown by sequence number 8 is used preferably. Escherichia coli O157, which is a causative agent of food poisoning, is not detected, and can be detected in a wide range of DNA concentrations (0.0001 to 100 ng / ml).

次に下記の実施例に基づいて本発明について詳細に説明する。   Next, the present invention will be described in detail based on the following examples.

〔リステリア菌の分類〕
新たに臨床的に分離されたリステリア菌(臨床株)及び食品・環境から分離されたリステリア菌(食品・環境由来株)90株について、下記方法に基づき、hlyA遺伝子、clpC遺伝子、inlA遺伝子、plcA遺伝子の各一塩基置換についてグループ化を行った。
[Classification of Listeria monocytogenes]
Based on the following method, Listeria monocytogenes (clinical strain) and 90 Listeria monocytogenes (food / environment-derived strain) isolated from food / environment were newly analyzed based on the following methods: hlyA gene, clpC gene, inlA gene, plcA Groups were made for each single base substitution of the gene.

L. monocytogenes hlyA遺伝子部分塩基配列の決定)
被検菌株をTSB 5mlで37℃、一晩静置培養し、培養液1mlを5,100×gで10分間遠心分離して集菌後、DNA Tissue Kit(キアゲン社)を用い、付属のプロトコールに従ってゲノムDNAの調製を行った。
(Determination of L. monocytogenes hlyA gene partial nucleotide sequence)
The test strain is statically cultured overnight at 37 ° C with 5 ml of TSB, 1 ml of the culture is centrifuged at 5,100 xg for 10 minutes, collected, and then attached using DNA Tissue Kit (Qiagen). The genomic DNA was prepared according to the above.

hlyA遺伝子の内部塩基配列を増幅するためのPCRに用いるプライマーとして、既に全塩基配列が決定されているL. monocytogenes EDG-e株(血清型1/2a)およびF2365(血清型4b)において共通性の高い塩基配列部分から作成されたF2−R2プライマーセット(F2:AAATCATCGACGGCAACCT(配列番号1)、R2:ATTTCGGATAAAGCGTGGTG(配列番号11))を用いた。このプライマーセットは、hlyA遺伝子の1070−1558塩基対を増幅するためのものである。なお、F2プライマー及びR2プライマーはそれぞれ特許文献3において用いられたプライマーと同じである。増幅は、熱変性(95℃、1min)の後、95℃、30sec→55℃、30sec→72℃、60secの反応を35サイクル行った。PCR産物のサイズはアガロースゲル電気泳動により確認した後,市販のPCR産物精製キットで精製し、その塩基配列は株式会社バイオマトリックス研究所(千葉県流山市)に依頼して決定した。 Common to L. monocytogenes EDG-e strains (serotype 1 / 2a) and F2365 (serotype 4b) that have already been determined as the primers used for PCR to amplify the internal base sequence of the hlyA gene F2-R2 primer set (F2: AAATCATCGACGGCAACCT (SEQ ID NO: 1), R2: ATTTCGGATAAAGCGTGGTG (SEQ ID NO: 11)) prepared from a high base sequence portion was used. This primer set is for amplifying 1070-1558 base pairs of the hlyA gene. The F2 primer and the R2 primer are the same as the primers used in Patent Document 3, respectively. Amplification was performed by heat denaturation (95 ° C., 1 min) followed by 35 cycles of 95 ° C., 30 sec → 55 ° C., 30 sec → 72 ° C., 60 sec. The size of the PCR product was confirmed by agarose gel electrophoresis and then purified with a commercially available PCR product purification kit. The base sequence was determined by requesting Biomatrix Laboratories (Nagayama City, Chiba Prefecture).

(hlyA遺伝子の類型化)
塩基配列の決定の結果、hlyA遺伝子におけるグループは、特許文献3に開示された9グループから5グループ増えて計14グループに類型化された。表1には、hlyA遺伝子におけるグループ分けを示した。この表1には、特許文献3に示された菌株126株(菌株番号40、41、43、72、116は欠番)と、今回新たにグループ化された菌株66株(菌株番号132〜197)の計192株すべてについて、改めてグループ化した結果が示されている。その系統樹(Neighbor joining 法による)を図1に示した。また、追加された5グループ(グループ10〜14)のSNPを含む配列部分(1126−1527bp)を図2及び配列番号21〜25(それぞれグループ10〜14に対応)に示した。
(Classification of hlyA gene)
As a result of the determination of the base sequence, the group in the hlyA gene was categorized into a total of 14 groups, an increase of 5 groups from 9 groups disclosed in Patent Document 3. Table 1 shows the groupings in the hlyA gene. In Table 1, 126 strains (strain numbers 40, 41, 43, 72, and 116 are omitted) shown in Patent Document 3, and 66 strains (strain numbers 132 to 197) newly grouped this time. The results of grouping again for all 192 shares are shown. The phylogenetic tree (by Neighbor joining method) is shown in FIG. Moreover, the arrangement | sequence part (1126-1527bp) containing SNP of 5 groups (groups 10-14) added was shown in FIG. 2 and arrangement number 21-25 (each corresponding to groups 10-14).

hlyA遺伝子と同様に特許文献3に記載された方法に準じて、inlA遺伝子、clpC遺伝子、plcA遺伝子の各一塩基置換についてもグループ化を行った。その結果をそれぞれ表2〜表4に示した。この結果、inlA遺伝子ではこれまでの17グループから27グループに、clpC遺伝子ではこれまでの14グループから17グループに、plcA遺伝子ではこれまでの21グループから30グループにそれぞれ増加した。改めてグループ化されたinlA遺伝子の系統樹が図3に示され、inlA遺伝子において追加された11グループのSNPを含む配列部分(1192−1799bp)が図4〜5及び配列番号26〜35(それぞれグループ18〜27に対応)に示された。改めてグループ化されたclpC遺伝子の系統樹が図6に示され、clpC遺伝子において追加された3グループのSNPを含む配列部分(489−1124bp)が図7及び配列番号36〜38(それぞれグループ15〜17に対応)に示された。また、改めてグループ化されたplcA遺伝子における系統樹が図8に示され、plcA遺伝子において追加された9グループのSNPを含む塩基配列(153−865bp)が図9〜10及び配列番号39〜47(それぞれグループ22〜30に対応)に示された。   Similarly to the hlyA gene, in accordance with the method described in Patent Document 3, grouping was also performed for each single base substitution of the inlA gene, the clpC gene, and the plcA gene. The results are shown in Tables 2 to 4, respectively. As a result, the inlA gene increased from the previous 17 groups to 27 groups, the clpC gene increased from the previous 14 groups to 17 groups, and the plcA gene increased from the previous 21 groups to 30 groups. FIG. 3 shows the phylogenetic tree of the newly grouped inlA gene. The sequence portion (1192-1799 bp) containing 11 groups of SNPs added in the inlA gene is shown in FIGS. 4-5 and SEQ ID NOs: 26-35 (groups respectively). 18-27). The phylogenetic tree of the clpC gene regrouped is shown in FIG. 6, and the sequence portion (489-1124 bp) containing 3 groups of SNPs added in the clpC gene is shown in FIG. 7 and SEQ ID NOs: 36 to 38 (groups 15 to 17). Moreover, the phylogenetic tree in the newly grouped plcA gene is shown in FIG. 8, and the base sequences (153-865 bp) containing 9 groups of SNPs added in the plcA gene are shown in FIGS. 9-10 and SEQ ID NOs: 39-47 ( Each corresponding to groups 22-30).

これらの結果から、これまでに分離された臨床株、食品・環境株計192株のMLSTは、表5及び図11に示す計57グループに分類された。また、各菌株の属性が表6及び表7に示された。これらの菌株について血清型による分類から見ると、血清型1/2aでは食品・環境株は17の群に、臨床株は8つの群に分類された。これらのうち食品・環境株は特定のグループに集中することはなかったが、臨床株は11株中4株がMLSTグループ45にまとまって分類され、当該MLSTグループ45が比較的病原性が高いと類推される。一方、血清型1/2bでは食品・環境株は11の群に、臨床株は5つの群に分類された。これらのうち、食品・環境株はMLSTグループ4及び13にまとまって分類されたが、臨床株は特定のグループに集中して分類されることはなかった。血清型4bでは食品・環境株、臨床株共にMLSTグループ7群に分類され、そのほとんどがMLSTグループ22及び24に分類された。   From these results, MLST of 192 clinical and food / environmental stocks separated so far was classified into 57 groups as shown in Table 5 and FIG. Table 6 and Table 7 show the attributes of each strain. From the viewpoint of serotype classification of these strains, food / environmental strains were classified into 17 groups and clinical strains were classified into 8 groups in serotype 1 / 2a. Of these, food / environmental strains were not concentrated in a specific group, but 4 out of 11 clinical strains were grouped into MLST group 45, and MLST group 45 was relatively highly pathogenic. By analogy. On the other hand, in serotype 1 / 2b, food / environmental strains were classified into 11 groups and clinical strains were classified into 5 groups. Of these, food / environmental strains were grouped into MLST groups 4 and 13, but clinical strains were not categorized into specific groups. In serotype 4b, both food / environmental strains and clinical strains were classified into MLST group 7 groups, most of which were classified into MLST groups 22 and 24.

従って、調査対象となる検体から検出されたリステリア菌が、MLSTグループ22、24、45に属すると判断されるならば当該リステリア菌は病原性が高いものと類推される。一方、MLSTグループ4及び13に属すると判断されるならば当該リステリア菌が病原性である可能性が低いものと類推される。   Therefore, if it is determined that the Listeria monocytogenes detected from the sample to be investigated belongs to the MLST groups 22, 24, 45, the Listeria monocytogenes is presumed to be highly pathogenic. On the other hand, if it is judged that it belongs to MLST groups 4 and 13, it is presumed that the Listeria monocytogenes is less likely to be pathogenic.

〔新たなhlyA遺伝子検出用のプライマーセットの設計〕
次に、上記で決定された塩基配列をもとに試験を行った全てのリステリア菌で保存され、リステリア菌の類縁菌であるL. ivanovii 及び L. seeligeriでSNPの多い領域の塩基配列から数種のプライマーを作製し、その検出精度の検討を行った。ここでは、遺伝子型グループ間で最もSNPが少なく、プライマーの塩基配列を決定しやすいと考えられたhlyA遺伝子の塩基配列を基にプライマーセットを設計した。そして、表8に示す18通りの組み合わせでPCR反応を行い,最も検出感度および特異性の高いプライマーセットを選択した。用いられたプライマーの塩基配列を表9(配列番号1〜20)に示す。
[Design of a new primer set for hlyA gene detection]
Next, it is conserved in all Listeria monocytogenes tested based on the base sequence determined above, and is calculated from the base sequence of the region with many SNPs in L. ivanovii and L. seeligeri that are related to Listeria monocytogenes. A seed primer was prepared and its detection accuracy was examined. Here, the primer set was designed based on the base sequence of the hlyA gene, which was considered to have the smallest SNP among genotype groups and to easily determine the base sequence of the primer. And PCR reaction was performed by 18 combinations shown in Table 8, and the primer set with the highest detection sensitivity and specificity was selected. The base sequences of the primers used are shown in Table 9 (SEQ ID NOs: 1 to 20).

(供試菌と鋳型DNA濃度)
供試菌としてL. monocytogenes No.4株を選択した。鋳型ゲノムDNA濃度を100ng/μl、10ng/μl、1.0ng/μl、0.1ng/μl、0.01ng/μl、0.001ng/μl,、0.0001ng/μlとした。また、大腸菌O157のゲノムDNA(45ng/μl)をNegative controlに用いた。
(Test bacteria and template DNA concentration)
L. monocytogenes No. 4 strain was selected as a test bacterium . The template genomic DNA concentrations were 100 ng / μl, 10 ng / μl, 1.0 ng / μl, 0.1 ng / μl, 0.01 ng / μl, 0.001 ng / μl, 0.0001 ng / μl. Further, E. coli O157 genomic DNA (45 ng / μl) was used for Negative control.

(リアルタイムPCRの条件)
反応にはSYBR Premix Ex Taq(タカラバイオ社)を用いた。Mx3000P(登録商標) Real-Time PCR System(STRATAGENE社)を用いて以下の条件でリアルタイムPCR(RT−PCR)を行った。
(Real-time PCR conditions)
SYBR Premix Ex Taq (Takara Bio Inc.) was used for the reaction. Real-time PCR (RT-PCR) was performed using the Mx3000P (registered trademark) Real-Time PCR System (STRATAGENE) under the following conditions.

<反応液組成>
2×SYBR Premix Ex Taq 5.0μl
Forward primer(20mM) 0.1μl
Reverse primer(20mM) 0.1μl
50×Rox Reference Dye II 0.2μl
Template 0.4μl
水 4.2μl
Total 10.0μl
<反応条件> サイクル数:35サイクル
95℃で10min、
95℃ 5sec、57℃ 15sec、72℃ 10secを1サイクルとした。
<Reaction solution composition>
2 x SYBR Premix Ex Taq 5.0μl
Forward primer (20 mM) 0.1 μl
Reverse primer (20 mM) 0.1 μl
50 × Rox Reference Dye II 0.2 μl
Template 0.4μl
4.2 μl water
Total 10.0μl
<Reaction conditions> Number of cycles: 35 cycles 10 minutes at 95 ° C.
One cycle was 95 ° C. for 5 sec, 57 ° C. for 15 sec, and 72 ° C. for 10 sec.

各プライマーセットによるリアルタイムPCR検出結果を表10に示す。表10は各鋳型濃度ごとにCt値の低い順(検出感度の高い順)にプライマーセットの番号を上から下に並べたものである。プライマーセット6,10,11及び13〜18ではNegative controlである大腸菌O157(鋳型DNA濃度45ng/ml)でも強い増幅が認められたため、これらの結果は表10には記載されていない。この試験では、プライマーセット7が各鋳型濃度で平均的に検出感度が高いことが示された。このプライマーセット7によって、L. monocytogenesを特異的かつ高感度に検出できると言える。もっとも、プライマーセット7以外の各プライマーセット(プライマーセット1〜5,8,9,12)においても、同様にhlyA遺伝子増幅用のプライマーセットとして用いることができる。これらのプライマーセットも、プライマーセット7と同様に大腸菌O157を検出せず、L. monocytogenesを特異的に検出できると言える。 Table 10 shows the results of real-time PCR detection using each primer set. Table 10 shows primer set numbers arranged in order from the lowest Ct value (highest detection sensitivity) for each template concentration. In primer sets 6, 10, 11 and 13-18, strong amplification was also observed in Escherichia coli O157 (template DNA concentration: 45 ng / ml), which is a negative control, so these results are not shown in Table 10. In this test, it was shown that the primer set 7 has an average high detection sensitivity at each template concentration. It can be said that this primer set 7 can specifically and highly detect L. monocytogenes . However, each primer set other than primer set 7 (primer sets 1 to 5, 8, 9, 12) can also be used as a primer set for amplifying the hlyA gene. It can be said that these primer sets can also specifically detect L. monocytogenes without detecting E. coli O157 as with primer set 7.

L. monocytogenes検出用市販PCRキットとの比較〕
次に、上記プライマーセット7と市販されているL. monocytogenes検出用キットとの検出比較を行った。供試菌には、今回分類されたMLST57グループのうちから遺伝子型の異なる49グループについて、各グループから任意に取り出した代表株各1株と、L. monocytogenes以外のリステリア属細菌とリボプリンターシステムで同定されたリステリア属細菌12株の菌株を用いてリアルタイムPCRを行った。鋳型としてDNA濃度が5pg/μlのものをそれぞれ1μl用いた。市販品にはタカラバイオ社CycleavePCR(登録商標) L. monocytogenes (inlA gene) Detection KitおよびABI社遺伝子増幅キットTaqMan(登録商標) L. monocytogenes Detection Kitを用いた。各キットによる検出は,各附属の方法に従って実施した。鋳型としては同様にDNA濃度5pg/μlのものをそれぞれ1μl用いた。Mx3000P(登録商標) Real-Time PCR System (STRATAGENE社) を用いてリアルタイムPCRを行ない、得られた各菌株毎のCt値を表11,12に示した。表11はL. monocytogenesの結果を、表12はそれ以外の菌株の結果を示す。また、プライマーセット7を用いた検出における蛍光強度の増加曲線及び反応終了後の電気泳動写真を図12〜14に示す。同様にタカラバイオ社のキットによる結果を図15〜17に,ABI社のキットによる結果を図18〜20に示す。なお、電気泳動では、図15〜17では4%のゲルが使用され、その他では1.5%のゲルが使用された。
[Comparison with L. monocytogenes commercial PCR kit]
Next, detection comparison was performed between the primer set 7 and a commercially available L. monocytogenes detection kit. For the test bacteria, 49 representatives with different genotypes from the MLST57 group classified this time, one representative strain arbitrarily selected from each group, Listeria bacteria other than L. monocytogenes , and riboprinter system Real-time PCR was performed using the identified strains of Listeria spp. As the template, 1 μl each having a DNA concentration of 5 pg / μl was used. As commercial products, Takara Bio CycleavePCR (registered trademark) L. monocytogenes (inlA gene) Detection Kit and ABI gene amplification kit TaqMan (registered trademark) L. monocytogenes Detection Kit were used. Detection by each kit was performed according to the method attached to each kit. Similarly, 1 μl of each having a DNA concentration of 5 pg / μl was used as a template. Real-time PCR was performed using Mx3000P (registered trademark) Real-Time PCR System (STRATAGENE), and the obtained Ct values for each strain are shown in Tables 11 and 12. Table 11 shows the results for L. monocytogenes , and Table 12 shows the results for other strains. Moreover, the increase curve of the fluorescence intensity in the detection using the primer set 7 and the electrophoresis photograph after completion | finish of reaction are shown to FIGS. Similarly, the results with the Takara Bio kit are shown in FIGS. 15 to 17, and the results with the ABI kit are shown in FIGS. In electrophoresis, 4% gel was used in FIGS. 15 to 17 and 1.5% gel was used in other cases.

本発明のプライマーセット及びタカラバイオ社及びABI社キットでも全てのL. monocytogenes株を検出できた。しかしながら、新たに設計されたプライマーセット7を用いた場合には、L. monocytogenes以外のリステリア属細菌では2株のL. innocuaで増幅が認められたが、他のL. monocytogenes以外のリステリア属細菌(LIS30,LIS31,LIS33,LIS34,LM40,LM41,LM43)では目的の産物は増幅されなかった(図14参照)。これに対してタカラバイオ社のキットでは、L. monocytogenes以外のリステリア属細菌9株でバンドの増幅が認められたが、他のLIS33,LIS35,LM40株では増幅が認められなかった(図17参照)。ABI社のキットでは、L. monocytogenes以外のリステリア属細菌では1株(LIS30)のL. innocuaではCt値が41.48と40サイクル以上であったが、他のL. monocytogenes以外のリステリア属細菌では40サイクル以前に蛍光強度の立ち上がりが認められた。なお、ABI社のキットでは、IPCと目的遺伝子の増幅産物のサイズがほとんど同じ為バンドが分離できず、L. monocytogenes以外の全ての株で増幅が認められた(図20参照)。 All L. monocytogenes strains could be detected using the primer set of the present invention and the Takara Bio and ABI kits. However, new in the case of using the primer set 7 designed, although amplification was observed in L. innocua two strains in Listeria except L. monocytogenes, Listeria other non L. monocytogenes The target product was not amplified in (LIS30, LIS31, LIS33, LIS34, LM40, LM41, LM43) (see FIG. 14). In contrast, in the Takara Bio kit, band amplification was observed in 9 Listeria bacteria other than L. monocytogenes , but amplification was not observed in other LIS33, LIS35, and LM40 strains (see FIG. 17). ). ABI Inc. The kit, L. in Listeria other than monocytogenes but Ct value in L. innocua 1 strain (LIS30) was at 41.48 and 40 cycles or more, other Listeria except L. monocytogenes Then, a rise in fluorescence intensity was observed before 40 cycles. In the ABI kit, bands were not separated because the size of the amplification product of IPC and the target gene was almost the same, and amplification was observed in all strains except L. monocytogenes (see FIG. 20).

これらの結果から、プライマーセット7では、全てのL. monocytogenesを検出でき、更にL. monocytogenes以外のリステリア属細菌を検出してしまう率は、市販のキットよりもかなり低く、L. monocytogenesに対する特異性が高いことが示された。 From these results, primer set 7 can detect all L. monocytogenes, and the detection rate of Listeria bacteria other than L. monocytogenes is considerably lower than that of commercially available kits, and specificity for L. monocytogenes Was shown to be high.

以上のように、本発明のプライマーセット、特に配列番号1に示される塩基配列を有するプライマーと配列番号18に示される塩基配列を有するプライマーセットを用いて、RT−PCRを行うことにより、L. monocytogenesのみを比較的高い精度で検出することが可能になる。 As described above, by performing RT-PCR using the primer set of the present invention, in particular the primer having the base sequence shown in SEQ ID NO: 1 and the primer set having the base sequence shown in SEQ ID NO: 18, L. Only monocytogenes can be detected with relatively high accuracy.

Claims (2)

リステリア モノサイトゲネス菌(Listeria monocytogenes)のhlyA遺伝子内の特定の一塩基置換を挟む配列領域を増幅する核酸増幅用プライマーセットであって、
配列番号1に示す塩基配列を有するプライマーと配列番号12〜16及び18〜20に示す何れかの塩基配列を有するプライマーとからなるプライマーセット、若しくは配列番号11に示す塩基配列を有するプライマーと配列番号4に示す塩基配列を有するプライマーとからなるプライマーセット。
A primer set for nucleic acid amplification that amplifies a sequence region sandwiching a specific single base substitution in the hlyA gene of Listeria monocytogenes ,
A primer set comprising a primer having the base sequence shown in SEQ ID NO: 1 and a primer having any one of the base sequences shown in SEQ ID NOS: 12-16 and 18-20, or a primer having the base sequence shown in SEQ ID NO: 11 and SEQ ID NO: A primer set comprising a primer having the base sequence shown in FIG.
リステリア モノサイトゲネス菌(Listeria monocytogenes)のhlyA遺伝子内の特定の一塩基置換を挟む配列領域を増幅する核酸増幅用プライマーセットであって、
配列番号1で示される塩基配列を有するプライマーと配列番号18で示される塩基配列を有するプライマーとからなるプライマーセット。
A primer set for nucleic acid amplification that amplifies a sequence region sandwiching a specific single base substitution in the hlyA gene of Listeria monocytogenes ,
A primer set comprising a primer having a base sequence represented by SEQ ID NO: 1 and a primer having a base sequence represented by SEQ ID NO: 18.
JP2009120420A 2009-05-18 2009-05-18 Primer set for detection of Listeria monocytogenes Active JP5522623B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009120420A JP5522623B2 (en) 2009-05-18 2009-05-18 Primer set for detection of Listeria monocytogenes
PCT/JP2010/058305 WO2010134499A2 (en) 2009-05-18 2010-05-17 Primer set for detecting listeria bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009120420A JP5522623B2 (en) 2009-05-18 2009-05-18 Primer set for detection of Listeria monocytogenes

Publications (2)

Publication Number Publication Date
JP2010263873A true JP2010263873A (en) 2010-11-25
JP5522623B2 JP5522623B2 (en) 2014-06-18

Family

ID=43126606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009120420A Active JP5522623B2 (en) 2009-05-18 2009-05-18 Primer set for detection of Listeria monocytogenes

Country Status (2)

Country Link
JP (1) JP5522623B2 (en)
WO (1) WO2010134499A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592189A (en) * 2019-09-26 2019-12-20 北京市食品安全监控和风险评估中心(北京市食品检验所) Multi-site genotyping method for Listeria monocytogenes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112011537B (en) * 2020-09-24 2022-11-04 上海国际旅行卫生保健中心(上海海关口岸门诊部) Primer group for amplifying Listeria MLST typing and tracing housekeeping genes, second-generation sequencing and library building method and application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274934A (en) * 2006-04-04 2007-10-25 Nippon Meat Packers Inc Primer set and method for detecting food poisoning bacterium
JP2007312660A (en) * 2006-05-24 2007-12-06 Kyushu Univ Method for detection and identification of listeria

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007117022A (en) * 2005-10-28 2007-05-17 Kirin Brewery Co Ltd Primer set for detection of listeria monocytogenes and detection method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007274934A (en) * 2006-04-04 2007-10-25 Nippon Meat Packers Inc Primer set and method for detecting food poisoning bacterium
JP2007312660A (en) * 2006-05-24 2007-12-06 Kyushu Univ Method for detection and identification of listeria

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010059529; Food Sci. Technol. Res. Vol.14, No.6, 2008, p.557-564 *
JPN6010059530; Journal of Microbiological Methods Vol.34, 1999, p.165-171 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110592189A (en) * 2019-09-26 2019-12-20 北京市食品安全监控和风险评估中心(北京市食品检验所) Multi-site genotyping method for Listeria monocytogenes
CN110592189B (en) * 2019-09-26 2022-05-17 北京市食品安全监控和风险评估中心(北京市食品检验所) Multi-site genotyping method for Listeria monocytogenes

Also Published As

Publication number Publication date
JP5522623B2 (en) 2014-06-18
WO2010134499A3 (en) 2011-03-10
WO2010134499A2 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
Liu et al. Detection of 12 common food-borne bacterial pathogens by TaqMan real-time PCR using a single set of reaction conditions
Chen et al. PCR-based methodologies for detection and characterization of Listeria monocytogenes and Listeria ivanovii in foods and environmental sources
Alía et al. Development of a multiplex real-time PCR to differentiate the four major Listeria monocytogenes serotypes in isolates from meat processing plants
Fusco et al. Rapid and reliable identification of Staphylococcus aureus harbouring the enterotoxin gene cluster (egc) and quantitative detection in raw milk by real time PCR
Skladny et al. Specific detection of Aspergillus species in blood and bronchoalveolar lavage samples of immunocompromised patients by two-step PCR
Benacer et al. Characterization of drug-resistant Salmonella enterica serotype Typhimurium by antibiograms, plasmids, integrons, resistance genes, and PFGE
Rodríguez-Lázaro et al. Simultaneous quantitative detection of Listeria spp. and Listeria monocytogenes using a duplex real-time PCR-based assay
Jin et al. Rapid molecular identification of Listeria species by use of real-time PCR and high-resolution melting analysis
Bai et al. Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Mycoplasma bovis
Mayr et al. Rapid detection and differentiation of Campylobacter jejuni, Campylobacter coli, and Campylobacter lari in food, using multiplex real-time PCR
WO2015190107A1 (en) Method for detecting vibrio parahaemolyticus, and carrier for detecting vibrio parahaemolyticus
Fontanot et al. Rapid detection and differentiation of important Campylobacter spp. in poultry samples by dot blot and PCR
JP2015039320A (en) Simultaneous detection method of multiple bacteria and/or simultaneous quantitative method of multiple bacteria
Ozubek et al. Genetic diversity and prevalence of piroplasm species in equids from Turkey
EP2671953A1 (en) Composition and kit for detection and analysis of strains of clostridium difficile and method of detecting strains of clostridium difficile by using the same
JP5613971B2 (en) Method for detecting pathogenic Listeria monocytogenes
Kim et al. Loop-mediated isothermal amplification of vanA gene enables a rapid and naked-eye detection of vancomycin-resistant enterococci infection
US20170088882A1 (en) Carrier for detecting foodborne-illness-causing bacteria, kit for detecting foodborne-illness-causing bacteria, method for detecting foodborne-illness-causing bacteria, and pcr reaction solution for foodborne-illness-causing bacteria
JP5522623B2 (en) Primer set for detection of Listeria monocytogenes
Lomonaco et al. Analysis of additional virulence genes and virulence gene regions in Listeria monocytogenes confirms the epidemiologic relevance of multi-virulence-locus sequence typing
Wu et al. Development of an ultra-sensitive single-tube nested PCR assay for rapid detection of Campylobacter jejuni in ground chicken
Bui et al. Multiplex PCR method for differentiating highly pathogenic Yersinia enterocolitica and low pathogenic Yersinia enterocolitica, and Yersinia pseudotuberculosis
Armany et al. Detection of some foodborne pathogens in meat products by Polymerase Chain Reaction
JP2013188224A (en) Method of detecting pathogenic listeria
Kim et al. Rapid and sensitive detection of Listeria monocytogenes using a PCR-enzyme-linked immunosorbent assay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5522623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250