JP2010261606A - Multi-room air conditioner - Google Patents

Multi-room air conditioner Download PDF

Info

Publication number
JP2010261606A
JP2010261606A JP2009110544A JP2009110544A JP2010261606A JP 2010261606 A JP2010261606 A JP 2010261606A JP 2009110544 A JP2009110544 A JP 2009110544A JP 2009110544 A JP2009110544 A JP 2009110544A JP 2010261606 A JP2010261606 A JP 2010261606A
Authority
JP
Japan
Prior art keywords
indoor
supercooling degree
target supercooling
air conditioner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009110544A
Other languages
Japanese (ja)
Inventor
Goji Ohira
剛司 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009110544A priority Critical patent/JP2010261606A/en
Publication of JP2010261606A publication Critical patent/JP2010261606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-room air conditioner free from an indoor unit insufficient in heating performance. <P>SOLUTION: This multi-room air conditioner has a plurality of indoor units 8n, and they each have: expansion valves 5n; indoor heat exchangers 6n, and indoor heat exchanger temperature detecting means 7n, and are connected to one outdoor unit 4 having: a capacity-variable compressor 1; a pressure sensor 2 for detecting a discharged pressure; and an outdoor heat exchanger 3, by refrigerant piping 9 and a signal wire 10. The outdoor unit 4 is provided with: a means (not shown in the figure) for converting the discharged pressure into a condensation temperature; and a means (not shown in the figure) for transmitting the condensation temperature to all of the connected indoor units 8n. Each of the indoor units 8n is provided with: a condensation temperature recognizing means (not shown in the figure) for recognizing the transmitted condensation temperature; a means (not shown in the figure) for calculating a supercooling degree of the indoor heat exchanger 6n on the basis of temperature difference between the condensation temperature and a temperature of the indoor heat exchanger 6n; and a target supercooling degree. The target degree of super heat is achieved by operating the expansion valve 5n in the indoor unit 8n performing a heating operation. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、1台の室外機に複数台の室内機を接続して冷房サイクルを構成する多室空気調和機に関するもので、特に、暖房運転時の室内機の膨張弁制御方法に関するものである。   The present invention relates to a multi-room air conditioner that forms a cooling cycle by connecting a plurality of indoor units to a single outdoor unit, and more particularly to a method for controlling an expansion valve of an indoor unit during heating operation. .

従来、この種の多室空気調和機の暖房運転時の室内機の膨張弁制御方法は、暖房運転開始から一定時間経過後に、いずれかの室内機における熱交換器温度が所定値以下の状態で一定時間継続しているか否かを判断し、熱交換器温度が所定値以下である場合、不暖状態であると判断し、一定時間継続しているようであれば、膨張弁を制御するようにしていた(例えば、特許文献1参照)。   Conventionally, the expansion valve control method for an indoor unit during the heating operation of this type of multi-room air conditioner is such that the heat exchanger temperature in any one of the indoor units is not more than a predetermined value after a certain time has elapsed since the start of the heating operation. It is determined whether or not it continues for a certain period of time. If the heat exchanger temperature is equal to or lower than a predetermined value, it is determined that it is in an unwarmed state. If it continues for a certain period of time, the expansion valve is controlled. (For example, refer to Patent Document 1).

図8は、上記特許文献1に記載された従来の多室空気調和機のフローチャートである。   FIG. 8 is a flowchart of the conventional multi-room air conditioner described in Patent Document 1.

図8に示すように、従来の多室空気調和機においては、ステップS101で室外機の運転を開始する。そして、ステップS102で、圧縮機の吐出圧力(高圧圧力)がP1(MPa)以上で、且つ運転開始(制御開始、サーモONと称する)から一定時間経過しているかを判断する。次のステップS103において、不暖室内機の有無、すなわち、熱交換器温度が一定値以下の室内機が存在するか否かの判断を行い、ステップS103において、不暖となる室内機があれば、さらにステップS104において、不暖状態が連続一定時間継続しているかどうかの判断をする。   As shown in FIG. 8, in the conventional multi-room air conditioner, the operation of the outdoor unit is started in step S101. In step S102, it is determined whether or not the discharge pressure (high pressure) of the compressor is equal to or higher than P1 (MPa) and a certain time has elapsed from the start of operation (control start, referred to as thermo-ON). In the next step S103, it is determined whether there is an unwarmed indoor unit, that is, whether there is an indoor unit having a heat exchanger temperature equal to or lower than a certain value. In step S104, it is determined whether or not the unwarmed state continues for a certain period of time.

不暖が継続していない場合は、ステップS105のようにタイマー(図示せず)で一定時間ホールドした後、再びステップS103で不暖判断をする不暖が継続している場合は、次のステップS106で室内膨張弁をEEV(電子膨張弁)制御している。   If the non-warming is not continued, the timer (not shown) is held for a certain time as in step S105, and then the non-warming is determined again in step S103. In S106, the indoor expansion valve is controlled by EEV (electronic expansion valve).

特開2008−121970号公報JP 2008-121970 A

しかしながら、前記従来の多室空気調和機の構成では、室内機の熱交換器温度が一定値以下、連続一定時間継続した以降、即ち、室内熱交換器に凝縮した液冷媒が溜まり込み、暖房性能不足になってはじめて室内機の膨張弁を制御するというもので、室内機間高低差による液柱圧差より、溜まり込んだ液冷媒を排出しにくい、また、室外機からの距離が異なる複数の室内機間で冷媒分流の平準化が困難であるという課題を有していた。   However, in the configuration of the conventional multi-room air conditioner, after the heat exchanger temperature of the indoor unit continues below a certain value and continuously for a certain time, that is, the liquid refrigerant condensed in the indoor heat exchanger accumulates, and the heating performance Control of the expansion valve of the indoor unit is not until it becomes insufficient, and it is difficult to discharge the accumulated liquid refrigerant due to the difference in the liquid column pressure due to the height difference between the indoor units, and the multiple indoor units with different distances from the outdoor unit There was a problem that it was difficult to equalize the refrigerant diversion between machines.

本発明は、前記従来の課題を解決するもので、室外機から複数室内機の距離違い、室内機間高低差に関わらず、室内機間で冷媒分流を平準化し、液冷媒の溜まり込みを回避して暖房性能不足に陥る室内機が発生しない多室空気調和機を提供することを目的とする。   The present invention solves the above-described conventional problems, and evenly, regardless of the distance from the outdoor unit to the plurality of indoor units and the difference in height between the indoor units, the refrigerant split flow is leveled between the indoor units to avoid the accumulation of liquid refrigerant. Thus, an object of the present invention is to provide a multi-room air conditioner that does not generate an indoor unit that suffers from insufficient heating performance.

前記従来の課題を解決するために、本発明の多室空気調和機は、能力可変圧縮機と吐出圧力を検出する圧力センサーと室外熱交換器とを有する1台の室外機に対し、それぞれ膨張弁と室内熱交換器と室内熱交換器温度検出手段とを有する複数台の室内機が、冷媒配管及び信号線により接続された多室空気調和機において、前記室外機に、吐出圧力を凝縮温
度に換算する手段と、接続された全ての前記室内機に前記凝縮温度を送信する手段を備え、前記室内機のそれぞれに、前記室外機から送信される凝縮温度を認識する凝縮温度認識手段と、前記凝縮温度と前記室内熱交換器の温度との差温から前記室内熱交換器の過冷却
度を算出する手段と、目標過冷却度とを備え、暖房運転をしている前記室内機において前記膨張弁を動作させて目標過冷却度に制御するもので、運転している複数台の室内機において、室内熱交換器の過冷却度を一定に制御し、室外機から複数室内機の距離違い、室内機間高低差、室内機毎の負荷の違いによる、室内熱交換器への凝縮液冷媒の溜まり込みが発生する前に、室内機間で冷媒分流を平準化し暖房性能不足に陥る室内機が発生しないことを可能にすることができる。
In order to solve the above-described conventional problems, the multi-room air conditioner of the present invention expands with respect to one outdoor unit having a variable capacity compressor, a pressure sensor for detecting discharge pressure, and an outdoor heat exchanger. In a multi-room air conditioner in which a plurality of indoor units having a valve, an indoor heat exchanger, and an indoor heat exchanger temperature detecting means are connected by a refrigerant pipe and a signal line, the discharge pressure is condensed to the outdoor unit. And a means for transmitting the condensation temperature to all connected indoor units, a condensation temperature recognition means for recognizing the condensation temperature transmitted from the outdoor unit to each of the indoor units, In the indoor unit that is provided with means for calculating the degree of supercooling of the indoor heat exchanger from the difference temperature between the condensation temperature and the temperature of the indoor heat exchanger, and a target degree of supercooling, The target valve is undercooled by operating the expansion valve In multiple indoor units that are in operation, the degree of supercooling of the indoor heat exchanger is controlled to be constant, the distance from the outdoor unit to the multiple indoor units, the height difference between indoor units, Before the accumulation of condensate refrigerant into the indoor heat exchanger due to the difference in load occurs, the refrigerant split flow is leveled between the indoor units, and it is possible to prevent the occurrence of indoor units that suffer from insufficient heating performance. Can do.

本発明の多室空気調和機は、室外機から複数室内機の距離違い、室内機間高低差、室内機毎の負荷の違いによる、室内熱交換器への凝縮液冷媒の溜まり込みが発生する前に、室内機間で冷媒分流を平準化し暖房性能不足に陥る室内機が発生しないことを可能にすることができる。   The multi-room air conditioner of the present invention causes accumulation of condensate refrigerant in the indoor heat exchanger due to a difference in the distance from the outdoor unit to the plurality of indoor units, a difference in height between indoor units, and a difference in load for each indoor unit. Prior to this, it is possible to level the refrigerant flow between the indoor units and prevent the occurrence of an indoor unit that suffers from insufficient heating performance.

本発明の実施の形態1における多室空気調和機の構成概念図Configuration conceptual diagram of multi-room air conditioner in Embodiment 1 of the present invention 同多室空気調和機のフローチャートFlow chart of the multi-room air conditioner 本発明の実施の形態2における多室空気調和機のフローチャートThe flowchart of the multi-room air conditioner in Embodiment 2 of this invention 本発明の実施の形態3における多室空気調和機のフローチャートThe flowchart of the multi-room air conditioner in Embodiment 3 of this invention 本発明の実施の形態4における多室空気調和機のフローチャートThe flowchart of the multi-room air conditioner in Embodiment 4 of this invention 本発明の実施の形態5における多室空気調和機のフローチャートThe flowchart of the multi-room air conditioner in Embodiment 5 of this invention 本発明の実施の形態6における多室空気調和機のフローチャートFlowchart of multi-room air conditioner in Embodiment 6 of the present invention 従来の多室空気調和機のフローチャートFlow chart of conventional multi-room air conditioner

第1の発明は、能力可変圧縮機と吐出圧力を検出する圧力センサーと室外熱交換器とを有する1台の室外機に対し、それぞれ膨張弁と室内熱交換器と室内熱交換器温度検出手段とを有する複数台の室内機が、冷媒配管及び信号線により接続された多室空気調和機において、前記室外機に、吐出圧力を凝縮温度に換算する手段と、接続された全ての前記室内機に前記凝縮温度を送信する手段を備え、前記室内機のそれぞれに、前記室外機から送信される凝縮温度を認識する凝縮温度認識手段と、前記凝縮温度と前記室内熱交換器の温度との差温から前記室内熱交換器の過冷却度を算出する手段と、目標過冷却度とを備え、暖房運転をしている前記室内機において前記膨張弁を動作させて目標過冷却度に制御するもので、運転している複数台の室内機において、室内熱交換器の過冷却度を一定に制御し、室外機から複数室内機の距離違い、室内機間高低差、室内機毎の負荷の違いによる、室内熱交換器への凝縮液冷媒の溜まり込みが発生する前に、室内機間で冷媒分流を平準化し暖房性能不足に陥る室内機が発生しないことを可能にすることができる。   The first invention relates to an expansion valve, an indoor heat exchanger, and an indoor heat exchanger temperature detection means for one outdoor unit having a variable capacity compressor, a pressure sensor for detecting discharge pressure, and an outdoor heat exchanger, respectively. In a multi-room air conditioner in which a plurality of indoor units are connected by a refrigerant pipe and a signal line, means for converting discharge pressure into condensation temperature in the outdoor unit, and all the indoor units connected And a condensing temperature recognizing means for recognizing a condensing temperature transmitted from the outdoor unit, and a difference between the condensing temperature and the temperature of the indoor heat exchanger. Means for calculating the degree of supercooling of the indoor heat exchanger from the temperature, and a target supercooling degree, and controlling the target supercooling degree by operating the expansion valve in the indoor unit that is in heating operation And multiple rooms in operation Condensate to the indoor heat exchanger due to the difference in the distance from the outdoor unit to the multiple indoor units, the difference in height between indoor units, and the load of each indoor unit. Before the accumulation of the refrigerant occurs, it is possible to equalize the refrigerant diversion between the indoor units and to prevent the occurrence of an indoor unit that suffers from insufficient heating performance.

第2の発明は、特に、第1の発明の接続された全室内機の台数と暖房運転している前記室内機の台数の比率を算出し、その比率を前記全室内機に送信する手段を室外機に備え、暖房運転をしている前記室内機において、膨張弁を動作させて、前記比率毎に設定された目標過冷却度に制御するもので、運転している複数台の室内機において、室内熱交換器の過冷却度を一定に制御し、例えば、運転台数が多いときは、過冷却度を高めに制御して室内機間の冷媒分流を平準化し、運転台数が少ないときは、過冷却度を低めに制御して暖房性能を優先して運転することができる。   In particular, the second aspect of the invention provides means for calculating a ratio between the number of all indoor units connected to the first aspect of the first invention and the number of indoor units in heating operation, and transmitting the ratio to all the indoor units. In the indoor unit that is equipped with an outdoor unit and is in a heating operation, the expansion valve is operated to control the target subcooling degree set for each ratio. , Control the degree of supercooling of the indoor heat exchanger to be constant, for example, when the number of operating units is large, control the supercooling degree to a higher level to equalize the refrigerant diversion between indoor units, and when the number of operating units is small, By controlling the degree of supercooling lower, it is possible to operate with priority on heating performance.

第3の発明は、特に、第2の発明の比率が一定しきい値以下の場合、暖房運転をしている室内機において膨張弁を動作させず全開開度に固定するもので、運転している室内機の
台数が少ないときは、室内熱交換器に過冷却冷媒を溜め込むことなく暖房性能を優先して運転することができる。
In the third aspect of the invention, in particular, when the ratio of the second aspect of the invention is equal to or less than a certain threshold value, the indoor unit that is in the heating operation is fixed to the fully open position without operating the expansion valve. When the number of indoor units is small, it is possible to operate with priority on heating performance without accumulating supercooled refrigerant in the indoor heat exchanger.

第4の発明は、特に、第1の発明の目標過冷却度補正値を設定する目標過冷却度補正値設定手段と、前記目標過冷却度補正値を接続された全室内機に送信する手段を室外機に備え、前記室内機に、前記室外機から送信される前記目標過冷却度補正値を認識する目標過冷却度補正値認識手段と、前記目標過冷却度補正値を加えた補正後過冷却度を算出する補正後過冷却度算出手段を備え、暖房運転をしている前記室内機において膨張弁を動作させて前記補正後過冷却度に制御するもので、室外機から複数室内機の距離が短い場合や、室内機間高低差が少ない場合は、室外機の目標過冷却度補正値を減じる方向に設定し、運転している複数台の室内機において、室内熱交換器の過冷却度を低めに一定に制御して、室内熱交換器に過冷却冷媒を溜め込むことなく暖房性能を優先して運転することができ室内機間で冷媒分流を平準化することができる。また、室外機から複数室内機の距離が長い場
合や、室内機間高低差が大きい場合は、室外機の目標過冷却度補正値を加える方向に設定し、運転している複数台の室内機において、室内熱交換器の過冷却度を高めに一定に制御して、室内熱交換器に過冷却冷媒を溜め込むことなく室内機間で冷媒分流を平準化することができる。
In particular, the fourth invention is a target supercooling degree correction value setting means for setting the target supercooling degree correction value of the first invention, and a means for transmitting the target supercooling degree correction value to all connected indoor units. And a target supercooling degree correction value recognizing means for recognizing the target supercooling degree correction value transmitted from the outdoor unit, and after the correction by adding the target supercooling degree correction value to the indoor unit. A post-correction supercooling degree calculating means for calculating the supercooling degree is provided, and an expansion valve is operated in the indoor unit that is in a heating operation to control the post-correction supercooling degree. If the distance between the indoor units is short or the height difference between the indoor units is small, set the target supercooling degree correction value for the outdoor unit in a direction to reduce the excess of the indoor heat exchanger in the multiple indoor units that are in operation. Control the cooling level to a low level and store supercooled refrigerant in the indoor heat exchanger. It is possible to level the refrigerant flow between Mukoto without heating performance can be operated with priority indoor unit. Also, when the distance from the outdoor unit to the multiple indoor units is long, or when the height difference between the indoor units is large, set the direction of adding the target subcooling correction value for the outdoor unit and set the multiple indoor units in operation. In this case, the subcooling degree of the indoor heat exchanger can be controlled to be constant and the refrigerant flow can be leveled between the indoor units without storing the supercooled refrigerant in the indoor heat exchanger.

第5の発明は、特に、第1の発明の多室空気調和機において、目標過冷却度補正値を設定する目標過冷却度補正値設定手段と、前記目標過冷却度補正値を加えた補正後目標過冷却度を算出する補正後目標過冷却度算出手段を室内機に備え、暖房運転をしている前記室内機において膨張弁を動作させて前記補正後目標過冷却度に制御するもので、室外機からの距離が近い室内機は目標過冷却度補正値を加える方向に設定することで冷媒のシュートカットを防止し、末端の室内機に冷媒を流しやすくできる。また、室外機からの距離が遠い室内機は目標過冷却度補正値を減じる方向に設定し、過冷却冷媒による冷媒の溜まり込みを抑制し暖房性能を確保する運転ができる。   In the fifth aspect of the invention, in particular, in the multi-room air conditioner of the first aspect, target supercooling degree correction value setting means for setting a target supercooling degree correction value, and a correction obtained by adding the target supercooling degree correction value. A post-correction target supercooling degree calculating means for calculating the post-target supercooling degree is provided in the indoor unit, and an expansion valve is operated in the indoor unit that is in the heating operation to control the post-correction target supercooling degree. The indoor unit that is close to the outdoor unit can be set in the direction in which the target supercooling degree correction value is added to prevent the refrigerant from being cut, and the refrigerant can easily flow to the end indoor unit. In addition, an indoor unit that is far from the outdoor unit is set in a direction in which the target supercooling degree correction value is reduced, and an operation that suppresses accumulation of refrigerant by the supercooled refrigerant and ensures heating performance can be performed.

第6の発明は、特に、第1の発明の目標過冷却度を設定する目標過冷却度設定手段を室内機に備え、暖房運転をしている室内機において膨張弁を動作させて設定された前記目標過冷却度に制御するもので、室外機からの距離が近い室内機は目標過冷却度設定を高くすることで冷媒のシュートカットを防止し、末端の室内機に冷媒を流しやすくできる。また、室外機からの距離が遠い室内機は目標過冷却度設定を低くすることで過冷却冷媒による冷媒の溜まり込みを抑制し暖房性能を確保する運転ができる。   The sixth aspect of the invention is particularly set by setting the target supercooling degree setting means for setting the target supercooling degree of the first invention in the indoor unit, and operating the expansion valve in the indoor unit that is in the heating operation. By controlling the target supercooling degree, an indoor unit with a short distance from the outdoor unit can prevent the refrigerant from being cut by increasing the target supercooling degree setting, and can easily flow the refrigerant to the terminal indoor unit. Moreover, the indoor unit which is far from the outdoor unit can be operated to secure the heating performance by suppressing the accumulation of the refrigerant by the supercooled refrigerant by lowering the target supercooling degree setting.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態における多室空気調和機の構成概念図、図2は、同多室空気調和機のフローチャート図である。
(Embodiment 1)
FIG. 1 is a conceptual diagram of the configuration of a multi-room air conditioner according to the first embodiment of the present invention, and FIG. 2 is a flowchart of the multi-room air conditioner.

図1において、本実施の形態における多室空気調和機の室外機4は、能力可変圧縮機1と、吐出圧力を検出する圧力センサー2と、室外熱交換器3を有し、複数の室内機8a〜8nと、冷媒配管9及び信号線10で接続されている。   In FIG. 1, an outdoor unit 4 of a multi-room air conditioner in the present embodiment includes a variable capacity compressor 1, a pressure sensor 2 that detects discharge pressure, and an outdoor heat exchanger 3, and includes a plurality of indoor units. 8a to 8n are connected with the refrigerant pipe 9 and the signal line 10.

室内機8nは、膨張弁5nと、室内熱交換器6nと、室内熱交換器温度検出手段7nを有している。   The indoor unit 8n includes an expansion valve 5n, an indoor heat exchanger 6n, and an indoor heat exchanger temperature detection means 7n.

図1及び図2に基づいて、本実施の形態における多室空気調和機の動作、作用について説明する。   Based on FIG.1 and FIG.2, operation | movement and an effect | action of the multi-room air conditioner in this Embodiment are demonstrated.

暖房運転(STEP0)において、能力可変圧縮機1の吐出圧力を圧力センサー2で吐出圧力検出(STEP1)し、凝縮温度換算(STEP2)を行い、凝縮温度を接続された全室内機8a〜8nに送信(STEP3)する。複数の室内機8nにおいて、個々の室内機(STEP4n)は、室外機4から送信されてくる凝縮温度(STEP3)を認識(STEP5n)し、暖房運転オン状態(STEP6のYes)であれば、室内熱交換器温度検出手段7nで室内熱交換器温度を検出(STEP7n)し、凝縮温度と室内熱交換器温度の差温より過冷却度算出(STEP8n)を行う。   In the heating operation (STEP 0), the discharge pressure of the variable capacity compressor 1 is detected by the pressure sensor 2 (STEP 1), the condensation temperature is converted (STEP 2), and the condensing temperature is connected to all the indoor units 8a to 8n. Transmit (STEP 3). In the plurality of indoor units 8n, each indoor unit (STEP 4n) recognizes the condensation temperature (STEP 3) transmitted from the outdoor unit 4 (STEP 5n), and if the heating operation is on (STEP 6 Yes) The indoor heat exchanger temperature is detected by the heat exchanger temperature detecting means 7n (STEP 7n), and the degree of supercooling is calculated (STEP 8n) from the difference between the condensation temperature and the indoor heat exchanger temperature.

あらかじめ設定された目標過冷却度を認識(STEP9n)し、この目標過冷却度とSTEP8nにて算出した過冷却度を制御入力として膨張弁5nを操作し、過冷却一定制御(STEP10)を行う。

以上のように本実施の形態によれば、暖房運転している複数台の室内機8nにおいて、常に室内熱交換器6nの過冷却度を一定に制御することで、室外機4から複数室内機8nの距離、室内機8n間高低差、室内機8n毎の負荷の違いによる、室内熱交換器6nへの凝縮液冷媒の溜まり込みが発生する前に、室内機8n間で冷媒分流を平準化し、暖房性能不足に陥る室内機8nが発生することがないように暖房運転が行える。
A preset target supercooling degree is recognized (STEP 9n), and the expansion valve 5n is operated using the target supercooling degree and the supercooling degree calculated in STEP 8n as control inputs, and supercooling constant control (STEP 10) is performed.

As described above, according to the present embodiment, in the plurality of indoor units 8n that are in the heating operation, the degree of supercooling of the indoor heat exchanger 6n is always controlled to be constant, so that the outdoor units 4 to the plurality of indoor units are controlled. Before the condensate refrigerant pools in the indoor heat exchanger 6n due to the distance of 8n, the height difference between the indoor units 8n, and the load difference between the indoor units 8n, the refrigerant split flow is leveled between the indoor units 8n. Thus, the heating operation can be performed so that the indoor unit 8n that falls into the heating performance is not generated.

(実施の形態2)
図3は、本発明の第2の実施の形態における多室空気調和機のフローチャート図である。尚、上記第1の実施の形態における多室空気調和機と同一部分には同一符号を付してその説明を省略する。
(Embodiment 2)
FIG. 3 is a flowchart of the multi-room air conditioner according to the second embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the multi-room air conditioner in the said 1st Embodiment, and the description is abbreviate | omitted.

図3により、本実施の形態における多室空気調和機の動作、作用について説明する。   The operation and action of the multi-room air conditioner in the present embodiment will be described with reference to FIG.

暖房運転(STEP0)において能力可変圧縮機1の吐出圧力を圧力センサー2で吐出圧力検出(STEP1)し、凝縮温度換算(STEP2)を行い、凝縮温度を接続された全室内機8a〜8nに送信(STEP3)する。   In the heating operation (STEP 0), the discharge pressure of the variable capacity compressor 1 is detected by the pressure sensor 2 (STEP 1), the condensation temperature is converted (STEP 2), and the condensation temperature is transmitted to all connected indoor units 8a to 8n. (STEP 3).

また、暖房運転台数検出手段(図示せず)により暖房運転している室内機8nの台数を検出(STEP21)し、暖房運転台数比率算出手段(図示せず)により接続された室内機8nの台数と暖房運転している室内機8nの台数の比率を算出(STEP22)し、暖房運転室内機台数比率送信(STEP23)で複数の室内機8nに送信する。   Further, the number of indoor units 8n that are in heating operation is detected by a heating operation number detection means (not shown) (STEP 21), and the number of indoor units 8n that are connected by heating operation number ratio calculation means (not shown). The ratio of the number of indoor units 8n that are in the heating operation is calculated (STEP 22), and the ratio is transmitted to the plurality of indoor units 8n in the heating operation indoor unit number ratio transmission (STEP 23).

複数の室内機8nにおいて、個々室内機(STEP4n)は、室外機4から送信されてくる凝縮温度(STEP3)を認識(STEP5n)し、暖房運転オン状態(STEP6のYes)であれば、室内熱交換器温度検出手段7nで室内熱交換器温度検出(STEP7n)し、凝縮温度と室内熱交換器温度の差温より過冷却度算出(STEP24n)を行う。   In the plurality of indoor units 8n, the individual indoor units (STEP 4n) recognize the condensation temperature (STEP 3) transmitted from the outdoor unit 4 (STEP 5n), and if the heating operation is on (STEP 6 Yes), the indoor heat The indoor heat exchanger temperature is detected by the exchanger temperature detection means 7n (STEP 7n), and the degree of supercooling is calculated (STEP 24n) from the difference between the condensation temperature and the indoor heat exchanger temperature.

室外機4から送信されてきた暖房運転室内機台数比率(STEP22)により、暖房運転室内機台数比率毎に設定された目標過冷却度を認識(STEP9n)し、この目標過冷却度とSTEP24nにて算出した過冷却度を制御入力として、膨張弁5nを操作し、過冷却一定制御(STEP10n)を行う。   Based on the heating operation indoor unit number ratio (STEP 22) transmitted from the outdoor unit 4, the target subcooling degree set for each heating operation indoor unit number ratio is recognized (STEP 9n). Using the calculated degree of supercooling as a control input, the expansion valve 5n is operated to perform constant supercooling control (STEP 10n).

以上のように本実施の形態によれば、暖房運転している複数台の室内機8nにおいて、室内熱交換器6nの過冷却度を一定に制御し、例えば、運転台数が多いときは、過冷却度を高めに制御して室内機8n間の冷媒分流を平準化し、運転台数が少ないときは、過冷却度を低めに制御して暖房性能を優先して運転することにより、運転台数毎に、室内機8n
間の冷媒分流の平準化優先か暖房性能優先かを判断し暖房運転を行える。
As described above, according to the present embodiment, in the plurality of indoor units 8n that are in heating operation, the degree of supercooling of the indoor heat exchanger 6n is controlled to be constant. Control the cooling degree to a higher level to equalize the refrigerant flow between the indoor units 8n, and when the number of operating units is small, control the degree of supercooling to a lower level and operate with priority on heating performance. , Indoor unit 8n
Heating operation can be performed by determining whether priority is given to leveling of the refrigerant flow in between or heating performance priority.

(実施の形態3)
図4は、本発明の第3の実施の形態における多室空気調和機のフローチャートである。尚、上記実施の形態における多室空気調和機と同一部分には同一符号を付してその説明を省略する。
(Embodiment 3)
FIG. 4 is a flowchart of the multi-room air conditioner according to the third embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the multi-room air conditioner in the said embodiment, and the description is abbreviate | omitted.

図4により、本実施の形態における多室空気調和機の動作、作用について説明する。   The operation and action of the multi-room air conditioner in the present embodiment will be described with reference to FIG.

暖房運転(STEP0)において能力可変圧縮機1の吐出圧力を圧力センサー2で吐出圧力検出(STEP1)し、凝縮温度換算(STEP2)を行い、凝縮温度を接続された全室内機8a〜8nに送信(STEP3)する。

また、暖房運転台数検出手段(図示せず)により暖房運転している室内機8nの台数を検出(STEP21)し、暖房運転台数比率算出手段(図示せず)により接続された室内機8nの台数と暖房運転している室内機8nの台数の比率を算出(STEP22)する。暖房運転室内機台数比率判定(STEP31)において、暖房運転室内機台数比率が一定しきい値より低い場合(STEP31のNo)、複数の室内機8nにおいて暖房運転オン状態(STEP32nのYes)であれば、膨張弁5nを全開(STEP33n)にする。
In the heating operation (STEP 0), the discharge pressure of the variable capacity compressor 1 is detected by the pressure sensor 2 (STEP 1), the condensation temperature is converted (STEP 2), and the condensation temperature is transmitted to all connected indoor units 8a to 8n. (STEP 3).

Further, the number of indoor units 8n that are heating-operated is detected by a heating operation number detection means (not shown) (STEP 21), and the number of indoor units 8n that are connected by a heating operation number ratio calculation means (not shown). The ratio of the number of indoor units 8n that are in the heating operation is calculated (STEP 22). In the heating operation indoor unit ratio determination (STEP 31), if the heating operation indoor unit ratio is lower than a certain threshold value (No in STEP 31), if the heating operation is on (Yes in STEP 32n) in the plurality of indoor units 8n. The expansion valve 5n is fully opened (STEP 33n).

以上のように本実施の形態によれば、暖房運転している室内機8nの台数が少ないときは、室内熱交換器6nに過冷却冷媒を溜め込むことはないと判断し、過冷却一定制御をせずに、過冷却冷媒を室内熱交換器6nに溜めることなく暖房性能を優先した暖房運転が行える。   As described above, according to the present embodiment, when the number of indoor units 8n that are in the heating operation is small, it is determined that the supercooling refrigerant is not stored in the indoor heat exchanger 6n, and the constant supercooling control is performed. Without heating, the heating operation giving priority to the heating performance can be performed without accumulating the supercooled refrigerant in the indoor heat exchanger 6n.

(実施の形態4)
図5は、本発明の第4の実施の形態における多室空気調和機のフローチャートである。尚、上記実施の形態における多室空気調和機と同一部分には同一符号を付してその説明を省略する。
(Embodiment 4)
FIG. 5 is a flowchart of the multi-room air conditioner in the fourth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the multi-room air conditioner in the said embodiment, and the description is abbreviate | omitted.

図5により、本実施の形態における多室空気調和機の動作、作用について説明する。   The operation and action of the multi-room air conditioner in the present embodiment will be described with reference to FIG.

暖房運転(STEP0)において能力可変圧縮機1の吐出圧力を圧力センサー2で吐出圧力検出(STEP1)し、凝縮温度換算(STEP2)を行い、凝縮温度を接続された全室内機8a〜8nに送信(STEP3)する。   In the heating operation (STEP 0), the discharge pressure of the variable capacity compressor 1 is detected by the pressure sensor 2 (STEP 1), the condensation temperature is converted (STEP 2), and the condensation temperature is transmitted to all connected indoor units 8a to 8n. (STEP 3).

室外機4で設定可能な過冷却補正値設定(STEP41)により、設置現場に応じた過冷却補正値を設定し、過冷却補正値設定送信(STEP42)で複数の室内機8nに過冷却補正値を送信する。複数の室内機8nにおいて個々の室内機(STEP4n)は、室外機4から送信されてくる凝縮温度(STEP3)を認識(STEP5n)し、暖房運転オン状態(STEP6nのYes)であれば、室内熱交換器温度検出手段7nで室内熱交換器温度検出(STEP7n)し、凝縮温度と室内熱交換器温度の差温より過冷却度算出(STEP8n)を行う。   The subcooling correction value setting (STEP 41) that can be set by the outdoor unit 4 is used to set a supercooling correction value according to the installation site, and the supercooling correction value is transmitted to the plurality of indoor units 8n by the supercooling correction value setting transmission (STEP 42). Send. In each of the plurality of indoor units 8n, each indoor unit (STEP 4n) recognizes the condensation temperature (STEP 3) transmitted from the outdoor unit 4 (STEP 5n), and if the heating operation is on (YES in STEP 6n), the indoor heat The indoor heat exchanger temperature is detected (STEP 7n) by the exchanger temperature detecting means 7n, and the degree of supercooling is calculated (STEP 8n) from the difference temperature between the condensation temperature and the indoor heat exchanger temperature.

室外機4から送信されてくる過冷却補正値を認識(STEP43n)し、過冷却補正値を加えた目標過冷却度算出(STEP44n)して、この目標過冷却度とSTEP8nにて算出した過冷却度を制御入力として、膨張弁5nを操作し、過冷却一定制御(STEP10)を行う。   The supercooling correction value transmitted from the outdoor unit 4 is recognized (STEP 43n), the target supercooling degree calculation (STEP 44n) with the supercooling correction value added is performed, and the supercooling calculated in this target supercooling degree and STEP 8n. Using the degree as a control input, the expansion valve 5n is operated to perform constant supercooling control (STEP 10).

以上のように本実施の形態によれば、室外機4から複数室内機8nの距離が短い場合や、室内機8n間高低差が少ない場合は、室外機4の目標過冷却度補正値を減じる方向に設定し、運転している複数台の室内機8nにおいて、室内熱交換器6nの過冷却度を低めに一定に制御して、室内熱交換器6nに過冷却冷媒を溜め込むことなく暖房性能を優先して運転することができ、室内機8n間で冷媒分流を平準化することができる。   As described above, according to the present embodiment, when the distance from the outdoor unit 4 to the plurality of indoor units 8n is short or when the height difference between the indoor units 8n is small, the target supercooling degree correction value of the outdoor unit 4 is decreased. In a plurality of indoor units 8n that are set in the direction of operation, the degree of supercooling of the indoor heat exchanger 6n is controlled to be constant at a low level, and the heating performance is maintained without accumulating supercooled refrigerant in the indoor heat exchanger 6n. Can be operated with priority, and the refrigerant flow can be leveled between the indoor units 8n.

また、室外機4から複数室内機8nの距離が長い場合や、室内機8n間高低差が大きい場合は、室外機4の目標過冷却度補正値を加える方向に設定し、運転している複数台の室内機8nにおいて、室内熱交換器6nの過冷却度を高めに一定に制御して、室内熱交換器6nに過冷却冷媒を溜め込むことなく室内機8n間で冷媒分流を平準化する暖房運転ができる。   Further, when the distance from the outdoor unit 4 to the plurality of indoor units 8n is long, or when the height difference between the indoor units 8n is large, the plurality of units that are set in the direction in which the target supercooling degree correction value of the outdoor unit 4 is added and operated. In the indoor unit 8n, heating is performed so that the degree of supercooling of the indoor heat exchanger 6n is controlled to be constant and the refrigerant flow is leveled between the indoor units 8n without accumulating the supercooled refrigerant in the indoor heat exchanger 6n. I can drive.

(実施の形態5)

図6は、本発明の第5の実施の形態における多室空気調和機のフローチャートである。尚、上記実施の形態における多室空気調和機と同一部分には同一符号を付してその説明を省略する。
(Embodiment 5)

FIG. 6 is a flowchart of the multi-room air conditioner in the fifth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the multi-room air conditioner in the said embodiment, and the description is abbreviate | omitted.

図6により、本実施の形態における多室空気調和機の動作、作用について説明する。   The operation and action of the multi-room air conditioner in the present embodiment will be described with reference to FIG.

暖房運転(STEP0)において能力可変圧縮機1の吐出圧力を圧力センサー2で吐出圧力検出(STEP1)し、凝縮温度換算(STEP2)を行い、凝縮温度を接続された全室内機8a〜8nに送信(STEP3)する。複数の室内機8nにおいて、個々の室内機(STEP4n)は、室外機4から送信されてくる凝縮温度(STEP3)を認識(STEP5n)し、暖房運転オン状態(STEP6nのYes)であれば、室内熱交換器温度検出手段7nで室内熱交換器温度を検出(STEP7n)し、凝縮温度と室内熱交換器温度の差温より過冷却度算出(STEP8n)を行う。個々の室内機(STEP4n)において、自己室内機の室外機4からの距離、また他の室内機8nとの高低差から判断して設定可能な過冷却補正値設定(STEP51n)を行い、この過冷却補正値設定(STEP51n)を加えて目標過冷却度算出(STEP52n)して、目標過冷却度とSTEP8nにて算出した過冷却度を制御入力として膨張弁5nを操作し、過冷却一定制御(STEP10n)を行う。   In the heating operation (STEP 0), the discharge pressure of the variable capacity compressor 1 is detected by the pressure sensor 2 (STEP 1), the condensation temperature is converted (STEP 2), and the condensation temperature is transmitted to all connected indoor units 8a to 8n. (STEP 3). In the plurality of indoor units 8n, each indoor unit (STEP 4n) recognizes the condensation temperature (STEP 3) transmitted from the outdoor unit 4 (STEP 5n), and if the heating operation is on (YES in STEP 6n) The indoor heat exchanger temperature is detected by the heat exchanger temperature detecting means 7n (STEP 7n), and the degree of supercooling is calculated (STEP 8n) from the difference between the condensation temperature and the indoor heat exchanger temperature. In each indoor unit (STEP 4n), a supercooling correction value setting (STEP 51n) that can be set based on the distance from the outdoor unit 4 of the own indoor unit and the height difference from the other indoor unit 8n is performed. The target supercooling degree is calculated (STEP52n) by adding the cooling correction value setting (STEP51n), and the expansion valve 5n is operated using the target supercooling degree and the supercooling degree calculated in STEP8n as control inputs, and the supercooling constant control ( STEP 10n) is performed.

以上のように、本実施の形態によれば、自己室内機の設置状態に応じて、室外機4からの距離が近い室内機8nは目標過冷却度補正値を加える方向に設定することで冷媒のシュートカットを防止し、末端の室内機8nに冷媒を流しやすくできる。また、室外機4からの距離が遠い室内機8nや、他の室内機8nより低い高低差に設置している室内機8nでは、目標過冷却度補正値を減じる方向に設定し、過冷却冷媒による冷媒の溜まり込みを抑制し暖房性能を確保する運転ができる。   As described above, according to the present embodiment, the indoor unit 8n having a short distance from the outdoor unit 4 is set in the direction in which the target supercooling degree correction value is applied in accordance with the installation state of the self indoor unit. Can be prevented, and the refrigerant can easily flow through the terminal indoor unit 8n. Further, in the indoor unit 8n that is far from the outdoor unit 4 or the indoor unit 8n that is installed at a lower elevation than the other indoor units 8n, the target supercooling degree correction value is set in a direction to reduce the supercooling refrigerant. It is possible to perform an operation that suppresses the accumulation of the refrigerant and ensures the heating performance.

(実施の形態6)
図7は、本発明の第6の実施の形態における多室空気調和機のフローチャートである。尚、上記実施の形態における多室空気調和機と同一部分には同一符号を付してその説明を省略する。
(Embodiment 6)
FIG. 7 is a flowchart of the multi-room air conditioner in the sixth embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the same part as the multi-room air conditioner in the said embodiment, and the description is abbreviate | omitted.

図7により本実施の形態における多室空気調和機の動作、作用について説明する。   The operation and action of the multi-room air conditioner in the present embodiment will be described with reference to FIG.

暖房運転(STEP0)において能力可変圧縮機1の吐出圧力を圧力センサー2で吐出圧力検出(STEP1)し、凝縮温度換算(STEP2)を行い、凝縮温度を接続された全室内機8a〜8nに送信(STEP3)する。複数の室内機8nにおいて、個々の室内
機(STEP4n)は、室外機から送信されてくる凝縮温度(STEP3)を認識(STEP5n)し、暖房運転オン状態(STEP6のYes)であれば、室内熱交換器温度検出手段7nで室内熱交換器温度を検出(STEP7n)し、凝縮温度と室内熱交換器温度の差温より過冷却度算出(STEP8n)を行う。
In the heating operation (STEP 0), the discharge pressure of the variable capacity compressor 1 is detected by the pressure sensor 2 (STEP 1), the condensation temperature is converted (STEP 2), and the condensation temperature is transmitted to all connected indoor units 8a to 8n. (STEP 3). In the plurality of indoor units 8n, each indoor unit (STEP 4n) recognizes the condensation temperature (STEP 3) transmitted from the outdoor unit (STEP 5n), and if the heating operation is on (STEP 6 Yes), the indoor heat The exchanger temperature detection means 7n detects the indoor heat exchanger temperature (STEP 7n), and calculates the degree of supercooling (STEP 8n) from the difference between the condensation temperature and the indoor heat exchanger temperature.

個々の室内機(STEP4n)において自己室内機の室外機4からの距離、また他の室内機8nとの高低差から判断して設定可能な目標過冷却度設定(STEP62n)を行い、この目標過冷却度設定値(STEP62n)とSTEP8nにて算出した過冷却度を制御入力として膨張弁5nを操作し、過冷却一定制御(STEP10n)を行う。   In each indoor unit (STEP 4n), a target supercooling degree setting (STEP 62n) that can be set based on the distance from the outdoor unit 4 of the own indoor unit and the height difference from other indoor units 8n is performed (STEP 62n). The expansion valve 5n is operated using the cooling degree set value (STEP 62n) and the supercooling degree calculated in STEP 8n as control inputs, and constant supercooling control (STEP 10n) is performed.

以上のように本実施の形態によれば、自己室内機の設置状態に応じて、室外機4からの距離が近い室内機8nは目標過冷却度を高く設定することで冷媒のシュートカットを防止し、末端の室内機8nに冷媒を流しやすくできる。また、室外機4からの距離が遠い室内機8nや、他の室内機8nより低い高低差に設置している室内機8nでは目標過冷却度を
低く設定し、過冷却冷媒による冷媒の溜まり込みを抑制し暖房性能を確保する運転ができる。
As described above, according to the present embodiment, the indoor unit 8n that is close to the outdoor unit 4 according to the installation state of the own indoor unit prevents the refrigerant from being cut by setting the target supercooling degree high. In addition, the refrigerant can be easily flowed to the indoor unit 8n at the end. Further, in the indoor unit 8n that is far from the outdoor unit 4 and the indoor unit 8n that is installed at a lower elevation than the other indoor units 8n, the target supercooling degree is set low, and the refrigerant is accumulated by the supercooled refrigerant. It is possible to operate to suppress the heating and ensure the heating performance.

以上のように、本発明にかかる多室空気調和機は、暖房運転時に室内機の膨張弁制御で、室内熱交換器の過冷却度を一定にすることで、室外機から複数室内機の距離違い、室内機間高低差、室内機毎の負荷の違いによる、室内熱交換器への凝縮液冷媒の溜まり込みが発生する前に、常に室内機間で冷媒分流を平準化し暖房性能不足に陥る室内機が発生しないことを可能にすることができることから、個別ツイン、トリプル機種、蓄熱式多室形空気調和機等にも適用できる。   As described above, the multi-room air conditioner according to the present invention is a distance from the outdoor unit to the plurality of indoor units by making the subcooling degree of the indoor heat exchanger constant by controlling the expansion valve of the indoor unit during heating operation. Before the condensate refrigerant pools in the indoor heat exchanger due to differences in height between indoor units, differences in load among indoor units, the refrigerant flow is always leveled between indoor units, resulting in insufficient heating performance. Since it is possible to prevent the generation of indoor units, the present invention can also be applied to individual twin, triple models, heat storage type multi-room air conditioners, and the like.

1 能力可変圧縮機
2 圧力センサー
3 室外熱交換器
4 室外機
5a〜5n 膨張弁
6a〜6n 室内熱交換器
7a〜7n 室内熱交換器温度検出手段
8a〜8n 室内機
9 冷媒配管
10 信号線
DESCRIPTION OF SYMBOLS 1 Variable capacity compressor 2 Pressure sensor 3 Outdoor heat exchanger 4 Outdoor unit 5a-5n Expansion valve 6a-6n Indoor heat exchanger 7a-7n Indoor heat exchanger temperature detection means 8a-8n Indoor unit 9 Refrigerant piping 10 Signal line

Claims (6)

能力可変圧縮機と吐出圧力を検出する圧力センサーと室外熱交換器とを有する1台の室外機に対し、それぞれ膨張弁と室内熱交換器と室内熱交換器温度検出手段とを有する複数台の室内機が、冷媒配管及び信号線により接続された多室空気調和機において、前記室外機に、吐出圧力を凝縮温度に換算する手段と、接続された全ての前記室内機に前記凝縮温度を送信する手段を備え、前記室内機のそれぞれに、前記室外機から送信される凝縮温度を認識する凝縮温度認識手段と、前記凝縮温度と前記室内熱交換器の温度との差温から前記室内熱交換器の過冷却度を算出する手段と、目標過冷却度とを備え、暖房運転をしている前記室内機において前記膨張弁を動作させて目標過冷却度に制御することを特徴とする多室空気調和機。 For one outdoor unit having a variable capacity compressor, a pressure sensor for detecting discharge pressure, and an outdoor heat exchanger, a plurality of units each having an expansion valve, an indoor heat exchanger, and an indoor heat exchanger temperature detecting means are provided. In a multi-room air conditioner in which indoor units are connected by refrigerant piping and signal lines, means for converting the discharge pressure to the condensation temperature to the outdoor unit, and the condensation temperature is transmitted to all the connected indoor units Means for recognizing the condensation temperature transmitted from the outdoor unit to each of the indoor units, and the indoor heat exchange from the difference between the condensation temperature and the temperature of the indoor heat exchanger. A multi-chamber characterized by comprising a means for calculating the degree of supercooling of the cooler and a target supercooling degree, wherein the expansion unit is operated in the indoor unit that is in heating operation to control the target supercooling degree Air conditioner. 接続された全室内機の台数と暖房運転している前記室内機の台数の比率を算出し、その比率を前記全室内機に送信する手段を室外機に備え、暖房運転をしている前記室内機において、膨張弁を動作させて、前記比率毎に設定された目標過冷却度に制御することを特徴とする請求項1に記載の多室空気調和機。 Calculate the ratio between the number of all indoor units connected and the number of indoor units that are in heating operation, the outdoor unit having means for transmitting the ratio to all the indoor units, and performing the heating operation The multi-room air conditioner according to claim 1, wherein an expansion valve is operated to control a target supercooling degree set for each ratio. 比率が一定しきい値以下の場合、暖房運転をしている室内機において膨張弁を動作させず全開開度に固定することを特徴とする請求項2に記載の多室空気調和機。 3. The multi-room air conditioner according to claim 2, wherein when the ratio is equal to or less than a predetermined threshold value, the expansion valve is not operated in the indoor unit that is in a heating operation, and is fixed at a fully opened position. 目標過冷却度補正値を設定する目標過冷却度補正値設定手段と、前記目標過冷却度補正値を接続された全室内機に送信する手段を室外機に備え、前記室内機に、前記室外機から送信される前記目標過冷却度補正値を認識する目標過冷却度補正値認識手段と、前記目標過冷却度補正値を加えた補正後過冷却度を算出する補正後過冷却度算出手段を備え、暖房運転をしている前記室内機において膨張弁を動作させて前記補正後過冷却度に制御することを特徴とする請求項1に記載の多室空気調和機。 A target supercooling degree correction value setting means for setting a target supercooling degree correction value and a means for transmitting the target supercooling degree correction value to all connected indoor units are provided in the outdoor unit. Target supercooling degree correction value recognizing means for recognizing the target supercooling degree correction value transmitted from the machine, and post-correction supercooling degree calculating means for calculating a corrected subcooling degree by adding the target supercooling degree correction value The multi-room air conditioner according to claim 1, wherein an expansion valve is operated in the indoor unit that is in a heating operation to control the degree of subcooling after correction. 目標過冷却度補正値を設定する目標過冷却度補正値設定手段と、前記目標過冷却度補正値を加えた補正後目標過冷却度を算出する補正後目標過冷却度算出手段を室内機に備え、暖房運転をしている前記室内機において膨張弁を動作させて前記補正後目標過冷却度に制御することを特徴とする請求項1に記載の多室空気調和機。 A target supercooling degree correction value setting means for setting a target supercooling degree correction value and a corrected target supercooling degree calculation means for calculating a corrected target supercooling degree by adding the target supercooling degree correction value to the indoor unit 2. The multi-room air conditioner according to claim 1, wherein an expansion valve is operated in the indoor unit that is in a heating operation to control the corrected target supercooling degree. 目標過冷却度を設定する目標過冷却度設定手段を室内機に備え、暖房運転をしている室内機において膨張弁を動作させて設定された前記目標過冷却度に制御することを特徴とする請求項1に記載の多室空気調和機。 A target supercooling degree setting means for setting a target supercooling degree is provided in the indoor unit, and the expansion degree is operated in the indoor unit that is performing a heating operation to control the target supercooling degree to be set. The multi-room air conditioner according to claim 1.
JP2009110544A 2009-04-30 2009-04-30 Multi-room air conditioner Pending JP2010261606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110544A JP2010261606A (en) 2009-04-30 2009-04-30 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110544A JP2010261606A (en) 2009-04-30 2009-04-30 Multi-room air conditioner

Publications (1)

Publication Number Publication Date
JP2010261606A true JP2010261606A (en) 2010-11-18

Family

ID=43359839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110544A Pending JP2010261606A (en) 2009-04-30 2009-04-30 Multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2010261606A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191758B1 (en) 2012-05-17 2012-10-16 (주)동양테크놀로지 High efficency heat pump air conditioning unit controlled by remote controller of smart phone application
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system
WO2017216873A1 (en) * 2016-06-14 2017-12-21 三菱電機株式会社 Air conditioner
JP6451798B1 (en) * 2017-07-31 2019-01-16 ダイキン工業株式会社 Air conditioner
WO2019146490A1 (en) * 2018-01-25 2019-08-01 三菱重工サーマルシステムズ株式会社 Multi-type air conditioner device and multi-type air conditioner device setup method
CN110186145A (en) * 2019-06-14 2019-08-30 宁波奥克斯电气股份有限公司 A kind of modified control method of the high drop of multi-connected machine, device and air conditioner
WO2019215812A1 (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Air conditioner
CN111473496A (en) * 2020-04-29 2020-07-31 广东美的暖通设备有限公司 Air conditioning system, control method and device thereof and storage medium
WO2023206804A1 (en) * 2022-04-29 2023-11-02 青岛海信日立空调系统有限公司 Air conditioning system and method for calculating operation parameters of indoor unit thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217164A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Multi-chamber type airconditioner
JPH03251661A (en) * 1990-02-28 1991-11-11 Daikin Ind Ltd Heat pump system
JPH0727396A (en) * 1993-07-13 1995-01-27 Toshiba Corp Air-conditioner
JPH1183128A (en) * 1997-09-11 1999-03-26 Zexel Corp Highly efficient multiple air conditioning system
JPH11218358A (en) * 1997-11-28 1999-08-10 Denso Corp Refrigerating cycle controller
JPH11287528A (en) * 1992-09-18 1999-10-19 Hitachi Ltd Multitype absorption air-conditioning system
JP2008128493A (en) * 2006-11-16 2008-06-05 Sanden Corp Refrigerating circuit, and air conditioner for vehicle using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01217164A (en) * 1988-02-26 1989-08-30 Hitachi Ltd Multi-chamber type airconditioner
JPH03251661A (en) * 1990-02-28 1991-11-11 Daikin Ind Ltd Heat pump system
JPH11287528A (en) * 1992-09-18 1999-10-19 Hitachi Ltd Multitype absorption air-conditioning system
JPH0727396A (en) * 1993-07-13 1995-01-27 Toshiba Corp Air-conditioner
JPH1183128A (en) * 1997-09-11 1999-03-26 Zexel Corp Highly efficient multiple air conditioning system
JPH11218358A (en) * 1997-11-28 1999-08-10 Denso Corp Refrigerating cycle controller
JP2008128493A (en) * 2006-11-16 2008-06-05 Sanden Corp Refrigerating circuit, and air conditioner for vehicle using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191758B1 (en) 2012-05-17 2012-10-16 (주)동양테크놀로지 High efficency heat pump air conditioning unit controlled by remote controller of smart phone application
JP2015117854A (en) * 2013-12-17 2015-06-25 株式会社富士通ゼネラル Air conditioning system
WO2017216873A1 (en) * 2016-06-14 2017-12-21 三菱電機株式会社 Air conditioner
JPWO2017216873A1 (en) * 2016-06-14 2019-01-31 三菱電機株式会社 Air conditioner
JP6451798B1 (en) * 2017-07-31 2019-01-16 ダイキン工業株式会社 Air conditioner
WO2019026766A1 (en) * 2017-07-31 2019-02-07 ダイキン工業株式会社 Air-conditioning device
WO2019146490A1 (en) * 2018-01-25 2019-08-01 三菱重工サーマルシステムズ株式会社 Multi-type air conditioner device and multi-type air conditioner device setup method
WO2019215812A1 (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Air conditioner
JPWO2019215812A1 (en) * 2018-05-08 2021-02-25 三菱電機株式会社 Air conditioner
CN110186145A (en) * 2019-06-14 2019-08-30 宁波奥克斯电气股份有限公司 A kind of modified control method of the high drop of multi-connected machine, device and air conditioner
CN111473496A (en) * 2020-04-29 2020-07-31 广东美的暖通设备有限公司 Air conditioning system, control method and device thereof and storage medium
CN111473496B (en) * 2020-04-29 2021-08-13 广东美的暖通设备有限公司 Air conditioning system, control method and device thereof and storage medium
WO2023206804A1 (en) * 2022-04-29 2023-11-02 青岛海信日立空调系统有限公司 Air conditioning system and method for calculating operation parameters of indoor unit thereof

Similar Documents

Publication Publication Date Title
JP2010261606A (en) Multi-room air conditioner
JP6359423B2 (en) Control device for air conditioning system, air conditioning system, and abnormality determination method for control device for air conditioning system
EP2532992B1 (en) Multi-type air conditioner and control method therefor
AU2009263631B2 (en) Air conditioning apparatus and air conditioning apparatus refrigerant quantity determination method
WO2015125509A1 (en) Refrigeration cycle device
US20100281895A1 (en) Air conditioner
JP4840522B2 (en) Refrigeration equipment
JP2010032127A (en) Air conditioning device
JP5951397B2 (en) Air conditioner
JP6021955B2 (en) Refrigeration cycle apparatus and control method of refrigeration cycle apparatus
JP2007218532A (en) Air conditioner
WO2016063550A1 (en) Control device for air conditioning system, air conditioning system, and method for determining anomaly of air conditioning system
JP2011099591A (en) Refrigerating device
JP2010164270A (en) Multiple chamber type air conditioner
JP2010101569A (en) Multi-chamber type air conditioner
JP2009204174A (en) Multiple chamber air conditioner
JP5900464B2 (en) Refrigeration apparatus and control method of refrigeration apparatus
JP4877052B2 (en) Multi-room air conditioner
JP2011242097A (en) Refrigerating apparatus
JP2008281304A (en) Multi-room type air conditioner
JP5199713B2 (en) Multi-type air conditioner, indoor unit indoor electronic expansion valve operation confirmation method, computer program, and fault diagnosis apparatus
AU2013200092B2 (en) Air conditioning apparatus and air conditioning apparatus refrigerant quantity determination method
CN107576027B (en) Opening degree control method, opening degree control device and refrigeration equipment
JP2010007997A (en) Refrigerant amount determining method of air conditioning device, and air conditioning device
JP2006071211A (en) Air conditioner and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111208

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130702