JP2010261506A - Buried pipe shielding structure and buried pipe shielding method - Google Patents

Buried pipe shielding structure and buried pipe shielding method Download PDF

Info

Publication number
JP2010261506A
JP2010261506A JP2009112639A JP2009112639A JP2010261506A JP 2010261506 A JP2010261506 A JP 2010261506A JP 2009112639 A JP2009112639 A JP 2009112639A JP 2009112639 A JP2009112639 A JP 2009112639A JP 2010261506 A JP2010261506 A JP 2010261506A
Authority
JP
Japan
Prior art keywords
buried pipe
buried
pipe
linear conductor
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009112639A
Other languages
Japanese (ja)
Inventor
Hitoshi Kijima
均 木嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2009112639A priority Critical patent/JP2010261506A/en
Publication of JP2010261506A publication Critical patent/JP2010261506A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problems that a buried pipe shielding structure causes troublesome burying work, and a working space is required therefor. <P>SOLUTION: The buried pipe shielding structure is a buried pipe shielding structure for protecting a buried pipe as an electric conductive pipe with an insulation coating applied thereon, against lightning damage, and a linear electric conductor is disposed along the buried pipe between the buried pipe and the ground surface. Further, the buried pipe shielding method is a buried pipe shielding method for protecting the buried pipe as the electric conductive pipe with an insulation coating applied thereon, against lightning damage, and earth and sand of a predetermined thickness are laid on the buried pipe disposed in a groove. The linear electric conductor is disposed on the earth and sand from above the buried pipe, and the groove is buried by laying earth and sand on the linear electric conductor. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は導電性の管に絶縁被覆を施した埋設管を雷害から保護する埋設管遮蔽構造及び埋設管遮蔽方法に関する。   The present invention relates to a buried pipe shielding structure and a buried pipe shielding method for protecting a buried pipe having an insulating coating on a conductive pipe from lightning damage.

近年、局地的な集中豪雨や雷の発生が増加する傾向がある。都市ガスを始めとする埋設管の外面防食材としてポリエチレンが広く採用されている。図1は、導電性の管12に絶縁被覆11を施した埋設管10の断面図である。落雷や地絡事故等による地面の電位が上昇することによって、絶縁被覆(ポリエチレン)の絶縁破壊が懸念される。図2は、ポリエチレン絶縁被覆の絶縁破壊と電圧の関係を示す図である。例えば、ポリエチレンの絶縁被覆厚を2.5×10-3mとした場合、約200kVの電圧がかかると絶縁破壊を生じる。落雷時における絶縁破壊のためにガス漏れ事故等が起こりうる。 In recent years, the occurrence of localized torrential rain and lightning has tended to increase. Polyethylene is widely used as an outer surface anticorrosive material for buried pipes such as city gas. FIG. 1 is a cross-sectional view of a buried pipe 10 in which an insulating coating 11 is applied to a conductive pipe 12. As the ground potential increases due to lightning strikes, ground faults, etc., there is a concern about the insulation breakdown of the insulation coating (polyethylene). FIG. 2 is a diagram showing the relationship between the dielectric breakdown of the polyethylene insulating coating and the voltage. For example, when the insulation coating thickness of polyethylene is 2.5 × 10 −3 m, dielectric breakdown occurs when a voltage of about 200 kV is applied. Gas leakage accidents may occur due to dielectric breakdown during lightning strikes.

雷対策として、これまでガス会社では鞘管や防護鉄板等による遮蔽が行われている。図3は、鞘管20を用いた埋設管遮蔽構造を示す断面図である。図4は、防護鉄板30を用いた埋設管遮蔽構造を示す断面図である。これらの埋設管遮蔽構造の効果を示すシミュレーション結果を後述する。   As a countermeasure against lightning, gas companies have been shielded by sheath tubes and protective iron plates. FIG. 3 is a cross-sectional view showing a buried pipe shielding structure using the sheath pipe 20. FIG. 4 is a cross-sectional view showing a buried pipe shielding structure using the protective iron plate 30. Simulation results showing the effects of these buried pipe shielding structures will be described later.

また、埋設地線を用いて、通信ケーブルを雷の直撃から防護する従来技術として非特許文献1が知られている。図5は、直理通信ケーブル(直接大地に埋設する通信ケーブル)40の上方に裸の鋼より線からなる埋設地線41を埋設した場合の断面図(通信ケーブル接続点)である。通信ケーブル接続点において、直理通信ケーブル40の金属シースと埋設地線41を銅線等で接続する。   Further, Non-Patent Document 1 is known as a conventional technique for protecting a communication cable from a direct lightning strike using a buried ground wire. FIG. 5 is a cross-sectional view (communication cable connection point) when a buried ground wire 41 made of a bare steel strand is buried above a direct communication cable (a communication cable buried directly in the ground) 40. At the communication cable connection point, the metal sheath of the direct communication cable 40 and the buried ground wire 41 are connected by a copper wire or the like.

木島均著、「接地と雷防護」、社団法人電子情報通信学会、平成9年4月10日、pp94〜100、pp164〜166Kijima Hitoshi, "Grounding and Lightning Protection", The Institute of Electronics, Information and Communication Engineers, April 10, 1997, pp94-100, pp164-166

しかしながら、鞘管20による埋設管遮蔽構造は、溝内に鞘管20を設置した後に、鞘管開口部から埋設管10を挿入する必要がある。そのため、埋設作業が煩雑になるという問題がある。
また、防護鉄板30等による埋設管遮蔽構造は、溝側方に防護鉄板30Aを設置した上で、土砂等を敷き、埋設管10を設置し、再度土砂を敷き、その上にさらに、防護鉄板30Bを設置し、さらに土砂を敷く必要があり、埋設作業が煩雑となるという問題がある。
However, the buried pipe shielding structure by the sheath pipe 20 needs to insert the buried pipe 10 from the opening of the sheath pipe after the sheath pipe 20 is installed in the groove. Therefore, there is a problem that the embedding work becomes complicated.
Further, the buried pipe shielding structure by the protective iron plate 30 or the like has the protective iron plate 30A installed on the side of the groove, and then lays earth and sand, installs the buried pipe 10 and lays earth and sand again, and further on the protective iron plate. There is a problem that it is necessary to install 30B and spread earth and sand, and the burial work becomes complicated.

また、非特許文献1は、直理通信ケーブル40の金属シースと埋設地線41を銅線42で接続するため、作業が煩雑となる。なお、非特許文献1は、直理通信ケーブル40を埋設地線41を用いて雷の直撃から防護し、直理通信ケーブル40の金属シースに電流が流入する割合を約1/2に軽減することを目的とする。これは、絶縁被覆(ポリエチレン)の絶縁破壊を防ぐためではなく、作業員等が直理通信ケーブルに対し何らかの作業を行っているときに、感電する危険を軽減するためのものである。よって、そもそも、絶縁被覆を施した埋設管の絶縁破壊を防ぐ本発明とは技術的思想が異なる。   Moreover, since the nonpatent literature 1 connects the metal sheath of the direct communication cable 40, and the buried ground wire 41 with the copper wire 42, an operation | work becomes complicated. In Non-Patent Document 1, the direct communication cable 40 is protected from direct lightning strike using the buried ground wire 41, and the ratio of current flowing into the metal sheath of the direct communication cable 40 is reduced to about ½. For the purpose. This is not to prevent insulation breakdown of the insulation coating (polyethylene), but to reduce the risk of electric shock when an operator or the like is performing any work on the direct communication cable. Therefore, in the first place, the technical idea is different from the present invention for preventing the dielectric breakdown of the buried pipe with the insulating coating.

上記の課題を解決するために、本発明に係る埋設管遮蔽構造は、導電性の管に絶縁被覆を施した埋設管を雷害から保護する埋設管遮蔽構造であって、線状導電体を、埋設管と地表との間に当該埋設管に沿って配置した。   In order to solve the above-described problems, the buried pipe shielding structure according to the present invention is a buried pipe shielding structure that protects a buried pipe having an insulating coating on a conductive pipe from lightning damage, and includes a linear conductor. Then, it was arranged along the buried pipe between the buried pipe and the ground surface.

また、本発明に係る埋設管遮蔽方法は、導電性の管に絶縁被覆を施した埋設管を雷害から保護する埋設管遮蔽方法であって、溝内に配置された埋設管の上に予め定めた厚さの土砂を敷き、土砂の上に線状導電体を、埋設管上方からこれに沿って配置し、線状導電体の上に土砂を敷くことで溝を埋める。   Further, the buried pipe shielding method according to the present invention is a buried pipe shielding method for protecting a buried pipe having an insulating coating on a conductive pipe from lightning damage, and is previously placed on the buried pipe disposed in the groove. A predetermined thickness of earth and sand is laid, a linear conductor is placed on the earth and sand along the buried pipe, and the groove is filled by laying earth and sand on the linear conductor.

本発明は、絶縁破壊を防ぐために十分な雷防護効果を持ち、かつ、埋設作業が容易であるという効果を奏する。   The present invention has an effect of providing a lightning protection effect sufficient for preventing dielectric breakdown and facilitating burial work.

埋設管の埋設例を示す図。The figure which shows the burial example of a burial pipe. 絶縁破壊する電圧を示す図。The figure which shows the voltage which carries out a dielectric breakdown. 鞘管を用いた埋設管遮蔽構造を示す図。The figure which shows the buried pipe shielding structure using a sheath pipe. 防護鉄板を用いた埋設管遮蔽構造を示す図。The figure which shows the buried pipe shielding structure using a protection iron plate. 非特許文献1の埋設例を示す図。The figure which shows the example of embedding of the nonpatent literature 1. 遮蔽なしの場合の電界分布図である。It is an electric field distribution diagram in the case of no shielding. 線状導電体51によって遮蔽した場合の電界分布図。FIG. 7 is an electric field distribution diagram when shielded by a linear conductor 51. (A)は線状導電体51と埋設管10からなる埋設管遮蔽構造100の構成例を示す斜視図、(B)は埋設管10の長手方向に対し垂直方向の断面図。(A) is a perspective view showing a configuration example of an embedded pipe shielding structure 100 including a linear conductor 51 and an embedded pipe 10, and (B) is a cross-sectional view perpendicular to the longitudinal direction of the embedded pipe 10. (A)は間隔確保ステップを、(B)は線状導電体配置ステップを、(C)は埋め戻しステップを説明するための図。(A) is a space | interval ensuring step, (B) is a linear conductor arrangement | positioning step, (C) is a figure for demonstrating a backfilling step. (A)は線状導電体61(半割れ管)と埋設管10からなる埋設管遮蔽構造200の構成例を示す斜視図、(B)は埋設管10の長手方向に対し垂直方向の断面図。(A) is a perspective view showing a configuration example of an embedded pipe shielding structure 200 composed of a linear conductor 61 (half cracked pipe) and an embedded pipe 10, and (B) is a sectional view perpendicular to the longitudinal direction of the embedded pipe 10. . 複数の線状導電体71と埋設管10からなる埋設管遮蔽構造300の構成例を示す斜視図。The perspective view which shows the structural example of the buried pipe shielding structure 300 which consists of several linear conductors 71 and the buried pipe 10. FIG. 雷サージのモデルを示す図。The figure which shows the model of a lightning surge. 遮蔽を行わない場合の電流の流れを示す図。The figure which shows the flow of the electric current when not shielding. 実施例1の電流の流れを示す図。The figure which shows the flow of the electric current of Example 1. FIG. (A)は断面が三角形の場合の断面図、(B)は断面が四角形の場合の断面図、(C)は線状導電体がより線の場合の断面図、(D)は線状導電体が板状の場合の断面図、(E)は線状導電体が四角柱の半割れ管の場合の断面図、(F)は線状導電体が六角柱の半割れ管の場合の断面図。(A) is a cross-sectional view when the cross section is a triangle, (B) is a cross-sectional view when the cross section is a quadrangle, (C) is a cross-sectional view when the linear conductor is a stranded wire, and (D) is a linear conductor. Sectional view when the body is plate-shaped, (E) is a sectional view when the linear conductor is a square column half-cracked tube, and (F) is a section when the linear conductor is a hexagonal column half-cracked tube Figure.

[考察]
図6は、遮蔽なしの場合の電界分布図である。図7は、線状導電体51によって遮蔽した場合の電界分布図である。図6からわかるように、落雷点の直下の埋設管10上部の電位が上昇する。一方、埋設管10は導電性の管に絶縁被覆を施しており、導電性の管は遠方で接地されている。従って、導電性の管の電位は0V(アースと同じ)である。よって、絶縁被覆の部分に強い電界が生じる。これにより、絶縁破壊が起こる。一方、線状導電体51によって遮蔽した場合には、線状導電体51が埋設管10と地表との間に、埋設管10と平行に配置されているため、線状導電体51は等電位となり、埋設管10の絶縁被覆には、分散された電界が生じることになる(図7参照)。よって、図6の場合とは異なり、一点に電界が集中しないため、絶縁破壊には至らないと考えられる。本発明は、上記原理に基づき埋設管10を絶縁破壊から防護する。なお、上記、原理を裏付けるシミュレーション結果については後述する。以下、本発明の実施の形態について、詳細に説明する。
[Discussion]
FIG. 6 is an electric field distribution diagram without shielding. FIG. 7 is an electric field distribution diagram when shielded by the linear conductor 51. As can be seen from FIG. 6, the potential of the upper portion of the buried pipe 10 immediately below the lightning strike increases. On the other hand, the buried pipe 10 is provided with an insulating coating on a conductive pipe, and the conductive pipe is grounded at a distance. Therefore, the potential of the conductive tube is 0V (same as ground). Therefore, a strong electric field is generated in the insulating coating. This causes dielectric breakdown. On the other hand, when shielded by the linear conductor 51, since the linear conductor 51 is disposed between the buried pipe 10 and the ground surface in parallel with the buried pipe 10, the linear conductor 51 is equipotential. Thus, a dispersed electric field is generated in the insulating coating of the buried pipe 10 (see FIG. 7). Therefore, unlike the case of FIG. 6, since the electric field does not concentrate on one point, it is considered that dielectric breakdown does not occur. The present invention protects the buried pipe 10 from dielectric breakdown based on the above principle. The simulation results supporting the above principle will be described later. Hereinafter, embodiments of the present invention will be described in detail.

<埋設管遮蔽構造100>
図8を用いて実施例1に係る埋設管遮蔽構造100を説明する。図8(A)は線状導電体51と埋設管10からなる埋設管遮蔽構造100の構成例を示す斜視図、(B)は埋設管10の長手方向に対し垂直方向の断面図である。埋設管遮蔽構造100は、線状導電体51と埋設管10を有し、埋設管10を雷害から保護することができる。
<Built-in pipe shielding structure 100>
The buried pipe shielding structure 100 according to the first embodiment will be described with reference to FIG. FIG. 8A is a perspective view showing a configuration example of the buried pipe shielding structure 100 including the linear conductor 51 and the buried pipe 10, and FIG. 8B is a cross-sectional view perpendicular to the longitudinal direction of the buried pipe 10. The buried pipe shielding structure 100 includes the linear conductor 51 and the buried pipe 10 and can protect the buried pipe 10 from lightning damage.

<埋設管10>
埋設管10は、図1に示すように導電性の管12に絶縁被覆11を施されている。例えば、ガス管等である。例えば、埋設管10の上部と地表との距離(例えば1.5m)は、埋設管10の外径(例えば411.4×10-3m)の3〜4倍(例えば約3.6倍)である。
<Embedded pipe 10>
As shown in FIG. 1, the buried pipe 10 is provided with an insulating coating 11 on a conductive pipe 12. For example, a gas pipe or the like. For example, the distance (for example, 1.5 m) between the upper portion of the buried pipe 10 and the ground surface is 3 to 4 times (for example, about 3.6 times) the outer diameter (for example, 411.4 × 10 −3 m) of the buried pipe 10.

<線状導電体51>
線状導電体51を埋設管10と地表との間のみに、埋設管10に沿って配置する。例えば、線状導電体51と埋設管10をほぼ平行に配置してもよいし、埋設管10の中心軸と線状導電体51の中心軸が鉛直方向にほぼ重なるように配置していもよい。また例えば、線状導電体51は、断面が円形の埋設地線である。
<Linear conductor 51>
The linear conductor 51 is disposed along the buried pipe 10 only between the buried pipe 10 and the ground surface. For example, the linear conductor 51 and the buried pipe 10 may be arranged substantially in parallel, or may be arranged so that the central axis of the buried pipe 10 and the central axis of the linear conductor 51 substantially overlap in the vertical direction. . For example, the linear conductor 51 is a buried ground wire having a circular cross section.

例えば、その断面の直径(例えば20×10-3m)は、埋設管10の外径(例えば411.4×10-3m)の0.025〜0.1倍(例えば約0.049倍)である。このとき、埋設管10の上部と線状導電体51の中心との距離(例えば290×10-3m)は、埋設管10の外径(例えば411.4×10-3m)の0.5〜1.5倍(例えば約0.70倍)である。
このような構成により、絶縁破壊を防ぐために十分な雷防護効果を持ち、かつ、埋設作業が容易である埋設管遮蔽構造100を構成することができる。
For example, the diameter of the cross section (for example, 20 × 10 −3 m) is 0.025 to 0.1 times (for example, about 0.049 times) the outer diameter (for example, 411.4 × 10 −3 m) of the buried pipe 10. At this time, the distance (for example, 290 × 10 −3 m) between the upper portion of the embedded tube 10 and the center of the linear conductor 51 is 0.5 to 0.5 of the outer diameter (for example, 411.4 × 10 −3 m) of the embedded tube 10. 1.5 times (for example, about 0.70 times).
With such a configuration, it is possible to configure the buried pipe shielding structure 100 that has a sufficient lightning protection effect to prevent dielectric breakdown and that can be easily buried.

<埋設方法>
図9(A)は間隔確保ステップを、(B)は線状導電体配置ステップを、(C)は埋め戻しステップを説明するための図である。溝内に配置された埋設管10の上に予め定めた厚さの土砂を敷く。これにより、埋設管10と線状導電体51との間隔を確保する(間隔確保ステップ)。土砂の上のみに線状導電体51を、埋設管上方からこれに沿って配置する(線状導電体配置ステップ)。さらに、線状導電体51の上に土砂を敷くことで溝を埋める(埋め戻しステップ)。
<Embedding method>
FIG. 9A is a diagram for explaining an interval securing step, FIG. 9B is a diagram for explaining a linear conductor arranging step, and FIG. 9C is a diagram for explaining a backfilling step. A predetermined thickness of earth and sand is laid on the buried pipe 10 disposed in the groove. Thereby, the space | interval of the buried pipe 10 and the linear conductor 51 is ensured (space | interval ensuring step). The linear conductor 51 is arranged along only the earth and sand from above the buried pipe (linear conductor arrangement step). Further, the trench is filled by laying earth and sand on the linear conductor 51 (backfilling step).

なお、従来技術において、埋設管10を保護するためには、全体を鞘管20で囲んだり、防護鉄板30等で埋設管10と地表の間以外の部分についても、覆う必要があると考えられていた。しかし、本発明は、シミュレーションにより、線状導電体51を埋設管10と地表との間のみに、線状導電体51を配置すればよいことを明らかにした。これにより絶縁破壊を防ぐために十分な雷防護効果を持ち、かつ、埋設作業が容易である埋設管遮蔽構造及びその方法を発明した。   In the prior art, in order to protect the buried pipe 10, it is considered necessary to enclose the whole with a sheath pipe 20 or cover a portion other than between the buried pipe 10 and the ground surface with a protective iron plate 30 or the like. It was. However, according to the present invention, it has been clarified by simulation that the linear conductor 51 may be disposed only between the buried pipe 10 and the ground surface. Accordingly, the inventors have invented a buried pipe shielding structure and method that have a sufficient lightning protection effect to prevent dielectric breakdown and are easy to bury.

[変形例1]
実施例1と異なる部分のみ説明する。実施例1とは線状導電体の形状が異なる。図10(A)は線状導電体61(半割れ管)と埋設管10からなる埋設管遮蔽構造200の構成例を示す斜視図、(B)は埋設管10の長手方向に対し垂直方向の断面図である。
<線状導電体61>
線状導電体61は、広がった部分が下になった半割れ管である。例えば、線状導電体61と埋設管10をほぼ平行に配置してもよいし、埋設管10の中心軸と半割れ管の中心軸が鉛直方向にほぼ重なるように配置していもよい。また例えば、線状導電体61は、断面がアーチ状である。
[Modification 1]
Only parts different from the first embodiment will be described. The shape of the linear conductor is different from that of Example 1. FIG. 10A is a perspective view showing a configuration example of a buried pipe shielding structure 200 composed of a linear conductor 61 (half cracked pipe) and the buried pipe 10, and FIG. 10B is a view perpendicular to the longitudinal direction of the buried pipe 10. It is sectional drawing.
<Linear conductor 61>
The linear conductor 61 is a half-cracked tube with the expanded portion on the bottom. For example, the linear conductor 61 and the buried pipe 10 may be arranged substantially in parallel, or may be arranged so that the central axis of the buried pipe 10 and the central axis of the half cracked pipe substantially overlap in the vertical direction. For example, the linear conductor 61 has an arched cross section.

例えば、半割れ管の内径(例えば、589.0×10-3m)は、埋設管10の外径(例えば、411.4×10-3m)以上であり、埋設管10の上部と地表との距離(例えば、1.5m)は、埋設管10の外径(例えば、411.4×10-3m)の3〜4倍(例えば約3.6倍)であり、埋設管10の上部と半割れ管との距離(例えば300×10-3m)は、埋設管の外径(例えば、411.4×10-3m)の0.5〜1.5倍(例えば約0.73倍)である。
このような構成とすることによって、鞘管20とは違い、埋設管10を上方から覆うように線状導電体61を配置することができ、実施例1と同様の効果を得ることができる。
For example, the inner diameter (for example, 589.0 × 10 −3 m) of the half-cracked tube is equal to or larger than the outer diameter (for example, 411.4 × 10 −3 m) of the buried pipe 10, and the distance between the upper portion of the buried pipe 10 and the ground surface ( For example, 1.5 m) is 3 to 4 times (for example, about 3.6 times) the outer diameter of the buried pipe 10 (for example, 411.4 × 10 −3 m), and the distance between the upper part of the buried pipe 10 and the half-cracked pipe ( For example, 300 × 10 −3 m) is 0.5 to 1.5 times (for example, about 0.73 times) the outer diameter of the buried pipe (for example, 411.4 × 10 −3 m).
By adopting such a configuration, unlike the sheath tube 20, the linear conductor 61 can be disposed so as to cover the buried tube 10 from above, and the same effect as in the first embodiment can be obtained.

[変形例2]
実施例1と異なる部分のみ説明する。実施例1とは線状導電体の形状が異なる。図11は、複数の線状導電体71と埋設管10からなる埋設管遮蔽構造300の構成例を示す斜視図である。
<線状導電体71>
線状導電体71は、複数であり、複数の導電体71が、埋設管10と地表との間に、埋設管10に沿って縦列に配置される。さらに、線状導電体71同士は接続されていない。例えば、線状導電体71と埋設管10をほぼ平行に配置してもよいし、埋設管10の中心軸と線状導電体71の中心軸が鉛直方向にほぼ重なるように配置していもよい。また例えば、線状導電体71は、断面が円形である。複数の導電体71は、実施例1と同じように埋設管10と地表との間のみに配置してもよい。
[Modification 2]
Only parts different from the first embodiment will be described. The shape of the linear conductor is different from that of Example 1. FIG. 11 is a perspective view illustrating a configuration example of an embedded pipe shielding structure 300 including a plurality of linear conductors 71 and the embedded pipe 10.
<Linear conductor 71>
There are a plurality of linear conductors 71, and the plurality of conductors 71 are arranged in tandem along the buried pipe 10 between the buried pipe 10 and the ground surface. Furthermore, the linear conductors 71 are not connected to each other. For example, the linear conductor 71 and the buried pipe 10 may be arranged substantially in parallel, or the central axis of the buried pipe 10 and the central axis of the linear conductor 71 may be arranged substantially in the vertical direction. . For example, the linear conductor 71 has a circular cross section. The plurality of conductors 71 may be disposed only between the buried pipe 10 and the ground surface as in the first embodiment.

例えば、線状導電体71同士の間隔(例えば、100×10-3m)が、埋設管10の外径(例えば、411.4×10-3m)の0.25倍以下(例えば、0.24倍)である。また、例えば、各線状導電体71の長さ(例えば、1.0m)は、埋設管10の外径(例えば、411.4×10-3m)の2倍(例えば、2.4倍)以上である。 For example, the distance between the linear conductors 71 (for example, 100 × 10 −3 m) is 0.25 times or less (for example, 0.24 times) the outer diameter (for example, 411.4 × 10 −3 m) of the buried pipe 10. It is. Further, for example, the length (for example, 1.0 m) of each linear conductor 71 is at least twice (for example, 2.4 times) the outer diameter (for example, 411.4 × 10 −3 m) of the buried pipe 10.

<埋設方法>
図9を用いて変形例2の埋設方法を説明する。溝内に配置された埋設管10の上に予め定めた厚さの土砂を敷く。これにより、埋設管10と線状導電体71との間隔を確保する(間隔確保ステップ)。土砂の上に複数の線状導電体71を、互いに接続されていない状態で埋設管に沿って縦列に配置する(線状導電体配置ステップ)。さらに、線状導電体71の上に土砂を敷くことで溝を埋める(埋め戻しステップ)。
<Embedding method>
The embedding method of the modification 2 is demonstrated using FIG. A predetermined thickness of earth and sand is laid on the buried pipe 10 disposed in the groove. Thereby, the space | interval of the buried pipe 10 and the linear conductor 71 is ensured (space | interval ensuring step). A plurality of linear conductors 71 are arranged in tandem along the buried pipe in a state where they are not connected to each other on the earth and sand (linear conductor arrangement step). Further, the trench is filled by laying earth and sand on the linear conductor 71 (backfilling step).

なお、「接続されていない」とは、溶接やビス止め等により電気的に接続されていないことを意味する。従来技術において、鞘管や防護鉄板は電気的に接続等されている必要があると考えられていた。しかし、本発明は、シミュレーションにより、線状導電体が電気的に接続されていなくとも所定の間隔以下で一列に配置されていればよいことを明らかにした。これにより絶縁破壊を防ぐために十分な雷防護効果を持ち、かつ、埋設作業が容易である埋設管遮蔽構造及びその方法を発明した。このような構成とすることによって、実施例1と同様の効果を得ることができる。さらに、各線状導電体を、扱いやすい長さにすることができ、配置が容易になる。各線状導電体は、溶接等により電気的に接続されている必要はない。配置に際し、各線状導電体同士が接触していても、していなくても、実施例1と同様の効果を得ることができる。作業員は、配置に際し、線状導電体71同士の間隔を気にせずに設置可能であり、迅速、かつ、容易に作業を行うことができる。
なお、変形例1の半割れ管形状の導電体を複数の導電体として用いても同様の効果を得ることができる。
Note that “not connected” means not electrically connected by welding or screwing. In the prior art, it has been considered that the sheath tube and the protective iron plate need to be electrically connected. However, according to the present invention, it has been clarified by simulation that the linear conductors may be arranged in a line at a predetermined interval or less even if they are not electrically connected. Accordingly, the inventors have invented a buried pipe shielding structure and method that have a sufficient lightning protection effect to prevent dielectric breakdown and are easy to bury. By adopting such a configuration, the same effect as in the first embodiment can be obtained. Furthermore, the length of each linear conductor can be made easy to handle, and the arrangement becomes easy. Each linear conductor does not need to be electrically connected by welding or the like. Even when the linear conductors are in contact with each other at the time of arrangement, the same effects as those of the first embodiment can be obtained. The worker can install the device without worrying about the distance between the linear conductors 71 and can perform the work quickly and easily.
It should be noted that the same effect can be obtained even when the semi-cracked tube-shaped conductor of Modification 1 is used as a plurality of conductors.

[シミュレーション結果]
有限要素法を用い、日本総合研究所製磁界解析ソフトウェアであるJMAGを使用して、雷害対策シミュレーションを行う。なお、有限要素法については、中田高義、高橋則雄著「電気工学の有限要素法」、森北出版、1982年7月15日に詳しく記載されている。
[simulation result]
Using the finite element method, lightning damage countermeasure simulation is performed using JMAG, a magnetic field analysis software made by the Japan Research Institute. The finite element method is described in detail by Takayoshi Nakata and Norio Takahashi, “Fine Element Method of Electrical Engineering”, Morikita Publishing, July 15, 1982.

<シミューレーション条件>
図1のように埋設管10の埋設深さを一般的な地下1.5mとする。導電性の管12は、材質を鋼とし、内径387.4×10-3m、外径406.4×10-3m、鋼管厚9.5×10-3m、管長20.0m、体積固有抵抗1.5×10-7Ω・m、比透磁率280である。絶縁被覆12は、材質をポリエチレンとし、絶縁被覆厚2.5×10-3m、絶縁被覆長20.0m、体積固有抵抗1.0×1014Ω・m、比誘電率2.3とする。絶縁被覆12を含めた埋設管10の外径は411.4×10-3mである。
図2より絶縁被覆厚2.5×10-3mのとき、ポリエチレンの絶縁破壊する電圧は200kV(=2.0E+5V)であることがわかる。この値とシミュレーションにより算出した値とを比較し、どれだけの遮蔽効果があるかを検討する。
<Simulation conditions>
As shown in FIG. 1, the burial depth of the burial pipe 10 is set to a general depth of 1.5 m. The conductive tube 12 is made of steel and has an inner diameter of 387.4 × 10 −3 m, an outer diameter of 406.4 × 10 −3 m, a steel pipe thickness of 9.5 × 10 −3 m, a tube length of 20.0 m, and a volume resistivity of 1.5 × 10 −7 Ω · m and relative permeability 280. The insulating coating 12 is made of polyethylene, and has an insulating coating thickness of 2.5 × 10 −3 m, an insulating coating length of 20.0 m, a volume resistivity of 1.0 × 10 14 Ω · m, and a relative dielectric constant of 2.3. The outer diameter of the buried pipe 10 including the insulating coating 12 is 411.4 × 10 −3 m.
FIG. 2 shows that the insulation breakdown voltage of polyethylene is 200 kV (= 2.0E + 5V) when the insulation coating thickness is 2.5 × 10 −3 m. This value is compared with the value calculated by simulation to examine how much the shielding effect is.

雷サージが地面に直雷すると想定する。電流が平行に流れるようなモデルを製作する。雷サージのモデルは、地球という無限遠点に電流を流す必要があるが、解析が複雑なため、図12に示すモデルで、渦電流等の影響がない100kA、1Hzで解析を行う。なお、土壌抵抗の違いによる遮蔽効果を検討するために、土壌抵抗率ρsを30、100、1000Ω・mにした。なお、土壌低効率ρs=30Ω・mは田畑に、ρs=100Ω・mは関東ローム層に、ρs=1000Ω・mは山岳地帯に相当する。   Assume that a lightning surge strikes the ground directly. Create a model in which currents flow in parallel. The lightning surge model requires a current to flow to an infinite point on the earth, but the analysis is complicated. Therefore, the model shown in FIG. 12 is analyzed at 100 kA, 1 Hz, which is not affected by eddy currents. In order to examine the shielding effect due to the difference in soil resistance, the soil resistivity ρs was set to 30, 100, and 1000 Ω · m. The low soil efficiency ρs = 30Ω · m corresponds to Tabata, ρs = 100Ω · m corresponds to the Kanto Loam layer, and ρs = 1000Ω · m corresponds to the mountainous area.

<遮蔽なし>
図13は、遮蔽を行わない場合の電流の流れを示す。図13より電流が平行に流れているのが見受けられる。また、埋設管10に非常に大きな電流が流れることがわかった。表1は、遮蔽を行わない場合の埋設管10の位置での電界強度を示す。
<No shielding>
FIG. 13 shows the flow of current when shielding is not performed. From FIG. 13, it can be seen that currents flow in parallel. It was also found that a very large current flows through the buried pipe 10. Table 1 shows the electric field strength at the position of the buried pipe 10 when shielding is not performed.

Figure 2010261506
Figure 2010261506

今後、比較のために遮蔽なしの場合の電界強度を100%とする。次に、絶縁被覆の絶縁破壊(土壌抵抗ρs=100Ω・m)について考慮する。電圧は1.5mまでの電界強度を積分したものであるので、
2.64E+7V≫2.0E+5V
となった。この結果から、ポリエチレンの絶縁破壊電圧値を上回る電圧が加わり、何も対策を行わないと絶縁被覆は絶縁破壊を起こし、穴があいてしまうことがわかった。
In the future, for comparison, the electric field strength without shielding is assumed to be 100%. Next, dielectric breakdown of the insulation coating (soil resistance ρs = 100Ω · m) is considered. Since the voltage is the integration of the electric field strength up to 1.5m,
2.64E + 7V >> 2.0E + 5V
It became. From this result, it was found that a voltage exceeding the dielectric breakdown voltage value of polyethylene was applied, and if no countermeasures were taken, the insulation coating would cause dielectric breakdown and had holes.

<鞘管20>
表2は、図3のように鞘管20を用いて遮蔽した場合の埋設管10の位置での電界強度を示す。なお、鞘管20の埋設深さを地下1.4mとし、鞘管20は、材質を鋼とし、内径589.0×10-3m、鞘管外径609.6×10-3m、鞘管厚10.3×10-3m、鞘管長20.0m、体積固有抵抗1.5×10-7Ω・m、比透磁率280とする。
<Sheath tube 20>
Table 2 shows the electric field strength at the position of the buried pipe 10 when the sheath pipe 20 is shielded as shown in FIG. The burial depth of the sheath tube 20 is 1.4 m underground, the sheath tube 20 is made of steel, the inner diameter is 589.0 × 10 −3 m, the outer diameter of the sheath tube is 609.6 × 10 −3 m, and the sheath tube thickness is 10.3 × 10. -3 m, sheath tube length 20.0 m, volume resistivity 1.5 × 10 −7 Ω · m, relative permeability 280.

Figure 2010261506
Figure 2010261506

鞘管20を用いた場合は遮蔽なしの場合に比べ大幅に電界強度が下がっており、遮蔽できていることが明確である。電流は、遮蔽なしの場合とくらべて、より均等に流れる。鞘管20で埋設管10の全面を囲っていることで、全方向からの電流を遮蔽することができたと推測される。絶縁被覆の絶縁破壊(土壌抵抗ρs=100Ω・m)について考慮すると、電圧では
1.90E+3V≪2.0E+5V
となった。この結果からポリエチレンの絶縁破壊電圧値を下回ることがわかった。このことにより、鞘管20を用いた場合には非常に効果的な防護策になりうると考えられる。しかし、前述の通り、埋設作業が煩雑になり、鞘管の倍以上の作業スペースを必要とするという問題がある。
When the sheath tube 20 is used, the electric field strength is significantly lower than that without shielding, and it is clear that shielding is possible. Current flows more evenly than without shielding. It is estimated that the current from all directions could be shielded by surrounding the entire surface of the buried pipe 10 with the sheath pipe 20. Considering the dielectric breakdown of the insulation coating (soil resistance ρs = 100 Ω · m)
1.90E + 3V << 2.0E + 5V
It became. From this result, it was found that the dielectric breakdown voltage value of polyethylene was lower. This is considered to be a very effective protective measure when the sheath tube 20 is used. However, as described above, there is a problem that the embedding operation becomes complicated and requires a work space more than double that of the sheath tube.

<防護鉄板30>
表3は、図4のように防護鉄板30A及び30Bを用いて遮蔽した場合の埋設管10の位置での電界強度を示す。なお、防護鉄板30Bの埋設深さを地下1.2mとし、防護鉄板は防護鉄板幅1.0m、防護鉄板厚6.0×10-3m、防護鉄板長20.0m、体積固有抵抗1.5×10-7Ω・m、比透磁率280とし、防護鉄板30Aと埋設管10の距離は0.3mとする。
<Protective iron plate 30>
Table 3 shows the electric field strength at the position of the buried pipe 10 when shielded using the protective iron plates 30A and 30B as shown in FIG. The depth of the protective iron plate 30B is 1.2m underground, the protective iron plate is 1.0m wide, the protective iron plate thickness is 6.0 × 10 -3 m, the protective iron plate length is 20.0 m, and the volume resistivity is 1.5 × 10 -7 Ω. m, relative permeability 280, and the distance between the protective iron plate 30A and the buried pipe 10 is 0.3 m.

Figure 2010261506
Figure 2010261506

表3から、遮蔽なしと比較して電界強度が下がっているのが見て取れる。上方と左側の防護鉄板によって、電流を遮断しているが、鞘管20のように埋設管10の全面を囲っているわけではないので、防護壁がない右側面、下方面からの電流を遮蔽できなかったと推測される。絶縁被覆の絶縁破壊(土壌抵抗ρs=100Ω・m)について考慮すると、電圧では
4.01E+4V≪2.0E+5V
となった。この結果からポリエチレンの絶縁破壊電圧値を下回ることがわかった。防護鉄板を用いた場合でも、効果的な防護策になりえると言える。但し、前述の通り、埋設作業が煩雑となるという問題がある。
From Table 3, it can be seen that the electric field strength is lower than that without shielding. Although the current is cut off by the upper and left protective iron plates, the current does not surround the entire surface of the buried pipe 10 like the sheath pipe 20, so that the current from the right side and the lower side without the protective wall is shielded. It is speculated that this was not possible. Considering the dielectric breakdown of the insulation coating (soil resistance ρs = 100 Ω · m)
4.01E + 4V << 2.0E + 5V
It became. From this result, it was found that the dielectric breakdown voltage value of polyethylene was lower. Even when a protective iron plate is used, it can be said that it can be an effective protective measure. However, as described above, there is a problem that the embedding work becomes complicated.

<線状導電体51(一本)>
図14は、実施例1の電流の流れを示す。なお、線状導電体51の埋設深さを地下1.2mとし、線状導電体51の半径1.0×10-2m、線状導電体長20.0m、体積固有抵抗1.5×10-7Ω・m、比透磁率280とする。表4は、図8のように線状導電体51を用いた場合の埋設管10の位置での電界強度を示す。
<Linear conductor 51 (one)>
FIG. 14 shows a current flow of the first embodiment. The buried depth of the linear conductor 51 is 1.2 m underground, the radius of the linear conductor 51 is 1.0 × 10 −2 m, the length of the linear conductor is 20.0 m, the volume resistivity is 1.5 × 10 −7 Ω · m, The relative permeability is 280. Table 4 shows the electric field strength at the position of the buried pipe 10 when the linear conductor 51 is used as shown in FIG.

Figure 2010261506
Figure 2010261506

表4から、遮蔽なしと比較して極端に電界強度が下がっているのが見て取れる。また、図14から電流の流れ方が遮蔽なしの場合よりも平行であり、また線状導電体51に集中しているのがわかる。埋設管10上方に導電率の大きい線状導電体51を埋設したことにより、電流のほとんどが線状導電体51に集まり埋設管10を防護したと推測される。絶縁被覆の絶縁破壊(土壌抵抗ρs=100Ω・m)について考慮すると、電圧では
3.31E+3V≪2.0E+5V
となった。この結果からポリエチレンの絶縁破壊電圧値を大きく下回ることがわかった。遮蔽対策として優れた遮蔽効果が期待できる。
From Table 4, it can be seen that the electric field strength is extremely reduced as compared with the case without shielding. Further, it can be seen from FIG. 14 that the way of current flow is more parallel than when there is no shielding and is concentrated on the linear conductor 51. It is presumed that most of the current gathered in the linear conductor 51 and protected the buried pipe 10 by burying the linear conductor 51 having a high conductivity above the buried pipe 10. Considering the dielectric breakdown of the insulation coating (soil resistance ρs = 100 Ω · m)
3.31E + 3V << 2.0E + 5V
It became. From this result, it was found that the dielectric breakdown voltage value of polyethylene was much lower. An excellent shielding effect can be expected as a shielding measure.

<線状導電体61(半割れ管)>
表5は、変形例1の図10のように判割れ管形状の線状導電体61を用いて遮蔽した場合の埋設管10の位置での電界強度を示す。なお、線状導電体61の埋設深さを地下1.2mとし、内径、外径、厚さ、長さ、体積固有抵抗、比透磁率は鞘管20と同じとする。
<Linear conductor 61 (half cracked tube)>
Table 5 shows the electric field strength at the position of the buried tube 10 when shielded by using the cracked tube-shaped linear conductor 61 as shown in FIG. The embedded depth of the linear conductor 61 is 1.2 m underground, and the inner diameter, outer diameter, thickness, length, volume resistivity, and relative permeability are the same as those of the sheath tube 20.

Figure 2010261506
Figure 2010261506

線状導電体61を用いた場合でも遮蔽なしの場合に比べ大幅に電圧が下がっており、遮蔽できていることがわかる。電流が遮蔽なしの場合くらべて、より均等に流れる。線状導電体61で埋設管10の上半分を囲っていることで、電流を遮蔽することができたと推測される。絶縁被覆の絶縁破壊(土壌抵抗ρs=100Ω・m)について考慮すると、電圧では
5.84E+3V≪2.0E+5V
となった。この結果からポリエチレンの絶縁破壊電圧値を下回ることがわかった。このことにより、線状導電体61を用いた場合には非常に効果的な防護策になる。
Even when the linear conductor 61 is used, the voltage is greatly reduced as compared with the case without shielding, and it can be seen that shielding is possible. Current flows more evenly than without shielding. It is presumed that the current could be shielded by surrounding the upper half of the buried pipe 10 with the linear conductor 61. Considering the dielectric breakdown of the insulation coating (soil resistance ρs = 100 Ω · m)
5.84E + 3V << 2.0E + 5V
It became. From this result, it was found that the dielectric breakdown voltage value of polyethylene was lower. This provides a very effective protective measure when the linear conductor 61 is used.

<線状導電体71(複数)>
表6は、変形例2の図11のように複数の線状導電体71を用いて遮蔽した場合の埋設管10の位置での電界強度を示す。なお、線状導電体71の埋設深さ、半径、体積固有抵抗、比透磁率は線状導電体51と同様とする。なお、各線状導電体71の長さは、1.0m、線状導電体同士の間隔は、0.1mとする。
<Linear conductor 71 (plural)>
Table 6 shows the electric field strength at the position of the buried pipe 10 when shielded by using a plurality of linear conductors 71 as shown in FIG. The embedded depth, radius, volume resistivity, and relative permeability of the linear conductor 71 are the same as those of the linear conductor 51. The length of each linear conductor 71 is 1.0 m, and the distance between the linear conductors is 0.1 m.

Figure 2010261506
Figure 2010261506

線状導電体51と同様に電流の流れ方が平行で、線状導電体71に集中する。また、1mの線状導電体71を10cmの間隔で設置しても、線状導電体51を1本埋設したものとほぼ同じく遮蔽できると考えられる。絶縁被覆の絶縁破壊(土壌抵抗ρs=100Ω・m)について考慮すると、電圧では
3.56E+3V≪2.0E+5V
となった。この結果からポリエチレンの絶縁破壊電圧値を大きく下回ることがわかった。遮蔽対策として優れた遮蔽効果が期待できる。
Similar to the linear conductor 51, the current flows in parallel and concentrates on the linear conductor 71. Further, even if 1 m linear conductors 71 are installed at an interval of 10 cm, it can be considered that they can be shielded almost in the same manner as one in which one linear conductor 51 is embedded. Considering the dielectric breakdown of the insulation coating (soil resistance ρs = 100 Ω · m)
3.56E + 3V << 2.0E + 5V
It became. From this result, it was found that the dielectric breakdown voltage value of polyethylene was much lower. An excellent shielding effect can be expected as a shielding measure.

<まとめ>
電界強度について考慮すると、遮蔽物なし(土壌抵抗ρs=100Ω・m)の状態と比べて鞘管20による遮蔽で0.000019%、防護鉄板による遮蔽で0.0062%、線状導電体51(1本)による遮蔽で0.000055%、半割れ管形状の線状導電体61による遮蔽で0.000021%、線状導電体71(複数)による遮蔽で0.099%というデータを得られた。
表7は、各種対策の電圧評価を示す。
<Summary>
Considering the electric field strength, 0.000019% is shielded by the sheath tube 20, 0.0062% is shielded by the protective iron plate, and the linear conductor 51 (1) is compared with the state without the shield (soil resistance ρs = 100Ω · m). Data obtained were 0.000055% by shielding, 0.000021% by shielding by a half-broken tube-shaped linear conductor 61, and 0.099% by shielding by a linear conductor 71 (plural).
Table 7 shows the voltage evaluation of various measures.

Figure 2010261506
Figure 2010261506

表7から遮蔽効果が得られる防護法の順は、線状導電体51(1本)による遮蔽、線状導電体71(複数)による遮蔽、鞘管20による遮蔽、半割れ管形状の線状導電体61による遮蔽、防護鉄板30による遮蔽ということが明らかになった。
また、施工費用、施工時間等を考慮すると、線状導電体71(複数)による遮蔽が最も効果的な埋設管遮蔽構造であると考えられる。
上記シミュレーション結果から本発明は、従来技術と同等以上の雷防護効果を有し、かつ、埋設作業が容易であることがわかる。
From Table 7, the order of the protection methods that can provide the shielding effect is as follows: shielding by the linear conductor 51 (single), shielding by the linear conductors 71 (plural), shielding by the sheath tube 20, and a semi-cracked tubular linear It became clear that the shielding by the conductor 61 and the shielding by the protective iron plate 30 were made.
In consideration of construction cost, construction time, etc., shielding by the linear conductors 71 (multiple) is considered to be the most effective buried pipe shielding structure.
From the above simulation results, it can be seen that the present invention has a lightning protection effect equivalent to or better than that of the prior art, and is easy to bury.

なお、実施例1、変形例1及び変形例2は発明の内容を限定するものではない。例えば、線状導電体は、より線でもよく、また断面が円形以外の三角形、四角形等の多角形でもよい。また、円柱の半割れ管ではなく、角柱の半割れ管であってもよい。図15(A)は断面が三角形の場合の断面図、(B)は断面が四角形の場合の断面図、(C)は線状導電体がより線の場合の断面図、(D)は線状導電体が板状の場合の断面図、(E)は線状導電体が四角柱の半割れ管の場合の断面図、(F)は線状導電体が六角柱の半割れ管の場合の断面図である。このような線状導電体を用いた場合にも実施例1等と同様の効果を得ることができる。また、埋設管及び線状導電体の材質、厚さ、半径、内径、外形等、その距離や、地表との距離等は適宜変更可能である。   In addition, Example 1, Modification 1 and Modification 2 do not limit the content of the invention. For example, the linear conductor may be a stranded wire, or may have a polygonal shape such as a triangle or a quadrangle other than a circle. Further, instead of a cylindrical half cracked tube, a prismatic half cracked tube may be used. 15A is a cross-sectional view when the cross section is a triangle, FIG. 15B is a cross-sectional view when the cross section is a quadrangle, FIG. 15C is a cross-sectional view when the linear conductor is a stranded wire, and FIG. (E) is a cross-sectional view when the linear conductor is a square column half-cracked tube, and (F) is a case where the linear conductor is a hexagonal column half-cracked tube. FIG. Even when such a linear conductor is used, the same effect as in the first embodiment can be obtained. Further, the material, thickness, radius, inner diameter, outer shape, and the like of the buried pipe and the linear conductor can be changed as appropriate, such as the distance to the ground surface.

10 埋設管
51、61、71 線状導電体
100、200、300 埋設管遮蔽構造
10 buried pipes 51, 61, 71 linear conductors 100, 200, 300 buried pipe shielding structure

Claims (10)

導電性の管に絶縁被覆を施した埋設管を雷害から保護する埋設管遮蔽構造であって、
線状導電体を、前記埋設管と地表との間のみに当該埋設管に沿って配置した
ことを特徴とする埋設管遮蔽構造。
A buried pipe shielding structure for protecting a buried pipe with an insulating coating on a conductive pipe from lightning damage,
A buried pipe shielding structure characterized in that a linear conductor is disposed along the buried pipe only between the buried pipe and the ground surface.
導電性の管に絶縁被覆を施した埋設管を雷害から保護する埋設管遮蔽構造であって、
複数の線状導電体を、前記埋設管と地表との間に当該埋設管に沿って縦列に配置し、かつ、前記線状導電体同士は接続されていない
ことを特徴とする埋設管遮蔽構造。
A buried pipe shielding structure for protecting a buried pipe with an insulating coating on a conductive pipe from lightning damage,
A buried pipe shielding structure in which a plurality of linear conductors are arranged in a column along the buried pipe between the buried pipe and the ground surface, and the linear conductors are not connected to each other. .
請求項2記載の埋設管遮蔽構造であって、
前記線状導電体同士の間隔が、前記埋設管の外径の0.25倍以下である
ことを特徴とする埋設管遮蔽構造。
The buried pipe shielding structure according to claim 2,
The buried pipe shielding structure, wherein an interval between the linear conductors is 0.25 times or less of an outer diameter of the buried pipe.
請求項1から3のいずれかに記載の埋設管遮蔽構造であって、
前記線状導電体は、断面が円形の埋設地線であり、
前記埋設地線の断面の直径は、前記埋設管の外径の0.025〜0.1倍であり、
前記埋設管の上部と地表との距離は、当該埋設管の外径の3〜4倍であり、
前記埋設管の上部と前記線状導電体の中心との距離は、当該埋設管の外径の0.5〜1.5倍である
ことを特徴とする埋設管遮蔽構造。
The buried pipe shielding structure according to any one of claims 1 to 3,
The linear conductor is a buried ground wire having a circular cross section,
The diameter of the cross section of the buried ground wire is 0.025 to 0.1 times the outer diameter of the buried pipe,
The distance between the upper part of the buried pipe and the ground surface is 3 to 4 times the outer diameter of the buried pipe,
The buried tube shielding structure, wherein the distance between the upper portion of the buried pipe and the center of the linear conductor is 0.5 to 1.5 times the outer diameter of the buried pipe.
請求項1から3のいずれかに記載の埋設管遮蔽構造であって、
前記線状導電体は、広がった部分が下になった半割れ管であり、
前記半割れ管の内径は、前記埋設管の外径以上であり、
前記埋設管の上部と地表との距離は、当該埋設管の外径の3〜4倍であり、
前記埋設管の上部と前記半割れ管の上部との距離は、当該埋設管の外径の0.5〜1.5倍である
ことを特徴とする埋設管遮蔽構造。
The buried pipe shielding structure according to any one of claims 1 to 3,
The linear conductor is a half-cracked tube with the expanded portion underneath,
The inner diameter of the half cracked tube is equal to or greater than the outer diameter of the buried tube,
The distance between the upper part of the buried pipe and the ground surface is 3 to 4 times the outer diameter of the buried pipe,
The buried pipe shielding structure, wherein a distance between the upper part of the buried pipe and the upper part of the half cracked pipe is 0.5 to 1.5 times the outer diameter of the buried pipe.
導電性の管に絶縁被覆を施した埋設管を雷害から保護する埋設管遮蔽方法であって、
溝内に配置された前記埋設管の上に予め定めた厚さの土砂を敷く間隔確保ステップと、
前記土砂の上のみに線状導電体を、前記埋設管上方からこれに沿って配置する線状導電体配置ステップと、
前記線状導電体の上に土砂を敷くことで前記溝を埋める埋め戻しステップと、
を有することを特徴とする埋設管遮蔽方法。
A buried pipe shielding method for protecting a buried pipe with an insulating coating on a conductive pipe from lightning damage,
An interval securing step for spreading earth and sand having a predetermined thickness on the buried pipe disposed in the groove;
A linear conductor arranging step for arranging a linear conductor only on the earth and sand along the buried pipe from above,
A backfilling step of filling the groove by laying earth and sand on the linear conductor;
A buried pipe shielding method characterized by comprising:
導電性の管に絶縁被覆を施した埋設管を雷害から保護する埋設管遮蔽方法であって、
溝内に配置された前記埋設管の上に予め定めた厚さの土砂を敷く間隔確保ステップと、
前記土砂の上に複数の線状導電体を、互いに接続されていない状態で前記埋設管に沿って縦列に配置する線状導電体配置ステップと、
前記線状導電体の上に土砂を敷くことで前記溝を埋める埋め戻しステップと、
を有することを特徴とする埋設管遮蔽方法。
A buried pipe shielding method for protecting a buried pipe with an insulating coating on a conductive pipe from lightning damage,
An interval securing step for spreading earth and sand having a predetermined thickness on the buried pipe disposed in the groove;
A plurality of linear conductors on the earth and sand, arranged in a column along the buried pipe in a state where they are not connected to each other;
A backfilling step of filling the groove by laying earth and sand on the linear conductor;
A buried pipe shielding method characterized by comprising:
請求項7記載の埋設管遮蔽方法であって、
前記線状導電体同士の間隔が、前記埋設管の外径の0.25倍以下である
ことを特徴とする埋設管遮蔽方法。
The buried pipe shielding method according to claim 7,
The space | interval of the said linear conductors is 0.25 times or less of the outer diameter of the said buried pipe. The buried pipe shielding method characterized by the above-mentioned.
請求項6から8のいずれかに記載の埋設管遮蔽方法であって、
前記線状導電体は、断面が円形の埋設地線であり、
前記埋設地線の断面の直径は、前記埋設管の外径の0.025〜0.1倍であり、
前記埋設管の上部と地表との距離は、当該埋設管の外径の3〜4倍であり、
前記埋設管の上部と前記線状導電体の中心との距離は、当該埋設管の外径の0.5〜1.5倍である
ことを特徴とする埋設管遮蔽方法。
The buried pipe shielding method according to any one of claims 6 to 8,
The linear conductor is a buried ground wire having a circular cross section,
The diameter of the cross section of the buried ground wire is 0.025 to 0.1 times the outer diameter of the buried pipe,
The distance between the upper part of the buried pipe and the ground surface is 3 to 4 times the outer diameter of the buried pipe,
The buried pipe shielding method, wherein the distance between the upper part of the buried pipe and the center of the linear conductor is 0.5 to 1.5 times the outer diameter of the buried pipe.
請求項6から8のいずれかに記載の埋設管遮蔽方法であって、
前記線状導電体は、広がった部分が下になった半割れ管であり、
前記半割れ管の内径は、前記埋設管の外径以上であり、
前記埋設管の上部と地表との距離は、当該埋設管の外径の3〜4倍であり、
前記埋設管の上部と前記半割れ管の上部との距離は、当該埋設管の外径の0.5〜1.5倍である
ことを特徴とする埋設管遮蔽方法。
The buried pipe shielding method according to any one of claims 6 to 8,
The linear conductor is a half-cracked tube with the expanded portion underneath,
The inner diameter of the half cracked tube is equal to or greater than the outer diameter of the buried tube,
The distance between the upper part of the buried pipe and the ground surface is 3 to 4 times the outer diameter of the buried pipe,
The distance between the upper part of the buried pipe and the upper part of the half cracked pipe is 0.5 to 1.5 times the outer diameter of the buried pipe.
JP2009112639A 2009-05-07 2009-05-07 Buried pipe shielding structure and buried pipe shielding method Pending JP2010261506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009112639A JP2010261506A (en) 2009-05-07 2009-05-07 Buried pipe shielding structure and buried pipe shielding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009112639A JP2010261506A (en) 2009-05-07 2009-05-07 Buried pipe shielding structure and buried pipe shielding method

Publications (1)

Publication Number Publication Date
JP2010261506A true JP2010261506A (en) 2010-11-18

Family

ID=43359759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009112639A Pending JP2010261506A (en) 2009-05-07 2009-05-07 Buried pipe shielding structure and buried pipe shielding method

Country Status (1)

Country Link
JP (1) JP2010261506A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159841A (en) * 2019-05-30 2019-08-23 国网河南省电力公司电力科学研究院 A kind of buried oil-gas pipeline limiting surge voltage
CN112540236A (en) * 2020-11-20 2021-03-23 国网四川省电力公司经济技术研究院 Method and device for shielding corridor electric field exceeding low potential of overhead transmission line

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948116A (en) * 1972-09-11 1974-05-10
US4012670A (en) * 1975-05-12 1977-03-15 Interpace Corporation Protecting reinforced concrete pipe lines from lightning damage
JPH01172691A (en) * 1987-12-26 1989-07-07 Nkk Corp Embedment of piping and cable
JPH03288081A (en) * 1990-04-05 1991-12-18 Nkk Corp Electromagnetic shielding structure for buried conduit
JPH05280664A (en) * 1992-04-03 1993-10-26 Tokyo Gas Co Ltd Piping method and piping material used in this method
JPH07229581A (en) * 1994-02-17 1995-08-29 Sekisui Chem Co Ltd Pipe body laying structure
JPH10252382A (en) * 1997-03-12 1998-09-22 Osaka Gas Co Ltd Installation method of protection plate for thrusting pipe and thrusting pipe with protection pipe
JP2000046284A (en) * 1998-07-28 2000-02-18 Osaka Gas Co Ltd Buried pipe protecting cover
JP2002238140A (en) * 2001-02-09 2002-08-23 Showa Electric Wire & Cable Co Ltd Buried conduit line and its installation method
JP2003083482A (en) * 2001-09-13 2003-03-19 Tokyo Gas Co Ltd Lightning resisting tube

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948116A (en) * 1972-09-11 1974-05-10
US4012670A (en) * 1975-05-12 1977-03-15 Interpace Corporation Protecting reinforced concrete pipe lines from lightning damage
JPH01172691A (en) * 1987-12-26 1989-07-07 Nkk Corp Embedment of piping and cable
JPH03288081A (en) * 1990-04-05 1991-12-18 Nkk Corp Electromagnetic shielding structure for buried conduit
JPH05280664A (en) * 1992-04-03 1993-10-26 Tokyo Gas Co Ltd Piping method and piping material used in this method
JPH07229581A (en) * 1994-02-17 1995-08-29 Sekisui Chem Co Ltd Pipe body laying structure
JPH10252382A (en) * 1997-03-12 1998-09-22 Osaka Gas Co Ltd Installation method of protection plate for thrusting pipe and thrusting pipe with protection pipe
JP2000046284A (en) * 1998-07-28 2000-02-18 Osaka Gas Co Ltd Buried pipe protecting cover
JP2002238140A (en) * 2001-02-09 2002-08-23 Showa Electric Wire & Cable Co Ltd Buried conduit line and its installation method
JP2003083482A (en) * 2001-09-13 2003-03-19 Tokyo Gas Co Ltd Lightning resisting tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110159841A (en) * 2019-05-30 2019-08-23 国网河南省电力公司电力科学研究院 A kind of buried oil-gas pipeline limiting surge voltage
CN112540236A (en) * 2020-11-20 2021-03-23 国网四川省电力公司经济技术研究院 Method and device for shielding corridor electric field exceeding low potential of overhead transmission line
CN112540236B (en) * 2020-11-20 2024-04-02 国网四川省电力公司经济技术研究院 Overhead transmission line corridor electric field standard exceeding low potential shielding method and device

Similar Documents

Publication Publication Date Title
US10974939B2 (en) Inductor to control transient currents during energized bond on
JP4453923B2 (en) Equipotential grounding system and its construction method
CN107394428B (en) Grounding system for co-location of shielding type direct current grounding electrode and converter station grounding grid
Khan et al. Efficient use of low resistivity material for grounding resistance reduction in high soil resistivity areas
JP2010261506A (en) Buried pipe shielding structure and buried pipe shielding method
Prasad et al. Soil resistivity and earthing system
Al-Arainy et al. Optimized pit configuration for efficient grounding of the power system in high resistivity soils using low resistivity materials
CN105429034A (en) Grounding device of transformer substation containing inlet and outlet cables and mounting method thereof
Dabkowski et al. Mitigation of Buried Pipeline Voltages Due to 60 Hz AC Inductive Coupling Part II--Pipeline Grounding Methods
US9935448B2 (en) Power cable, power cable system, method of grounding power cable system and method of constructing power cable system
Desai Design and analysis of ground grid system for substation using E-TAP software and FDM code in MATLAB
JP4425171B2 (en) Grounding suspension lines for optical communication cables
CN104184015A (en) Installation construction process for grounding device
JP5270470B2 (en) Pipeline electromagnetic induction voltage reduction device
Elmashtoly et al. Mitigating Hazardous Potentials Near Pipelines Using Passive Grounding Grids
US6866770B2 (en) Protective ground mat for induced potentials and method therefor
Adedeji et al. Pipeline grounding condition: A control of pipe-to-soil potential for AC interference induced corrosion reduction
CN109872845A (en) A kind of resistance to dilatory cable
KR20190133117A (en) Grounding Work Method Using Bare Wire
KR100754488B1 (en) Earth unit and earth method using the same
RU146246U1 (en) DEVICE FOR PROTECTING PIPELINES FROM CORROSION DESTRUCTION UNDER THE INFLUENCE OF LIGHTNING CURRENTS
Durham et al. Ground systems design considerations for vessels [in petroleum industry]
JP6854415B2 (en) Underground power transmission line with reduced magnetic field
JP3060482B2 (en) Electromagnetic shielding structure of buried conduit
Whitaker Facility Grounding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130625