JP2010260886A - Method for producing cross-linked polyester resin - Google Patents

Method for producing cross-linked polyester resin Download PDF

Info

Publication number
JP2010260886A
JP2010260886A JP2009110376A JP2009110376A JP2010260886A JP 2010260886 A JP2010260886 A JP 2010260886A JP 2009110376 A JP2009110376 A JP 2009110376A JP 2009110376 A JP2009110376 A JP 2009110376A JP 2010260886 A JP2010260886 A JP 2010260886A
Authority
JP
Japan
Prior art keywords
polyester resin
cross
reaction
raw material
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009110376A
Other languages
Japanese (ja)
Other versions
JP5225193B2 (en
Inventor
Sachiko Watanabe
祥子 渡辺
Sadaji Kawabe
貞治 川部
Shogo Okubo
省吾 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2009110376A priority Critical patent/JP5225193B2/en
Publication of JP2010260886A publication Critical patent/JP2010260886A/en
Application granted granted Critical
Publication of JP5225193B2 publication Critical patent/JP5225193B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a cross-linked polyester resin, by which air and water contained in an unsaturated double bond-having polyester resin fed as a raw material can be removed before a reaction with a cross-linking initiator to uniformly perform the cross-linking reaction, thereby producing the cross-linked polyester resin having uniform physical properties. <P>SOLUTION: This method for producing the cross-linked polyester resin comprises sequentially performing the following processes (1) to (5) with an extruder having a raw material-feeding portion 1, a degasifying portion 2, a cross-linking initiator-feeding portion 3, and an extruding portion 4: (1) the process for feeding the unsaturated double bond-having polyester resin A from the raw material-feeding portion 1, (2) the process for melt-mixing the polyester resin A between the raw material-feeding portion 1 and the degasifying portion 2, (3) the process for degasifying the polyester resin A melted and mixed in the degasifying portion 2, (4) the process for feeding the cross-linking initiator to the degasified polyester resin A from the cross-linking initiator-feeding portion 3 to perform a cross-linking reaction, and (5) the process for extruding the cross-linked polyester resin from the extruding portion 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、押出機を用いて不飽和二重結合を有するポリエステル樹脂の架橋反応を行う架橋ポリエステル樹脂の製造方法に関する。 The present invention relates to a method for producing a crosslinked polyester resin in which a polyester resin having an unsaturated double bond is crosslinked using an extruder.

近年、合成樹脂に要求される性能や品質は高まるばかりであり、異なる性質や機能を同時に満たすことが求められることも多い。また、それらの要求は産業の分野や業種別で実に多様で、それぞれに対応するためには、単独の合成樹脂では困難である。   In recent years, the performance and quality required for synthetic resins have only increased, and it is often required to satisfy different properties and functions simultaneously. In addition, these requirements vary greatly depending on the field of industry and type of industry, and it is difficult for a single synthetic resin to cope with each.

この解決法として、複数の合成樹脂を用いたポリマーアロイの手法が多用されている。また、押出機を用いたリアクティブプロセッシングと呼ばれる手法により特徴的な性能を有する合成樹脂が製造されている。
例えば、トナー用として低温定着性に優れた架橋ポリエステル樹脂の製造方法として、特許文献1には二軸押出機を用いて、不飽和二重結合を有するポリエステル樹脂と有機過酸化物の混合物を溶融混練しながら架橋反応させ、架橋反応後に脱揮発器により揮発分を除去する架橋ポリエステル樹脂を得る方法が記載されている。
特開平5−249739号公報
As a solution to this problem, a polymer alloy technique using a plurality of synthetic resins is frequently used. In addition, synthetic resins having characteristic performance are manufactured by a technique called reactive processing using an extruder.
For example, as a method for producing a crosslinked polyester resin excellent in low-temperature fixability for toner, Patent Document 1 uses a twin-screw extruder to melt a mixture of a polyester resin having an unsaturated double bond and an organic peroxide. A method is described in which a cross-linking reaction is performed while kneading, and a cross-linked polyester resin is obtained in which a volatile component is removed by a devolatilizer after the cross-linking reaction.
JP-A-5-249739

通常、押出機で不飽和二重結合を有するポリエステル樹脂を溶融させながら反応させる場合、樹脂原料は粉やペレットなど粉粒体の形状をしていることが多く、押出機に供給する際に、空気や水分が混入しやすい。とりわけ空気中の酸素は不飽和二重結合を有するポリエステル樹脂と架橋開始剤との反応を阻害することが知られている。   Normally, when the polyester resin having an unsaturated double bond is reacted while being melted in an extruder, the resin raw material is often in the form of a granular material such as a powder or a pellet. Air and moisture are easily mixed. In particular, oxygen in the air is known to inhibit the reaction between a polyester resin having an unsaturated double bond and a crosslinking initiator.

特許文献1の方法では、架橋反応後に脱気を行っているために、架橋反応の際の酸素や水分の影響を抑制することが困難であり、架橋反応が不規則に変化し、得られる架橋ポリエステル樹脂の物性が不均一となりやすい。   In the method of Patent Document 1, since deaeration is performed after the cross-linking reaction, it is difficult to suppress the influence of oxygen and moisture during the cross-linking reaction, and the cross-linking reaction changes irregularly, resulting in cross-linking. Polyester resin properties tend to be non-uniform.

本発明は、架橋反応を均一に行い、均一な物性の架橋ポリエステル樹脂の製造方法を提供することにある。   An object of the present invention is to provide a method for producing a crosslinked polyester resin having a uniform physical property by uniformly performing a crosslinking reaction.

本発明の要旨は、原料供給部1、脱気部2、架橋開始剤供給部3、及び吐出部4を有する押出機を用いて、(1)〜(5)の工程を順次行う架橋ポリエステル樹脂の製造方法にある。
(1)原料供給部1から不飽和二重結合を有するポリエステル樹脂Aを供給する工程
(2)原料供給部1と脱気部2の間でポリエステル樹脂Aを溶融混合する工程
(3)脱気部2で溶融混合したポリエステル樹脂Aの脱気を行う工程
(4)脱気を行ったポリエステル樹脂Aに、架橋開始剤供給部3から架橋開始剤を供給し、架橋反応を行う工程
(5)吐出部4から架橋反応した架橋ポリエステル樹脂を吐出する工程
The gist of the present invention is a cross-linked polyester resin in which the steps (1) to (5) are sequentially performed using an extruder having a raw material supply unit 1, a deaeration unit 2, a cross-linking initiator supply unit 3, and a discharge unit 4. It is in the manufacturing method.
(1) Step of supplying polyester resin A having an unsaturated double bond from raw material supply unit 1 (2) Step of melting and mixing polyester resin A between raw material supply unit 1 and degassing unit 2 (3) Degassing Step (4) for degassing polyester resin A melt-mixed in part 2 Step (5) for supplying cross-linking initiator to degassed polyester resin A from cross-linking initiator supply unit 3 and performing cross-linking reaction Step of discharging the cross-linked polyester resin cross-linked from the discharge unit 4

本発明により、均一な物性の架橋ポリエステル樹脂が得られる。また、運転状態が安定し工業的に有利となる。   According to the present invention, a crosslinked polyester resin having uniform physical properties can be obtained. In addition, the operating state is stable and industrially advantageous.

本発明では、原料供給部1、脱気部2、架橋開始剤供給部3、及び吐出部4を有する押出機を用いて、(1)〜(5)の工程を順次行い、不飽和二重結合を有するポリエステル樹脂Aの架橋反応を行う。
(1)原料供給部1から不飽和二重結合を有するポリエステル樹脂Aを供給する工程
(2)原料供給部1と脱気部2の間でポリエステル樹脂Aを溶融混合する工程
(3)脱気部2で溶融混合したポリエステル樹脂Aの脱気を行う工程
(4)脱気を行ったポリエステル樹脂Aに、架橋開始剤供給部3から架橋開始剤を供給し、架橋反応を行う工程
(5)吐出部4から架橋反応した架橋ポリエステル樹脂を吐出する工程
本発明では、原料供給部1、脱気部2、架橋開始剤供給部3、及び吐出部4を有する押出機を用いることが必要である。
In this invention, using the extruder which has the raw material supply part 1, the deaeration part 2, the crosslinking initiator supply part 3, and the discharge part 4, the process of (1)-(5) is performed sequentially and unsaturated double Crosslinking reaction of the polyester resin A having a bond is performed.
(1) Step of supplying polyester resin A having an unsaturated double bond from raw material supply unit 1 (2) Step of melting and mixing polyester resin A between raw material supply unit 1 and degassing unit 2 (3) Degassing Step (4) of degassing polyester resin A melt-mixed in part 2 (5) Step of supplying cross-linking initiator from cross-linking initiator supply unit 3 to degassed polyester resin A and performing cross-linking reaction (5) In the present invention, it is necessary to use an extruder having a raw material supply unit 1, a degassing unit 2, a crosslinking initiator supply unit 3, and a discharge unit 4. .

不飽和二重結合を有するポリエステル樹脂を架橋開始剤を用いて架橋反応する場合、
反応系内の水分や、反応禁止剤として働く空気中の酸素の量が変動すると、架橋反応が均一に行われずに得られる架橋ポリエステル樹脂の物性にばらつきが生じる。
When a polyester resin having an unsaturated double bond is subjected to a crosslinking reaction using a crosslinking initiator,
If the amount of moisture in the reaction system or the amount of oxygen in the air that acts as a reaction inhibitor varies, the physical properties of the cross-linked polyester resin obtained without a uniform cross-linking reaction will vary.

本発明では、原料供給部1と架橋開始剤供給部3の間に、脱気部2を設けることにより、原料として供給される不飽和二重結合を有するポリエステル樹脂に含まれる空気や水分を、架橋反応の前に取り除く事が可能となり、架橋反応が均一に行われ、均一な物性の架橋ポリエステル樹脂が得られる。
なお、本発明の押出機は、公知の単軸押出機、二軸押出機、多軸押出機などが使用できる。中でも二軸押出機は、混練効果が高いため、好適である。二軸押出機であれば、スクリューの回転方向および組み合わせは、同方向回転式/異方向回転式、噛み合い式/非噛み合い式のいずれでも使用できる。中でも、同方向回転完全噛み合い式が内部のセルフクリーニング性が高いため好適である。二軸押出機は、基本的に、材料を搬送しながら材料にモーターからの回転エネルギーを与えるスクリューと、スクリューを内部に保持するシリンダによって構成される。スクリューやシリンダの樹脂原料と接する部分に使用される材質は樹脂原料により適宜選択できる。窒化鋼などの耐磨耗材、ニッケル系合金などの耐腐食材、HIP材として知られる耐腐食耐磨耗材などが使用できる。
押出機の大きさ、すなわち、スクリュー径と長さは、処理量および反応に要する時間によって適宜選定すれば良い。スクリュー径は、15mmから200mm程度が好適である。また、シリンダの全長もしくはスクリューの長さは、スクリュー径の20倍から100倍程度が好適である。
シリンダには、温度を制御するために、外部ヒーター、外部ジャケット、内部ジャケットなどを用いることができる。外部ヒーターには、バンドヒーターや、アルミ鋳込みヒーター、真鍮鋳込みヒーターなどを用いることができる。外部ジャケットや内部ジャケットの場合は、温冷水や熱媒などを流して温度を制御することができる。これらを組み合わせて使用することもなんら問題は無い。より細かい温度制御を可能とするために、シリンダを複数のブロックに分割したものを組み合わせる構成として、これらのヒーターやジャケットは分割された区分ごと設けることがより好適である。
シリンダの温度は、取り扱う不飽和二重結合を有するポリエステル樹脂や架橋開始剤に応じて適宜設定する事ができる。
In the present invention, by providing the deaeration unit 2 between the raw material supply unit 1 and the crosslinking initiator supply unit 3, the air and moisture contained in the polyester resin having an unsaturated double bond supplied as a raw material, It can be removed before the cross-linking reaction, the cross-linking reaction is uniformly performed, and a cross-linked polyester resin having uniform physical properties can be obtained.
In addition, a well-known single screw extruder, a twin screw extruder, a multi screw extruder etc. can be used for the extruder of this invention. Among these, a twin screw extruder is preferable because of its high kneading effect. If it is a twin screw extruder, the rotation direction and combination of a screw can use any of a same direction rotation type / different direction rotation type, a meshing type / non-meshing type. Among them, the same direction rotation complete meshing type is preferable because of its high internal self-cleaning property. The twin-screw extruder is basically constituted by a screw that gives rotational energy from a motor to a material while conveying the material, and a cylinder that holds the screw inside. The material used for the part in contact with the resin material of the screw or cylinder can be appropriately selected depending on the resin material. Wear-resistant materials such as nitrided steel, corrosion-resistant materials such as nickel-based alloys, and corrosion-resistant and wear-resistant materials known as HIP materials can be used.
What is necessary is just to select suitably the magnitude | size of an extruder, ie, a screw diameter and length, according to processing amount and time which reaction requires. The screw diameter is preferably about 15 mm to 200 mm. The total length of the cylinder or the length of the screw is preferably about 20 to 100 times the screw diameter.
For the cylinder, an external heater, an external jacket, an internal jacket, or the like can be used to control the temperature. As the external heater, a band heater, an aluminum cast heater, a brass cast heater, or the like can be used. In the case of an outer jacket or an inner jacket, the temperature can be controlled by flowing hot / cold water or a heating medium. There is no problem using these in combination. In order to enable finer temperature control, it is more preferable to provide these heaters and jackets for each divided section as a combination of the cylinders divided into a plurality of blocks.
The temperature of the cylinder can be appropriately set according to the polyester resin having an unsaturated double bond to be handled or the crosslinking initiator.

次に各工程について説明する。   Next, each step will be described.

(1)原料供給部1から不飽和二重結合を有するポリエステル樹脂Aを供給する工程
本発明において、不飽和二重結合とは、炭素間二重結合であり、これをポリエステル樹脂の主鎖および/または側鎖に有するものを不飽和二重結合を有するポリエステル樹脂とする。不飽和二重結合をポリエステル樹脂の主鎖および/または側鎖に有するためには、不飽和二重結合を有するカルボン酸化合物および/または不飽和二重結合を有するアルコール化合物を用いて重縮合反応を行い、これらの化合物をポリエステル樹脂の構成成分として取り込めばよい。
(1) Step of supplying the polyester resin A having an unsaturated double bond from the raw material supply unit 1 In the present invention, the unsaturated double bond is a carbon-carbon double bond, which is the main chain of the polyester resin and A polyester resin having an unsaturated double bond is used in the side chain. In order to have an unsaturated double bond in the main chain and / or side chain of the polyester resin, a polycondensation reaction using a carboxylic acid compound having an unsaturated double bond and / or an alcohol compound having an unsaturated double bond And these compounds may be incorporated as a constituent component of the polyester resin.

不飽和二重結合を有するカルボン酸化合物の例としては、例えば、フマル酸、マレイン酸、無水マレイン酸、シトラコン酸、イタコン酸、テトラヒドロフタル酸およびこれらのエステル誘導体、アクリル酸、クロトン酸、メタクリル酸およびこれらのエステル誘導体等が挙げられる。また、不飽和二重結合を有するアルコール化合物としては、例えば、1,4−ジヒドロキシ−2−ブテン等が挙げられる。   Examples of carboxylic acid compounds having an unsaturated double bond include, for example, fumaric acid, maleic acid, maleic anhydride, citraconic acid, itaconic acid, tetrahydrophthalic acid and ester derivatives thereof, acrylic acid, crotonic acid, methacrylic acid And ester derivatives thereof. Examples of the alcohol compound having an unsaturated double bond include 1,4-dihydroxy-2-butene.

これらの中では、反応性の観点から、フマル酸、マレイン酸、無水マレイン酸から選ばれる少なくとも1種が特に好ましい。   Among these, at least one selected from fumaric acid, maleic acid, and maleic anhydride is particularly preferable from the viewpoint of reactivity.

また、不飽和二重結合を有するポリエステル樹脂は2種以上用いても良く、脱気部2で脱気を行う前であれば、原料供給部が複数あっても良い。   Two or more polyester resins having an unsaturated double bond may be used, and a plurality of raw material supply units may be provided before deaeration in the deaeration unit 2.

(2)原料供給部1と脱気部2の間でポリエステル樹脂Aを溶融混合する工程
本発明では原料供給部1と脱気部2の間に溶融混合部6を有する。溶融混合することで温度が上昇し水分が蒸発しやすくなり、また、樹脂が流動化することでポリエステル樹脂A内部に溶解していたガス成分や水分も除去しやすくなり脱気効果が高くなる。
(2) Step of Melting and Mixing Polyester Resin A Between Raw Material Supply Unit 1 and Degassing Unit 2 In the present invention, a melt mixing unit 6 is provided between the raw material supply unit 1 and the degassing unit 2. By melting and mixing, the temperature rises and moisture easily evaporates, and when the resin fluidizes, the gas components and moisture dissolved in the polyester resin A can be easily removed and the deaeration effect is enhanced.

(3)脱気部2で溶融混合したポリエステル樹脂Aの脱気を行う工程
溶融混合部部を通過したポリエステル樹脂Aは、脱気部2を通過する際に、減圧環境下におかれ、ポリエステル樹脂Aとともに押出機に混入した空気と水分が取り除かれる。この工程により架橋反応が均一に行われ、均一な物性の架橋ポリエステル樹脂が得られる。
(3) Step of degassing polyester resin A melt-mixed in degassing section 2 When polyester resin A that has passed through the melt-mixing section is passed through the degassing section 2, it is placed in a reduced pressure environment, and polyester The air and moisture mixed in the extruder together with the resin A are removed. By this step, the crosslinking reaction is uniformly performed, and a crosslinked polyester resin having uniform physical properties is obtained.

脱気部2の圧力は、大気圧以下の減圧状態であることが必要である。大気圧以下の減圧状態にすることにより、ポリエステル樹脂Aとともに押出機に混入した空気と水分が効率よく取り除かれて、ポリエステル樹脂Aと架橋開始剤との反応が安定する。   The pressure of the deaeration part 2 needs to be a reduced pressure state equal to or lower than the atmospheric pressure. By reducing the pressure to less than atmospheric pressure, the air and moisture mixed in the extruder together with the polyester resin A are efficiently removed, and the reaction between the polyester resin A and the crosslinking initiator is stabilized.

反応の安定性をより高めるために、脱気部2の圧力は、−40kPa(ゲージ圧)以下の圧力であることが好ましい。脱気部2の圧力を、−40kPa(ゲージ圧)以下の圧力とすることで、より少ない量の架橋開始剤で高い反応率を得る事ができる。
脱気部2を減圧するための手段には、真空ポンプなど公知の減圧手段を使用することができる。脱気部2と真空ポンプ等の減圧手段の間に、吸気ガスを冷却する手段を設けることもできる。
In order to further enhance the stability of the reaction, the pressure in the deaeration unit 2 is preferably a pressure of −40 kPa (gauge pressure) or less. By setting the pressure of the deaeration unit 2 to a pressure of −40 kPa (gauge pressure) or less, a high reaction rate can be obtained with a smaller amount of the crosslinking initiator.
As a means for decompressing the deaeration unit 2, a known decompression means such as a vacuum pump can be used. A means for cooling the intake gas may be provided between the deaeration unit 2 and a decompression means such as a vacuum pump.

(4)脱気を行ったポリエステル樹脂Aに、架橋開始剤供給部3から架橋開始剤を供給し、架橋反応を行う工程
本発明では、溶融混合したポリエステル樹脂Aの脱気を行った後に、架橋開始剤を供給しポリエステル樹脂Aの架橋反応を行うことにより、空気中の酸素や水分による影響を受けずに安定した架橋反応が可能となり、均一な物性の架橋ポリエステル樹脂が得られる。
(4) Step of supplying a crosslinking initiator from the crosslinking initiator supply unit 3 to the degassed polyester resin A and performing a crosslinking reaction In the present invention, after degassing the melt-mixed polyester resin A, By supplying a crosslinking initiator and performing a crosslinking reaction of the polyester resin A, a stable crosslinking reaction is possible without being affected by oxygen or moisture in the air, and a crosslinked polyester resin having uniform physical properties can be obtained.

架橋開始剤としては、特に制限されず、アゾ化合物や有機過酸化物が用いられる。中でも開始剤効率が高く、シアン化合物副生成物を生成しないことから、有機過酸化物が好ましい。   The crosslinking initiator is not particularly limited, and an azo compound or an organic peroxide is used. Among them, an organic peroxide is preferable because it has high initiator efficiency and does not generate a cyanide byproduct.

有機過酸化物としては、特に制限されないが、例えば、ベンゾイルパーオキシド、ジ−t−ブチルパーオキシド、t−ブチルクミルパーオキシド、ジクミルパーオキシド、α、α−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)へキサン、ジ−t−へキシルパーオキシド、2,5−ジメチル−2,5−ジ−t−ブチルパーオキシへキシン−3、アセチルパーオキシド、イソブチリルパーオキシド、オクタニノルパーオキシド、デカノリルパーオキシド、ラウロイルパーオキシド、3,3,5−トリメチルヘキサノイルパーオキシド、m−トルイルパーオキシド、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシネオデカノエート、クミルパーオキシネオデカノエート、t−ブチルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシ3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシベンソエート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシアセテート等が挙げられる。   The organic peroxide is not particularly limited. For example, benzoyl peroxide, di-t-butyl peroxide, t-butylcumyl peroxide, dicumyl peroxide, α, α-bis (t-butylperoxy) Diisopropylbenzene, 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di-t-butylperoxy Hexin-3, acetyl peroxide, isobutyryl peroxide, octaninoroxide, decanolyl peroxide, lauroyl peroxide, 3,3,5-trimethylhexanoyl peroxide, m-toluyl peroxide, t-butyl peroxide Oxyisobutyrate, t-butylperoxyneodecanoate, cumylperoxyneodecanoate T-butyl peroxy 2-ethylhexanoate, t-butyl peroxy 3,5,5-trimethylhexanoate, t-butyl peroxylaurate, t-butyl peroxybenzoate, t-butyl peroxy Examples thereof include oxyisopropyl carbonate and t-butyl peroxyacetate.

架橋開始剤の押出機への供給方法は、特に制限されず、架橋開始剤単体を供給してもよいし、架橋開始剤を希釈剤で希釈して供給してもよい。   The method for supplying the crosslinking initiator to the extruder is not particularly limited, and the crosslinking initiator alone may be supplied, or the crosslinking initiator may be diluted with a diluent and supplied.

架橋開始剤の供給温度は特に制限されないが、架橋開始剤の分解を抑制する点から開始剤の10時間半減期温度より低いことが好ましい。   The supply temperature of the crosslinking initiator is not particularly limited, but is preferably lower than the 10-hour half-life temperature of the initiator from the viewpoint of suppressing the decomposition of the crosslinking initiator.

また、架橋開始剤を希釈剤で希釈することが、局所的な架橋反応を防止する点から好ましいが、希釈剤は、トナー用ポリエステル樹脂中に残存することになる。そこで、トナー用ポリエステル樹脂中に残存しても、トナー製造に悪影響を及ぼさない点から、希釈剤で希釈する場合はトナーの添加剤として使用される離型剤を希釈剤として用いることが好ましい。   Further, it is preferable to dilute the crosslinking initiator with a diluent from the viewpoint of preventing local crosslinking reaction, but the diluent remains in the polyester resin for toner. In view of the above, even if it remains in the polyester resin for toner, it does not adversely affect the toner production. Therefore, when diluting with a diluent, it is preferable to use a release agent used as a toner additive as the diluent.

さらに該離型剤が不飽和二重結合の架橋反応を阻害しないことが好ましく、このような離型剤として炭化水素系の離型剤が好ましく、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、マイクロクリスタリンワックス、パラフィンワックス等の脂肪族炭化水素系ワックス、酸化ポリエチレンワックス等の脂肪族炭化水素系ワックスの酸化物、またはこれらのブロック化合物などが挙げられる。   Furthermore, it is preferable that the release agent does not inhibit the crosslinking reaction of unsaturated double bonds, and as such a release agent, a hydrocarbon-type release agent is preferable, for example, low molecular weight polyethylene, low molecular weight polypropylene, microcrystalline. Examples thereof include aliphatic hydrocarbon waxes such as wax and paraffin wax, oxides of aliphatic hydrocarbon waxes such as oxidized polyethylene wax, and block compounds thereof.

これらの中では、架橋開始剤との混合が容易であり、トナーの低温定着性をさらに高めることができる傾向にあることから、離型剤の融点は120℃以下であることが好ましい。融点が120℃以下の離型剤としては、パラフィンワックスが最も好ましく、日本精鑞社製HNPシリーズ:例えばHNP−3(融点64℃)、HNP−5(融点62℃)、HNP−9、10(融点75℃)、HNP−11(融点68℃)、HNP−12(融点67℃)、HNP−51(融点77℃)、SPシリーズ:例えば、SP−0165(融点74℃)、SP−0160(融点71℃)、SP−0145(融点62℃)、HNP−3(融点64℃)、FTシリーズ:FT−0070(融点72℃)、FT−0165(融点73℃)等が挙げられる。   Among these, the melting point of the release agent is preferably 120 ° C. or less because mixing with the crosslinking initiator is easy and the low-temperature fixability of the toner tends to be further improved. As the mold release agent having a melting point of 120 ° C. or less, paraffin wax is most preferable, and HNP series manufactured by Nippon Seiki Co., Ltd .: for example, HNP-3 (melting point 64 ° C.), HNP-5 (melting point 62 ° C.), HNP-9, 10 (Melting point 75 ° C.), HNP-11 (melting point 68 ° C.), HNP-12 (melting point 67 ° C.), HNP-51 (melting point 77 ° C.), SP series: SP-0165 (melting point 74 ° C.), SP-0160, for example (Melting point 71 ° C.), SP-0145 (melting point 62 ° C.), HNP-3 (melting point 64 ° C.), FT series: FT-0070 (melting point 72 ° C.), FT-0165 (melting point 73 ° C.) and the like.

架橋開始剤の供給は公知の供給方法を使用することができ、その方法に何ら制限は無い。本発明では、不飽和二重結合を有するポリエステル樹脂と架橋開始剤の比率を制御することが品質上好ましく、架橋開始剤の供給には定量ポンプを用いることが好適である。   A known supply method can be used to supply the crosslinking initiator, and the method is not limited. In the present invention, it is preferable in terms of quality to control the ratio of the polyester resin having an unsaturated double bond and the crosslinking initiator, and it is preferable to use a metering pump for supplying the crosslinking initiator.

また、架橋反応部7のスクリューには、順送りスクリューやニーディングディスクや逆送りスクリューなどを適宜組み合わせる事ができる。   Moreover, a forward feed screw, a kneading disk, a reverse feed screw, or the like can be appropriately combined with the screw of the crosslinking reaction section 7.

さらに本発明において、ポリエステル樹脂と架橋開始剤のほかに、顔料などの着色剤、充填材などの無機化合物、グラスファイバーやカーボンファイバーなどの補強充填材を離型剤や流動性向上剤、荷電制御剤や安定剤など各種添加剤を押出機に供給することも何ら問題はない。これらの添加剤は、原料と同時または架橋反応を行った後に添加することが好ましい。   Furthermore, in the present invention, in addition to the polyester resin and the crosslinking initiator, coloring agents such as pigments, inorganic compounds such as fillers, reinforcing fillers such as glass fibers and carbon fibers, mold release agents, fluidity improvers, and charge control There is no problem in supplying various additives such as additives and stabilizers to the extruder. These additives are preferably added simultaneously with the raw materials or after carrying out a crosslinking reaction.

(5)吐出部4から架橋反応した架橋ポリエステル樹脂を吐出する工程
架橋反応が終了した樹脂は吐出部4から押し出され適宜冷却した後、造粒機や粉砕機で粉粒体に加工する。ホットカッターなどで造粒したのちに冷却する方法も使用できる。
(5) Step of discharging the cross-linked polyester resin subjected to the cross-linking reaction from the discharge unit 4 The resin after the cross-linking reaction is extruded from the discharge unit 4 and appropriately cooled, and then processed into a granular material by a granulator or a pulverizer. A method of cooling after granulation with a hot cutter or the like can also be used.

また、必要に応じて架橋反応部7と吐出部4の間に、得られた架橋ポリエステル樹脂中の揮発成分を除去するために、必要に応じて脱揮部を設けても良い。   Moreover, in order to remove the volatile component in the obtained crosslinked polyester resin between the crosslinking reaction part 7 and the discharge part 4, you may provide a devolatilization part as needed.

以下に本発明の実施例を示す。評価は以下に示す方法で行った。   Examples of the present invention are shown below. Evaluation was performed by the method shown below.

(架橋反応の均一性の評価)
不飽和ポリエステル樹脂を架橋反応させると、その一部は、テトラヒドロフラン(THF)に溶解しない架橋密度の高い架橋成分(THF不溶分)に変化する。
(Evaluation of uniformity of crosslinking reaction)
When the unsaturated polyester resin is subjected to a crosslinking reaction, a part thereof changes to a crosslinking component (THF insoluble component) having a high crosslinking density that does not dissolve in tetrahydrofuran (THF).

以下の方法で、得られた架橋ポリエステル樹脂のTHF不溶分を測定することで架橋反応の均一性を評価した。   The uniformity of the crosslinking reaction was evaluated by measuring the THF-insoluble content of the obtained crosslinked polyester resin by the following method.

押出機の吐出部から吐出した樹脂を5分に1回ずつの頻度でサンプリングし、30分間で6点のサンプルを採取し、それぞれのサンプルのTHF不溶分を測定した。   The resin discharged from the discharge part of the extruder was sampled at a frequency of once every 5 minutes, 6 samples were collected in 30 minutes, and the THF-insoluble content of each sample was measured.

THF不溶分の測定値の最小値、最大値と平均値から、以下の式により架橋反応の均一性を評価した。
反応均一性=(最大値−最小値)/平均値×100
反応均一性の値が20以下であれば、反応が均一で物性が安定していることを示す。
From the minimum value, the maximum value and the average value of the measured values of the THF-insoluble matter, the uniformity of the crosslinking reaction was evaluated by the following formula.
Reaction uniformity = (maximum value−minimum value) / average value × 100
A reaction uniformity value of 20 or less indicates that the reaction is uniform and the physical properties are stable.

なお、THF不溶分の測定は以下の方法で行った。   The THF insoluble matter was measured by the following method.

内径3.5cmの円筒状のガラスろ過器1GP100(柴田化学社製)に、セライト545(キシダ化学社製)を約2g入れ、セライト545の層の高さが変化しなくなるまで、ガラスろ過器をコルク台に軽くたたきつけた。この操作を4回繰り返して、セライト545の層の高さがフィルター面から2cmとなるように、ガラスろ過器へセライト545を充填した。このセライト545が充填されたガラスろ過器を105℃で3時間以上乾燥させて、その重さを秤量した(Yg)。   About 2 g of Celite 545 (manufactured by Kishida Chemical Co., Ltd.) is put into a cylindrical glass filter 1GP100 (manufactured by Shibata Chemical Co., Ltd.) having an inner diameter of 3.5 cm, and the glass filter is used until the height of the Celite 545 layer does not change. I tapped it lightly on the cork stand. This operation was repeated four times, and Celite 545 was filled into a glass filter so that the height of the Celite 545 layer was 2 cm from the filter surface. The glass filter filled with Celite 545 was dried at 105 ° C. for 3 hours or more and weighed (Yg).

次いで、サンプル約0.5gを三角フラスコ内に入れて精秤し(Xg)、次いでTHF50mlを加え、70℃のウォーターバスにて3時間加熱して、THF還流下でサンプルを溶解させた。
この溶液を上記セライト545が充填されたガラスろ過器へ投入し、吸引ろ過した。THF不溶分を捕捉したガラスろ過器を80℃で3時間以上乾燥させて、その重さを秤量し(Zg)、以下の式に従って、THF不溶分を算出した。
THF不溶分=(Z−Y)/X ×100 (質量%)
<不飽和ポリエステル樹脂の合成例1>
酸成分としてテレフタル酸95モル部および不飽和二重結合を有するカルボン酸化合物としてフマル酸5モル部、アルコール成分としてエチレングリコールを65モル部およびネオペンチルグリコールを40モル部、また全酸成分に対して1000ppmのトリブチルスズオキシドを蒸留塔備え付けの反応容器に投入した。次いで昇温を開始し、反応系内の温度が260℃になるように加熱し、この温度を保持し、反応系からの水の留出がなくなるまでエステル化反応を行なった。次いで反応系内の温度を225℃とし、反応容器内を減圧し、反応系からジオール成分を留出させながら縮合反応を実施した。反応とともに反応系の粘度が上昇し、攪拌翼のトルクが所望の軟化温度を示す値となるまで反応を行った。そして、所定のトルクを示した時点で反応物を取り出し冷却して、不飽和ポリエステル樹脂(a)を得た。不飽和ポリエステル樹脂(a)の仕込み組成および特性値を表1に示す。
Next, about 0.5 g of the sample was put in an Erlenmeyer flask and precisely weighed (Xg), then 50 ml of THF was added, and the sample was dissolved under reflux of THF by heating in a 70 ° C. water bath for 3 hours.
This solution was put into a glass filter packed with Celite 545 and suction filtered. The glass filter capturing the THF-insoluble matter was dried at 80 ° C. for 3 hours or more, the weight was weighed (Zg), and the THF-insoluble matter was calculated according to the following formula.
THF-insoluble matter = (ZY) / X × 100 (mass%)
<Synthesis example 1 of unsaturated polyester resin>
95 mol parts of terephthalic acid as an acid component, 5 mol parts of fumaric acid as a carboxylic acid compound having an unsaturated double bond, 65 mol parts of ethylene glycol and 40 mol parts of neopentyl glycol as alcohol components, and with respect to the total acid components 1000 ppm of tributyltin oxide was charged into a reaction vessel equipped with a distillation column. Next, the temperature was raised and heated so that the temperature in the reaction system became 260 ° C., and this temperature was maintained, and the esterification reaction was carried out until no water was distilled from the reaction system. Next, the temperature in the reaction system was 225 ° C., the pressure in the reaction vessel was reduced, and the condensation reaction was carried out while distilling the diol component from the reaction system. The reaction was continued until the viscosity of the reaction system increased with the reaction and the torque of the stirring blade reached a value indicating the desired softening temperature. And when the predetermined torque was shown, the reaction material was taken out and cooled, and unsaturated polyester resin (a) was obtained. Table 1 shows the charged composition and characteristic values of the unsaturated polyester resin (a).

<不飽和ポリエステル樹脂の合成例2>
酸成分としてテレフタル酸80モル部および不飽和二重結合を有するカルボン酸化合物としてフマル酸20モル部、アルコール成分としてエチレングリコールを80モル部および1,4−シクロヘキサンジメタノールを40モル部、また全酸成分に対して1500ppmの三酸化アンチモンと、全酸成分に対して2000ppmのヒンダードフェノール化合物(旭電化工業(株)製AO−60)とを合成例1と同様の反応容器に投入した。
<Synthesis example 2 of unsaturated polyester resin>
80 mol parts of terephthalic acid as an acid component, 20 mol parts of fumaric acid as a carboxylic acid compound having an unsaturated double bond, 80 mol parts of ethylene glycol and 40 mol parts of 1,4-cyclohexanedimethanol as alcohol components, 1500 ppm of antimony trioxide with respect to the acid component and 2000 ppm of hindered phenol compound (AO-60 manufactured by Asahi Denka Kogyo Co., Ltd.) with respect to the total acid component were charged into the same reaction vessel as in Synthesis Example 1.

次いで昇温を開始し、反応系内の温度が260℃になるように加熱し、この温度を保持し、反応系からの水の留出がなくなるまでエステル化反応を継続した。次いで、反応系内の温度を270℃とし、反応容器内を減圧し、反応系からジオール成分を留出させながら縮合反応を実施した。反応とともに反応系の粘度が上昇し、攪拌翼のトルクが所望の軟化温度を示す値となるまで反応を行った。そして、所定のトルクを示した時点で反応物を取り出し冷却して、不飽和ポリエステル樹脂(b)を得た。不飽和ポリエステル樹脂(b)の仕込み組成および特性値を表1に示す。   Next, the temperature was raised and heated so that the temperature in the reaction system became 260 ° C., and this temperature was maintained, and the esterification reaction was continued until no water was distilled from the reaction system. Subsequently, the temperature in the reaction system was set to 270 ° C., the pressure in the reaction vessel was reduced, and a condensation reaction was carried out while distilling the diol component from the reaction system. The reaction was continued until the viscosity of the reaction system increased with the reaction and the torque of the stirring blade reached a value indicating the desired softening temperature. And when the predetermined torque was shown, the reaction material was taken out and cooled, and unsaturated polyester resin (b) was obtained. Table 1 shows the charged composition and characteristic values of the unsaturated polyester resin (b).

(実施例1)
二軸押出機(東芝機械株式会社 TEM−26SS スクリュー全長はスクリュー径の約64倍)を使用し、図1に準じた構成とし、原料供給部1と架橋開始剤供給部3の間に脱気部2を設けた。
Example 1
Using a twin screw extruder (Toshiba Machine Co., Ltd. TEM-26SS, total screw length is approximately 64 times the screw diameter), the configuration is in accordance with FIG. 1 and degassed between the raw material supply unit 1 and the crosslinking initiator supply unit 3. Part 2 was provided.

運転条件は、原料供給部1を100℃、それに続く溶融混合部6を140℃、架橋反応部7から吐出部4までを200℃に温度制御した。スクリューの回転数は200rpmとした。   The operating conditions were: temperature control of the raw material supply unit 1 at 100 ° C., the subsequent melt mixing unit 6 at 140 ° C., and the crosslinking reaction unit 7 to the discharge unit 4 at 200 ° C. The number of rotations of the screw was 200 rpm.

フィーダーを用いて、不飽和ポリエステル樹脂(a)no供給速度9kg/h、不飽和ポリエステル樹脂(b)の供給速度1kg/hで原料供給部1から押出機に供給した。   Using the feeder, the unsaturated polyester resin (a) no supply rate was 9 kg / h, and the unsaturated polyester resin (b) supply rate was 1 kg / h.

脱気部2には、ダイヤフラム式真空ポンプを接続した。吐出部4から溶融したポリエステル樹脂が出ることを確認して、真空ポンプの運転を開始して、脱気部2の圧力計が −34.6kPa(ゲージ圧)を指すように調整した。   A diaphragm vacuum pump was connected to the deaeration unit 2. After confirming that the melted polyester resin was discharged from the discharge part 4, the operation of the vacuum pump was started, and the pressure gauge of the deaeration part 2 was adjusted to indicate -34.6 kPa (gauge pressure).

続いて、有機過酸化物(I−1)を温度80℃で、プランジャー式定量ポンプを用いて、163g/hの速度で架橋開始剤供給部3から押出機の内部に供給した。有機過酸化物(I−1)は、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)へキサン11質量部を、80℃に加熱溶融した離型剤(日本精鑞(株)製SP−0160)89質量部に添加したものを用いた。   Subsequently, the organic peroxide (I-1) was supplied from the crosslinking initiator supply unit 3 into the extruder at a temperature of 80 ° C. at a rate of 163 g / h using a plunger metering pump. The organic peroxide (I-1) was a release agent (Nihon Seiki (Nippon Seiki) (11 mass parts of 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane) heated to 80 ° C. SP-0160) manufactured by Co., Ltd. was added to 89 parts by mass.

吐出部4から吐出した架橋ポリエステル樹脂の評価結果を表2に示す。   Table 2 shows the evaluation results of the crosslinked polyester resin discharged from the discharge portion 4.

(実施例2)
脱気部2の圧力を、−48kPa(ゲージ圧)に調整した以外は、実施例1と同様の方法で運転を行った。吐出部4から吐出した架橋反応ポリエステル樹脂の評価結果を表2に示す。
(Example 2)
The operation was performed in the same manner as in Example 1 except that the pressure in the deaeration unit 2 was adjusted to -48 kPa (gauge pressure). Table 2 shows the evaluation results of the cross-linked polyester resin discharged from the discharge part 4.

(実施例3)
脱気部2の圧力を、−61.3kPa(ゲージ圧)に調整した以外は、実施例1と同様の方法で運転を行った。吐出部4から吐出した架橋反応ポリエステル樹脂の評価結果を表2に示す。
(Example 3)
The operation was performed in the same manner as in Example 1 except that the pressure in the deaeration unit 2 was adjusted to −61.3 kPa (gauge pressure). Table 2 shows the evaluation results of the cross-linked polyester resin discharged from the discharge part 4.

(比較例1)
脱気部2に接続されている真空ポンプの運転を停止した以外は、実施例1と同様の方法で運転を行った。溶融混合したポリエステル樹脂から空気、水分を除いていないため、吐出部4の出口でポリエステル樹脂が不定期に発泡し、安全に運転する事ができなかった。
(Comparative Example 1)
The operation was performed in the same manner as in Example 1 except that the operation of the vacuum pump connected to the deaeration unit 2 was stopped. Since air and moisture were not removed from the melt-mixed polyester resin, the polyester resin foamed irregularly at the outlet of the discharge section 4 and could not be operated safely.

(比較例2)
二軸押出機((株)池貝 PCM−30 スクリュー全長はスクリュー径の約40倍)を使用して図2に準じた構成とし、原料供給部1と架橋開始剤供給部3の間に脱気部2は設けず、架橋反応部の後に脱気部2’を設け、ダイヤフラム式真空ポンプを接続した。
(Comparative Example 2)
Using a twin screw extruder (Ikegai PCM-30, total screw length is approximately 40 times the screw diameter), the configuration is in accordance with FIG. 2, and deaeration is performed between the raw material supply unit 1 and the crosslinking initiator supply unit 3. The part 2 was not provided, but a deaeration part 2 ′ was provided after the crosslinking reaction part, and a diaphragm vacuum pump was connected.

運転条件は、原料供給部を100℃、架橋反応部7から吐出部4までを200℃に温度制御した。スクリューの回転数は200rpmとした。   The operating conditions were such that the temperature of the raw material supply unit was 100 ° C., and the temperature from the crosslinking reaction unit 7 to the discharge unit 4 was 200 ° C. The number of rotations of the screw was 200 rpm.

ポリエステル樹脂(a)を85質量部と、ポリエステル樹脂(b)を15質量部を混合して100質量部としたものを、フィーダーを用いて 4.2kg/hの速度で供給部1から押出機に供給した。続いて、離型剤で希釈された有機過酸化物(I−1)を温度80℃で、古江サイエンス株式会社製のマイクロフィーダーを用いて、84.0g/hの速度で、架橋開始剤供給部3から押出機の内部に供給した。   Extruder from feed unit 1 at a rate of 4.2 kg / h using a feeder to mix 85 parts by mass of polyester resin (a) and 15 parts by mass of polyester resin (b) to 100 parts by mass Supplied to. Subsequently, the organic peroxide (I-1) diluted with a release agent was supplied at a temperature of 80 ° C. using a microfeeder manufactured by Furue Science Co., Ltd. at a rate of 84.0 g / h. Part 3 was fed into the extruder.

有機過酸化物(I−1)は、2,5−ジメチル−2,5−ビス(t−ブチルパーオキシ)へキサン10質量部を、80℃に加熱溶融した離型剤(日本精鑞(株)製SP−0160)89質量部に添加したものを用いた。   The organic peroxide (I-1) was a release agent (Nihon Seiki ( SP-0160) manufactured by Co., Ltd. was added to 89 parts by mass.

脱気部2’の圧力を−23kPa(ゲージ圧)として、吐出部4から吐出した架橋ポリエステル樹脂の評価結果を表2に示す。架橋反応の前に脱気を行っていないために、架橋反応の均一性が低いものとなった。   Table 2 shows the evaluation results of the cross-linked polyester resin discharged from the discharge part 4 with the pressure of the degassing part 2 'set to -23 kPa (gauge pressure). Since degassing was not performed before the crosslinking reaction, the uniformity of the crosslinking reaction was low.

本発明の押出機の一例を示す図であるIt is a figure which shows an example of the extruder of this invention. 比較例2で実施した押出機の構成を示す図であるIt is a figure which shows the structure of the extruder implemented in the comparative example 2.

1 原料供給部
2 脱気部
3 架橋開始剤供給部
4 吐出部
5 スクリュー
6 溶融混合部
7 架橋反応部
2’脱気部
DESCRIPTION OF SYMBOLS 1 Raw material supply part 2 Deaeration part 3 Crosslinking initiator supply part 4 Discharge part 5 Screw 6 Melt mixing part 7 Crosslinking reaction part 2 'deaeration part

Claims (3)

原料供給部1、脱気部2、架橋開始剤供給部3、及び吐出部4を有する押出機を用いて、
(1)〜(5)の工程を順次行う架橋ポリエステル樹脂の製造方法。
(1)原料供給部1から不飽和二重結合を有するポリエステル樹脂Aを供給する工程
(2)原料供給部1と脱気部2の間でポリエステル樹脂Aを溶融混合する工程
(3)脱気部2で溶融混合したポリエステル樹脂Aの脱気を行う工程
(4)脱気を行ったポリエステル樹脂Aに、架橋開始剤供給部3から架橋開始剤を供給し、架橋反応を行う工程
(5)吐出部4から架橋反応した架橋ポリエステル樹脂を吐出する工程
Using an extruder having a raw material supply unit 1, a deaeration unit 2, a crosslinking initiator supply unit 3, and a discharge unit 4,
The manufacturing method of the crosslinked polyester resin which performs the process of (1)-(5) sequentially.
(1) Step of supplying polyester resin A having an unsaturated double bond from raw material supply unit 1 (2) Step of melting and mixing polyester resin A between raw material supply unit 1 and degassing unit 2 (3) Degassing Step (4) for degassing polyester resin A melt-mixed in part 2 Step (5) for supplying cross-linking initiator to degassed polyester resin A from cross-linking initiator supply unit 3 and performing cross-linking reaction Step of discharging the cross-linked polyester resin cross-linked from the discharge unit 4
脱気の圧力が、−40kPa(ゲージ圧)以下である請求項1記載の架橋ポリエステル樹脂の製造方法。 The method for producing a crosslinked polyester resin according to claim 1, wherein the deaeration pressure is -40 kPa (gauge pressure) or less. 架橋ポリエステル樹脂がトナー用結着樹脂である請求項1または請求項2に記載の架橋ポリエステル樹脂の製造方法。 The method for producing a crosslinked polyester resin according to claim 1 or 2, wherein the crosslinked polyester resin is a binder resin for toner.
JP2009110376A 2009-04-30 2009-04-30 Method for producing crosslinked polyester resin Active JP5225193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110376A JP5225193B2 (en) 2009-04-30 2009-04-30 Method for producing crosslinked polyester resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110376A JP5225193B2 (en) 2009-04-30 2009-04-30 Method for producing crosslinked polyester resin

Publications (2)

Publication Number Publication Date
JP2010260886A true JP2010260886A (en) 2010-11-18
JP5225193B2 JP5225193B2 (en) 2013-07-03

Family

ID=43359261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110376A Active JP5225193B2 (en) 2009-04-30 2009-04-30 Method for producing crosslinked polyester resin

Country Status (1)

Country Link
JP (1) JP5225193B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090844A1 (en) * 2010-12-28 2012-07-05 Canon Kabushiki Kaisha Toner
WO2022102755A1 (en) * 2020-11-13 2022-05-19 共同印刷株式会社 Oxygen-absorbing unsaturated polyester resin, oxygen-absorbing composition including same, oxygen-absorbing adhesive, oxygen-absorbing laminate using oxygen-absorbing composition, and oxygen-absorbing film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249739A (en) * 1991-12-30 1993-09-28 Xerox Corp Preparation of crosslinked toner resin by reactive melting and mixing
JPH08211654A (en) * 1994-10-31 1996-08-20 Xerox Corp Toner resin and preparation of its toner composition
JP2008015101A (en) * 2006-07-04 2008-01-24 Sekisui Chem Co Ltd Method for producing resin composition for toner
JP2008233296A (en) * 2007-03-19 2008-10-02 Mitsubishi Rayon Co Ltd Method of manufacturing polyester resin for toner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05249739A (en) * 1991-12-30 1993-09-28 Xerox Corp Preparation of crosslinked toner resin by reactive melting and mixing
JPH08211654A (en) * 1994-10-31 1996-08-20 Xerox Corp Toner resin and preparation of its toner composition
JP2008015101A (en) * 2006-07-04 2008-01-24 Sekisui Chem Co Ltd Method for producing resin composition for toner
JP2008233296A (en) * 2007-03-19 2008-10-02 Mitsubishi Rayon Co Ltd Method of manufacturing polyester resin for toner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090844A1 (en) * 2010-12-28 2012-07-05 Canon Kabushiki Kaisha Toner
US9128400B2 (en) 2010-12-28 2015-09-08 Canon Kabushiki Kaisha Toner
WO2022102755A1 (en) * 2020-11-13 2022-05-19 共同印刷株式会社 Oxygen-absorbing unsaturated polyester resin, oxygen-absorbing composition including same, oxygen-absorbing adhesive, oxygen-absorbing laminate using oxygen-absorbing composition, and oxygen-absorbing film

Also Published As

Publication number Publication date
JP5225193B2 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5231390B2 (en) Method and apparatus for processing high viscosity products
CN1061925C (en) Producing process for thermoplastics
CN102549070B (en) Method for manufacturing polyester composition having improved impact properties
JP2002503744A (en) Mixture of thermoplastic fluoropolymers
TWI725770B (en) Particles of liquid crystal polyester resin composition and manufacturing method of particles of liquid crystal polyester resin composition
JP5225193B2 (en) Method for producing crosslinked polyester resin
JP2019181825A (en) Extruder and manufacturing method of thermoplastic resin composition
US9403144B2 (en) Apparatus for mass polymerization of vinyl chloride resin and method for mass polymerization of vinyl chloride resin
JP7468534B2 (en) Acrylic rubber veil with excellent workability and water resistance
CN86102878A (en) The continous treatment process of polymer composition
TWI549998B (en) Method of manufacturing resin composition
JP2020186347A (en) Pellet mixture and injection molding
JP7364817B1 (en) Vinyl polymer production equipment and vinyl polymer production method
JP6029201B2 (en) Method for producing liquid crystalline polyester
JPH03162407A (en) Production of styrenic resin composition
CN112724296A (en) Transparent polystyrene with capacity of more than 5 ten thousand tons and production equipment and process thereof
TWI501991B (en) Manufacturing device for aromatic polyester and manufacturing method for aromatic polyester
JP2005239964A (en) Method for producing ethylene oxide-based copolymer
JP2018090695A (en) Arc resistant bmc
CN1408732A (en) Process for simultanuous graft copolyumerization and oxidation of polymers or organic low molecular compounds
WO2022153945A1 (en) Liquid crystal polyester composition, method for producing liquid crystal polyester composition, and method for producing injection molded article
JP7497571B2 (en) Acrylic rubber with excellent heat and water resistance
JP4180125B2 (en) Purification method of polymerization reaction product
JP7491067B2 (en) Acrylic rubber veil with excellent storage stability and water resistance
JP7424846B2 (en) Method for producing polyphenylene ether

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130312

R151 Written notification of patent or utility model registration

Ref document number: 5225193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250