JP2010260174A - Method of manufacturing composite material of metal alloy and fiber-reinforced plastic - Google Patents

Method of manufacturing composite material of metal alloy and fiber-reinforced plastic Download PDF

Info

Publication number
JP2010260174A
JP2010260174A JP2009110165A JP2009110165A JP2010260174A JP 2010260174 A JP2010260174 A JP 2010260174A JP 2009110165 A JP2009110165 A JP 2009110165A JP 2009110165 A JP2009110165 A JP 2009110165A JP 2010260174 A JP2010260174 A JP 2010260174A
Authority
JP
Japan
Prior art keywords
adhesive
metal alloy
alloy
reinforced plastic
fiber reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009110165A
Other languages
Japanese (ja)
Other versions
JP4906004B2 (en
Inventor
Masanori Narutomi
正徳 成富
Naoki Ando
直樹 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Purasu Co Ltd
Original Assignee
Taisei Purasu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Purasu Co Ltd filed Critical Taisei Purasu Co Ltd
Priority to JP2009110165A priority Critical patent/JP4906004B2/en
Publication of JP2010260174A publication Critical patent/JP2010260174A/en
Application granted granted Critical
Publication of JP4906004B2 publication Critical patent/JP4906004B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • B29C65/4835Heat curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8253Testing the joint by the use of waves or particle radiation, e.g. visual examination, scanning electron microscopy, or X-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0224Mechanical pre-treatments, e.g. reshaping with removal of material
    • B29C66/02245Abrading, e.g. grinding, sanding, sandblasting or scraping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined
    • B29C66/30322Particular design of joint configurations the joint involving an anchoring effect making use of protusions or cavities belonging to at least one of the parts to be joined making use of protusions belonging to at least one of the parts to be joined in the form of rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/47Joining single elements to sheets, plates or other substantially flat surfaces
    • B29C66/474Joining single elements to sheets, plates or other substantially flat surfaces said single elements being substantially non-flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7316Surface properties
    • B29C66/73161Roughness or rugosity
    • B29C66/73162Roughness or rugosity of different roughness or rugosity, i.e. the roughness or rugosity of the surface of one of the parts to be joined being different from the roughness or rugosity of the surface of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/822Transmission mechanisms
    • B29C66/8227Transmission mechanisms using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8248Pressure application by weights
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/828Other pressure application arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91431Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature the temperature being kept constant over time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis

Abstract

<P>PROBLEM TO BE SOLVED: To provide the technique for rigidly adhering metal alloy to CFRP with an epoxy adhesive. <P>SOLUTION: Roughness of micron order is produced on the surface 31 of the metal alloy, a super-fine ruggedness is formed in a ruggedness of the roughness, the surface layer of the super-fine ruggedness is formed as a thin layer of metal oxide or metal-phosphorus oxide. On the surface of the surface layer, a first adhesive (one-component epoxy adhesive) which contains inorganic filler having a particle size center of 5-20 μm and super-fine inorganic filler having a particle size of 100 nm or less is applied, the metal alloy is enclosed in an air-tight container, decompression and compression are performed, thereafter, the adhesive is cured and, further, the layer of the cured adhesive is roughened. On the other hand, the CFRP 32 is cured and the surface of the CFRP is roughened. To both of the roughened metal alloy and the CFRP, a second adhesive (one-component or two-component epoxy adhesive) containing inorganic filler is applied, both members are enclosed in the air-tight container, decompression and compression are performed, thereafter, the both members are fixed, the second adhesive is cured and, thereby, the both are integrated. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、移動機械、電気機器、医療機器、一般機械、その他の製造分野全般に関する。本発明は新たな基礎的部品の製造方法に関するものであり、金属部品と繊維強化プラスチック(以下、「FRP(Fiber reinforced plasticsの略)」という)をエポキシ接着剤にて強固に接着一体化した複合体の製造技術に関する。   The present invention relates to a mobile machine, an electric device, a medical device, a general machine, and other general manufacturing fields. The present invention relates to a method for manufacturing a new basic part, and is a composite in which a metal part and fiber reinforced plastic (hereinafter referred to as “FRP (Fiber reinforced plastics)”) are firmly bonded and integrated with an epoxy adhesive. It relates to body manufacturing technology.

金属合金と樹脂を一体化する技術は、航空機、自動車、家庭電化製品、産業機器等、あらゆる部品部材製造業から求められており、このために多くの接着剤が開発されている。この中には非常に優れた接着剤がある。例えば常温、又は加熱により機能を発揮する接着剤は、金属合金と合成樹脂を一体化する接合に使用され、この方法は現在では一般的な接着技術である。   Technology for integrating metal alloys and resins is required from various parts and materials manufacturing industries such as aircraft, automobiles, home appliances, and industrial equipment, and many adhesives have been developed for this purpose. Among these are very good adhesives. For example, an adhesive exhibiting a function at room temperature or by heating is used for joining to integrate a metal alloy and a synthetic resin, and this method is now a common bonding technique.

一方、接着剤を使用しない接合方法も研究されてきた。マグネシウム、アルミニウムやそれらの合金である軽金属類、またステンレスなどの鉄合金類に対し、接着剤の介在なしで高強度の熱可塑性のエンジニアリング樹脂を射出等によって一体化する方法がその例である。例えば、射出等の方法で樹脂成形と同時に接合を為す方法(以下、「射出接合」という)として、アルミニウム合金に対し熱可塑性樹脂であるポリブチレンテレフタレート樹脂(以下「PBT」という)又はポリフェニレンサルファイド樹脂(以下「PPS」という)を射出接合させる製造技術が開発されている(例えば特許文献1、2参照)。加えて、マグネシウム合金、銅合金、チタン合金、ステンレス鋼等も同系統の樹脂の使用で射出接合することが可能であることも実証されている(特許文献3、4、5、6参照)。   On the other hand, bonding methods that do not use an adhesive have also been studied. An example is a method in which a high-strength thermoplastic engineering resin is integrated by injection or the like without using an adhesive to light metals such as magnesium, aluminum, and alloys thereof, and iron alloys such as stainless steel. For example, as a method of joining simultaneously with resin molding by a method such as injection (hereinafter referred to as “injection joining”), polybutylene terephthalate resin (hereinafter referred to as “PBT”) or polyphenylene sulfide resin which is a thermoplastic resin for an aluminum alloy Manufacturing techniques for injection joining (hereinafter referred to as “PPS”) have been developed (see, for example, Patent Documents 1 and 2). In addition, it has been demonstrated that magnesium alloy, copper alloy, titanium alloy, stainless steel, and the like can be injection-bonded by using the same type of resin (see Patent Documents 3, 4, 5, and 6).

特許文献1及び2における射出接合の原理を以下に示す。アルミニウム合金を水溶性アミン系化合物の希薄水溶液に浸漬させ、アルミニウム合金を水溶液の弱い塩基性によって微細エッチングする。この浸漬処理では、アルミニウム合金表面に超微細凹凸が形成されると共に、アルミニウム合金表面へのアミン系化合物分子の吸着が同時に起こる。この表面処理がなされたアルミニウム合金を射出成形金型にインサートし、溶融した熱可塑性樹脂を高圧で射出させる。このとき、熱可塑性樹脂と、アルミニウム合金表面に吸着していたアミン系化合物分子が遭遇することで化学反応する。この化学反応は、この熱可塑性樹脂が低温の金型温度に保たれたアルミニウム合金に接して急冷されて結晶化し固化せんとする物理反応を抑制する。その結果、樹脂は、結晶化や固化が遅れ、その間にアルミニウム合金表面の超微細凹凸に浸入する。このことにより、熱可塑性樹脂は外力を受けてもアルミニウム合金表面から剥がれ難くなる。即ち、アルミニウム合金と形成された樹脂成形物は強固に接合する。別の言い方で、化学反応と物理反応が競争反応の関係になり、この場合は化学反応が優先されるため強固な射出接合が生じると言える。実際、アミン系化合物と化学反応できるPBTやPPSがこのアルミニウム合金と射出接合ができることを確認している。この射出接合のメカニズムを発明者らは「NMT(Nano molding technologyの略)」と称した。   The principle of injection joining in Patent Documents 1 and 2 is shown below. The aluminum alloy is immersed in a dilute aqueous solution of a water-soluble amine compound, and the aluminum alloy is finely etched by the weak basicity of the aqueous solution. In this immersion treatment, ultrafine irregularities are formed on the surface of the aluminum alloy, and at the same time, adsorption of amine compound molecules on the surface of the aluminum alloy occurs. The surface-treated aluminum alloy is inserted into an injection mold, and the molten thermoplastic resin is injected at a high pressure. At this time, a chemical reaction occurs when the thermoplastic resin and the amine compound molecules adsorbed on the aluminum alloy surface are encountered. This chemical reaction suppresses a physical reaction in which the thermoplastic resin is rapidly cooled in contact with an aluminum alloy maintained at a low mold temperature to crystallize and solidify. As a result, the resin is delayed in crystallization and solidification, and in the meantime, enters the ultra-fine irregularities on the aluminum alloy surface. This makes it difficult for the thermoplastic resin to peel off from the aluminum alloy surface even when subjected to external force. That is, the resin molded product formed with the aluminum alloy is firmly bonded. In other words, the chemical reaction and the physical reaction are in a competitive relationship, and in this case, the chemical reaction is prioritized, so it can be said that strong injection joining occurs. In fact, it has been confirmed that PBT and PPS that can chemically react with an amine compound can be injection-bonded with the aluminum alloy. The inventors called this injection joining mechanism “NMT” (abbreviation of Nano molding technology).

また、本発明者らは、特許文献3、4、5、及び6に示すように、アミン系化合物の金属合金表面への化学吸着なしに、要するに特段の発熱反応や何らかの化学反応の助力を得ることなしに、射出接合が可能な条件を発見した。即ち、アルミニウム合金以外の金属合金についても、その金属合金と熱可塑性樹脂を射出接合によって強固に接合することができる条件を発見し、この条件に基づく射出接合のメカニズムを「新NMT」と称した。   In addition, as shown in Patent Documents 3, 4, 5, and 6, the present inventors obtain special exothermic reaction or assistance of some chemical reaction without chemical adsorption of the amine compound to the metal alloy surface. We have found a condition that enables injection joining without any problem. That is, for metal alloys other than aluminum alloys, a condition was found that allows the metal alloy and thermoplastic resin to be firmly joined by injection joining, and the mechanism of injection joining based on this condition was referred to as “new NMT”. .

これらの発明は全て本発明者らによる。本発明者らは前述の様に、アルミニウム合金に関する接合理論を「NMT」理論と称し、金属合金全般の射出接合に関しては「新NMT」理論と称している。より広く使用できる「新NMT」の理論仮説は本発明に関係があるので以下詳細に述べる。即ち、強烈な接合力ある射出接合を得るために、金属合金側と射出樹脂側の双方に各々条件があり、まず金属合金側については以下に示す3条件が必要である。   All of these inventions are attributed to the inventors. As described above, the present inventors refer to the joining theory relating to the aluminum alloy as “NMT” theory, and the injection theory relating to all metal alloys as “new NMT” theory. The theoretical hypothesis of “new NMT” that can be used more widely is related to the present invention and will be described in detail below. That is, in order to obtain injection bonding with strong bonding strength, there are conditions on both the metal alloy side and the injection resin side. First, the following three conditions are necessary on the metal alloy side.

[新NMT理論での金属合金側の条件]
第1の条件は、金属合金表面が、化学エッチング手法によって1〜10μm周期の凹凸で、その凹凸高低差がその周期の半分程度まで、即ち0.5〜5μmまでの粗い粗面になっていることである。ただし、実際には、前記粗面で正確に全表面を覆うことはバラツキがあり、一定しない化学反応では難しく、具体的には、粗度計で見た場合に0.2〜20μm範囲の不定期な周期の凹凸で、且つその最大高低差が0.2〜5μmの範囲である粗度曲線が描けることを要する。また、最新型のダイナミックモード型の走査型プローブ顕微鏡で金属合金表面を走査したときには、RSmが0.8〜10μmであり、Rzが0.2〜5μmである粗度面であれば前述した粗度条件を実質的に満たしたものとしている。ここでRSmは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される輪郭曲線要素の平均長さであり、Rzは、日本工業規格(JIS B 0601:2001, ISO 4287:1997)に規定される最大高さである。本発明者等は、理想とする粗面の凹凸周期が前述したように、ほぼ1〜10μmであるので、分かり易い言葉として「ミクロンオーダーの粗度を有する表面」と称した。
[Conditions on the metal alloy side in the new NMT theory]
The first condition is that the metal alloy surface has irregularities with a period of 1 to 10 μm by a chemical etching method, and the irregularity height difference is about half of the period, that is, a rough rough surface of 0.5 to 5 μm. That is. However, in actuality, it is difficult to accurately cover the entire surface with the rough surface, and it is difficult to perform a chemical reaction that is not constant. Specifically, when viewed with a roughness meter, it is not within the range of 0.2 to 20 μm. It is necessary to be able to draw a roughness curve having irregularities with a regular cycle and a maximum height difference of 0.2 to 5 μm. Further, when the surface of the metal alloy is scanned with the latest dynamic mode scanning probe microscope, if the roughness surface is RSm of 0.8 to 10 μm and Rz of 0.2 to 5 μm, the roughness described above is used. The degree condition is substantially satisfied. Here, RSm is the average length of contour curve elements defined in Japanese Industrial Standard (JIS B 0601: 2001, ISO 4287: 1997), and Rz is Japanese Industrial Standard (JIS B 0601: 2001, ISO 4287: 1997). The inventors of the present invention called the “surface having a roughness on the order of microns” as an easy-to-understand term because the ideal rough surface irregularity period is approximately 1 to 10 μm as described above.

第2の条件は、上記ミクロンオーダーの粗度を有する金属合金表面に、さらに5nm周期以上の超微細凹凸が形成されていることである。言い換えると、ミクロの目で見てザラザラ面であることを要する。当該条件を具備するために、上記金属合金表面に、微細エッチングを行い、前述のミクロンオーダーの粗度をなす凹部内壁面に5〜500nm、好ましくは10〜300nm、より好ましくは30〜100nm(最適値は50〜70nm)周期の超微細凹凸を形成する。   The second condition is that ultrafine irregularities having a period of 5 nm or more are further formed on the surface of the metal alloy having a roughness on the order of microns. In other words, it needs to be rough when viewed with microscopic eyes. In order to satisfy the conditions, fine etching is performed on the surface of the metal alloy, and the inner wall surface of the concave portion having the above-mentioned micron-order roughness is 5 to 500 nm, preferably 10 to 300 nm, more preferably 30 to 100 nm (optimum A value of 50 to 70 nm) is formed.

この超微細凹凸について述べると、その凹凸周期が10nm以下の周期であると樹脂分の進入が明らかに難しくなる。また、この場合には通常、凹凸高低差も小さくなるので、樹脂側から見て円滑面となる。その結果、スパイクの役目を為さなくなる。又、周期が300〜500nm程度又はこれよりよりも大きな周期なら(その場合、ミクロンオーダーの粗度をなす凹部の直径や周期は10μm近くになると推定される)、ミクロンオーダーの凹部内でのスパイクの数が激減するので効果が効き難くなる。よって、原則としては、超微細凹凸の周期が10〜300nmの範囲であることを要する。しかしながら、超微細凹凸の形状によっては、5nm〜10nm周期のものでも、樹脂がその間に侵入する場合がある。例えば、5〜10nm直径の棒状結晶が錯綜している場合等がこれに該当する。また、300nm〜500nm周期のものでも、超微細凹凸の形状がアンカー効果を生じやすい場合がある。例えば、高さ及び奥行きが数百〜500nmで、幅が数百〜数千nmの階段が無限に連続したパーライト構造のような形状がこれに該当する。このような場合も含め、要求される超微細凹凸の周期を5nm〜500nmと規定した。   Describing the ultra-fine irregularities, if the irregular period is a period of 10 nm or less, it is clearly difficult to enter the resin component. Further, in this case, since the unevenness height difference is usually small, the surface becomes smooth as viewed from the resin side. As a result, it no longer serves as a spike. If the period is about 300 to 500 nm or longer (in that case, the diameter and period of the concave part having a micron order roughness is estimated to be close to 10 μm), the spike in the micron order concave part Because the number of slashes, the effect becomes difficult to work. Therefore, in principle, it is necessary that the period of the ultra fine irregularities is in the range of 10 to 300 nm. However, depending on the shape of the ultra-fine irregularities, the resin may enter between them even if it has a period of 5 nm to 10 nm. For example, this is the case when rod-like crystals having a diameter of 5 to 10 nm are complicated. Even with a period of 300 nm to 500 nm, the shape of the ultra-fine irregularities may easily cause an anchor effect. For example, this corresponds to a shape like a pearlite structure in which steps having a height and depth of several hundred to 500 nm and a width of several hundred to several thousand nm are infinitely continuous. Including such a case, the required period of ultra fine irregularities was specified to be 5 nm to 500 nm.

ここで、従来は上記第1の条件に関して、RSmの範囲を1〜10μm、Rzの範囲を0.5〜5μmと規定していたが、RSmが0.8〜1μm、Rzが0.2〜0.5μmの範囲であっても、超微細凹凸の凹凸周期が、特に好ましい範囲(概ね30〜100nm)に有れば、接合力が高く維持できる。それ故に、RSmの範囲を小さい方にやや広げることとした。即ち、RSmが0.8〜10μm、Rzが0.2〜5μmの範囲とした。   Here, conventionally, regarding the first condition, the RSm range is defined as 1 to 10 μm and the Rz range is defined as 0.5 to 5 μm, but the RSm is 0.8 to 1 μm and the Rz is 0.2 to 0.2 μm. Even if it is the range of 0.5 micrometer, if the uneven | corrugated period of an ultra fine unevenness | corrugation exists in the especially preferable range (generally 30-100 nm), joining force can be maintained highly. Therefore, we decided to expand the range of RSm slightly to a smaller one. That is, RSm was in the range of 0.8 to 10 μm and Rz was in the range of 0.2 to 5 μm.

さらに、第3の条件は、上記金属合金の表層がセラミック質であることである。具体的には、元来耐食性のある金属合金種に関しては、その表層が自然酸化層レベルかそれ以上の厚さの金属酸化物層であることを要し、耐食性が比較的低い金属合金種(例えばマグネシウム合金や一般鋼材等)では、その表層が化成処理等によって生成した金属酸化物又は金属リン酸化物の薄層であることが第3の条件となる。   Furthermore, the third condition is that the surface layer of the metal alloy is ceramic. Specifically, with respect to the metal alloy type that originally has corrosion resistance, the surface layer needs to be a metal oxide layer having a thickness equal to or greater than that of the natural oxide layer, and the metal alloy type having relatively low corrosion resistance ( For example, in the case of a magnesium alloy or a general steel material, the third condition is that the surface layer is a thin layer of metal oxide or metal phosphorous oxide generated by chemical conversion treatment or the like.

これらを模式的に図にすると図15のようになる。金属合金40の表面にはミクロンオーダーの粗度を成している凹部(C)が形成され、さらにその凹部内壁には超微細凹凸(A)が形成され、表層はセラミック質層41となっており、この超微細凹凸に接着剤硬化物層42の一部が浸入している。このようにした金属合金表面に液状の樹脂組成物が侵入し、侵入後に硬化すると、金属合金と硬化した樹脂組成物は非常に強固に接合するという簡潔な考え方である。   These are schematically illustrated as shown in FIG. Concave portions (C) having a roughness on the order of microns are formed on the surface of the metal alloy 40, and ultra fine irregularities (A) are formed on the inner walls of the concave portions, and the surface layer is a ceramic layer 41. In addition, a part of the cured adhesive layer 42 penetrates into the ultra-fine irregularities. When the liquid resin composition penetrates into the surface of the metal alloy thus formed and is cured after the penetration, the metal alloy and the cured resin composition are joined together very firmly.

[新NMT理論での樹脂側の条件]
次に、樹脂側の条件を説明する。樹脂としては、硬質の高結晶性の熱可塑性樹脂であって、これに適切な別ポリマーをコンパウンドする等して、急冷時での結晶化速度を遅くした物が使用できる。実際には、結晶性の硬質樹脂であるPBTやPPSに適切な別ポリマー及びガラス繊維等をコンパウンドした樹脂組成物が使用できる。
[Conditions on the resin side in the new NMT theory]
Next, the conditions on the resin side will be described. As the resin, it is possible to use a hard, highly crystalline thermoplastic resin that has a reduced crystallization rate during quenching by compounding another polymer suitable for this. Actually, a resin composition compounded with another polymer suitable for PBT or PPS, which is a crystalline hard resin, and glass fiber can be used.

[新NMT理論に基づく射出接合]
上記金属合金及び樹脂を使用して、一般の射出成形機、射出成形金型によって射出接合できるが、この過程を「新NMT」に従って説明する。射出した溶融樹脂は、融点よりも150℃程度温度が低い金型内に導かれるが、この流路で冷やされ、融点以下の温度になっているとみられる。即ち、溶融した結晶性樹脂が急冷された場合、融点以下になったとしてもゼロ時間で結晶が生じ固体に変化することはない。要するに、融点以下ながら溶融している状態、即ち過冷却状態がごく短時間存在する。前述したように、PBTやPPSに特殊なコンパウンドを行うことによって、この過冷却時間を少し長くすることが可能である。これを利用して大量の微結晶が生じることによる粘度の急上昇が起こる前に、ミクロンオーダーの粗度を有する金属表面の凹部にその微結晶が侵入できるようにした。侵入後も冷え続けるので、これに伴い微結晶の数が急激に増えて粘度は急上昇する。しかし、凹部の奥底まで樹脂が到達できるか否かは凹部の大きさや形状にも依存する。
[Injection joining based on the new NMT theory]
The metal alloy and the resin can be used for injection joining with a general injection molding machine or injection mold. This process will be described according to “New NMT”. The injected molten resin is introduced into a mold having a temperature of about 150 ° C. lower than the melting point, but is cooled in this flow path, and is considered to be a temperature below the melting point. That is, when the melted crystalline resin is quenched, even if the melting point is lower than the melting point, crystals are formed in zero time and do not change to a solid. In short, a melted state below the melting point, that is, a supercooled state exists for a very short time. As described above, this supercooling time can be lengthened a little by applying a special compound to PBT or PPS. This was used to allow the microcrystals to penetrate into the concave portions of the metal surface having a roughness on the order of microns before the viscosity rapidly increased due to the generation of a large amount of microcrystals. Since it continues to cool after intrusion, the number of microcrystals increases rapidly and the viscosity increases rapidly. However, whether or not the resin can reach the depth of the recess depends on the size and shape of the recess.

本発明者等の実験結果では、金属合金種を選ばず、上記ミクロンオーダーの粗度に係る1〜10μm径の凹部であって、その深さが周期の半分程度までであれば、凹部の結構奥まで微結晶が侵入すると推測された。さらに、その凹部内壁面が、前述した第2条件のように、ミクロの目で見てザラザラ面であれば、超微細凹凸にも一部樹脂が侵入し、その結果、樹脂側に引き抜き力が付加されても引っかかって抜け難くなると推定される。そしてこのザラザラ面が、第3条件で示したように金属酸化物又は金属リン酸化物で覆われていれば、硬度が高く、樹脂と超微細凹凸に係る凹部との引っ掛かりが、スパイクの如く効果的になる。   According to the experimental results of the present inventors, the metal alloy type is not selected, and the concave portion having a diameter of 1 to 10 μm according to the roughness of the micron order is sufficient if the depth is up to about half of the period. It was speculated that microcrystals invaded deeply. Furthermore, if the inner wall surface of the recess is a rough surface as seen in the second condition as described above, a part of the resin also penetrates into the ultra-fine irregularities, and as a result, a pulling force is exerted on the resin side. It is presumed that even if it is added, it will be caught and difficult to come off. And if this rough surface is covered with metal oxide or metal phosphorous oxide as shown in the third condition, the hardness is high, and the catch between the resin and the concave portion related to the ultra fine unevenness is effective as a spike. Become.

具体例を示す。例えば、マグネシウム合金の場合、自然酸化層で覆われたままのマグネシウム合金では耐食性が低いので、これを化成処理して表層を金属酸化物、金属炭酸化物、または金属リン酸化物にすることで、硬度の高いセラミックス質で覆われた表面とすることができる。このように表面処理されたマグネシウム合金を射出成形金型にインサートした場合、金型及びインサートしたマグネシウム合金は射出する樹脂の融点より100℃以上低い温度に保たれているので、射出された樹脂は金型内の流路に入った途端に急冷され、マグネシウム合金に接近した時点で融点以下になっている可能性が高い。   A specific example is shown. For example, in the case of a magnesium alloy, the corrosion resistance of a magnesium alloy that is still covered with a natural oxide layer is low, so by converting this into a metal oxide, metal carbonate, or metal phosphate, The surface can be covered with a ceramic material having high hardness. When the surface-treated magnesium alloy is inserted into an injection mold, the mold and the inserted magnesium alloy are kept at a temperature lower than the melting point of the resin to be injected by at least 100 ° C. As soon as it enters the flow path in the mold, it is rapidly cooled, and when it approaches the magnesium alloy, there is a high possibility that it is below the melting point.

マグネシウム合金表面の凹部の径が1〜10μm程度と比較的大きい場合、過冷却によって微結晶が生じる限られた時間内に樹脂は浸入し得る。また、生じた高分子微結晶群の数密度がまだ小さい場合も上記凹部なら樹脂は浸入し得る。それは微結晶、すなわち不規則に運動していた分子鎖から分子鎖に何らかの整列状態が生じたときの形を有する微結晶の大きさが、分子モデルから推定すると数nm〜10nmの大きさとみられるからである。それゆえ、微結晶は10nm径の超微細凹凸に対し簡単に侵入できるとは言い難いが、数十nm周期の超微細凹凸ならば、若干は樹脂流の先端が浸入する可能性がある。ただし、微結晶は同時発生的に無数に生じるので、射出樹脂の先端や金型金属面に接している箇所では樹脂流の粘度が急上昇する。化成処理をしたマグネシウム合金表面を電子顕微鏡で観察すると10〜50nm周期の超微細凹凸面が観察され、この程度の周期の超微細凹凸であれば、樹脂流の粘度が急上昇する前に頭を突っ込み得る。   When the diameter of the concave portion on the surface of the magnesium alloy is relatively large, such as about 1 to 10 μm, the resin can enter within a limited time during which microcrystals are generated by supercooling. Further, even when the number density of the generated polymer microcrystal group is still small, the resin can penetrate if it is the concave portion. Because the size of a microcrystal, that is, a crystallite having a shape when an alignment state occurs from a molecular chain that has been moving irregularly to a molecular chain, is estimated to be a size of several to 10 nm when estimated from a molecular model. It is. Therefore, it is difficult to say that microcrystals can easily penetrate into ultrafine irregularities with a diameter of 10 nm. However, if the ultrafine irregularities have a period of several tens of nm, there is a possibility that the tip of the resin flow slightly enters. However, since innumerable microcrystals are generated at the same time, the viscosity of the resin flow rapidly rises at the point where it is in contact with the tip of the injection resin or the metal mold surface. When the surface of the magnesium alloy that has been subjected to chemical conversion treatment is observed with an electron microscope, an ultrafine uneven surface with a period of 10 to 50 nm is observed, and if this is an ultrafine unevenness with a period of this level, the head is thrust before the viscosity of the resin flow suddenly rises. obtain.

また、銅合金、チタン合金や鋼材等の金属合金表面を酸化させ、又は化成処理を施して、その表層を金属酸化物等のセラミック質の微結晶群又はアモルファス層とした場合、改良したPPS(急冷時のPPS分子結晶化速度を低下させたPPSコンパウンド)を射出接合すると、相当強い接合力が生じた。   Further, when the surface of a metal alloy such as a copper alloy, a titanium alloy or a steel material is oxidized or subjected to a chemical conversion treatment to form a ceramic crystallite group such as a metal oxide or an amorphous layer, an improved PPS ( When a PPS compound having a reduced PPS molecular crystallization rate at the time of rapid cooling was injection joined, a considerably strong joining force was generated.

ここで、接合自体は、樹脂成分と金属合金表面の問題であるが、樹脂組成物に強化繊維や無機フィラーが入っていると、樹脂全体の線膨張率を金属合金に近づけられるので接合後の接合力維持が容易になる。このような仮説に従って、例えばマグネシウム合金、銅合金、チタン合金、ステンレス鋼等に、PBTやPPS系樹脂を射出接合して得た複合体は、せん断破断力で20〜30MPa(約200〜300kgf/cm)以上、引っ張り破断力で30〜40MPa(約300〜400kgf/cm)以上となり、強固な複合体であることが確認されている。 Here, the bonding itself is a problem of the resin component and the surface of the metal alloy. However, if the resin composition contains reinforcing fibers or inorganic fillers, the linear expansion coefficient of the entire resin can be made closer to that of the metal alloy. It becomes easy to maintain the bonding force. In accordance with such a hypothesis, for example, a composite obtained by injection-bonding PBT or PPS resin to magnesium alloy, copper alloy, titanium alloy, stainless steel or the like has a shear breaking force of 20 to 30 MPa (about 200 to 300 kgf / cm 2 ) or more, and a tensile breaking force of 30 to 40 MPa (about 300 to 400 kgf / cm 2 ) or more, which is confirmed to be a strong composite.

[NAT理論(接着剤接合)]
本発明者らは、接着剤接合に関しても「新NMT」が応用できると考え、類似理論による高強度の接着が可能であるかを確認した。そして、市販の汎用の1液性エポキシ接着剤を使用し、金属合金の表面構造を工夫することで、より接着力の高い接合体を得ようと試みた。
[NAT theory (adhesive bonding)]
The present inventors considered that “new NMT” can also be applied to adhesive bonding, and confirmed whether high-strength bonding based on a similar theory is possible. And it tried to obtain the joined body with higher adhesive force by using the commercially available general-purpose one-component epoxy adhesive and devising the surface structure of the metal alloy.

接着剤接合の実験手法に関する手順を以下に示す。前記「新NMT」に基づき、射出接合実験で使用したものと同じ表面の金属合金(即ち上記3条件を満たす金属合金)を作成した。そして、液状の1液性エポキシ接着剤をその金属合金の所定範囲に塗布し、デシケータに入れて一旦真空下に置き、その後常圧に戻すなどして金属合金表面の超微細凹凸に接着剤を侵入させる。即ち、金属合金表面に接着剤を充分に染み込ませる。その後、前記所定範囲に被着材を貼り合わせ、加熱して硬化させる方法である。   The procedure regarding the experimental method of adhesive bonding is shown below. Based on the “new NMT”, a metal alloy having the same surface as that used in the injection joining experiment (that is, a metal alloy satisfying the above three conditions) was prepared. Then, apply a liquid one-component epoxy adhesive to a predetermined range of the metal alloy, put it in a desiccator, place it under vacuum, and then return it to normal pressure. Invade. That is, the adhesive is sufficiently infiltrated into the metal alloy surface. Thereafter, the adherend is bonded to the predetermined range and heated to be cured.

こうした場合、金属合金表面のミクロンオーダーの粗度に係る凹部(前記第1条件における凹凸の凹部)内に、多少の粘度あるエポキシ接着剤も液体故に侵入可能である。そして侵入したエポキシ接着剤は、その後の加熱でこの凹部内で硬化することになる。実際には、この凹部の内壁面には超微細凹凸がさらに形成されており(前記の第2条件)、且つこの超微細凹凸は、セラミック質の高硬度の薄膜(前記の第3条件)で覆われていることから、凹部内部に侵入して固化したエポキシ樹脂は、スパイクのような超微細凹凸に掴まって抜け難くなる。   In such a case, an epoxy adhesive having a certain viscosity can penetrate into the concave portion (roughness concave portion in the first condition) on the surface of the metal alloy having a roughness on the micron order because of the liquid. And the epoxy adhesive which penetrate | invaded hardens | cures in this recessed part by subsequent heating. Actually, an ultra fine unevenness is further formed on the inner wall surface of the recess (the second condition described above), and the ultra fine unevenness is a thin ceramic-like thin film (the third condition described above). Since it is covered, the epoxy resin that has entered the inside of the recess and solidified is difficult to come out by being gripped by ultra-fine irregularities such as spikes.

本発明者らは、「新NMT」を応用して、1液性エポキシ接着剤によって、金属合金同士及び金属合金とCFRP(carbon fiber reinforced plasticsの略)との高強度の接着が可能であることを実証した。一例として、A7075アルミニウム合金同士を、市販の1液性エポキシ接着剤で接合した結果、70MPaもの強烈なせん断破断力、引っ張り破断力を示す接合体を得ることができた(特許文献7)。   By applying “New NMT”, the present inventors are capable of high-strength bonding between metal alloys and between metal alloys and CFRP (abbreviation of carbon fiber reinforced plastics) with a one-component epoxy adhesive. Proved. As an example, as a result of joining A7075 aluminum alloys with a commercially available one-component epoxy adhesive, a joined body having an intense shear breaking force and tensile breaking force as high as 70 MPa could be obtained (Patent Document 7).

実際、このような高強度の接着剤接合は、本発明者等によって、アルミニウム合金に次いで、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、及び一般鋼材に於いて実証された(特許文献7、8、9、10、11、及び12参照)。いずれも金属合金表面の状態を制御することによって、各種金属合金を過去に例のない強さで接着することができた。このような接着剤接合に関して「新NMT」を応用した前記技術を、本発明者らは「NAT(Nano adhesion technologyの略)」と称している。   In fact, such high-strength adhesive joints have been demonstrated by the present inventors in magnesium alloys, copper alloys, titanium alloys, stainless steels, and general steel materials after aluminum alloys (Patent Document 7, 8, 9, 10, 11, and 12). In any case, various metal alloys could be bonded with unprecedented strength by controlling the state of the metal alloy surface. The present inventors have applied the “new NMT” technology for such adhesive bonding as “NAT (abbreviation of nano adhesion technology)”.

WO 03/064150 A1(アルミニウム合金)WO 03/064150 A1 (aluminum alloy) WO 2004/041532 A1(アルミニウム合金)WO 2004/041532 A1 (Aluminum alloy) WO 2008/069252 A1(マグネシウム合金)WO 2008/069252 A1 (magnesium alloy) WO 2008/047811 A1(銅合金)WO 2008/047811 A1 (copper alloy) WO 2008/078714 A1(チタン合金)WO 2008/078714 A1 (titanium alloy) WO 2008/081933 A1(ステンレス鋼)WO 2008/081933 A1 (stainless steel) WO 2008/114669 A1(アルミニウム合金)WO 2008/114669 A1 (aluminum alloy) WO 2008/133096 A1(マグネシウム合金)WO 2008/133096 A1 (magnesium alloy) WO 2008/126812 A1(銅合金)WO 2008/126812 A1 (copper alloy) WO 2008/133030 A1(チタン合金)WO 2008/133030 A1 (titanium alloy) WO 2008/133296 A1(ステンレス鋼)WO 2008/133296 A1 (stainless steel) WO 2008/146833 A1(一般鋼材)WO 2008/146833 A1 (general steel)

本発明者らは、前述したように市販の1液性エポキシ接着剤を使用し、「NAT」に基づいて、金属合金同士又は金属合金とCFRPを接着接合する実験を行ったが、金属合金とCFRPの接着に関しては、金属合金同士を接着した場合と比較して、せん断破断力及び引っ張り破断力が低下する傾向にあった。金属合金とCFRPの強固な接着は、航空機や船舶等の様々な分野で待望されている。しかしながら、金属合金とCFRPを1液性エポキシ接着剤で接着した場合に、金属合金同士の接着と同等の接着力を安定的に得ることができなかった。具体的に言えば、金属合金とCFRPを接着した複合体は、せん断破断力及び引っ張り破断力の複合体間のばらつきが大きく、実用性に問題があった。接着剤を改良することで、複合体間の接着力のばらつきを幾分小さくすることは可能であったが、根本的な解決には至らなかった。また、このばらつきを小さくしようとすると接着力自体が低下するという問題も生じた。   As described above, the present inventors used a commercially available one-part epoxy adhesive, and based on “NAT”, conducted an experiment to bond and bond metal alloys to each other or a metal alloy and CFRP. Regarding the bonding of CFRP, the shear breaking force and the tensile breaking force tended to be lower than when metal alloys were bonded to each other. Strong adhesion between a metal alloy and CFRP is expected in various fields such as aircraft and ships. However, when a metal alloy and CFRP are bonded with a one-component epoxy adhesive, an adhesive force equivalent to that of metal alloys cannot be stably obtained. Specifically, a composite in which a metal alloy and CFRP are bonded has a large variation between the composites in terms of shear breaking force and tensile breaking force, and has a problem in practical use. By improving the adhesive, it was possible to reduce the variation in adhesive strength between the composites somewhat, but it did not lead to a fundamental solution. In addition, when this variation is reduced, there is a problem that the adhesive strength itself is lowered.

本発明はこのような背景のもとになされたものであり、その目的は、金属合金と繊維強化プラスチックを接着剤によって接着する場合に、高い接着力を安定的に得ることにある。   The present invention has been made based on such a background, and an object thereof is to stably obtain a high adhesive force when a metal alloy and a fiber reinforced plastic are bonded together with an adhesive.

当初、本発明者らは、「NAT」の第1条件〜第3条件に適合する金属合金表面に1液性エポキシ接着剤を塗布し、この接着剤を表面に染み込ませた後、接着剤塗布範囲に未硬化のCFRPプリプレグを密着させて全体を加熱することにより金属合金とCFRPが接着された複合体を得ていた。即ち、接着剤の硬化とCFRPプリプレグの硬化を同時に行っていた。ここで、金属合金同士の接着と金属合金とCFRPの接着との比較において、接着力及びその安定性に違いが出る原因は当初不明であった。しかし、その後に本発明者らが行った実験と破断面の観察から、上記原因はCFRPプリプレグ自体にあることが判明した。即ち、硬化したCFRPプリプレグ表層における硬化したマトリックス樹脂と硬化した接着剤の間の接着力が、硬化したCFRPプリプレグ内部における硬化したマトリックス樹脂と炭素繊維の間の接着力を超えていたのである。これにより、破断時に、硬化したマトリックス樹脂と炭素繊維の間で先に剥離が生じることがあり、これが低い接着力として現れていた。   Initially, the present inventors applied a one-component epoxy adhesive to the surface of a metal alloy that meets the first to third conditions of “NAT”, soaked this adhesive on the surface, and then applied the adhesive. An uncured CFRP prepreg was brought into close contact with the range and the whole was heated to obtain a composite in which the metal alloy and CFRP were bonded. That is, the curing of the adhesive and the curing of the CFRP prepreg were performed simultaneously. Here, in the comparison between the adhesion between the metal alloys and the adhesion between the metal alloy and CFRP, the cause of the difference in the adhesion force and its stability was initially unknown. However, from the subsequent experiments conducted by the present inventors and observation of the fracture surface, it has been found that the cause is the CFRP prepreg itself. That is, the adhesive force between the cured matrix resin and the cured adhesive on the cured CFRP prepreg surface layer exceeded the adhesive force between the cured matrix resin and the carbon fiber inside the cured CFRP prepreg. Thereby, at the time of a fracture | rupture, peeling may arise previously between the hardened matrix resin and carbon fiber, and this appeared as a low adhesive force.

このようにCFRPプリプレグの硬化と接着剤の硬化をほぼ同時に行う接着方法をコキュア法と称している。このコキュア法による接着では、メーカーが指示するCFRPプリプレグの硬化条件をそのまま採用したが、この条件が必ずしもマトリックス樹脂と炭素繊維の間の接着を最適化するものではなかったのである。言い換えると、メーカーが指示する硬化条件とは、CFRPプリプレグを硬化することにより得られるCFRP部材が、目的とする強度に達するようにするための条件であって、CFRP部材が高強度の接着に対応できるか否かは異なる問題である。   A bonding method in which the CFRP prepreg and the adhesive are cured almost simultaneously is called a co-curing method. In this adhesion by the co-curing method, the CFRP prepreg curing conditions specified by the manufacturer were used as they were, but these conditions did not necessarily optimize the adhesion between the matrix resin and the carbon fibers. In other words, the curing conditions specified by the manufacturer are conditions for the CFRP member obtained by curing the CFRP prepreg to reach the desired strength, and the CFRP member supports high-strength bonding. Whether it can be done is a different issue.

本発明者らは、CFRPのマトリックス樹脂とエポキシ接着剤の主成分が共通することから、双方を同時に硬化させるコキュア法が金属合金とCFRPとを接着するのに最適であると判断していた。しかしながら、前述したように、破断時においては、硬化したマトリックス樹脂と炭素繊維の間で先に剥離が生じることが問題となるのであるから、接着力をさらに向上させるためには、当該マトリックス樹脂と炭素繊維の間の接着力を向上させる必要があるといえる。本発明者らは、CFRPプリプレグを一旦硬化させた後、得られたCFRP部材(CFRPプリプレグの硬化物)と金属合金をエポキシ接着剤により接着することとした。即ち、金属合金とCFRP部材の双方にエポキシ接着剤を塗布し、これらを抱き合わせて加熱し、エポキシ接着剤を硬化させることで双方を接着するコボンド法を採用した。このコボンド法では、コキュア法と異なり、CFRPプリプレグの硬化と接着剤の硬化は別工程となっている。本発明では、コボンド法によって金属合金とCFRPを接着させることで接着力の向上を図っている。本発明は、金属合金とCFRPのコボンド法による接着技術に関するものであり、コキュア法とは異なる新たな接着技術を提供する。   The present inventors have determined that the co-curing method of simultaneously curing both of the matrix resin of CFRP and the epoxy adhesive is optimal for bonding the metal alloy and CFRP. However, as described above, at the time of rupture, since there is a problem that separation occurs first between the cured matrix resin and the carbon fiber, in order to further improve the adhesion, the matrix resin and It can be said that it is necessary to improve the adhesion between the carbon fibers. The present inventors once cured the CFRP prepreg, and then bonded the obtained CFRP member (cured product of CFRP prepreg) and the metal alloy with an epoxy adhesive. That is, a co-bonding method was adopted in which an epoxy adhesive was applied to both the metal alloy and the CFRP member, and these were bonded together and heated to cure the epoxy adhesive to bond both. In this cobond method, unlike the cocure method, the curing of the CFRP prepreg and the curing of the adhesive are separate steps. In the present invention, the adhesive force is improved by bonding the metal alloy and CFRP by the co-bonding method. The present invention relates to a bonding technique of a metal alloy and CFRP by a co-bonding method, and provides a new bonding technique different from the co-curing method.

ここで、金属合金同士を接着剤で接合する場合には、本発明者らが開発した「NAT」を利用することが最適である。即ち上述した第1の条件〜第3の条件を備える金属合金表面に、エポキシ接着剤を塗布し、接着剤塗布範囲同士を密着させて加熱し、金属合金同士の接合体を得る。本発明者らは、この「NAT」に適したエポキシ接着剤を新たに開発した。そして本発明では、この「NAT」に適したエポキシ接着剤を、後述する接着剤Iとして使用している。この接着剤Iは、接着力と耐熱性を兼ね備えている。本発明では、金属合金表面に「NAT」に適した接着剤Iを塗布して加熱し、接着剤Iを硬化させる。これにより、金属合金表面と極めて強固に一体化した接着剤硬化物層が形成される。   Here, when joining metal alloys with an adhesive, it is optimal to use “NAT” developed by the present inventors. That is, an epoxy adhesive is applied to the surface of the metal alloy having the first to third conditions described above, the adhesive application ranges are brought into close contact with each other, and heated to obtain a joined body of the metal alloys. The present inventors newly developed an epoxy adhesive suitable for the “NAT”. In the present invention, an epoxy adhesive suitable for “NAT” is used as an adhesive I described later. This adhesive I has both adhesive strength and heat resistance. In the present invention, the adhesive I suitable for “NAT” is applied to the surface of the metal alloy and heated to cure the adhesive I. Thereby, the adhesive hardened | cured material layer integrated very firmly with the metal alloy surface is formed.

一方で、本発明者らは、上記金属合金と接着させるCFRP部材に塗布する接着剤についても開発を行った。この接着剤は、本発明者らがCFRP部材(CFRPプリプレグの硬化物)同士を接着させる実験において強い接着力を発揮したものであり、本発明においては、金属合金とCFRPを接着させるための接着剤IIとして使用している。   On the other hand, the present inventors also developed an adhesive applied to the CFRP member to be bonded to the metal alloy. This adhesive exhibits a strong adhesive force in an experiment in which the present inventors adhere CFRP members (cured products of CFRP prepreg) to each other. In the present invention, the adhesive is used to bond a metal alloy and CFRP. Used as Agent II.

本発明の概要を簡単に説明する。まず金属合金の表面をエッチングし、前述した第1の条件〜第3の条件を具備させる。そして、接着剤Iを金属合金表面に塗布する。この接着剤Iはエポキシ接着剤であり、1液性エポキシ接着剤が好ましい。そして、この接着剤Iを金属合金表面に染み込ませる染み込まし処理Iを行った後、加熱し、接着剤Iを硬化させる。要するに接着剤Iを塗料のように使用する。次いで、金属合金表面を覆って形成された接着剤硬化物層を粗面化する。一方、前述した金属合金との接着前にCFRPプリプレグを硬化させてCFRP部材を作成しておく。ここで得られたCFRP部材(CFRPプリプレグの硬化物)に対しては、再度の加熱処理を行うことが好ましい。ここで、硬化に必要とされる温度より高温で再度の加熱処理を行うのが特に好ましい。本発明では計3回の加熱処理を行った。これにより、既硬化のCFRP部材においてCFRPマトリックス樹脂と炭素繊維の間の接着力を向上させた。次いで、そのCFRP部材の表面を粗面化した。   An outline of the present invention will be briefly described. First, the surface of the metal alloy is etched to satisfy the first to third conditions described above. Then, adhesive I is applied to the surface of the metal alloy. This adhesive I is an epoxy adhesive, and a one-component epoxy adhesive is preferable. The adhesive I is soaked into the surface of the metal alloy and treated I, and then heated to cure the adhesive I. In short, adhesive I is used like paint. Next, the cured adhesive layer formed so as to cover the surface of the metal alloy is roughened. On the other hand, the CFRP prepreg is cured before bonding with the metal alloy described above to prepare a CFRP member. The CFRP member (cured product of CFRP prepreg) obtained here is preferably subjected to a second heat treatment. Here, it is particularly preferable to perform the heat treatment again at a temperature higher than the temperature required for curing. In the present invention, a total of three heat treatments were performed. Thereby, the adhesive force between CFRP matrix resin and carbon fiber was improved in the already cured CFRP member. Next, the surface of the CFRP member was roughened.

これらの工程によって、粗面化された接着剤硬化物層を有する金属合金と、粗面化されたCFRP部材の双方が得られる。これら双方の粗面化部分に接着剤IIを塗布した後、染み込まし処理IIを行い、粗面化部分に接着剤IIを染み込ませる。その後、接着剤IIを塗布した範囲同士を密着させるように金属合金とCFRP部材を抱き合わせて固定し、加熱して接着剤IIを硬化させる。これにより金属合金とCFRPの複合体が得られる。   By these steps, both a metal alloy having a roughened adhesive-cured material layer and a roughened CFRP member are obtained. After the adhesive II is applied to both of these roughened portions, it is soaked and processed II, so that the roughened portion is soaked with the adhesive II. Thereafter, the metal alloy and the CFRP member are bonded and fixed so that the areas where the adhesive II is applied are in close contact with each other, and the adhesive II is cured by heating. As a result, a composite of the metal alloy and CFRP is obtained.

ここで接着剤IIとしてエポキシ接着剤を使用するが、1液性エポキシ接着剤、2液性エポキシ接着剤のいずれでも良い。ここで、この最終的な接着作業を、大型熱風乾燥機や大型オートクレーブ等の設備を使用せずに簡易的な加熱装置により行うことができれば、実用性に優れた技術となり、接着作業を行う現場において極めて有用な技術であるといえる。このような観点から、接着剤IIは、100〜120℃の温度で1時間程度加熱することによって、ほぼ完全に硬化させることができる1液性エポキシ接着剤が好ましいといえる。本発明者らは、接着剤IIとして、この条件に合致する接着剤を開発した。その組成については後述する。なお、接着力及び耐熱性に関しては1液性エポキシ接着剤に及ばないが、接着作業が容易となる2液性エポキシ接着剤も接着剤IIとして使用可能である。   Here, an epoxy adhesive is used as the adhesive II, but either a one-component epoxy adhesive or a two-component epoxy adhesive may be used. Here, if this final bonding work can be performed with a simple heating device without using equipment such as a large hot air dryer or a large autoclave, it will be a technology with excellent practicality, and the site where the bonding work will be performed It can be said that this is an extremely useful technique. From such a viewpoint, it can be said that the adhesive II is preferably a one-component epoxy adhesive that can be cured almost completely by heating at a temperature of 100 to 120 ° C. for about 1 hour. The present inventors have developed an adhesive that meets these conditions as the adhesive II. Its composition will be described later. The adhesive strength and heat resistance are not as high as those of the one-component epoxy adhesive, but a two-component epoxy adhesive that facilitates the bonding operation can also be used as the adhesive II.

本発明によって金属合金とCFRP部材を接着した場合、常温下におけるせん断破断力は高いもの(例えばA7075アルミニウム合金)で60MPa以上となり、極めて高い接着力を示した。しかも複合体間における接着力のバラつきは少なく、安定して高い接着力を発揮していた。金属合金と接着剤Iの硬化物層との接着力は、常温下におけるせん断破断力で示すと60〜70MPa程度である。一方で、CFRP部材と接着剤IIの硬化物層との接着力は、同じく常温下におけるせん断破断力で示すと50〜60MPaである。そして、接着剤Iの硬化物層と接着剤IIの硬化物層との接着力も常温下におけるせん断破断力で示すと60MPa台である。これらの値から、最終的に得られる金属合金とCFRP部材の複合体では、常温下におけるせん断破断力は50MPaを超えると予想し、結果もこれに合致した。なお、100℃下におけるせん断破断力も高いもので50MPa付近を示し、極めて高い耐熱性を有する複合体となった。この結果は、CFRP部材において、硬化したマトリックス樹脂と炭素繊維が強固に接着されていることによるものである。   When the metal alloy and the CFRP member were bonded according to the present invention, the shear fracture strength at room temperature was high (for example, A7075 aluminum alloy), which was 60 MPa or more, indicating extremely high adhesive strength. In addition, there was little variation in the adhesive strength between the composites, and stable and high adhesive strength was exhibited. The adhesive force between the metal alloy and the cured product layer of the adhesive I is about 60 to 70 MPa in terms of the shear breaking force at room temperature. On the other hand, the adhesion force between the CFRP member and the cured material layer of the adhesive II is 50 to 60 MPa in terms of the shear breaking force at normal temperature. The adhesive strength between the cured product layer of the adhesive I and the cured product layer of the adhesive II is also in the order of 60 MPa when expressed in terms of shear breaking force at room temperature. From these values, the composite of the finally obtained metal alloy and CFRP member was expected to have a shear breaking force exceeding 50 MPa at room temperature, and the results agreed with this. In addition, the shear fracture | rupture force under 100 degreeC was also high, showed about 50 Mpa, and became a composite which has very high heat resistance. This result is due to the hardened matrix resin and carbon fiber being firmly bonded in the CFRP member.

以下、本発明を構成する各要素について詳細に説明する。
[金属合金]
本発明でいう金属合金、即ち前述の「NAT」に基づく表面構造を具備する金属合金としては、理論上特にその種類に制限はない。しかし、実際に「NAT」を適用できるのは、硬質で実用的な金属合金である。本発明者等は、実質的に「NAT」が適用可能な金属合金種として、アルミニウム、マグネシウム、銅、チタン、及び鉄を主成分とする金属合金種を例示している。以下、これらについて説明する。しかし、「NAT」ではアンカー効果により接着力の向上を図っているので、少なくとも下記した金属合金種に限定されるものではない。特許文献7にアルミニウム合金に関する記載をした。特許文献8にマグネシウム合金に関する記載をした。特許文献9に銅合金に関する記載をした。特許文献10にチタン合金に関する記載をした。特許文献11にステンレス鋼に関する記載をした。特許文献12に一般鋼材に関する記載をした。これら各種金属合金について詳細に説明する。
Hereafter, each element which comprises this invention is demonstrated in detail.
[Metal alloy]
The kind of metal alloy in the present invention, that is, a metal alloy having a surface structure based on the above-mentioned “NAT” is not particularly limited in theory. However, “NAT” can actually be applied to hard and practical metal alloys. The present inventors have exemplified metal alloy species mainly composed of aluminum, magnesium, copper, titanium, and iron as metal alloy species to which “NAT” can be applied. Hereinafter, these will be described. However, since “NAT” aims to improve the adhesive force by the anchor effect, it is not limited to at least the following metal alloy types. Patent Document 7 describes an aluminum alloy. Patent Document 8 describes a magnesium alloy. Patent Document 9 describes a copper alloy. Patent Document 10 describes a titanium alloy. Patent Document 11 described stainless steel. Patent Document 12 describes general steel materials. These various metal alloys will be described in detail.

(アルミニウム合金)
本発明で使用するアルミニウム合金に制限はない。日本工業規格(JIS)に規定されている展伸用アルミニウム合金であるA1000番台〜7000番台(耐食アルミニウム合金、高力アルミニウム合金、耐熱アルミニウム合金等)は全て使用可能であり、鋳造用アルミニウム合金であるADC1〜12種(ダイカスト用アルミニウム合金)も全て使用可能である。
(Aluminum alloy)
There is no restriction | limiting in the aluminum alloy used by this invention. A1000 series to 7000 series (corrosion-resistant aluminum alloy, high-strength aluminum alloy, heat-resistant aluminum alloy, etc.), which are aluminum alloys for extension specified in Japanese Industrial Standard (JIS), can be used. Any one of ADC 1 to 12 types (aluminum alloy for die casting) can also be used.

(マグネシウム合金)
例えば、国際標準機構(ISO)、日本工業規格(JIS)、米国材料試験協会(ASTM)等に規定される展伸用マグネシウム合金(例えばA31B)及び鋳物用マグネシウム合金(例えばAZ91D)が使用できる。
(Magnesium alloy)
For example, a magnesium alloy for extension (for example, A31B) and a magnesium alloy for casting (for example, AZ91D) specified by the International Standard Organization (ISO), Japanese Industrial Standard (JIS), American Society for Testing and Materials (ASTM), or the like can be used.

(銅合金)
本発明に使用する銅合金とは、銅、黄銅、りん青銅、洋泊、アルミニウム青銅等を指す。日本工業規格(JIS H 3000系)に規定されるC1020、C1100等の純銅系合金、C2600系の黄銅合金、C5600系の銅白系合金、その他のコネクター用の鉄系の銅合金等、全ての銅合金が対象である。
(Copper alloy)
The copper alloy used in the present invention refers to copper, brass, phosphor bronze, Western night, aluminum bronze and the like. All copper, including pure copper alloys such as C1020 and C1100, C2600 brass alloys, C5600 copper white alloys and other iron-based copper alloys for connectors as defined in Japanese Industrial Standards (JIS H 3000 series) Alloys are the target.

(チタン合金)
本発明に使用するチタン合金は、国際標準化機構(ISO)、日本工業規格(JIS)等で規定される純チタン系合金、α型チタン合金、β型チタン合金、α−β型チタン合金等、全てのチタン合金が対象である。
(Titanium alloy)
The titanium alloy used in the present invention is a pure titanium alloy, an α-type titanium alloy, a β-type titanium alloy, an α-β-type titanium alloy, etc. defined by the International Organization for Standardization (ISO), Japanese Industrial Standards (JIS), etc. All titanium alloys are targeted.

(ステンレス鋼)
本発明でいうステンレス鋼とは、鉄にクロム(Cr)を加えたCr系ステンレス鋼、又ニッケル(Ni)をクロム(Cr)と組合せて添加した鋼であるCr−Ni系ステンレス鋼、その他のステンレス鋼と呼称される公知の耐食性鉄合金が対象である。国際標準機構(ISO)、日本工業規格(JIS)、米国材料試験協会(ASTM)等で、規格化されているSUS405、SUS429、SUS403等のCr系ステンレス鋼、SUS301、SUS304、SUS305、SUS316等のCr−Ni系ステンレス鋼が含まれる。
(Stainless steel)
The stainless steel in the present invention is a Cr-based stainless steel obtained by adding chromium (Cr) to iron, a Cr-Ni-based stainless steel added by combining nickel (Ni) with chromium (Cr), A known corrosion-resistant iron alloy called stainless steel is the object. SUS405, SUS429, SUS403, and other Cr-based stainless steels standardized by the International Organization for Standardization (ISO), Japanese Industrial Standards (JIS), American Material Testing Association (ASTM), etc., SUS301, SUS304, SUS305, SUS316, etc. Cr—Ni stainless steel is included.

(鉄鋼材)
本発明で用いる鉄鋼材は、一般構造用圧延鋼材等の炭素鋼(所謂一般鋼材)、高張力鋼(ハイテンション鋼)、低温用鋼、及び原子炉用鋼板等の鉄鋼材をいう。具体的には、冷間圧延鋼材(以下、「SPCC」という。)、熱間圧延鋼材(以下、「SPHC」という。)、自動車構造用熱間圧延鋼板材(以下、「SAPH」という。)、自動車加工用熱間圧延高張力鋼板材(以下、「SPFH」という。)、主に機械加工に使用される鋼材(以下「SS材」という。)等の構造用鉄鋼材が含まれる。また、本発明でいう鉄鋼材は、上記鉄鋼材に限らず、日本工業規格(JIS)、国際標準化機構(ISO)等で、規格化されたあらゆる鉄鋼材料が含まれる。
(Steel)
The steel materials used in the present invention refer to steel materials such as carbon steels (so-called general steel materials) such as general structural rolled steel materials, high-tensile steels (high-tension steels), low-temperature steels, and reactor steel plates. Specifically, cold rolled steel (hereinafter referred to as “SPCC”), hot rolled steel (hereinafter referred to as “SPHC”), hot rolled steel sheet for automobile structure (hereinafter referred to as “SAPH”). Structural steel materials such as hot-rolled high-tensile steel plate materials for automobile processing (hereinafter referred to as “SPFH”) and steel materials mainly used for machining (hereinafter referred to as “SS material”) are included. Moreover, the steel materials referred to in the present invention are not limited to the above steel materials, but include all steel materials standardized by the Japanese Industrial Standard (JIS), the International Organization for Standardization (ISO), and the like.

[化学エッチング]
本発明における化学エッチングは、金属合金表面にミクロンオーダーの粗度を生じさせることを目的とする。腐食には全面腐食、孔食、疲労腐食など種類があるが、その金属合金に対して全面腐食を生じる薬品種を選んで試行錯誤し、適当なエッチング剤を選ぶことができる。文献記録(例えば「化学工学便覧(化学工学協会編集)」)によれば、アルミニウム合金は塩基性水溶液、マグネシウム合金は酸性水溶液、ステンレス鋼や一般鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食するとの記録がある。又、耐食性の強い銅合金は、強酸性とした過酸化水素などの酸化剤によって全面腐食させられるし、チタン合金は蓚酸や弗化水素酸系の特殊な酸で全面腐食させられることが専門書や特許文献から散見される。実際に市場で販売されている金属合金類は、純銅系銅合金や純チタン系チタン合金のように純度が99.9%以上で合金とは言い難い物もあるが、これらも本発明の金属合金に含まれる。実際に使用されている金属合金の殆どは、特徴的な物性を求めて多種多用な元素が混合されて純金属系の物は少なく、実質的にも合金である。
[Chemical etching]
The purpose of chemical etching in the present invention is to produce a roughness on the order of microns on the surface of a metal alloy. There are various types of corrosion, such as general corrosion, pitting corrosion, and fatigue corrosion, but it is possible to select an appropriate etching agent by selecting a chemical species that causes general corrosion for the metal alloy and trial and error. According to literature records (for example, “Chemical Engineering Handbook (edited by the Chemical Engineering Association)”), aluminum alloys are basic aqueous solutions, magnesium alloys are acidic aqueous solutions, stainless steel and general steel materials in general are hydrohalic acid such as hydrochloric acid, sulfurous acid, There is a record that the entire surface is corroded by an aqueous solution of sulfuric acid or a salt thereof. In addition, copper alloys with strong corrosion resistance are totally corroded by strong oxidizing agents such as hydrogen peroxide, and titanium alloys can be corroded entirely with oxalic acid or hydrofluoric acid-based special acids. And from the patent literature. The metal alloys that are actually sold in the market, such as pure copper-based copper alloys and pure titanium-based titanium alloys, have a purity of 99.9% or more and are hardly called alloys. Included in the alloy. Most of the metal alloys that are actually used are mixed with a wide variety of elements in order to obtain characteristic physical properties, and there are few pure metal materials, and they are substantially alloys.

即ち、金属合金の殆どは、元々の金属物性を低下させることなく耐食性を向上させることを目的として純金属から合金化されたものである。それ故、金属合金によっては、前記酸・塩基類や特定の化学物質を使っても、目標とする化学エッチングができない場合もよくある。実際には使用する酸・塩基水溶液の濃度、液温度、浸漬時間、場合によっては添加物を工夫しつつ試行錯誤して適正な化学エッチングを行うことになる。化学エッチング法については、特許文献7にアルミニウム合金に関する記載、特許文献8にマグネシウム合金に関する記載、特許文献9に銅合金に関する記載、特許文献10にチタン合金に関する記載、特許文献11にステンレス鋼に関する記載、及び特許文献12に一般鋼材に関する記載をした。   That is, most metal alloys are alloyed from pure metal for the purpose of improving corrosion resistance without deteriorating the original metal properties. Therefore, depending on the metal alloy, even if the acid / base or a specific chemical substance is used, the target chemical etching is often not possible. In practice, appropriate chemical etching is performed by trial and error while devising the concentration of the acid / base aqueous solution to be used, the liquid temperature, the immersion time, and, in some cases, the additive. Regarding the chemical etching method, Patent Document 7 describes an aluminum alloy, Patent Document 8 describes a magnesium alloy, Patent Document 9 describes a copper alloy, Patent Document 10 describes a titanium alloy, and Patent Document 11 describes a stainless steel. And Patent Document 12 described general steel materials.

実際に行う作業として全般的に共通する点を説明する。金属合金を所定の形状に形状化した後、当該金属合金用の脱脂剤を溶かした水溶液に浸漬して脱脂し、水洗する。この工程は、金属合金を形状化する工程で付着した機械油や指脂の大部分を除くための処理であり、常に行うことが好ましい。次いで、薄く希釈した酸・塩基水溶液に浸漬して水洗するのが好ましい。これは本発明者等が予備酸洗浄や予備塩基洗浄と称している工程である。一般鋼材のように酸で腐食するような金属合金では、塩基性水溶液に浸漬し水洗する。また、アルミニウム合金のように塩基性水溶液で特に腐食が早い金属合金では、希薄酸水溶液に浸漬し水洗する。これらは、化学エッチングに使用する水溶液と逆性のものを前もって金属合金に付着(吸着)させる工程であり、その後の化学エッチングが誘導期間なしに始まることになって処理の再現性が著しく向上する。それ故にこの予備酸洗浄、予備塩基洗浄工程は本質的なものではないが、実務上、採用することが好ましい。これらの工程の後に化学エッチング工程を行う。   The points that are generally common in the work actually performed will be described. After shaping the metal alloy into a predetermined shape, the metal alloy is degreased by immersing it in an aqueous solution in which a degreasing agent for the metal alloy is dissolved and washed with water. This process is a process for removing most of the machine oil and finger grease adhering in the process of shaping the metal alloy, and it is preferably always performed. Then, it is preferably immersed in a thinly diluted acid / base aqueous solution and washed with water. This is a process that the present inventors have referred to as preliminary acid cleaning and preliminary base cleaning. In the case of a metal alloy that corrodes with an acid such as a general steel material, it is immersed in a basic aqueous solution and washed with water. Further, in the case of a metal alloy that is particularly rapidly corroded with a basic aqueous solution such as an aluminum alloy, it is immersed in a dilute acid aqueous solution and washed with water. These are processes in which a solution opposite to the aqueous solution used for chemical etching is attached (adsorbed) to the metal alloy in advance, and the subsequent chemical etching starts without an induction period, so that the reproducibility of the process is remarkably improved. . Therefore, the preliminary acid cleaning and preliminary base cleaning steps are not essential, but are preferably employed in practice. After these steps, a chemical etching step is performed.

[微細エッチング・表面硬化処理]
本発明における微細エッチングは、金属合金表面に超微細凹凸を形成することを目的とする。また本発明における表面硬化処理は、金属合金の表層を金属酸化物又は金属リン酸化物の薄層とすることを目的とする。金属合金種によっては前記化学エッチングを行っただけで同時にナノオーダーの微細エッチングもなされ、超微細凹凸が形成される場合がある。さらに、金属合金種によっては表面の自然酸化層が元よりも厚くなって表面硬化処理も完了している場合もある。例えば、純チタン系のチタン合金は化学エッチングだけを行うことで、表面がミクロンオーダーの粗度を有し、且つ超微細凹凸も形成される。即ち、化学エッチングと併せて微細エッチングもなされる。しかし、多くは化学エッチングによりミクロンオーダーの大きな凹凸面を作った後で微細エッチングや表面硬化処理を行う必要がある。
[Fine etching / Surface hardening]
The purpose of fine etching in the present invention is to form ultra-fine irregularities on the surface of a metal alloy. Moreover, the surface hardening process in this invention aims at making the surface layer of a metal alloy into a thin layer of a metal oxide or a metal phosphate. Depending on the type of metal alloy, nano-order fine etching may be performed at the same time by performing the chemical etching, and ultra-fine irregularities may be formed. Furthermore, depending on the type of metal alloy, the surface natural oxidation layer may be thicker than the original and the surface hardening process may be completed. For example, a pure titanium-based titanium alloy is subjected only to chemical etching, so that the surface has a roughness on the order of microns and ultra-fine irregularities are also formed. That is, fine etching is performed together with chemical etching. However, in many cases, it is necessary to carry out fine etching or surface hardening treatment after forming a large uneven surface on the order of microns by chemical etching.

この時でも予測できない化学現象に見舞われることが多い。即ち、表面硬化処理や表面安定化処理を目的に化学エッチング後の金属合金に酸化剤等を反応させたり化成処理をしたとき、得られる表面に偶然ながら超微細凹凸が形成される場合がある。マグネシウム合金を過マンガン酸カリ系水溶液で化成処理した場合に生じた酸化マンガンとみられる表面層は10万倍電子顕微鏡でようやく判別つく5〜10nm直径の棒状結晶が錯綜したものである。この試料をXRD(X線回折計)で分析したが、酸化マンガン類由来の回折線は検出できなかったが、表面が酸化マンガンで覆われていることはXPS分析で明らかである。XRDで検出できなかった理由は、結晶が検出限界を超えた薄い層であったからである。要するに、マグネシウム合金では表面硬化処理としての化成処理を施したことで、微細エッチングも併せて完了していたことになった。銅合金でも同様で、塩基性下の酸化で表面を酸化第2銅に変化させる表面硬化処理を行ったところ、純銅系銅合金では、その表面は楕円形の穴開口部で覆われた特有の超微細凹凸面になる。一方、純銅系でない銅合金では凹部型でなく10〜150nm径の粒径物又は不定多角形状物が連なり、一部融け合って積み重なった形の超微細凹凸面になる。この場合でも表面の殆どは酸化第2銅で覆われており、表面の硬化と超微細凹凸の形成が同時に起こる。   Even at this time, we are often hit by unpredictable chemical phenomena. That is, when a metal alloy after chemical etching is reacted with an oxidizing agent or chemical conversion treatment for the purpose of surface hardening treatment or surface stabilization treatment, ultra fine irregularities may be formed on the resulting surface by chance. The surface layer that appears to be manganese oxide formed when a magnesium alloy is subjected to chemical conversion treatment with a potassium permanganate aqueous solution is a complex of rod-like crystals having a diameter of 5 to 10 nm that can be finally identified with a 100,000-fold electron microscope. Although this sample was analyzed by XRD (X-ray diffractometer), diffraction lines derived from manganese oxides could not be detected, but it is clear by XPS analysis that the surface was covered with manganese oxide. The reason why XRD could not be detected is that the crystal was a thin layer exceeding the detection limit. In short, the magnesium alloy was subjected to a chemical conversion treatment as a surface hardening treatment, so that fine etching was also completed. The same applies to copper alloys. When surface hardening treatment was performed to change the surface to cupric oxide by oxidation under basic conditions, the surface of pure copper-based copper alloys was covered with an elliptical hole opening. It becomes an ultra fine uneven surface. On the other hand, in the case of a copper alloy that is not pure copper-based, not a concave shape but a particle size or an indefinite polygonal shape having a diameter of 10 to 150 nm is continuous, and an ultrafine uneven surface in a form of being partially melted and stacked. Even in this case, most of the surface is covered with cupric oxide, and the hardening of the surface and the formation of ultrafine irregularities occur simultaneously.

一般鋼材に関しては、更なる検証が必要ではあるものの、ミクロンオーダーの粗度を形成するための化学エッチングだけで超微細凹凸も併せて形成されていることが多く、元来表層(自然酸化層)が硬いこともあって、表面硬化処理や微細エッチング処理を改めて行わずとも、「NAT」を適用可能と考えられた。問題は自然酸化層の耐食性が十分でないために、接着工程までに腐食が始まってしまったり、接着後の環境如何では短時間で接着力が低下することであった。これらは化成処理によって防ぐことができる。例を挙げると、化成処理をしていない一般鋼材(SPCC:冷間圧延鋼材)同士をフェノール樹脂系接着剤で接着した接合体に関しては、4週間という短期間で接着力が急激に低下した。一方、化成処理をした一般鋼材(SPCC)同士をフェノール樹脂系接着剤で接着した接合体に関しては、同じ期間では当初の接着力から低下しなかった。   For general steel materials, although further verification is required, ultra-fine irregularities are often formed only by chemical etching to form micron-order roughness, and originally the surface layer (natural oxide layer) However, it was considered that “NAT” can be applied without performing a surface hardening process or a fine etching process again. The problem is that the corrosion resistance of the natural oxide layer is not sufficient, so that corrosion starts before the bonding process, or the adhesive force decreases in a short time depending on the environment after bonding. These can be prevented by chemical conversion treatment. For example, regarding a joined body in which general steel materials (SPCC: cold rolled steel materials) not subjected to chemical conversion treatment are bonded with a phenol resin adhesive, the adhesive strength rapidly decreased in a short period of 4 weeks. On the other hand, regarding the joined body in which the general steel materials (SPCC) subjected to the chemical conversion treatment were bonded to each other with the phenol resin-based adhesive, they did not decrease from the initial adhesive force in the same period.

また、本発明者らは、一般に、化成処理によって金属合金表面に形成された被膜(化成被膜)の膜厚が厚いと、接着力が低下することが多いことを確認している。前記のマグネシウム合金に付着した酸化マンガン薄層のように、XRDで回折線が検出されないような薄層である方が、強い接着力が得られる。化成被膜が厚い金属合金同士をエポキシ接着剤で接着し、破壊試験した場合、破壊面は殆どが化成皮膜と金属合金層との間となる。本発明者らが行った実験では、厚い化成皮膜とエポキシ接着剤硬化物との接合力は、その化成皮膜と金属合金との接合力より常に強かった。即ち、一般鋼材でも、化成処理時間を更に長くして化成処理層を厚くすれば、接着力は長期間低下しないと考えられる。しかしながら化成皮膜を厚くすれば、接着力自体が低下する。従って、どの程度でバランスを取るかは、使用目的、用途等にもよる。以下各種金属合金の表面処理方法について詳述する。   In addition, the present inventors have generally confirmed that the adhesive force often decreases when the film (chemical conversion film) formed on the surface of the metal alloy by chemical conversion treatment is thick. A strong adhesive force can be obtained when the thin layer is such that a diffraction line is not detected by XRD, such as the thin layer of manganese oxide adhered to the magnesium alloy. When metal alloys having a thick chemical conversion film are bonded to each other with an epoxy adhesive and subjected to a destructive test, most of the fracture surface is between the chemical conversion film and the metal alloy layer. In experiments conducted by the present inventors, the bonding force between the thick chemical conversion film and the cured epoxy adhesive was always stronger than the bonding force between the chemical conversion film and the metal alloy. That is, even with a general steel material, it is considered that the adhesive strength does not decrease for a long period of time if the chemical conversion treatment time is further increased to increase the thickness of the chemical conversion treatment layer. However, if the chemical conversion film is thickened, the adhesive strength itself is reduced. Therefore, the degree of balance depends on the purpose of use and application. Hereinafter, the surface treatment method of various metal alloys will be described in detail.

[表面処理の具体例]
(アルミニウム合金の表面処理)
アルミニウム合金の表面処理に際して、まず脱脂処理を行う。本発明に特有な脱脂処理は必要なく、市販のアルミニウム合金用脱脂材の水溶液を使用する。即ち、アルミニウム合金で常用されている脱脂処理で良い。脱脂材によって異なるが、一般的な市販品では、濃度5〜10%として液温を50〜80℃とし、これにアルミニウム合金を5〜10分間浸漬する。
[Specific examples of surface treatment]
(Surface treatment of aluminum alloy)
In the surface treatment of the aluminum alloy, first degreasing treatment is performed. The degreasing treatment unique to the present invention is not necessary, and a commercially available aqueous solution of a degreasing material for aluminum alloy is used. That is, the degreasing treatment commonly used for aluminum alloys may be used. Although it differs depending on the degreasing material, in a general commercial product, the concentration is 5 to 10%, the liquid temperature is 50 to 80 ° C., and the aluminum alloy is immersed in this for 5 to 10 minutes.

これ以降の工程は、アルミニウム合金に珪素が比較的多く含まれる合金と、これらの成分が少ない合金とでは処理方法が異なる。ここでは珪素分が少ないアルミニウム合金の処理方法に関して説明する。即ち、A1050、A1100、A2014、A2024、A3003、A5052、A7075等の展伸用アルミニウム合金では、以下のような処理方法が好ましい。即ち、アルミニウム合金を、酸性水溶液に短時間浸漬して水洗し、アルミニウム合金の表層に酸成分を吸着させるのが、次の化学エッチングを再現性良く進める上で好ましい。この処理を予備酸洗工程といい、使用液は、硝酸、塩酸、硫酸等、安価な鉱酸の1%〜数%濃度の希薄水溶液が使用できる。次いで、強塩基性水溶液に浸漬する化学エッチングを行った後、水洗する。この化学エッチングでは、1%〜数%濃度の苛性ソーダ水溶液を30〜40℃にして、これにアルミニウム合金を数分浸漬するのが好ましい。   In the subsequent steps, the treatment method is different between an alloy containing a relatively large amount of silicon in an aluminum alloy and an alloy containing few components. Here, a method for treating an aluminum alloy having a low silicon content will be described. That is, the following treatment methods are preferred for aluminum alloys for drawing such as A1050, A1100, A2014, A2024, A3003, A5052, and A7075. That is, it is preferable that the aluminum alloy is immersed in an acidic aqueous solution for a short time and washed with water, and the acid component is adsorbed on the surface layer of the aluminum alloy in order to proceed the next chemical etching with good reproducibility. This treatment is referred to as a preliminary pickling step, and a dilute aqueous solution having a concentration of 1% to several percent of an inexpensive mineral acid such as nitric acid, hydrochloric acid, sulfuric acid or the like can be used. Subsequently, after performing chemical etching immersed in a strongly basic aqueous solution, it is washed with water. In this chemical etching, a 1% to several percent concentration of caustic soda aqueous solution is preferably set to 30 to 40 ° C., and the aluminum alloy is preferably immersed in this for several minutes.

この化学エッチングにより、アルミニウム合金表面に残っていた油脂や汚れがアルミニウム合金表層と共に剥がされる。この剥がれと同時に、この表面にはミクロンオーダーの粗度を有するようになる。即ち、RSmが0.8〜10μm、Rzが0.2〜5.0μmの凹凸面となる。次に、再度酸性水溶液に浸漬し、水洗することでナトリウムイオンを除くのが好ましい。本発明者等はこれを中和工程と呼んでいる。この酸性水溶液として数%濃度の硝酸水溶液が特に好ましい。   By this chemical etching, oils and dirt remaining on the surface of the aluminum alloy are peeled off together with the surface layer of the aluminum alloy. Simultaneously with this peeling, the surface has a roughness on the order of microns. That is, the uneven surface has an RSm of 0.8 to 10 μm and an Rz of 0.2 to 5.0 μm. Next, it is preferable to remove sodium ions by immersing again in an acidic aqueous solution and washing with water. The inventors refer to this as a neutralization step. As this acidic aqueous solution, a nitric acid aqueous solution having a concentration of several percent is particularly preferable.

中和工程を経たアルミニウム合金に最終処理である微細エッチングを行う。微細エッチングでは、アルミニウム合金を、水和ヒドラジン、アンモニア、及び水溶性アミン化合物のいずれか1つ以上を含む水溶液に浸漬する。その後水洗し、70℃以下で乾燥するのが好ましい。これは、中和工程で行う脱ナトリウムイオン処理によって表面がやや変化し、粗度は保たれるがその表面がやや円滑になったことに対する粗面の復活策でもある。水和ヒドラジン水溶液等の弱塩基性水溶液に、短時間浸漬して微細エッチングする。ミクロンオーダーの粗度に係る凹部内壁面に、40〜50nm周期の超微細凹凸を多数形成させることが特に好ましい。   Fine etching, which is the final treatment, is performed on the aluminum alloy that has undergone the neutralization step. In the fine etching, the aluminum alloy is immersed in an aqueous solution containing one or more of hydrated hydrazine, ammonia, and a water-soluble amine compound. Thereafter, it is preferably washed with water and dried at 70 ° C. or lower. This is also a measure for reviving the rough surface with respect to the fact that the surface is slightly changed by the sodium removal ion treatment performed in the neutralization step and the roughness is maintained, but the surface becomes slightly smooth. Fine etching is performed by dipping in a weakly basic aqueous solution such as a hydrated hydrazine aqueous solution for a short time. It is particularly preferable that a large number of ultrafine irregularities with a period of 40 to 50 nm are formed on the inner wall surface of the concave portion having a roughness on the order of microns.

ここで、水洗後の乾燥温度を例えば100℃以上の高温にすると、仮に乾燥機内が密閉的であると、沸騰水とアルミニウム間で水酸化反応が生じ、表面が変化してベーマイト層が形成される。これは丈夫な表層といえないため好ましくない。表面のベーマイト化を防ぐには、90℃以下、好ましくは70℃以下で温風乾燥するのが好ましい。70℃以下で乾燥した場合、XPSによる表面元素分析でアルミニウムのピークからアルミニウム(3価)しか検出できず、市販のA5052、A7075アルミニウム合金板材等のXPS分析では検出できるアルミニウム(0価)は消える。XPS分析は、金属表面から1〜2nm深さまでに存在する元素が検出できるので、この結果から、水和ヒドラジンやアミン系化合物の水溶液に浸漬し、その後水洗して温風乾燥することで、アルミニウム合金が持っていた本来の自然酸化層(1nm厚さ程度の酸化アルミニウム薄層)が微細エッチングでより厚くなったことが確認された。少なくとも自然酸化層と異なって、2nm以上の厚さであることが確認された。   Here, when the drying temperature after washing with water is set to a high temperature of, for example, 100 ° C. or higher, if the inside of the dryer is sealed, a hydroxylation reaction occurs between boiling water and aluminum, and the surface changes to form a boehmite layer. The This is not preferable because it cannot be said to be a strong surface layer. In order to prevent boehmite formation on the surface, it is preferable to dry with hot air at 90 ° C. or lower, preferably 70 ° C. or lower. When dried at 70 ° C. or lower, only aluminum (trivalent) can be detected from the aluminum peak by surface elemental analysis by XPS, and aluminum (zero valent) that can be detected by XPS analysis of commercially available A5052, A7075 aluminum alloy sheet, etc. disappears. . The XPS analysis can detect elements present at a depth of 1 to 2 nm from the metal surface. From this result, it is immersed in an aqueous solution of hydrated hydrazine or an amine compound, and then washed with water and dried with warm air to obtain aluminum. It was confirmed that the original natural oxide layer (a thin aluminum oxide layer having a thickness of about 1 nm) that the alloy had became thicker by fine etching. Unlike at least the natural oxide layer, it was confirmed that the thickness was 2 nm or more.

(マグネシウム合金の表面処理)
マグネシウム合金の表面処理に際して、まず脱脂処理を行う。具体的には、市販のマグネシウム合金用脱脂材の水溶液を使用する。一般的な市販品では、濃度5〜10%、液温を50〜80℃とし、これにマグネシウム合金を5〜10分浸漬する。
(Surface treatment of magnesium alloy)
In the surface treatment of the magnesium alloy, first, degreasing treatment is performed. Specifically, a commercially available aqueous solution of a degreasing material for magnesium alloy is used. In a general commercial product, the concentration is 5 to 10%, the liquid temperature is 50 to 80 ° C., and the magnesium alloy is immersed in this for 5 to 10 minutes.

次に、マグネシウム合金を酸性水溶液に短時間浸漬する化学エッチングを行い、水洗する。脱脂工程で除き切れなかった汚れを含めマグネシウム合金表層が剥がされ、同時にミクロンオーダーの粗度が生じる。即ち、走査型プローブ顕微鏡で走査したときに、RSmが0.8〜10μm、Rzが0.2〜5μmの凹凸が検出される。上記化学エッチング用の水溶液としては、1%〜数%濃度のカルボン酸又は鉱酸の水溶液を使用することができる。特にクエン酸、マロン酸、酢酸、硝酸等の水溶液が好ましい。化学エッチングでは、通常マグネシウム合金に含まれるアルミニウムや亜鉛は、溶解せず黒色のスマットとしてマグネシウム合金表面に付着残存するから、次に弱塩基性水溶液に浸漬してアルミニウムスマットを溶解して除き、次に強塩基水溶液に浸漬して亜鉛スマットを溶解して除くのが好ましい。   Next, chemical etching in which the magnesium alloy is immersed in an acidic aqueous solution for a short time is performed and washed with water. The surface layer of the magnesium alloy including the dirt that cannot be removed in the degreasing process is peeled off, and at the same time, a roughness on the order of microns is generated. That is, when scanning with a scanning probe microscope, irregularities with RSm of 0.8 to 10 μm and Rz of 0.2 to 5 μm are detected. As the aqueous solution for chemical etching, an aqueous solution of carboxylic acid or mineral acid having a concentration of 1% to several percent can be used. Particularly preferred are aqueous solutions of citric acid, malonic acid, acetic acid, nitric acid and the like. In chemical etching, aluminum and zinc contained in a magnesium alloy usually do not dissolve and remain on the surface of the magnesium alloy as a black smut. Then, the aluminum smut is removed by soaking in a weakly basic aqueous solution. It is preferable to dissolve the zinc smut by immersing it in a strong base aqueous solution.

このようにしてスマットを溶解排除したマグネシウム合金を化成処理する。即ち、マグネシウムは、イオン化傾向の非常に高い金属であるから空気中の湿気と酸素による酸化速度が他の金属に比べて速い。マグネシウム合金には、自然酸化膜があるが耐食性の点から見て十分強いものではなく、通常の環境下でも容易に酸化腐食が進行する。それ故、一般的には、マグネシウム合金は、クロム酸や重クロム酸カリウム等の水溶液に浸漬して酸化クロムの薄層で全面を覆う(クロメート処理と呼ばれる)か、又はリン酸を含むマンガン塩の水溶液に浸漬して、リン酸マンガン系化合物で全面を覆う処理を行って、腐食防止処置を行う。これらの処置をマグネシウム業界では化成処理と呼んでいる。   In this way, the magnesium alloy from which the smut is dissolved and eliminated is subjected to chemical conversion treatment. That is, since magnesium is a metal with a very high ionization tendency, the oxidation rate by moisture and oxygen in air is faster than other metals. Magnesium alloys have a natural oxide film, but are not strong enough from the viewpoint of corrosion resistance, and oxidative corrosion easily proceeds even in a normal environment. Therefore, in general, magnesium alloys are soaked in an aqueous solution such as chromic acid or potassium dichromate to cover the entire surface with a thin layer of chromium oxide (called chromate treatment), or a manganese salt containing phosphoric acid. A treatment for covering the entire surface with a manganese phosphate compound is performed by dipping in an aqueous solution of the above, and a corrosion prevention treatment is performed. These treatments are called chemical treatments in the magnesium industry.

要するに、マグネシウム合金に行う化成処理とは、金属塩を含む水溶液にマグネシウム合金を浸漬して、その表面を金属酸化物及び/又は金属リン酸化物の薄層で覆う処置を言う。現在では、6価のクロム化合物を使用するクロメート型の化成処理は環境汚染の観点から忌避されており、ノンクロメート処理と言われるクロム以外の金属塩を使用した化成処理、実際には、前記したリン酸マンガン系化成処理、又は珪素系化成処理が行われる。本発明ではこれらの方法と相違して、弱酸性とした過マンガン酸カリの水溶液を、化成処理用水溶液として使用するのが特に好ましい。この場合、表面を覆う皮膜(化成皮膜という)は、二酸化マンガンとなる。   In short, the chemical conversion treatment performed on the magnesium alloy refers to a treatment in which the magnesium alloy is immersed in an aqueous solution containing a metal salt and the surface thereof is covered with a thin layer of metal oxide and / or metal phosphate. At present, the chromate-type chemical conversion treatment using a hexavalent chromium compound is avoided from the viewpoint of environmental pollution. The chemical conversion treatment using a metal salt other than chromium, which is called non-chromate treatment, is actually described above. Manganese phosphate chemical conversion treatment or silicon chemical conversion treatment is performed. In the present invention, unlike these methods, it is particularly preferable to use a weakly acidic aqueous solution of potassium permanganate as the aqueous solution for chemical conversion treatment. In this case, a coating covering the surface (referred to as a chemical conversion coating) is manganese dioxide.

具体的な処理法としては、上述したようにスマットを除いたマグネシウム合金を非常に希薄な酸性水溶液に短時間浸漬した後、これを水洗し、表層の塩基性成分を除く。その後に化成処理用水溶液に浸漬して水洗し、乾燥する方法が好ましい。前記の希薄な酸性水溶液として、0.1〜0.3%濃度のクエン酸又はマロン酸水溶液を使用する。この水溶液に常温付近で1分程度浸漬するのが好ましい。化成処理用水溶液としては、過マンガン酸カリを1.5〜3%、酢酸を1%前後、及び酢酸ナトリウムを0.5%前後含む水溶液を、温度40〜50℃で使用するのが好ましく、この水溶液では浸漬時間は1分程度が好ましい。これらの操作により、マグネシウム合金はニ酸化マンガンの化成皮膜で覆われたものとなり、その表面は、ミクロンオーダーの粗度を有し、且つナノオーダーの超微細凹凸が形成されたものとなる。   As a specific treatment method, as described above, the magnesium alloy excluding the smut is immersed in a very dilute acidic aqueous solution for a short time, and then washed with water to remove the basic component of the surface layer. The method of immersing in the aqueous solution for chemical conversion treatment after that, washing with water, and drying is preferable. A citric acid or malonic acid aqueous solution having a concentration of 0.1 to 0.3% is used as the dilute acidic aqueous solution. It is preferable to immerse in this aqueous solution at around room temperature for about 1 minute. As the chemical conversion treatment aqueous solution, it is preferable to use an aqueous solution containing 1.5 to 3% potassium permanganate, about 1% acetic acid and about 0.5% sodium acetate at a temperature of 40 to 50 ° C. In this aqueous solution, the immersion time is preferably about 1 minute. By these operations, the magnesium alloy is covered with a chemical conversion film of manganese dioxide, and the surface thereof has a roughness on the order of microns and has nano-order ultrafine irregularities formed thereon.

図3(a)及び(b)は、それぞれ上記処理を施したマグネシウム合金表面の10万倍の電子顕微鏡写真である。これらの超微細凹凸形状を、文章で表現するのは困難であるが、敢えて言えば、図3(a)の電子顕微鏡写真からは、5〜20nm径で20〜200nm長さの棒状又は球状物が無数に錯綜した凹凸で表面が覆われている超微細凹凸形状といえる。図3(b)の電子顕微鏡写真からは、この超微細凹凸形状は、5〜20nm径で10〜30nm長さの棒状又は球状突起が無数に生えた直径80〜120nmの球状物が、不規則に積み重なった形状であるといえる。約10nm径の棒状(針状)物質は、電子顕微鏡観察の結果からは、完全に結晶であるといえるものであるが、X線回折装置(XRD)による分析ではマンガン酸化物で見られる回折線は認められなかった。   FIGS. 3A and 3B are 100,000 times electron micrographs of the surface of the magnesium alloy subjected to the above treatment. Although it is difficult to express these ultra-fine concavo-convex shapes with sentences, from an electron micrograph of FIG. 3 (a), a rod-like or spherical object having a diameter of 5 to 20 nm and a length of 20 to 200 nm. It can be said that the surface is covered with infinitely complex irregularities. From the electron micrograph of FIG. 3 (b), this ultra fine concavo-convex shape is irregularly shaped by a rod having a diameter of 5 to 20 nm and a length of 10 to 30 nm, or a spherical object having a diameter of 80 to 120 nm with an infinite number of spherical protrusions. It can be said that the shape is stacked on top of each other. The rod-like (needle-like) substance having a diameter of about 10 nm can be said to be completely crystalline from the result of observation with an electron microscope, but the diffraction line seen in manganese oxide by analysis with an X-ray diffractometer (XRD). Was not recognized.

X線回折装置(XRD)は、結晶の量が少ないと検出できないので、今のところこれらが結晶であるか否かの判断はできない。少なくとも、これらをアモルファス(非結晶)というには形が整い過ぎているため、アモルファスではないと判断される。なお、XPS分析からは、マンガン(イオンであり0価のマンガンではない)と酸素の大きなピークが認められ、表層はマンガン酸化物であることは間違いない。この表面は、色調が暗色であり、二酸化マンガンが主体のマンガン酸化物である。   Since an X-ray diffractometer (XRD) cannot detect if the amount of crystals is small, it cannot be determined whether these are crystals at present. At least, these are too amorphous to be amorphous (non-crystalline), so it is determined that they are not amorphous. From XPS analysis, large peaks of manganese (which is an ion and not zero-valent manganese) and oxygen are recognized, and there is no doubt that the surface layer is a manganese oxide. This surface has a dark color tone and is a manganese oxide mainly composed of manganese dioxide.

(銅合金の表面処理)
銅合金の表面処理に際して、まず脱脂処理を行う。具体的には、市販の銅合金用脱脂材の水溶液を使用する。また、市販の鉄用、ステンレス用、又はアルミニウム合金用の脱脂剤も使用できる。更には工業用又は一般家庭用の中性洗剤を溶解した水溶液も使用できる。通常は、市販の脱脂剤又は中性洗剤を水に溶解して数%〜5%濃度とし、この水溶液の温度を50〜70℃とし、これに銅合金を5〜10分浸漬し、水洗する。
(Surface treatment of copper alloy)
In the surface treatment of the copper alloy, degreasing treatment is first performed. Specifically, a commercially available aqueous solution of a degreasing material for copper alloy is used. Commercially available degreasing agents for iron, stainless steel, or aluminum alloy can also be used. Furthermore, an aqueous solution in which a neutral detergent for industrial use or general household is dissolved can be used. Usually, a commercially available degreasing agent or neutral detergent is dissolved in water to a concentration of several% to 5%, the temperature of this aqueous solution is 50 to 70 ° C., and the copper alloy is immersed in this for 5 to 10 minutes and washed with water. .

次に、銅合金を40℃前後に保った数%濃度の苛性ソーダ水溶液に浸漬した後に水洗する予備塩基洗浄をするのが好ましい。更に、銅合金を過酸化水素と硫酸を含む水溶液に浸漬する化学エッチングを行い、水洗する。この化学エッチングは、20℃〜常温付近の、硫酸、過酸化水素の両方を共に数%含む水溶液を使用するのが好ましい。このときの浸漬時間は、合金種によって異なるが、数分〜20分である。この化学エッチング工程で、殆どの銅合金でミクロンオーダーの粗度が獲得される。即ち走査型プローブ顕微鏡で解析して、RSmが0.8〜10μm、Rzが0.2〜5μmとなる、   Next, it is preferable to perform preliminary base washing in which the copper alloy is immersed in a caustic soda solution having a concentration of several percent maintained at around 40 ° C. and then washed with water. Further, chemical etching is performed by immersing the copper alloy in an aqueous solution containing hydrogen peroxide and sulfuric acid, followed by washing with water. This chemical etching is preferably performed using an aqueous solution containing several percent of both sulfuric acid and hydrogen peroxide at 20 ° C. to around room temperature. Although the immersion time at this time changes with alloy types, it is several minutes-20 minutes. In this chemical etching process, a roughness on the order of microns is obtained with most copper alloys. That is, when analyzed with a scanning probe microscope, RSm is 0.8 to 10 μm and Rz is 0.2 to 5 μm.

次に、上記化学エッチング工程を経た銅合金の表面を酸化させる表面硬化処理を行う。電子部品業界では黒化処理と呼ばれている方法が知られているが、本発明で実施する表面効果処理は、その目的と酸化程度が黒化処理とは異なるものの、処理の内容自体は同じである。化学的に言えば、銅合金の表面層を強塩基性下で酸化剤によって酸化する。銅原子を酸化剤でイオン化した場合に、周りが強塩基性であると水溶液に溶解せず黒色の酸化第2銅になる。銅合金製部品をヒートシンクや発熱材部品として使用する場合、表面を黒色化して輻射熱の放熱や吸熱での効率を向上させている。この処理を、銅を使用する電子部品業界では黒化処理と呼んでいる。本発明の表面硬化処理にもこの黒化処理が利用できる。但し、本発明における表面硬化処理の目的は、一定の粗さを有する銅合金の表面にナノオーダーの超微細凹凸を形成し 且つ表層を硬質とすることにある(即ち微細エッチング及び表面硬化処理を行うこと)であるから、文字通り黒色化することではない。   Next, the surface hardening process which oxidizes the surface of the copper alloy which passed through the said chemical etching process is performed. Although a method called blackening treatment is known in the electronic component industry, the surface effect treatment carried out in the present invention is different from the blackening treatment in its purpose and degree of oxidation, but the content of the treatment itself is the same. It is. Chemically speaking, the surface layer of the copper alloy is oxidized with an oxidizing agent under strong basicity. When copper atoms are ionized with an oxidizing agent, if the surroundings are strongly basic, they are not dissolved in an aqueous solution and become black cupric oxide. When a copper alloy part is used as a heat sink or a heat generating material part, the surface is blackened to improve the efficiency of heat radiation and heat absorption. This processing is called blackening processing in the electronic component industry using copper. This blackening treatment can also be used for the surface hardening treatment of the present invention. However, the purpose of the surface hardening treatment in the present invention is to form nano-order ultra-fine irregularities on the surface of a copper alloy having a certain roughness and harden the surface layer (that is, fine etching and surface hardening treatment). Literally not blackening.

本発明においても黒化処理と同様に、市販の黒化剤を、市販メーカーの指示する濃度、温度で使用する。但し、本発明における浸漬時間は、上記電子部品業界における黒化処理と比較して極めて短時間である。浸漬時間を異ならせて表面硬化処理を行い、各表面硬化処理後の銅合金表面を電子顕微鏡観察し、適した浸漬時間を特定した。具体的な条件としては、亜塩素酸ナトリウムを5%前後、苛性ソーダを5〜10%含む水溶液を60〜70℃として使用するのが好ましく、その場合の浸漬時間は0.5〜1.0分程度が好ましい。これらの操作により、銅合金は酸化第2銅の薄層で覆われたものとなる。そして表面を電子顕微鏡で観察すると、ミクロンオーダーの粗度を有し、その表面には直径が10〜150nmの円状の穴及び長径又は短径が10〜150nmの楕円状の穴が形成される。そして、この円状の穴及び楕円状の穴が、30〜300nm周期で全面に存在する超微細凹凸形状となる(この例を図4(b)の写真で示した)。要するに、この表面硬化処理を行うと、超微細凹凸と表面硬化層の双方が同時に得られることになる。なお、表面硬化処理において、処理液への浸漬時間を2〜3分にすると却って被着材との接着力が低下した。このことから、表面硬化処理を長時間行うことは、却って接着力を弱くし、好ましくないことが確認された。   In the present invention, similarly to the blackening treatment, a commercially available blackening agent is used at a concentration and temperature indicated by a commercial manufacturer. However, the immersion time in the present invention is extremely short compared to the blackening treatment in the electronic component industry. The surface hardening treatment was performed with different immersion times, and the surface of the copper alloy after each surface hardening treatment was observed with an electron microscope to identify a suitable immersion time. As specific conditions, it is preferable to use an aqueous solution containing about 5% sodium chlorite and 5 to 10% caustic soda at 60 to 70 ° C., in which case the immersion time is 0.5 to 1.0 minutes. The degree is preferred. By these operations, the copper alloy is covered with a thin layer of cupric oxide. When the surface is observed with an electron microscope, the surface has a roughness on the order of microns, and a circular hole having a diameter of 10 to 150 nm and an elliptic hole having a major axis or a minor axis of 10 to 150 nm are formed on the surface. . And this circular hole and elliptical hole become the ultra fine uneven | corrugated shape which exists in the whole surface with a 30-300 nm period (this example was shown with the photograph of FIG.4 (b)). In short, when this surface hardening treatment is performed, both ultra-fine irregularities and a surface hardened layer can be obtained simultaneously. In the surface hardening treatment, when the immersion time in the treatment liquid was set to 2 to 3 minutes, the adhesive strength with the adherend was reduced. From this, it was confirmed that performing the surface curing treatment for a long time weakens the adhesive strength, and is not preferable.

ここで、純銅系の銅合金(例えばC1020)では、前述した化学エッチングの結果で得られる粗面は、RSmが10μmを超えることが多い。また、RSmが10μm以下であっても、当該RSmは純銅系以外の銅合金と比較して明らかに大きかった。そして、そのRSmが大きい割りにはRzが明らかに小さい(例えばRSmが8μmに対してRzが0.4μm等)。特に、銅分が高純度であるC1020(無酸素銅)等の金属結晶粒径の大きいものでは、前述したようにRSmが大きくなることが明らかに多く、凹凸周期と金属結晶粒径の大きさに直接的な相関関係があると推定された。純銅系銅合金の化学エッチングでは、金属結晶粒界から銅の侵食が起こっていることを観察結果から特定することができた。何れにせよ、RSmの範囲が10μmより大きければ本発明の第1の条件を満たさない。また、RSmの範囲が10μm以下であっても、当該RSmとの比較でRzが明らかに小さければアンカー効果が生じにくく、本発明の効果が発揮されにくい。実際に接着実験を行った場合でも、結晶粒径の特に大きいもの、例えば無酸素銅(例えばC1020)では、前述した化学エッチングと表面硬化処理を行っただけでは強い接着力を発揮できなかった。   Here, in a pure copper-based copper alloy (for example, C1020), the rough surface obtained as a result of the above-described chemical etching often has an RSm of more than 10 μm. Moreover, even if RSm was 10 μm or less, the RSm was clearly larger than copper alloys other than pure copper. Rz is obviously small for a large RSm (for example, RSm is 8 μm, Rz is 0.4 μm, etc.). In particular, when the metal crystal grain size is large, such as C1020 (oxygen-free copper) having a high copper content, the RSm is clearly increased as described above, and the irregularity period and the metal crystal grain size are large. Was estimated to have a direct correlation. In chemical etching of pure copper-based copper alloys, it was possible to identify from the observation results that copper erosion occurred from the metal crystal grain boundaries. In any case, if the range of RSm is larger than 10 μm, the first condition of the present invention is not satisfied. Even if the range of RSm is 10 μm or less, the anchor effect is difficult to occur and the effect of the present invention is hardly exhibited if Rz is clearly small compared to the RSm. Even when the adhesion experiment was actually performed, a material having a particularly large crystal grain size, such as oxygen-free copper (for example, C1020), could not exert a strong adhesive force only by performing the above-described chemical etching and surface hardening treatment.

そこで本発明者らは、一旦表面硬化処理まで終えた純銅系銅合金について、Rzが比較的小さいと判断したものに関しては、再度の化学エッチング及び再度の表面硬化処理を行った。当該再度の化学エッチングは最初の化学エッチングより短時間で良い。その結果、RSmは10μm以下となり、Rzは数μ以上となった。また、電子顕微鏡観察によると、超微細凹凸は繰り返し処理をしない場合と変わらない。   Therefore, the present inventors once again performed chemical etching and re-curing the surface of the pure copper-based copper alloy that had been subjected to the surface-curing treatment, for which it was determined that Rz was relatively small. The second chemical etching may be performed in a shorter time than the first chemical etching. As a result, RSm was 10 μm or less, and Rz was several μ or more. Further, according to observation with an electron microscope, the ultra-fine irregularities are the same as when the repeated treatment is not performed.

(チタン合金の表面処理)
チタン合金の表面処理に際して、まず脱脂処理を行う。特殊なものは必要なく、具体的には、市販の鉄用脱脂剤、ステンレス用脱脂剤、アルミニウム合金用脱脂材、マグネシウム合金用脱脂剤等の一般的な脱脂剤を使用することができる。また、市販されている工業用の中性洗剤を溶解した水溶液も使用できる。通常は、市販の脱脂剤又は中性洗剤を水に溶解して数%濃度とし、この水溶液の温度を60℃前後とし、これにチタン合金を浸漬した後、水洗する。その後、塩基性水溶液に浸漬して水洗し、予備塩基洗浄することが好ましい。
(Titanium alloy surface treatment)
In the surface treatment of the titanium alloy, first, degreasing treatment is performed. There is no need for special ones. Specifically, general degreasing agents such as commercially available iron degreasing agents, stainless steel degreasing agents, aluminum alloy degreasing materials, magnesium alloy degreasing agents and the like can be used. Moreover, the aqueous solution which melt | dissolved the industrial neutral detergent marketed can also be used. Usually, a commercially available degreasing agent or neutral detergent is dissolved in water to a concentration of several percent, the temperature of this aqueous solution is set to around 60 ° C., a titanium alloy is immersed therein, and then washed with water. Thereafter, it is preferably immersed in a basic aqueous solution and washed with water, followed by preliminary base washing.

次に、還元性の酸の水溶液に浸漬して化学エッチングするのが好ましい。具体的には、チタン合金を全面腐食させ得る還元性酸として、蓚酸、硫酸、弗化水素酸等を使用できる。このうちエッチング速度が速いのは弗化水素酸である。故に効率を重視する場合には弗化水素酸を使用する。ただし弗化水素酸は、人間の肌に触れると侵入して骨に至り、痛みが数日続くことがある。要するに塩酸等とは異なる問題があり、労働環境面からは弗化水素酸の使用を避けるほうが好ましい。   Next, it is preferable to perform chemical etching by dipping in an aqueous solution of a reducing acid. Specifically, oxalic acid, sulfuric acid, hydrofluoric acid, or the like can be used as the reducing acid that can corrode the titanium alloy. Of these, hydrofluoric acid has the highest etching rate. Therefore, hydrofluoric acid is used when efficiency is important. However, hydrofluoric acid can invade human skin and lead to bones, which can last for several days. In short, there are problems different from hydrochloric acid and the like, and it is preferable to avoid the use of hydrofluoric acid from the viewpoint of the working environment.

好ましいのは、弗化水素酸より遥かに安全な扱いができる弗化水素酸の半中和物の1水素2弗化アンモニウムである。1水素2弗化アンモニウムの1%前後の水溶液を、温度50〜60℃として、これに数分浸漬した後、水洗する処理方法が好ましい。1水素2弗化アンモニウム水溶液による化学エッチングは、ミクロンオーダーの粗度を得るために行ったが、電子顕微鏡観察や最新分析機器による観察では、化学エッチング後の水洗と乾燥により、チタン合金表面は、不思議な形状の超微細凹凸形状となり、且つ、表面は酸化チタン薄層で覆われたものとなることが分かった。要するに、別途の微細エッチング及び表面硬化処理は不要であった。   Preference is given to ammonium hydrofluoride, a half-neutralized product of hydrofluoric acid which can be handled much more safely than hydrofluoric acid. A treatment method in which an aqueous solution of about 1% of 1 hydrogen difluoride ammonium is immersed in this solution for several minutes at a temperature of 50 to 60 ° C. and then washed with water is preferable. Chemical etching with 1 hydrogen di-ammonium difluoride aqueous solution was performed to obtain micron-order roughness. However, in electron microscopic observation and observation with the latest analytical equipment, the surface of the titanium alloy is washed and dried after chemical etching. It turned out that it became a mysterious shape of ultra fine irregularities, and the surface was covered with a thin layer of titanium oxide. In short, separate fine etching and surface hardening treatment were unnecessary.

1水素2弗化アンモニウム水溶液でエッチングし、水洗し、更にこれを乾燥したチタン合金の分析例を示す。まず走査型プローブ顕微鏡による走査解析結果を得た。ここでは20μm角の正方形面積内を走査して、RSmが1.8μm、Rzが0.9μという結果だった。又、同じ処理をした物の1万倍、10万倍電子顕微鏡写真の例を図8((a):1万倍,(b):10万倍)に示した。ここでは、高さ及び幅が10〜300nm、長さが10nm以上の山状又は連山(山脈)状凸部が10〜350nm周期で全面に存在する非常にユニークで不思議な超微細凹凸形状が示された。   An analysis example of a titanium alloy that has been etched with an aqueous solution of 1 hydrogen diammonium difluoride, washed with water, and then dried is shown. First, a scanning analysis result by a scanning probe microscope was obtained. In this case, a 20 μm square area was scanned, and RSm was 1.8 μm and Rz was 0.9 μm. Further, examples of 10,000 times and 100,000 times electron micrographs of the same processed materials are shown in FIG. 8 ((a): 10,000 times, (b): 100,000 times). Here, a very unique and mysterious ultra-fine concavo-convex shape in which a mountain-shaped or mountain-shaped (mountain) -shaped convex part having a height and width of 10 to 300 nm and a length of 10 nm or more is present on the entire surface with a period of 10 to 350 nm is shown. It was done.

又、XPS分析によると、大きな酸素、チタンのピークが得られ表面の化合物は明らかに酸化チタンであることが分かった。ただし表面色調は暗褐色であり、チタン(3価)酸化物か、又はチタン(3価)とチタン(4価)の混合酸化物の薄膜とみられた。即ち、エッチング前は金属色であり、この表面はチタンの自然酸化層であるが、1水素2弗化アンモニウム水溶液でエッチングした後は、自然酸化層でない暗色の酸化チタン層に変化した。この酸化チタン層をアルゴンイオンビームで十〜数十nmエッチングし、エッチング後の面をXPS分析した。このXPS分析で、チタン酸化物層の厚さが判明したが、この厚さは明らかに自然酸化層の厚さより厚く、1水素2弗化アンモニウム水溶液によって純チタン系チタン合金をエッチングした場合で、50nm以上とみられた。   According to XPS analysis, large oxygen and titanium peaks were obtained, and the surface compound was clearly titanium oxide. However, the surface color tone was dark brown, and it was seen as a thin film of titanium (trivalent) oxide or a mixed oxide of titanium (trivalent) and titanium (tetravalent). That is, the surface was a metal color before etching, and this surface was a natural oxidation layer of titanium. This titanium oxide layer was etched by 10 to several tens of nm with an argon ion beam, and the etched surface was subjected to XPS analysis. This XPS analysis revealed the thickness of the titanium oxide layer, which is clearly thicker than the natural oxide layer, and when pure titanium-based titanium alloy was etched with an aqueous solution of 1 hydrogen difluoride ammonium. It was considered to be 50 nm or more.

しかも表面から内部に向かってチタンイオンの価数が減少しており、表面の4価又は3価と4価の混合状態から内部に向かって2価が増え、更に2価が減って0価の金属に至ることが分かった。要するに、チタン酸化物である酸化膜は単純なチタン酸化物層でなく、チタン価数が表面から連続的に減ってゼロ価に達したような連続変化層であり、別の表現では、まるで酸素が表面から染み込んだように、表面は濃く内部に向かって薄くなる連続変化層であった。このような金属酸化膜と金属合金との間には明確な境界がないため、酸化膜層と金属合金層の接合力は極めて強固である。故に両者を引き剥がす力に対して充分な耐性を有しているといえる。   Moreover, the valence of titanium ions decreases from the surface to the inside, the divalence increases from the tetravalent or trivalent and tetravalent mixed state on the surface toward the inside, and further the divalent decreases to zero. It turns out that it leads to metal. In short, the oxide film that is titanium oxide is not a simple titanium oxide layer, but a continuously changing layer in which the titanium valence continuously decreases from the surface and reaches zero. As it penetrated from the surface, the surface was a continuously changing layer that became darker and thinner toward the inside. Since there is no clear boundary between such a metal oxide film and a metal alloy, the bonding force between the oxide film layer and the metal alloy layer is extremely strong. Therefore, it can be said that it has sufficient resistance to the force to peel off both.

なお、純チタン系チタン合金以外のチタン合金の具体的な処理法は、前述した処理法と同様であるが、還元性の強酸水溶液によるエッチング時に生じる発生期の水素ガスによって、少量添加物として含まれている他金属が還元されて不溶物、いわゆるスマットを生じることがある。スマットの多くは、その後に数%濃度の硝酸水溶液に浸漬することで溶解除去することができる。但し、合金によっては硝酸水溶液に溶解しないスマットも生じるので、その場合は水洗時に超音波をかけて洗浄するのが好ましい。   The specific treatment method for titanium alloys other than pure titanium-based titanium alloys is the same as the treatment method described above, but is included as a small amount of additive by the nascent hydrogen gas generated during etching with a reducing strong acid aqueous solution. In some cases, other metals may be reduced to produce insoluble matter, so-called smut. Most of the smut can be dissolved and removed by immersing in a nitric acid aqueous solution of several percent concentration. However, depending on the alloy, smut that does not dissolve in the aqueous nitric acid solution may be generated. In that case, it is preferable to wash by applying ultrasonic waves during washing with water.

純チタン系チタン合金以外の合金を、一水素二弗化アンモニウムでエッチングし、スマット除去したものの表面形状は、前述した図8の写真に比較し、その表面形状を言語表現することが難しい表面形状になる。アルミニウムを含有するα−β型チタン合金の例を、図9((a):1万倍,(b):10万倍)の写真に示す。ここにはチタン合金らしい(図8に似た)超微細凹凸がない円滑なドーム状部分が観察されるが、植物の枯葉のような形状の不思議な形状が観察された。この表面全体は、前述した第2の条件として好ましい10〜300nm周期の超微細凹凸で覆われているというものではなく、より周期の大きいもの(「微細凹凸」と呼ぶ)が観察され、この微細凹凸自体が滑らかであった。   The surface shape of an alloy other than a pure titanium-based titanium alloy etched with ammonium monohydrogen difluoride and smut-removed is a surface shape whose language is difficult to express in comparison with the above-mentioned photograph of FIG. become. An example of an α-β type titanium alloy containing aluminum is shown in the photograph of FIG. 9 ((a): 10,000 times, (b): 100,000 times). Here, a smooth dome-like part without ultra-fine irregularities (similar to FIG. 8) that looks like a titanium alloy is observed, but a mysterious shape like a dead leaf of a plant was observed. The entire surface is not covered with ultrafine irregularities having a period of 10 to 300 nm, which is preferable as the second condition described above, but a surface with a longer period (called “fine irregularities”) is observed. The unevenness itself was smooth.

しかしながら、この表面中の、円滑なドーム状部分は別として、枯葉形状部は薄くて湾曲しており、これに硬度があれば強力なスパイク形状となる。α−β型チタン合金表面は、前述したNAT理論における第2の条件(5nm〜500nm周期の超微細凹凸)に合致しない部分が殆どだが、このスパイク形状によって第2の条件で求めている超微細凹凸の役割を果たしうると考えられる。この表面のスパイク形状は大きいため、むしろNATで求めている第1の条件で要求するミクロンオーダーの粗度(表面粗さ)にも関係してくる。このスパイク形状によって、走査型プローブ顕微鏡で見て、第1の条件(RSmが0.8〜10μm,Rzが0.2〜5μm)を満たす粗度面が形成されている。なお、第2の条件からやや外れて凹凸周期が大きいので、10万倍の電子顕微鏡写真では表面の全体像を掴むことができない。表面観察は、1万倍以下の倍率写真を撮って観察した。即ち、図9(a)のように1万倍の電子顕微鏡で見て、少なくとも10μm角以上の面積を見ることである。そうすれば、円滑なドーム形状と湾曲した枯葉形状の双方が存在する微細凹凸形状が観察される。   However, apart from the smooth dome-shaped portion in this surface, the dead leaf shape portion is thin and curved, and if it has hardness, it becomes a strong spike shape. The surface of the α-β type titanium alloy has almost no portion that does not meet the above-mentioned second condition (ultra-fine irregularities with a period of 5 nm to 500 nm) in the NAT theory. It is thought that it can play the role of unevenness. Since the surface spike shape is large, it is also related to the micron-order roughness (surface roughness) required under the first condition required by NAT. With this spike shape, a roughness surface that satisfies the first condition (RSm is 0.8 to 10 μm, Rz is 0.2 to 5 μm) as viewed with a scanning probe microscope is formed. In addition, since it slightly deviates from the second condition and the concavo-convex period is large, the whole surface image cannot be grasped with an electron micrograph of 100,000 times. The surface was observed by taking a magnification photograph of 10,000 times or less. That is, as shown in FIG. 9 (a), an area of at least a 10 μm square or more is viewed with a 10,000 × electron microscope. By doing so, a fine uneven shape in which both a smooth dome shape and a curved dead leaf shape are present is observed.

(ステンレス鋼の表面処理)
ステンレス鋼の表面処理に際して、まず脱脂処理を行う。特殊な脱脂剤は必要なく、市販されている一般的なステンレス鋼用の脱脂剤、鉄用の脱脂剤、アルミニウム合金用脱脂剤、又は市販の一般向け中性洗剤を使用できる。通常は、市販の脱脂剤又は中性洗剤を水に溶解して数%濃度とし、この水溶液の温度を40〜70℃とし、これにステンレス鋼を5〜10分浸漬した後、水洗する。次に、このステンレス鋼を数%濃度の苛性ソーダ水溶液に短時間浸漬した後に、水洗し、この表面に塩基性イオンを吸着させるのが好ましい。この予備塩基洗浄によって、次の化学エッチングの再現性がよくなるからである。
(Stainless steel surface treatment)
In the surface treatment of stainless steel, first, degreasing treatment is performed. A special degreasing agent is not required, and a commercially available general degreasing agent for stainless steel, a degreasing agent for iron, a degreasing agent for aluminum alloy, or a commercially available neutral detergent can be used. Usually, a commercially available degreasing agent or neutral detergent is dissolved in water to a concentration of several percent, the temperature of this aqueous solution is 40 to 70 ° C., stainless steel is immersed in this for 5 to 10 minutes, and then washed with water. Next, it is preferable to immerse this stainless steel in a caustic soda aqueous solution having a concentration of several percent for a short time, and then wash with water to adsorb basic ions on this surface. This is because the preliminary chemical cleaning improves the reproducibility of the next chemical etching.

ステンレス鋼は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、ハロゲン化金属塩等の水溶液で全面腐食する。化学エッチングを行う場合、ステンレス鋼の種類によって、その浸漬条件を変化させればよい。ここで、焼き鈍し等で硬度を下げて構造的に金属結晶粒径を大きくした物では、結晶粒界が少なくなっており、全面腐食させてミクロンオーダーの粗度を得るのが困難である。このような場合、単に腐食が進行する浸漬条件にするだけでは、化学エッチングが意図したレベルまで進まず、何らかの添加剤を加えるなどの工夫が必要である。何れにせよ、ミクロンオーダーの粗度を有する部分が大くを占める表面を獲得するように化学エッチングを行う。   Stainless steel corrodes entirely with aqueous solutions of hydrohalic acid such as hydrochloric acid, sulfurous acid, sulfuric acid, and metal halide salts. When chemical etching is performed, the immersion conditions may be changed depending on the type of stainless steel. Here, in the case where the hardness is lowered by annealing or the like to structurally increase the metal crystal grain size, the crystal grain boundaries are reduced, and it is difficult to obtain a micron-order roughness by corroding the entire surface. In such a case, it is necessary to devise such as adding some kind of additive without the chemical etching progressing to the intended level simply by setting the immersion conditions so that corrosion proceeds. In any case, chemical etching is performed so as to obtain a surface in which a portion having a roughness on the order of microns is predominant.

SUS304であれば、10%濃度程度の硫酸水溶液を温度60〜70℃として、これに数分間浸漬する方法が好ましく、この処理方法により、本発明で要求するミクロンオーダーの粗度が得られる。また、SUS316では、10%濃度程度の硫酸水溶液を温度60〜70℃として、これに5〜10分間浸漬するのが好ましい。ハロゲン化水素酸、例えば塩酸水溶液も化学エッチングに適しているが、この水溶液を高温化すると酸の一部が揮発し、周囲の鉄製構造物を腐食する恐れがあるほか、局所排気しても排気ガスに何らかの処理が必要になる。その意味で硫酸水溶液の使用がコスト面で好ましい。ただし、鋼材によっては、硫酸単独の水溶液では全面腐食の進行が遅すぎる場合がある。このような場合、硫酸水溶液にハロゲン化水素酸を添加することが効果的である。そしてステンレス鋼では、化学エッチングを行うことで微細エッチングも同時に達成される。   In the case of SUS304, a method in which an aqueous sulfuric acid solution having a concentration of about 10% is set to a temperature of 60 to 70 ° C. and is immersed in the solution for several minutes is preferable. Moreover, in SUS316, it is preferable to immerse a sulfuric acid aqueous solution of about 10% concentration at a temperature of 60 to 70 ° C. for 5 to 10 minutes. Hydrohalic acid, such as aqueous hydrochloric acid, is also suitable for chemical etching, but if this aqueous solution is heated to high temperatures, part of the acid may volatilize and corrode surrounding iron structures. Some processing is required for the gas. In that sense, the use of an aqueous sulfuric acid solution is preferable in terms of cost. However, depending on the steel material, the progress of overall corrosion may be too slow with an aqueous solution of sulfuric acid alone. In such a case, it is effective to add hydrohalic acid to the sulfuric acid aqueous solution. In stainless steel, fine etching is achieved at the same time by performing chemical etching.

前記の化学エッチングの後に、十分水洗することでステンレス鋼の表面は自然酸化し、腐食に耐える表層に再度戻るため、特に表面硬化処理は行う必要がない。しかし、ステンレス鋼表面の金属酸化物層をより厚く強固なものにするべく、酸化性の酸、例えば硝酸等の酸化剤、即ち、硝酸、過酸化水素、過マンガン酸カリ、塩素酸ナトリウム等の水溶液に浸漬した後、これを水洗するのが好ましい。   After the chemical etching, the surface of the stainless steel is naturally oxidized by sufficiently washing with water, and returns to the surface layer that can resist corrosion. However, in order to make the metal oxide layer on the stainless steel surface thicker and stronger, an oxidizing acid such as nitric acid such as nitric acid, ie nitric acid, hydrogen peroxide, potassium permanganate, sodium chlorate, etc. After immersing in an aqueous solution, it is preferably washed with water.

実際に、ステンレス鋼を硫酸水溶液で化学エッチングした例を図10に示す。表面には適切なエッチングによりミクロンオーダーの粗度が形成される。その表面を電子顕微鏡観察すると超微細凹凸で覆われていることが分かる。要するに、ステンレス鋼では、化学エッチングだけで微細エッチングも同時に達成される。図10では、直径20〜70nmの粒径物、不定多角形状物等が積み重なった形状が認められ、この1万倍写真(図10(a))、及び10万倍写真(図10(b))のいずれも、火山周辺で溶岩が流れて形成される溶岩台地の斜面のガラ場に酷似していた。超微細凹凸で覆われたステンレス鋼表面をXPS分析すると、酸素、鉄の大きなピークと、ニッケル、クロム、炭素、モリブデンの小さなピークが認められた。要するに、表面は通常のステンレス鋼と全く同じ組成の金属の酸化物であり、同様の耐食面で覆われている。   FIG. 10 shows an example in which stainless steel is actually chemically etched with an aqueous sulfuric acid solution. A micron-order roughness is formed on the surface by appropriate etching. When the surface is observed with an electron microscope, it can be seen that the surface is covered with ultrafine irregularities. In short, in stainless steel, fine etching is achieved at the same time by chemical etching alone. In FIG. 10, a shape in which particles having a diameter of 20 to 70 nm, indefinite polygonal shapes, and the like are stacked is recognized, and this 10,000 times photograph (FIG. 10A) and 100,000 times photograph (FIG. 10B). Both of them were very similar to the lava field on the slope of the lava plateau formed by lava flowing around the volcano. When XPS analysis was performed on the surface of stainless steel covered with ultra-fine irregularities, large peaks of oxygen and iron and small peaks of nickel, chromium, carbon, and molybdenum were recognized. In short, the surface is an oxide of a metal having exactly the same composition as that of ordinary stainless steel, and is covered with a similar corrosion resistant surface.

(鉄鋼材の表面処理)
鉄鋼材の表面処理に際して、まず脱脂処理を行う。SPCC、SPHC、SAPH、SPFH、SS材等のように市販されている鉄鋼材では、これら鉄鋼材用として市販されている脱脂剤、ステンレス鋼用の脱脂剤、アルミニウム合金用脱脂剤、又は市販の一般向け中性洗剤を使用できる。通常は、市販の脱脂剤又は中性洗剤を水に溶解して数%濃度とし、この水溶液の温度を40〜70℃とし、これに鉄鋼材を5〜10分浸漬した後、水洗する。次に、希薄な苛性ソーダ水溶液に短時間浸漬した後、これを水洗するのが好ましい。この予備塩基洗浄によって、次の化学エッチングの再現性がよくなるからである。
(Surface treatment of steel materials)
In the surface treatment of the steel material, first, degreasing treatment is performed. In steel materials that are commercially available, such as SPCC, SPHC, SAPH, SPFH, SS material, etc., degreasing agents that are commercially available for these steel materials, degreasing agents for stainless steel, degreasing agents for aluminum alloys, or commercially available A general-purpose neutral detergent can be used. Usually, a commercially available degreasing agent or neutral detergent is dissolved in water to a concentration of several percent, the temperature of this aqueous solution is set to 40 to 70 ° C., the steel material is immersed in this for 5 to 10 minutes, and then washed with water. Next, after immersing in a dilute caustic soda aqueous solution for a short time, it is preferably washed with water. This is because the preliminary chemical cleaning improves the reproducibility of the next chemical etching.

鉄鋼材全般は、塩酸等ハロゲン化水素酸、亜硫酸、硫酸、これらの塩、等の水溶液で全面腐食する。化学エッチングを行う場合、鉄鋼材の種類によって、その浸漬条件を変化させればよい。SPCCであれば、10%濃度程度の硫酸水溶液を50℃として、これに数分間浸漬することが好ましい。これは、ミクロンオーダーの粗度を得るための化学エッチング工程である。SPHC、SAPH、SPFH、SS材では、前者より硫酸水溶液の温度を10〜20℃上げて化学エッチングするのが好ましい。ハロゲン化水素酸、例えば塩酸水溶液も化学エッチングに適しているが、前述した問題がある。それ故に硫酸水溶液の使用がコスト面で好ましい。   All steel materials are corroded entirely with aqueous solutions of hydrohalic acid such as hydrochloric acid, sulfurous acid, sulfuric acid, and their salts. When chemical etching is performed, the immersion conditions may be changed depending on the type of steel material. In the case of SPCC, it is preferable to immerse the sulfuric acid aqueous solution of about 10% concentration at 50 ° C. for several minutes. This is a chemical etching process for obtaining roughness on the order of microns. For SPHC, SAPH, SPFH, and SS materials, it is preferable to increase the temperature of the sulfuric acid aqueous solution by 10 to 20 ° C. from the former and perform chemical etching. Hydrohalic acid, such as aqueous hydrochloric acid, is also suitable for chemical etching, but has the problems described above. Therefore, the use of an aqueous sulfuric acid solution is preferable in terms of cost.

〈表面処理方法I:化学エッチングのみ〉
前述した化学エッチングの後に水洗して乾燥し、電子顕微鏡写真で観察すると、高さ及び奥行きが50〜500nmで、幅が数百〜数千nmの階段が無限段に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが多い。これは鉄鋼材が一般に有するパーライト構造が露出したものとみられる。具体的には、前記の化学エッチング工程で硫酸水溶液を適当な条件で使用したとき、ミクロンオーダーの粗度を成す凹凸面が得られると同時に、階段状の超微細凹凸も同時に形成されることが多い。このようにミクロンオーダーの粗度と超微細凹凸の形成が一挙に為される場合、前記化学エッチング後に十分水洗してから水を切り、温度90〜100℃以上の高温で急速乾燥させたものは、そのまま使用できる。表面に変色した錆は出ず、綺麗な自然酸化層となる。
<Surface treatment method I: Chemical etching only>
After the chemical etching described above, it is washed with water, dried, and observed with an electron micrograph. Ultra fine irregularities with a height and depth of 50 to 500 nm and a width of several hundred to several thousand nm followed by infinite steps. Often, the shape covers almost the entire surface. This seems to have exposed the pearlite structure that steel materials generally have. Specifically, when an aqueous sulfuric acid solution is used under appropriate conditions in the chemical etching step, an uneven surface having a micron-order roughness can be obtained, and at the same time, stepped ultrafine unevenness can be formed simultaneously. Many. When the formation of micron-order roughness and ultra-fine irregularities is made at once, the water that has been sufficiently washed after the chemical etching and then drained and rapidly dried at a high temperature of 90 to 100 ° C. Can be used as is. No rust discolored on the surface, resulting in a beautiful natural oxide layer.

但し、自然酸化層のみでは一般環境下での耐食性は不十分と考えられる。乾燥状態で保管することが必要である上に、当該鉄鋼材に被着材が接着された接合体も長期間にわたって接着力を維持できない。化学エッチング後の鉄鋼材同士を1液性エポキシ接着剤で接着した接合体を1ヶ月放置した後、破断試験をしたところ、接着当初と比較して接着力が低下していた。このことから、表面安定化処理が必要であることを確認した。   However, it is considered that the corrosion resistance in a general environment is insufficient with only the natural oxide layer. In addition to being stored in a dry state, a bonded body in which an adherend is bonded to the steel material cannot maintain an adhesive force over a long period of time. When a joined body in which steel materials after chemical etching were bonded together with a one-component epoxy adhesive was left for 1 month and then subjected to a break test, the adhesive strength was lower than that at the beginning of bonding. From this, it was confirmed that the surface stabilization treatment was necessary.

〈表面処理方法II:アミン系分子の吸着〉
前述した化学エッチングの後で水洗し、アンモニア、ヒドラジン、又は水溶性アミン系化合物の水溶液に浸漬し、水洗し、乾燥する。そしてアンモニア等の広義のアミン系物質は、鉄鋼材に残存する。乾燥後の鉄鋼材をXPSで分析すると窒素原子が確認される。それ故に、アンモニアやヒドラジンを含む広義のアミン類が鉄鋼材表面に化学吸着していると推定した。10万倍電子顕微鏡での観察結果では、表面に薄い膜状の異物質が付着しているので、鉄のアミン系錯体が生じている可能性がある。
<Surface treatment method II: Adsorption of amine-based molecules>
After the chemical etching described above, the substrate is washed with water, immersed in an aqueous solution of ammonia, hydrazine, or a water-soluble amine compound, washed with water, and dried. A broad amine-based substance such as ammonia remains in the steel material. When the steel material after drying is analyzed by XPS, nitrogen atoms are confirmed. Therefore, it was estimated that amines in a broad sense including ammonia and hydrazine were chemically adsorbed on the steel material surface. According to the result of observation with a 100,000-fold electron microscope, a thin film-like foreign substance is adhered to the surface, and thus an iron-based complex of iron may be generated.

何れにせよ、これらアミン系分子の吸着又は反応は、水分子の吸着や鉄の水酸化物生成反応より優先しているようである。その意味で、少なくともエポキシ接着剤の塗布を行うまでの数日〜数週間は、水分の吸着とその反応による錆の発生を抑えられる。加えて、接着後の接着力の維持に関しても、「表面処理方法I」より優れており、接合体を4週間放置したものでは接合力の低下はなかった。   In any case, the adsorption or reaction of these amine-based molecules seems to have priority over the adsorption of water molecules and the iron hydroxide formation reaction. In that sense, at least several days to several weeks until the application of the epoxy adhesive can suppress the generation of rust due to moisture adsorption and reaction. In addition, the maintenance of the adhesive strength after the adhesion was also superior to “Surface treatment method I”, and there was no reduction in the bonding strength when the joined body was left for 4 weeks.

使用するアンモニア水、ヒドラジン水溶液、又は水溶性アミンの水溶液の濃度や温度は、厳密な条件設定が殆ど必要ない。具体的には、0.5〜数%濃度の水溶液を常温下で用い、0.5〜数分浸漬し、水洗し、乾燥することで効果が得られる。工業的には、若干臭気があるが安価な1%程度濃度のアンモニア水か、又は臭気が小さく効果が安定的な水和ヒドラジンの1%〜数%の水溶液が好ましい。   The concentration and temperature of the aqueous ammonia, the aqueous hydrazine solution, or the aqueous solution of the water-soluble amine to be used hardly require strict condition setting. Specifically, an effect can be obtained by using an aqueous solution having a concentration of 0.5 to several percent at room temperature, immersing for 0.5 to several minutes, washing with water and drying. Industrially, ammonia water having a concentration of about 1%, which is slightly odorous but inexpensive, or a 1% to several percent aqueous solution of hydrated hydrazine having a small odor and a stable effect is preferable.

〈表面処理方法III:化成処理〉
化学エッチングを経た鉄鋼材又は化学エッチング及び上記アミン系分子の吸着を行った鉄鋼材を水洗した後、6価クロム化合物、過マンガン酸塩、又はリン酸亜鉛系化合物等を含む水溶液に浸漬して水洗する。この化成処理により、鉄鋼材表面がクロム酸化物、マンガン酸化物、亜鉛リン酸化物等の金属酸化物や金属リン酸化物で覆われて耐食性が向上する。これは、鉄鋼材の耐食性向上方法としてよく知られている方法である。ただし、本発明における化成処理の目的は、完全な耐食性の確保ではなく、接着剤の塗布までに少なくとも充分な耐食性を有しており、接着後も接着剤塗布部分に経時的な支障が起こりにくくすることである。要するに、化成皮膜を厚くした場合には、耐食性の観点からは好ましいが、接合力という観点からは好ましくないのである。化成皮膜は必要であるが、硬いが脆いという性質があるので、厚過ぎると接合力は逆に弱くなる。
<Surface treatment method III: chemical conversion treatment>
The steel material that has undergone chemical etching or the steel material that has been subjected to chemical etching and adsorption of the amine-based molecules is washed with water, and then immersed in an aqueous solution containing a hexavalent chromium compound, a permanganate, or a zinc phosphate-based compound. Wash with water. By this chemical conversion treatment, the steel material surface is covered with metal oxides such as chromium oxide, manganese oxide, and zinc phosphorus oxide, and metal phosphorus oxide, thereby improving the corrosion resistance. This is a well-known method for improving the corrosion resistance of steel materials. However, the purpose of the chemical conversion treatment in the present invention is not to ensure complete corrosion resistance, but has at least sufficient corrosion resistance until the application of the adhesive, and it is difficult for the adhesive application part to cause trouble over time even after bonding. It is to be. In short, when the chemical conversion film is thickened, it is preferable from the viewpoint of corrosion resistance, but not preferable from the viewpoint of bonding strength. Although a chemical conversion film is necessary, since it has a property of being hard but brittle, if it is too thick, the bonding force is weakened.

三酸化クロムの希薄水溶液に鉄鋼材を浸漬して水洗し、乾燥した場合、表面は酸化クロム(III)で覆われる。その表面は均一な膜状物で覆われるのではなく、10〜30nm径で同等高さの突起状物もほぼ100nm程度の距離を置いて生じていた。また、弱酸性に調整した数%濃度の過マンガン酸カリの水溶液も好ましく使用できた。鉄鋼材の表面が高い接着力を獲得するには、化成皮膜を薄くすることが必要である。そのための条件を探索した結果、いずれの水溶液を使用する場合であっても、概ね数%濃度の水溶液を温度45〜60℃にして、これに鉄鋼材を0.5〜数分浸漬することであった。   When a steel material is immersed in a dilute aqueous solution of chromium trioxide, washed with water, and dried, the surface is covered with chromium (III) oxide. The surface was not covered with a uniform film-like object, and protrusions having a diameter of 10 to 30 nm and an equivalent height were generated at a distance of about 100 nm. Further, an aqueous solution of potassium permanganate having a concentration of several percent adjusted to weak acidity could be preferably used. In order to obtain a high adhesive force on the surface of the steel material, it is necessary to make the chemical conversion film thin. As a result of searching for the conditions for that, even if any aqueous solution is used, an aqueous solution having a concentration of several percent is set to a temperature of 45 to 60 ° C., and the steel material is immersed in this for 0.5 to several minutes. there were.

[エポキシ接着剤]
エポキシ接着剤には1液性エポキシ接着剤と2液性エポキシ接着剤があり、使用する硬化剤によっていずれかに分類される。硬化剤として脂肪族ポリアミン化合物を使用すると、常温付近で重合及びゲル化を開始しうる。それ故、この硬化剤をエポキシ樹脂と混ぜた状態で市販することができない。この場合1液性エポキシ接着剤とは成り得ず、2液性エポキシ接着剤として供給される。言い換えると、2液性エポキシ接着剤は、硬化剤によっては常温で数十分又は数時間程度放置することで硬化するため作業効率が高く、特に加熱設備を使用することが困難な場面では最適であるといえる。一方、1液性エポキシ接着剤に使用される硬化剤は、脂肪族アミン類ではないアミン類や広義のアミン系化合物であり、具体的にはジシアンジアミド、イミダゾール類、芳香族ジアミン類が使用され、酸無水物類、フェノール樹脂も使用できる。これらを硬化剤とした場合、混合混練した状態のものを常温(夏季を除く)で数ヶ月は保管しておくことが可能であり、冷蔵保管するならば1年以上保管しておくことが可能である。
[Epoxy adhesive]
Epoxy adhesives are classified into one-component epoxy adhesive and two-component epoxy adhesive, and are classified into either one depending on the curing agent used. When an aliphatic polyamine compound is used as a curing agent, polymerization and gelation can be started at around room temperature. Therefore, this curing agent cannot be marketed in a state mixed with an epoxy resin. In this case, it cannot be a one-component epoxy adhesive and is supplied as a two-component epoxy adhesive. In other words, the two-component epoxy adhesive is hardened by leaving it to stand for several tens of minutes or several hours at room temperature depending on the curing agent. It can be said that there is. On the other hand, the curing agent used in the one-component epoxy adhesive is an amine that is not an aliphatic amine or an amine compound in a broad sense. Specifically, dicyandiamide, imidazoles, and aromatic diamines are used. Acid anhydrides and phenol resins can also be used. When these are used as curing agents, they can be stored in a mixed and kneaded state at room temperature (excluding summer) for several months, and if stored refrigerated, they can be stored for over a year. It is.

(エポキシ樹脂)
標準的なエポキシ接着剤は、(1)エポキシ樹脂、(2)硬化剤、及び(3)無機充填材の3成分を少なくとも含んでいる。多種のエポキシ接着剤が市販されているが、エポキシ接着剤の原料は容易に市中から入手できるので自作も可能である。例えば接着剤の原料となるエポキシ樹脂として、ビスフェノール型エポキシ樹脂、多官能ポリフェノール型エポキシ樹脂、脂環型エポキシ樹脂等が市販されている。また、エポキシ基が多官能の化合物(例えば複数の水酸基やアミノ基を有する多官能化合物やオリゴマー等)と結合した多官能エポキシ樹脂も多種市販されている。通常、これらを適当に混ぜ合わせて使用する。通常の市販接着剤では、全エポキシ樹脂中の過半を占めるのは液状で粘度の低いビスフェノールA型エポキシ樹脂単量体型である。これに迅性を与えるべく分子量の大きいビスフェノール型エポキシ樹脂の多量体型を加え、耐熱性を与えるべくフェノール型エポキシ樹脂を加え、強度を獲得すべくエポキシ基が多官能型の化合物を加えて混合する方法がある。本発明においても、この方法に従ってエポキシ樹脂を作成した。
(Epoxy resin)
A standard epoxy adhesive contains at least three components: (1) an epoxy resin, (2) a curing agent, and (3) an inorganic filler. Various types of epoxy adhesives are commercially available, but since the raw materials for epoxy adhesives are readily available from the city, they can be made by themselves. For example, bisphenol-type epoxy resins, polyfunctional polyphenol-type epoxy resins, alicyclic epoxy resins, and the like are commercially available as epoxy resins that serve as raw materials for adhesives. In addition, various polyfunctional epoxy resins in which an epoxy group is bonded to a polyfunctional compound (for example, a polyfunctional compound or oligomer having a plurality of hydroxyl groups or amino groups) are commercially available. Usually, these are used by mixing them appropriately. In ordinary commercial adhesives, the majority of all epoxy resins are liquid and low viscosity bisphenol A type epoxy resin monomer types. Add multimer type of bisphenol type epoxy resin with large molecular weight to give quickness, add phenol type epoxy resin to give heat resistance, and add compound with polyfunctional type epoxy group to gain strength. There is a way. Also in the present invention, an epoxy resin was prepared according to this method.

(無機充填材)
市販の構造用接着剤には、粒径分布の中心が5〜20μmの分級された無機充填材が添加されている場合がある。具体的には、タルク、クレー(粘土、カオリン)、炭酸カルシウム、シリカ、ガラス等の粉体の分級物である。これらの無機充填材は、接着剤硬化物に発生した微小ヒビを連鎖的破壊に繋がらぬようにする働きがある。即ち、局所破壊を当該局所で留めておくことにより接着力を向上させる役目がある。表1及び表2に示すように、本発明の接着剤I及び接着剤IIにも無機充填材を添加している。以下、本発明で使用する接着剤I及び接着剤IIの組成について詳細に説明する。
(Inorganic filler)
Commercially available structural adhesives may contain classified inorganic fillers having a particle size distribution center of 5 to 20 μm. Specifically, it is a powder classification such as talc, clay (clay, kaolin), calcium carbonate, silica, glass and the like. These inorganic fillers have a function of preventing microcracks generated in the cured adhesive from being linked to chain breakage. That is, it has a role of improving the adhesive force by keeping the local fracture locally. As shown in Tables 1 and 2, an inorganic filler is also added to the adhesives I and II of the present invention. Hereinafter, the composition of the adhesive I and the adhesive II used in the present invention will be described in detail.

[接着剤Iの組成]
接着剤Iとは、NATに基づく表面処理を施した金属合金の表面に塗布する接着剤であり、本発明では1液性エポキシ接着剤である。これは金属合金の表面にナノオーダーの超微細凹凸が形成されており、この超微細凹凸に接着剤Iを侵入させることを要するからである。接着剤Iを塗布した金属合金を昇温して接着剤粘度を下げて15Pa秒以下、好ましくは10Pa秒以下とし、これを一旦、真空に近い気圧まで減圧した後に1気圧程度又はこれ以上の気圧まで加圧することで、接着剤Iが超微細凹凸に侵入する。接着剤Iが超微細凹凸に円滑に侵入するためには、接着剤分子が大きすぎないことが重要である。故に硬化剤をエポキシ樹脂に混合した瞬間から重合及びゲル化を開始しうる2液性エポキシ接着剤は適していない。金属合金表面に接着剤Iを塗布した後の減圧及び加圧の操作を「染み込まし処理I」と称す。2液性エポキシ接着剤を使用する場合、この染み込まし処理Iを行う前に重合及びゲル化が開始するので、接着剤分子が大きくなり超微細凹凸に侵入し難くなる。故に接着剤Iとして2液性エポキシ接着剤を使用するのは好ましくない。
[Composition of adhesive I]
The adhesive I is an adhesive that is applied to the surface of a metal alloy that has been subjected to a surface treatment based on NAT. In the present invention, the adhesive I is a one-component epoxy adhesive. This is because nano-order ultrafine irregularities are formed on the surface of the metal alloy, and it is necessary to allow the adhesive I to penetrate into the ultrafine irregularities. The temperature of the metal alloy coated with the adhesive I is raised to lower the viscosity of the adhesive to 15 Pa seconds or less, preferably 10 Pa seconds or less. Once this is reduced to a pressure close to vacuum, the pressure is about 1 atmosphere or more. The adhesive I penetrates into the ultra-fine irregularities by pressurizing up to. In order for the adhesive I to smoothly enter the ultra-fine irregularities, it is important that the adhesive molecules are not too large. Therefore, a two-part epoxy adhesive that can start polymerization and gelation from the moment when the curing agent is mixed with the epoxy resin is not suitable. The operation of depressurization and pressurization after the adhesive I is applied to the surface of the metal alloy is referred to as “soaking treatment I”. In the case of using a two-component epoxy adhesive, polymerization and gelation start before performing the soaking and treatment I, so that the adhesive molecules become large and it is difficult to penetrate into the ultra-fine irregularities. Therefore, it is not preferable to use a two-component epoxy adhesive as the adhesive I.

(硬化剤)
通常、1液性エポキシ接着剤に使用する硬化剤は、脂肪族アミン類以外のアミン系化合物であり、広義のアミン系化合物、酸無水物類、フェノール樹脂等である。具体的には、ジシアンジアミド、イミダゾール類、芳香族ジアミン類、酸無水物類、フェノール樹脂等が使用可能である。作業性の良い接着剤とするためには、最終的に得られる接着剤組成物が高粘度液状又はペースト状であることも必要で、その条件も入れるとジシアンジアミド、イミダゾール類、酸無水物類となる。さらに本発明では、金属合金と接着するCFRPのマトリックス樹脂が、芳香族ジアミン類を硬化剤とするエポキシ系熱硬化型樹脂組成物であるから、接着剤Iとなる1液性エポキシ接着剤に使用する硬化剤としては、広義のアミン系化合物であるジシアンジアミド又はイミダゾール類が好ましい。
(Curing agent)
Usually, the curing agent used for the one-component epoxy adhesive is an amine compound other than aliphatic amines, such as amine compounds in a broad sense, acid anhydrides, and phenol resins. Specifically, dicyandiamide, imidazoles, aromatic diamines, acid anhydrides, phenol resins and the like can be used. In order to obtain an adhesive with good workability, it is also necessary that the finally obtained adhesive composition be in the form of a high-viscosity liquid or paste. Including the conditions, dicyandiamide, imidazoles, acid anhydrides and Become. Furthermore, in the present invention, since the CFRP matrix resin that adheres to the metal alloy is an epoxy thermosetting resin composition that uses aromatic diamines as a curing agent, it is used as a one-component epoxy adhesive that becomes the adhesive I. As the curing agent to be used, dicyandiamide or imidazoles which are amine compounds in a broad sense are preferable.

(超微細無機充填材)
本発明では、接着剤Iとして使用する1液性エポキシ接着剤に、粒径が100nm以下の超微細無機充填材を添加した。市販されている接着剤に超微細無機充填材が添加されているという例は聞かない。超微細無機充填材を添加した接着剤をNATに適合するよう表面処理した金属合金の当該表面に塗布し、被着材と接着させた場合、その接着剤の耐熱性を大きく改善させることを本発明者らの実験により確認した。具体的にはヒュームドシリカの使用が好ましく、使用量は接着剤の0.3〜3.0質量%とするのが好ましい。これを添加すると金属合金表面上のミクロンオーダーの粗度に係る凹部内にも侵入し、高温下に置かれて接着剤硬化物中の樹脂分の硬度が低下した場合、即ち前記凹部内のスパイク効果が低下した場合に、その凹部内の接着剤硬化物の形状を保って簡単に接着剤硬化物が抜け出せないようにする効果がある。このような理由であるから逆に常温下の使用では効果は認められない。よって高温下で使用しない場合、又は高温下で接着力が低下しても製品として実害がない場合は添加する意味はあまりないが、実用品に於いては80〜100℃まで昇温する可能性は常に考えておくべきであるから、超微細無機充填材の添加は非常に重要な役割を果たす。
(Ultra fine inorganic filler)
In the present invention, an ultrafine inorganic filler having a particle size of 100 nm or less was added to the one-component epoxy adhesive used as the adhesive I. There is no example of an ultrafine inorganic filler added to a commercially available adhesive. Applying an adhesive containing an ultrafine inorganic filler to the surface of a metal alloy that has been surface-treated to conform to NAT and bonding it to the adherend will greatly improve the heat resistance of the adhesive. This was confirmed by experiments by the inventors. Specifically, fumed silica is preferably used, and the amount used is preferably 0.3 to 3.0% by mass of the adhesive. When this is added, it also penetrates into the concave part on the surface of the metal alloy having a roughness on the order of microns, and when it is placed under high temperature and the hardness of the resin content in the cured adhesive is lowered, that is, the spike in the concave part. When the effect is lowered, there is an effect of keeping the shape of the cured adhesive in the concave portion and preventing the cured adhesive from easily coming out. For this reason, on the contrary, no effect is observed when used at room temperature. Therefore, if it is not used at high temperature, or if there is no actual harm as a product even if the adhesive strength is reduced at high temperature, there is not much meaning to add it, but there is a possibility of raising the temperature to 80-100 ° C in practical products Should always be considered, the addition of ultrafine inorganic fillers plays a very important role.

ヒュームドシリカには2種あり、一つはシリカ(酸化珪素)砂を原料にして還元し金属珪素を得る還元工程の排気ガスから回収された超微細な溶融シリカであって欧州の企業が供給しており、もう一つは、四塩化珪素を気化させ燃焼して超微細溶融シリカとしたもので、「アエロジル」商標で市販されているものである。本発明者らは安定した性質を求めてアエロジルを使用した。アエロジルには表面処理されたものも市販されており、本発明者らは疎水性処理をしたものを使用した。燃焼処理で得られたヒュームドシリカは親水性が強いというわけではないが、疎水性処理したものの方がエポキシ樹脂との親和性が好ましいと考えた。   There are two types of fumed silica. One is ultra-fine fused silica recovered from the exhaust gas in the reduction process that uses silica (silicon oxide) sand as a raw material to obtain metallic silicon. The other is vaporized and combusted silicon tetrachloride to form ultrafine fused silica, which is commercially available under the trademark “Aerosil”. The inventors used Aerosil in search of stable properties. Aerosil that has been surface-treated is also commercially available, and the present inventors have used a hydrophobic treatment. The fumed silica obtained by the combustion treatment is not necessarily highly hydrophilic, but the hydrophobic treatment is considered to have better affinity with the epoxy resin.

通常、ミクロンオーダーより小さい粒径の粉末は凝集しており、アエロジルも実態は凝集品である。凝集力は粉体が超微粉になるほど強く、接着剤に投入して自動乳鉢で混練したくらいでは凝集は解けず本発明で想定する分散状態にならない。それゆえ、エポキシ樹脂への添加後に高性能の分散機にかける必要がある。実験結果から、超微細無機充填材の添加量は接着剤の0.3質量%以上が好ましく、特に0.3〜3.0質量%が好ましい。3.0質量%を超えて添加した場合、粘度が高くなって使用し難いだけでなく、使用した場合には、接着力は同等か又は低下した。   Normally, powders with particle sizes smaller than micron order are agglomerated, and Aerosil is actually an agglomerated product. The agglomeration force becomes stronger as the powder becomes ultrafine powder, and the agglomeration cannot be solved and the dispersed state assumed in the present invention cannot be achieved as long as it is put into an adhesive and kneaded in an automatic mortar. Therefore, it is necessary to apply to a high performance disperser after addition to the epoxy resin. From the experimental results, the addition amount of the ultrafine inorganic filler is preferably 0.3% by mass or more, particularly preferably 0.3 to 3.0% by mass of the adhesive. When added over 3.0% by mass, not only was the viscosity increased and it was difficult to use, but when used, the adhesive strength was equal or decreased.

(熱可塑性樹脂粉体)
本発明では、接着剤Iとして使用する1液性エポキシ接着剤に、熱可塑性樹脂粉体としてエラストマー成分を添加した。少なくとも接着剤Iにエラストマー成分を添加することで接着力が大きく低下することはなかった。これは接着剤IIにエラストマー成分を添加する場合も同様であった。複合体が使用される環境によっては、このようなエラストマー成分の添加が必要な場面がある。例えば、変形し易い金属合金に対して使用する場合にはエラストマー成分の添加が好ましい。また、振動や衝撃が加わる環境下で使用される複合体については、接着剤の弾性化は複合体全体としての性能向上に寄与する。そのため、少なくとも接着力が低下しないという事実は重要である。各種加硫ゴム、各種加硫ゴムの表面を変性した粉末ゴム、各種生ゴム、各種生ゴムを変性した変性ゴム、塩化ビニル樹脂(以下「PVC」)、酢酸ビニル樹脂(以下「PVA」)、ポリビニルホルマール樹脂(以下「PVF」)、エチレン酢酸ビニル樹脂(以下「EVA」)、ポリオレフィン樹脂類、ポリエチレンテレフタレート樹脂(以下「PET」)、各種ポリアミド樹脂(以下「PA類」)、ポリエーテルスルホン樹脂(以下「PES」)、ポリウレタン樹脂、熱可塑性ポリエステルエラストマー(以下「TPEE」)、熱可塑性ポリウレタンエラストマー(以下「TPU」)、熱可塑性ポリアミドエラストマー(以下「TPA」)、熱可塑性ポリオレフィン系エラストマー(以下「TPO」)等が本発明で言うエラストマー成分である。
(Thermoplastic resin powder)
In the present invention, an elastomer component is added as a thermoplastic resin powder to the one-component epoxy adhesive used as the adhesive I. Addition of an elastomer component to at least adhesive I did not significantly reduce the adhesive strength. This was the same when the elastomer component was added to the adhesive II. Depending on the environment in which the composite is used, there are situations where such an elastomer component needs to be added. For example, when used for a metal alloy that easily deforms, it is preferable to add an elastomer component. In addition, for a composite used in an environment where vibration or impact is applied, the elasticization of the adhesive contributes to the performance improvement of the composite as a whole. Therefore, the fact that at least the adhesive strength does not decrease is important. Various vulcanized rubbers, powder rubbers modified on the surface of various vulcanized rubbers, various raw rubbers, modified rubbers modified from various raw rubbers, vinyl chloride resin (hereinafter “PVC”), vinyl acetate resin (hereinafter “PVA”), polyvinyl formal Resin (hereinafter “PVF”), ethylene vinyl acetate resin (hereinafter “EVA”), polyolefin resin, polyethylene terephthalate resin (hereinafter “PET”), various polyamide resins (hereinafter “PA”), polyethersulfone resin (hereinafter referred to as “PET”) “PES”), polyurethane resin, thermoplastic polyester elastomer (hereinafter “TPEE”), thermoplastic polyurethane elastomer (hereinafter “TPU”), thermoplastic polyamide elastomer (hereinafter “TPA”), thermoplastic polyolefin elastomer (hereinafter “TPO”). )) Etc. are elastomer components as referred to in the present invention. .

これらの中には一般的にはエラストマーと定義されないものが含まれているが、硬化したエポキシ樹脂は硬質であり、これと比較すれば上記熱可塑性樹脂はいずれも軟質である。それ故、接着剤Iに添加する場合には上記熱可塑性樹脂はエラストマー成分として機能する。上記熱可塑性樹脂を添加することで、硬化物の靭性はエラストマー成分の軟質によって高められる。粒径5〜30μmの微粉とし、さらに、その表面を親エポキシ樹脂型に改良したものを添加することが好ましい。高温下でエポキシ樹脂と反応するのはアミノ基や水酸基であるからエラストマー端部等にこれらを持たせるのも有効な変性処理である。また、本発明では常温下だけでなく、比較的高温下でも強い接着力を示す接着剤を求めているので、柔らか過ぎる物は好ましくない。これらを勘案しつつ入手が容易なものを列記すると、水酸基ができ易いPVF、端部に水酸基のあるウレタン樹脂、アミノ基が無数にあるPA類、さらには意図的に水酸基を付けたPES等がある。   Some of these are generally not defined as elastomers, but the cured epoxy resin is hard. Compared to this, the thermoplastic resins are all soft. Therefore, when added to the adhesive I, the thermoplastic resin functions as an elastomer component. By adding the thermoplastic resin, the toughness of the cured product is enhanced by the softness of the elastomer component. It is preferable to add fine powder having a particle size of 5 to 30 μm and further improve the surface to a parent epoxy resin mold. Since it is an amino group or a hydroxyl group that reacts with the epoxy resin at a high temperature, it is an effective modification treatment to have these at the ends of the elastomer. In the present invention, since an adhesive that exhibits a strong adhesive force not only at room temperature but also at a relatively high temperature is required, an excessively soft material is not preferable. Listed here are those that are easy to obtain while taking these into consideration: PVF that easily forms hydroxyl groups, urethane resins with hydroxyl groups at the ends, PAs with countless amino groups, and PES with intentionally hydroxyl groups. is there.

エラストマー性を考慮すると、加硫ゴム粉体が充填材として最も適していると考えられが、5〜30μmの粒径物は入手困難である。この範囲の粒径物を生産可能な熱可塑性樹脂もあるので、その群から選んで使用する。部品や弾性塗料としてSBR、NBR(ニトリルゴム)、ウレタン樹脂、その他の軟質の熱可塑性樹脂(熱可塑性エラストマーを含む)が市販されており、常温付近での接着剤の弾性化には、これらが適している。また、金属合金とCFRPの接着複合体の主な用途としては、移動機械の構造体等であるから高温環境下での信頼性も要求される。従って、100〜150℃程度の高温下で過度に軟化しない程度の弾性を有する熱可塑性樹脂が適している。この点から言えば軟化点の高いポリエーテルスルホン樹脂(以下「PES」という)が好ましい。PESは耐熱弾性塗料用フィラーとしての用途があり、微粉砕が工業的に為されているので粒径分布の中心が10〜20μmの物が容易に入手できる。熱可塑性樹脂粉体の好ましい添加量は接着剤の0〜5質量%である。   Considering elastomeric properties, vulcanized rubber powder is considered to be most suitable as a filler, but a particle size of 5 to 30 μm is difficult to obtain. There are also thermoplastic resins that can produce particles in this range, so they are selected from the group. SBR, NBR (nitrile rubber), urethane resin, and other soft thermoplastic resins (including thermoplastic elastomers) are commercially available as parts and elastic paints. Is suitable. In addition, as a main application of the adhesive composite of the metal alloy and CFRP, since it is a structure of a mobile machine or the like, reliability in a high temperature environment is also required. Therefore, a thermoplastic resin having elasticity that is not excessively softened at a high temperature of about 100 to 150 ° C. is suitable. In this respect, a polyethersulfone resin (hereinafter referred to as “PES”) having a high softening point is preferable. PES has a use as a filler for heat resistant elastic coatings, and since fine pulverization is industrially performed, a product having a particle size distribution center of 10 to 20 μm can be easily obtained. A preferable addition amount of the thermoplastic resin powder is 0 to 5% by mass of the adhesive.

(カーボンナノチューブ(1))
また、接着剤Iにはカーボンナノチューブ(Carbon Nanotube:以下「CNT」という)を充填材として添加しても良い。本発明者らは、NATに適合する表面とした金属合金同士を、CNTを添加した接着剤によって接着させる実験を行った。その結果、CNTの添加は常温下での接着力を高める効果があった。即ち、CNTを接着剤中に適度に分散させることができれば硬化した接着剤層全般が高強度になる。NATに適合するよう表面処理した金属合金同士の接合体の場合、100℃程度の温度域で接合体を強制的に破断すると、その破壊は明らかに接着剤硬化物層内で起こっていた。そのため、CNTの添加は有効である。しかし150℃付近の高温にして接着剤硬化物が軟化する環境下で接合体を強制的に破断すると、接着剤硬化物層内でも多少の破壊は生じるが、多くは接着剤硬化物層自体が金属合金表面の粗面から抜け落ちることで破断に至る。それ故に、接着剤にCNTを添加しても、高温下での接着力を明確に向上させる効果は得られなかった。
(Carbon nanotube (1))
Further, carbon nanotube (Carbon Nanotube: hereinafter referred to as “CNT”) may be added to the adhesive I as a filler. The inventors conducted an experiment in which metal alloys having surfaces compatible with NAT are bonded to each other with an adhesive added with CNTs. As a result, the addition of CNT had the effect of increasing the adhesive strength at room temperature. That is, if the CNTs can be appropriately dispersed in the adhesive, the entire cured adhesive layer has high strength. In the case of a joined body of metal alloys surface-treated so as to conform to NAT, when the joined body was forcibly broken in a temperature range of about 100 ° C., the breakage clearly occurred in the cured adhesive layer. Therefore, the addition of CNT is effective. However, if the bonded body is forcibly broken in an environment where the adhesive cured product is softened at a high temperature around 150 ° C., some destruction occurs in the adhesive cured product layer, but most of the adhesive cured product layer itself is It breaks by falling off the rough surface of the metal alloy surface. Therefore, even if CNT is added to the adhesive, the effect of clearly improving the adhesive strength at high temperatures cannot be obtained.

ここで、既硬化のエポキシ樹脂硬化物層同士をエポキシ接着剤で接着する場合、最も接合力の弱い部分はエポキシ樹脂硬化物層と新たな接着剤硬化物層との界面になる。エポキシ樹脂硬化物層の表面を粗面化して接着力を向上させようとしても界面部分で最も破断し易いことに変わりはない。このような破断が生じる場合、エポキシ接着剤にCNTを添加することで、接着力が向上する可能性がある。少なくともCNTの添加によって接着力が低下することはない。この場合、2種のエポキシ樹脂硬化物層に挟まれて接着剤硬化物層が存在する3層構造であり、いわばサンドイッチのような構造となっている。接着剤硬化物層の上下に位置する2種のエポキシ樹脂硬化物層を、それぞれ上下に引っ張って剥がしたときに、どの箇所で破断が生じているかが問題となる。接着剤硬化物層が最も弱く、この層の内部で破断が生じているのであれば、CNTの添加は、接着剤硬化物層自体が破壊されにくくなる(微小なヒビが拡大するのを防止する)ので効果がある。   Here, when the cured epoxy resin cured layers are bonded to each other with an epoxy adhesive, the portion having the weakest bonding force is an interface between the epoxy resin cured layer and a new adhesive cured layer. Even if the surface of the cured epoxy resin layer is roughened to improve the adhesive force, it remains the most easily broken at the interface portion. When such a breakage occurs, there is a possibility that the adhesive force is improved by adding CNT to the epoxy adhesive. At least the addition of CNTs does not reduce the adhesive strength. In this case, it is a three-layer structure in which an adhesive-cured material layer exists between two types of cured epoxy resin layers, which is a sandwich-like structure. When two types of cured epoxy resin layers positioned above and below the cured adhesive layer are pulled up and down respectively, the problem is where the fracture occurs. If the cured adhesive layer is the weakest and rupture occurs inside this layer, the addition of CNT makes the adhesive cured product layer less likely to break itself (prevents the expansion of minute cracks). ) So effective.

一方、上下いずれかのエポキシ樹脂硬化物層内で破断が生じているのであれば、エポキシ接着剤にCNTを添加しても接着力を向上させる効果がない。このことから、後述する接着剤IIにCNTを添加する場合には接着力を向上させる可能性があるが、接着剤IにCNTを添加しても接着力が向上しないと判断した。これは破断面を観察した結果、破断が接着剤IIの硬化物層内部で生じていることが多かったからである。即ち、接着剤IにCNTを添加しても効果がない場合が多いと判断し、実験結果からもこのことを確認することができた。それ故、接着剤Iに対するCNTの添加を必要条件とはしなかった。しかしながら、接着剤IIにCNTを添加すると有効に作用すると判断し、実験を行ったところ、接着力の向上に一定の効果が認められた(表4)。   On the other hand, if rupture occurs in the upper or lower epoxy resin cured product layer, even if CNT is added to the epoxy adhesive, there is no effect of improving the adhesive force. From this, when adding CNT to the adhesive II mentioned later, there exists a possibility that an adhesive force may be improved, but even if CNT was added to the adhesive I, it was judged that an adhesive force was not improved. This is because as a result of observing the fracture surface, the fracture often occurred inside the cured product layer of the adhesive II. That is, it was judged that there were many cases where adding CNT to the adhesive I had no effect, and this could be confirmed from the experimental results. Therefore, the addition of CNT to the adhesive I was not a necessary condition. However, when CNT was added to Adhesive II, it was judged that it would work effectively, and when an experiment was conducted, a certain effect was observed in improving the adhesive strength (Table 4).

後述する実験例では、接着剤Iとして使用される1液性エポキシ接着剤として、(1)エポキシ樹脂、(2)硬化剤、及び(3)無機充填材に加えて(4)超微細無機充填材を添加した「A、DICY、2PI」を作成した(表1の実験例15)。
さらに、(1)(2)(3)(4)に加えて(5)熱可塑性樹脂粉体を添加した「A、PES、DICY、2PI」を作成した(表1の実験例13)。
その他、(1)(2)(3)に加えて(5)熱可塑性樹脂粉体を添加した「PES、DICY、2PI」を作成した(表1の実験例14)。
In the experimental examples to be described later, as a one-component epoxy adhesive used as the adhesive I, in addition to (1) epoxy resin, (2) curing agent, and (3) inorganic filler, (4) ultrafine inorganic filling “A, DICY, 2PI” to which the material was added was prepared (Experimental Example 15 in Table 1).
Furthermore, in addition to (1), (2), (3), and (4), (5) “A, PES, DICY, and 2PI” to which thermoplastic resin powder was added was prepared (Experimental Example 13 in Table 1).
In addition, “PES, DICY, 2PI” was prepared by adding (5) thermoplastic resin powder in addition to (1), (2) and (3) (Experimental Example 14 in Table 1).

[接着剤IIの組成]
接着剤IIとは、接着剤硬化物層を粗面化した金属合金の当該粗面化部分、及び粗面化した硬化済みCFRP部材の当該粗面化部分に塗布する接着剤である。従って、NATに適合する表面とした金属合金の超微細凹凸に侵入する必要はない。即ち接着剤IIは、数十nmオーダーの凹凸に侵入する必要はないので、1液性エポキシ接着剤のみならず、2液性エポキシ接着剤でも良い。
[Composition of Adhesive II]
The adhesive II is an adhesive that is applied to the roughened portion of the metal alloy having the roughened adhesive cured layer and the roughened portion of the roughened cured CFRP member. Therefore, it is not necessary to penetrate into the ultra-fine irregularities of the metal alloy having a surface compatible with NAT. That is, since the adhesive II does not need to penetrate into the unevenness of the order of several tens of nm, not only the one-component epoxy adhesive but also the two-component epoxy adhesive may be used.

[接着剤IIとしての1液性エポキシ接着剤]
接着剤IIとして使用する1液性エポキシ接着剤は、前述した1液性エポキシ接着剤と同様の組成である。但し、NATに適合する金属合金表面に塗布するものではないため、超微細無機充填材を添加する必要はない。 一方で、CNTの添加は接着力を向上させた。これは接着剤IにおけるCNTの説明で示した理由に基づく。本発明は金属合金とCFRP部材の接着に関するものであるが、この現象(CNTの添加による接着力の向上)はCFRP部材同士の接着においても同様であった。また、接着剤IIとして使用する接着剤は、以下の理由により、硬化条件を緩和させたものであることが好ましい。
[One-part epoxy adhesive as Adhesive II]
The one-component epoxy adhesive used as the adhesive II has the same composition as the one-component epoxy adhesive described above. However, since it is not applied to the surface of a metal alloy conforming to NAT, it is not necessary to add an ultrafine inorganic filler. On the other hand, the addition of CNT improved the adhesion. This is based on the reason shown in the explanation of CNT in the adhesive I. The present invention relates to adhesion between a metal alloy and a CFRP member, but this phenomenon (improvement of adhesion by adding CNT) was the same in adhesion between CFRP members. Moreover, it is preferable that the adhesive used as the adhesive II is that whose curing conditions are relaxed for the following reasons.

(硬化剤)
接着させる金属合金又はCFRP部材の少なくとも一方が大型部品である場合、仮に両者の接着に使用する接着剤の硬化温度が150℃程度と高温であるならば、これら全体を収納可能な大型オートクレーブ又は大型熱風乾燥機の設置が必要になる。従って、コストが問題となるような場合には、このような接着方法は採用できない。このような観点から、接着剤IIの硬化温度を可能な限り低く設定することは技術的に重要である。これにより、大型の設備なしで金属合金とCFRP部材を接着可能となるからである。
(Curing agent)
If at least one of the metal alloy or CFRP member to be bonded is a large part, and if the curing temperature of the adhesive used for bonding the two is as high as about 150 ° C., a large autoclave or a large size that can accommodate them as a whole Installation of a hot air dryer is required. Therefore, such a bonding method cannot be adopted when the cost becomes a problem. From such a viewpoint, it is technically important to set the curing temperature of the adhesive II as low as possible. This is because the metal alloy and the CFRP member can be bonded without a large facility.

大型の設備を要せずに接着を行うことを可能とするには、常温硬化型の2液性エポキシ接着剤を使用するか、又は、接着作業を行う現場で簡易な装置によって加熱することで接着剤が完全に硬化する1液性エポキシ接着剤を使用することになる。本発明者らは、接着剤塗布部の周囲にバンドヒーターを巻いて加熱することで100〜120℃で1〜2時間安定的に加熱することを可能とした。また、接着剤塗布部を囲むように容器状の治具を設置し、その治具内部にホットブラスターから熱風を送ることで100〜120℃で1〜2時間安定的に加熱することを可能とした(図16)。これらの技術を踏まえて、120℃以下の温度で、かつ2時間以下の加熱時間で完全硬化する接着剤を開発すべく、硬化剤及び硬化助剤に関する試行錯誤を行った。その結果、以下に示す硬化剤及び硬化助剤の組み合わせが適していることを発見した。   In order to be able to perform bonding without requiring large equipment, use a room temperature curing type two-component epoxy adhesive, or heat it with a simple device at the site where the bonding work is performed. A one-part epoxy adhesive that completely cures the adhesive will be used. The present inventors made it possible to stably heat at 100 to 120 ° C. for 1 to 2 hours by winding a band heater around the adhesive application part and heating. In addition, it is possible to stably heat at 100 to 120 ° C. for 1 to 2 hours by installing a container-shaped jig so as to surround the adhesive application part and sending hot air from the hot blaster inside the jig. (FIG. 16). Based on these technologies, trial and error concerning a curing agent and a curing aid were performed in order to develop an adhesive that completely cures at a temperature of 120 ° C. or less and a heating time of 2 hours or less. As a result, the inventors have found that the following combinations of curing agents and curing aids are suitable.

(1)第1の組み合わせは、ジシアンジアミド微粉を硬化剤とし、3−(3,4−ジクロルフェニル)−1,1−ジメチルウレアの微粉を硬化助剤とする組み合わせである。この硬化剤及び硬化助剤を使用すると、接着剤は100℃で1.5時間加熱することにより、ほぼ完全硬化した。
(2)第2の組み合わせは、ジシアンジアミド微粉を硬化剤とし、1、4−ジメチルピペラジンを硬化助剤とする組み合わせである。この硬化剤及び硬化助剤を使用すると、接着剤は110℃で1時間加熱することにより、ほぼ完全硬化した。
(3)第3の組み合わせは、ジシアンジアミド微粉を硬化剤とし、2−フェニルイミダゾール又は2−メチルイミダゾールの微粉を硬化助剤とする組み合わせである。この硬化剤及び硬化助剤を使用すると、接着剤は120℃で1時間加熱することにより、ほぼ完全硬化した。
(1) The first combination is a combination of dicyandiamide fine powder as a curing agent and 3- (3,4-dichlorophenyl) -1,1-dimethylurea fine powder as a curing aid. Using this curing agent and curing aid, the adhesive was almost completely cured by heating at 100 ° C. for 1.5 hours.
(2) The second combination is a combination using dicyandiamide fine powder as a curing agent and 1,4-dimethylpiperazine as a curing aid. When this curing agent and curing aid were used, the adhesive was almost completely cured by heating at 110 ° C. for 1 hour.
(3) The third combination is a combination in which dicyandiamide fine powder is used as a curing agent and 2-phenylimidazole or 2-methylimidazole fine powder is used as a curing aid. When this curing agent and curing aid were used, the adhesive was almost completely cured by heating at 120 ° C. for 1 hour.

(カーボンナノチューブ(2))
本発明では接着剤IIへの充填材として、CNTを添加した場合に、明らかに接着力が向上した(表4)。また、安定して高いせん断破断力を示した。CNTには種々の製造方法が開発されている。直径が約1nmの単層円筒状物(single-walled carbon nanotubes)、直径が数nmの2層物(double-walled carbon nanotubes)、3層物(triple-walled carbon nanotubes)等があるが、最近では非常に層数の多い直径が90nm近いCNT(multi-walled carbon nanotubes、略して「MCNT」とも言う。)も製造できるようになった。このMCNTは、接着剤へ利用も検討されてはいるが実用化された例は未だ聞かない。その一方でCNTの電導性を利用する実用化が進みつつある。即ち、構造強化材としての使われ方よりも導電性物質としての使われ方が先行している。しかし、本発明では構造強化材としての物性に注目する。
(Carbon nanotube (2))
In the present invention, when CNT was added as a filler to the adhesive II, the adhesive force was clearly improved (Table 4). Moreover, it showed a high shear breaking force stably. Various manufacturing methods have been developed for CNTs. There are single-walled carbon nanotubes with a diameter of about 1 nm, double-walled carbon nanotubes with a diameter of several nanometers, and triple-walled carbon nanotubes. Then, CNT (multi-walled carbon nanotubes, also abbreviated as “MCNT” for short) having a very large number of layers and having a diameter close to 90 nm can be produced. Although this MCNT has been studied for use in adhesives, no practical examples have been heard yet. On the other hand, practical application utilizing the conductivity of CNTs is progressing. That is, the use as a conductive substance precedes the use as a structural reinforcement. However, in the present invention, attention is paid to physical properties as a structural reinforcing material.

(カーボンナノチューブの分散法)
上述したCNTの添加による接着力の向上は、CNTが接着剤内に充分に分散されることで達成される。しかし、実際にはその分散が困難であるという事情がある。CNTは発明直後から、各種接着剤や樹脂に混ぜ込めば接着強度や樹脂強度が増すと予期されて研究が始まった。しかしながら、未だ顕著な効果が認められていない。CNTを樹脂中に分散できた結果、導電性が大きく向上する等の効果が得られ、特定用途向けに事業化が実現している一方で、本来期待されるべき接着強度や樹脂強度が明確に向上したとの報告は見当たらない。その理由として、CNTの分散が困難であるということがある。
(Dispersion method of carbon nanotube)
The improvement of the adhesive force by addition of CNT mentioned above is achieved when CNT is fully disperse | distributed in an adhesive agent. However, there is a circumstance that the dispersion is actually difficult. Research started immediately after the CNT was expected to increase the adhesive strength and resin strength if mixed with various adhesives and resins. However, a remarkable effect has not yet been recognized. As a result of being able to disperse CNTs in the resin, effects such as a significant improvement in conductivity have been obtained, and while commercialization has been realized for specific applications, the adhesive strength and resin strength that should originally be expected are clearly defined. There are no reports of improvement. The reason is that it is difficult to disperse CNTs.

CNTの分散法については既に多くの技術が紹介されている。これら分散方法のうち多くは、CNT、特殊な溶剤、及び特殊な分散安定剤をボールミル等に投入してCNTを溶剤中に破壊分散させる手段を採用している。これは、製造直後のCNTは細かく絡み合っていることが発見され、分散させるには、これをある程度破壊しなければならないことが確認されたことによる。   Many techniques have already been introduced for the dispersion method of CNTs. Many of these dispersion methods employ a means in which CNT, a special solvent, and a special dispersion stabilizer are added to a ball mill or the like to break and disperse the CNT in the solvent. This is because it was found that the CNTs immediately after production were finely entangled, and in order to be dispersed, it was confirmed that they had to be broken to some extent.

但し、上記CNTの分散に適した溶剤や分散安定剤を使用し、接着剤組成物とCNTを混合した後において、その溶剤及び分散安定剤を完全には除去することができない。即ち、接着剤組成物に新たに加わったその溶剤成分が、接着剤性能を低下させる可能性がある。実際に、本発明者らも上記分散方法に使用されている溶剤数種と分散安定剤数種を入手し、各々を1液性エポキシ樹脂系接着剤に混入させて接着力を測定する実験を行った。その結果、全て接着力は低下した。   However, after the solvent and dispersion stabilizer suitable for the dispersion of CNT are used and the adhesive composition and CNT are mixed, the solvent and dispersion stabilizer cannot be completely removed. That is, the solvent component newly added to the adhesive composition may reduce the adhesive performance. In fact, the present inventors also obtained several kinds of solvents and several kinds of dispersion stabilizers used in the above dispersion method, and conducted an experiment in which each was mixed in a one-component epoxy resin adhesive and the adhesive strength was measured. went. As a result, all the adhesive strength decreased.

上記の理由から、本発明者らは新たなCNT分散方法の開発を試みた。その結果、本発明では、サンドグラインドミル型湿式粉砕機を使用することによって、溶剤や分散剤を使用することなく、CNTをエポキシ樹脂中に分散させることに成功した。なお、再度述べるが、CNTの製造方法として多くの方法があるが、何れの方法であっても個々のCNT分子が多数絡まった物が製造される。それ故、高性能の湿式粉砕機を使って、エポキシ樹脂中でCNT分子が絡まった物を破壊して、CNT分子がばらけた状態とし、これを分散させる。   For the above reasons, the present inventors tried to develop a new CNT dispersion method. As a result, in the present invention, by using a sand grind mill type wet pulverizer, CNT was successfully dispersed in the epoxy resin without using a solvent or a dispersant. Although described again, there are many methods for producing CNTs, but any method can produce a product in which many individual CNT molecules are entangled. Therefore, using a high-performance wet pulverizer, the entangled CNT molecules in the epoxy resin are destroyed to make the CNT molecules scattered and dispersed.

但し、分散可能なCNTには制限がある。本発明においては、直径20nm以上の多層型CNTであれば、エポキシ樹脂中に分散させることができ、接着力向上に寄与した。本発明者らは、最新型のサンドグラインドミル型湿式粉砕機を使用したが、直径20nm未満の細いCNTをエポキシ樹脂中に分散させることは困難であった。直径が数nm程度の単層型、2層型、又は3層型の細いCNTである場合、繊維が柔軟すぎて高性能湿式粉砕機を使用しても破壊、分散させることができなかった。一方、直径が20nm以上のCNTは、サンドグラインドミルにより分散可能であり、特に直径40〜60nmのCNTを添加した場合に最も高い接着力を示した。このようなCNTは国内で市販されており、添加量は接着剤の0.04〜0.2質量%とすることが好ましい。   However, there are limitations on dispersible CNTs. In the present invention, multilayer CNTs having a diameter of 20 nm or more can be dispersed in an epoxy resin, contributing to an improvement in adhesive strength. The present inventors used the latest sand grind mill type wet pulverizer, but it was difficult to disperse fine CNTs having a diameter of less than 20 nm in the epoxy resin. In the case of a single-layer, two-layer, or three-layer thin CNT having a diameter of about several nanometers, the fibers were too flexible to be broken or dispersed even when a high-performance wet pulverizer was used. On the other hand, CNTs having a diameter of 20 nm or more were dispersible by a sand grind mill, and showed the highest adhesive force particularly when CNTs having a diameter of 40 to 60 nm were added. Such CNTs are commercially available in Japan, and the addition amount is preferably 0.04 to 0.2% by mass of the adhesive.

後述する実験例では、接着剤IIとして使用される1液性エポキシ接着剤として、(1)エポキシ樹脂、(2)硬化剤(ジシアンジアミド微粉及び3−(3,4−ジクロルフェニル)−1,1−ジメチルウレア微粉)、及び(3)無機充填材に加えて(6)CNTを添加した「MCNT、DICY、DCMU」を作成した(表2の実験例20)。
さらに、(1)(2)(3)(6)に加えて(5)熱可塑性樹脂粉体(水酸基付きPES)を添加した「MCNT、水酸基PES、DICY、DCMU」を作成した(表2の実験例21)。
その他、(6)CNTを添加せず(1)(2)(3)からなる「DICY、DCMU」を作成した(表2の実験例22)。
In the experimental examples to be described later, as the one-component epoxy adhesive used as the adhesive II, (1) epoxy resin, (2) curing agent (dicyandiamide fine powder and 3- (3,4-dichlorophenyl) -1, 1-dimethylurea fine powder), and (3) “MCNT, DICY, DCMU” added with (6) CNT in addition to the inorganic filler (Experimental Example 20 in Table 2).
Furthermore, in addition to (1) (2) (3) (6), (5) “MCNT, hydroxyl group PES, DICY, DCMU” was prepared by adding thermoplastic resin powder (hydroxyl group-containing PES) (Table 2). Experimental Example 21).
In addition, (6) “DICY, DCMU” composed of (1), (2) and (3) was prepared without adding CNT (Experimental Example 22 in Table 2).

また、接着剤IIとして使用される1液性エポキシ接着剤として、(1)エポキシ樹脂、(2)硬化剤(ジシアンジアミド微粉及び2−フェニルイミダゾール)、及び(3)無機充填材に加えて(6)CNTを添加した「MCNT、DICY、2PI」を作成した(表2の実験例23)。
また、接着剤IIとして使用される1液性エポキシ接着剤として、(1)エポキシ樹脂、(2)硬化剤(ジシアンジアミド微粉及び1、4−ジメチルピペラジン)、及び(3)無機充填材に加えて(6)CNTを添加した「MCNT、DICY、DMP」を作成した(表2の実験例24)。
In addition to (1) epoxy resin, (2) curing agent (dicyandiamide fine powder and 2-phenylimidazole), and (3) inorganic filler (6) ) “MCNT, DICY, 2PI” to which CNT was added was prepared (Experimental Example 23 in Table 2).
In addition to (1) epoxy resin, (2) curing agent (dicyandiamide fine powder and 1,4-dimethylpiperazine), and (3) inorganic filler as one-component epoxy adhesive used as adhesive II (6) “MCNT, DICY, DMP” to which CNT was added was prepared (Experimental Example 24 in Table 2).

[接着剤IIとしての2液性エポキシ接着剤]
2液性エポキシ接着剤は、エポキシ樹脂及び充填材からなる主液と、脂肪族ポリアミン又は酸無水物類等からなる硬化剤液とからなる。接着剤自体としても市販品があるが、その原料は容易に市中から入手でき自作できる。本発明における2液性エポキシ接着剤に使用されるエポキシ樹脂及び充填材(無機充填材、超微細無機充填材、熱可塑性樹脂粉体、及びCNT)については接着剤IIとして使用する1液性エポキシ接着剤と同様である。
[Two-component epoxy adhesive as adhesive II]
The two-component epoxy adhesive is composed of a main liquid composed of an epoxy resin and a filler, and a curing agent liquid composed of an aliphatic polyamine or acid anhydrides. There are also commercially available adhesives, but the raw materials can be easily obtained from the city and made by yourself. Epoxy resins and fillers (inorganic fillers, ultrafine inorganic fillers, thermoplastic resin powders, and CNTs) used for the two-part epoxy adhesive in the present invention are used as the adhesive II. It is the same as the adhesive.

(硬化剤)
主液に硬化剤を添加し、混合した後に使用するが、この添加、混合は使用直前に行う。2液性エポキシ接着剤の硬化剤としては、ジエチレントリアミン、トリエチレンテトラミン、及びジエチルアミノプロピルアミン等の鎖状脂肪族系ポリアミン、メンセンジアミン等の脂環族ポリアミン、m−キシリレンジアミン等の芳香族ポリアミン、並びに、変性脂肪族系ポリアミン類等があげられる。何れの硬化剤も使用できるが、どのような接着効果を期待するかで硬化剤は変わって来る。常温での高速硬化を図る場合には鎖状脂肪族系ポリアミンが好ましい。一方、常温での固化に半日〜1日かかり完全硬化に1週間程度かかる硬化剤種もある。このような硬化剤は100℃程度に昇温をすれば1〜2時間で完全硬化する。具体的には、脂環族ポリアミンやm−キシリレンジアミン等がこれに該当する。これらの硬化剤を使った接着では鎖状脂肪族ポリアミンを硬化剤とした接着剤よりも耐熱性が高い。
(Curing agent)
The curing agent is added to the main liquid and used after mixing. Curing agents for two-component epoxy adhesives include chain aliphatic polyamines such as diethylenetriamine, triethylenetetramine, and diethylaminopropylamine, alicyclic polyamines such as mensendiamine, and aromatics such as m-xylylenediamine. Examples include polyamines and modified aliphatic polyamines. Any curing agent can be used, but the curing agent varies depending on what adhesive effect is expected. A chain aliphatic polyamine is preferred for rapid curing at room temperature. On the other hand, there is a curing agent type that takes half day to one day for solidification at room temperature and takes about one week for complete curing. Such a curing agent is completely cured in 1 to 2 hours if the temperature is raised to about 100 ° C. Specifically, alicyclic polyamine, m-xylylenediamine, and the like correspond to this. Adhesion using these curing agents has higher heat resistance than adhesives using a chain aliphatic polyamine as a curing agent.

後述する実験例では、接着剤IIとして使用される2液性エポキシ接着剤としては、(1)エポキシ樹脂、(2)硬化剤(m−キシリレンジアミン及び2−フェニルイミダゾール)、及び(3)無機充填材に加えて(6)CNTを添加した「MCNT、mXy、2PI」を作成した(表2の実験例25)。   In the experimental examples described later, the two-component epoxy adhesive used as the adhesive II includes (1) an epoxy resin, (2) a curing agent (m-xylylenediamine and 2-phenylimidazole), and (3). In addition to the inorganic filler, (6) “MCNT, mXy, 2PI” in which CNT was added was prepared (Experimental Example 25 in Table 2).

[湿式粉砕機]
エポキシ樹脂にヒュームドシリカを添加して分散させる場合、最新型湿式粉砕機を使用することが好ましい。そして前述したように、エポキシ樹脂にCNTを添加して分散させる場合、最新型湿式粉砕機を使用することが必要条件となる。言い換えると、CNT及びヒュームドシリカ以外を添加する場合には、必ずしも最新型湿式粉砕機を使用しなくとも良い。実際、無機充填材及び熱可塑性樹脂粉体の分散に関しては、最新型湿式粉砕機であるサンドグラインドミルを使用してもニーダー又は自動乳鉢等による混練と比較して明確な差異を認めることは出来なかった。しかし、少なくとも充填材の分散不足による接着力の低下という問題は生じないと判断して、本発明者らは全ての充填材をサンドグラインドミルにより分散させることとした。そしてこれにより、充填材はエポキシ樹脂中に確実に分散された。
[Wet grinding machine]
When fumed silica is added and dispersed in an epoxy resin, it is preferable to use a state-of-the-art wet pulverizer. And as mentioned above, when adding and dispersing CNT in an epoxy resin, it is a necessary condition to use the latest wet pulverizer. In other words, when adding other than CNT and fumed silica, the latest wet pulverizer need not necessarily be used. In fact, with regard to the dispersion of inorganic filler and thermoplastic resin powder, even when using a sand grind mill, which is the latest wet pulverizer, a clear difference can be recognized as compared with kneading with a kneader or automatic mortar. There wasn't. However, judging that there is no problem of a decrease in adhesive force due to insufficient dispersion of the filler, the present inventors decided to disperse all the filler by a sand grind mill. This ensured that the filler was dispersed in the epoxy resin.

但し、1液性エポキシ接着剤を作成する場合であっても、硬化剤を加えた状態のエポキシ樹脂をサンドグラインドミルにかけて充填材を混合分散させるべきではない。これは硬化温度が高い場合も同様である。粉砕室を冷却したとしてもかなりの高温になるため、硬化剤とエポキシ樹脂を混ぜた状態でサンドグラインドミルを運転すると、粉砕室内で高温域が生じ、これにより劇的にゲル化及び固化が進行する暴走が生じる危険性があるからである。この高温域は、人為的ミスや偶然によって容易に発生しうる。その結果、高価なサンドグラインドミルを破損させることになる。即ち、硬化剤を加えず、硬化剤以外の充填材を加えたエポキシ樹脂をサンドグラインドミルにかけて充填材を分散させる必要がある。そして、硬化剤及び硬化助剤は、充填材を分散させた後のエポキシ樹脂と混合させる。その際の混合には、従来通りニーダー又は自動乳鉢等を使用する。   However, even when preparing a one-part epoxy adhesive, the filler should not be mixed and dispersed by applying an epoxy resin with a curing agent added to a sand grind mill. This is the same when the curing temperature is high. Even if the grinding chamber is cooled, the temperature becomes quite high, so when the sand grind mill is operated with a hardener and epoxy resin mixed, a high temperature region is generated in the grinding chamber, which causes gelation and solidification to progress dramatically. This is because there is a risk of running away. This high temperature range can easily occur due to human error or accident. As a result, the expensive sand grind mill is damaged. That is, it is necessary to disperse the filler by applying an epoxy resin added with a filler other than the curing agent to a sand grind mill without adding a curing agent. And a hardening | curing agent and hardening adjuvant are mixed with the epoxy resin after disperse | distributing a filler. For mixing at that time, a kneader or an automatic mortar is used as usual.

[染み込まし処理I及び接着剤Iの硬化]
NATに適合する第1の条件〜第3の条件を具備する金属合金表面に接着剤Iとして1液性エポキシ系接着剤を塗布する。接着剤硬化物層を研磨するのでやや厚めに塗る必要がある。具体的には接着剤Iの硬化後に接着剤硬化物層の厚さが0.05mm以上になるようにすることが好ましい。必要に応じて、接着剤Iを塗布した金属合金をデシケータ等の容器に入れて密閉し、容器内を真空ポンプ等で一旦減圧し、その後に常圧に戻す操作を行う。具体的には、容器内を数十mmHg程度まで減圧して一定時間以上(概ね数秒〜数分)置き、その後空気を入れて常圧に戻す(又は数気圧以上の圧力まで加圧する)ことが好ましい。減圧状態に置く時間は、接着剤Iの超微細凹凸への侵入具合に応じて調整する。この減圧/常圧戻し操作を数回繰り返すのが好ましい。この減圧/常圧戻し操作に使用する容器、例えばデシケータは使用前に50〜70℃に暖めておくことが好ましい。これは塗布した接着剤Iの粘度を下げて表面の超微細凹凸に染み込み易くするためである。接着剤Iの接着剤粘度を15Pa秒以下、好ましくは10Pa秒以下とすることで超微細凹凸に侵入させる。このように接着剤Iを塗布した後の減圧/常圧戻し操作を「染み込まし処理I」とする。染み込まし処理Iを終えた金属合金を容器から取り出して熱風乾燥機に入れ、接着剤Iを硬化させる。
[Soaking treatment I and curing of adhesive I]
A one-component epoxy adhesive is applied as the adhesive I to the surface of the metal alloy satisfying the first to third conditions suitable for NAT. Since the cured adhesive layer is polished, it needs to be applied slightly thicker. Specifically, it is preferable that the thickness of the cured adhesive layer is 0.05 mm or more after the adhesive I is cured. If necessary, the metal alloy coated with the adhesive I is put in a container such as a desiccator and sealed, and the inside of the container is once depressurized with a vacuum pump or the like and then returned to normal pressure. Specifically, the inside of the container is depressurized to about several tens of mmHg and left for a certain period of time (approximately several seconds to several minutes), and then air is returned to normal pressure (or pressure is increased to a pressure of several atmospheres or more). preferable. The time in which the pressure is reduced is adjusted according to the degree of penetration of the adhesive I into the ultra-fine irregularities. This depressurization / return to normal pressure operation is preferably repeated several times. It is preferable that the container used for this decompression / normal pressure return operation, for example, a desiccator, is warmed to 50 to 70 ° C. before use. This is to reduce the viscosity of the applied adhesive I so that it can easily penetrate into the ultra-fine irregularities on the surface. By setting the adhesive viscosity of the adhesive I to 15 Pa seconds or less, preferably 10 Pa seconds or less, the ultra fine unevenness is caused to enter. The pressure reduction / normal pressure return operation after applying the adhesive I in this way is referred to as “soaking treatment I”. The metal alloy soaked and treated I is taken out of the container and placed in a hot air dryer to cure the adhesive I.

ここで、金属合金表面に塗布しようとする接着剤Iの粘度が低い(例えば10Pa秒以下である)場合には上記減圧/常圧戻し操作を行うまでもなく、接着剤Iが超微細凹凸に侵入する場合がある。この場合には、当然染み込まし処理Iは不要である。また、塗布しようとする接着剤Iの粘度が高くても、金属合金を暖めておくことにより、塗布後に接着剤Iの粘度が低下して超微細凹凸に侵入する場合がある。この場合にも染み込まし処理Iは不要となる。これら、接着剤I塗布前における金属合金の加熱、及び染み込まし処理Iは、接着剤Iの超微細凹凸への侵入具合に応じて行えばよい。   Here, when the viscosity of the adhesive I to be applied to the surface of the metal alloy is low (for example, 10 Pa seconds or less), it is not necessary to perform the above-described decompression / normal pressure return operation, and the adhesive I becomes super fine unevenness. Intrusion may occur. In this case, of course, the soaking process I is unnecessary. Further, even if the viscosity of the adhesive I to be applied is high, by warming the metal alloy, the viscosity of the adhesive I may be lowered after the application and may penetrate into the ultra-fine irregularities. In this case, the soaking process I is not necessary. The heating of the metal alloy before the application of the adhesive I and the soaking process I may be performed according to the degree of penetration of the adhesive I into the ultra-fine irregularities.

本発明において接着剤Iとして使用する1液性エポキシ接着剤は全て、以下の条件で硬化させた。まず熱風乾燥機内を90℃として接着剤Iを塗布した金属合金を入れ、90℃で10分加熱し、その後昇温して135℃とし、135℃で50分加熱し、さらにその後昇温して165℃とし、165℃で30分加熱した。   All the one-component epoxy adhesives used as the adhesive I in the present invention were cured under the following conditions. First, the inside of the hot air dryer is set to 90 ° C., the metal alloy coated with the adhesive I is put, heated at 90 ° C. for 10 minutes, then heated up to 135 ° C., heated at 135 ° C. for 50 minutes, and then heated up. The temperature was 165 ° C., and the mixture was heated at 165 ° C. for 30 minutes.

[接着剤硬化物層の粗面化及び洗浄]
接着剤Iを硬化させた後、熱風乾燥機から金属合金を取り出し、金属合金表面を覆っている接着剤硬化物層を粗面化する。後述するが硬化後のCFRP部材に対しても粗面化を施すので、接着剤IIが接することになる金属合金側の接着剤硬化物層と、CFRP部材を覆っているマトリックス樹脂(エポキシ樹脂)硬化物の双方を粗面化することになる。これらの粗面化は、粗面化により生じた凹凸に接着剤IIを侵入させることを目的とした処理である。
[Roughening and cleaning of the cured adhesive layer]
After the adhesive I is cured, the metal alloy is taken out from the hot air dryer, and the cured adhesive layer covering the surface of the metal alloy is roughened. As will be described later, since the CFRP member after curing is also roughened, the cured layer of the adhesive on the metal alloy side where the adhesive II comes into contact with, and the matrix resin (epoxy resin) covering the CFRP member Both of the cured products will be roughened. These roughenings are treatments aimed at allowing the adhesive II to penetrate into the irregularities generated by the roughening.

具体的には、硬化した接着剤の表面をJISR6252に規定される240番〜800番の研磨紙で強めに10〜20回往復研磨する。後述する実験例では強めに十数回往復研磨した。この操作は接着剤層を粗面化する目的で行うものであるため、研磨し過ぎて金属合金面が露出しないよう研磨する。これは困難な作業ではない。入手が容易な最も目の細かい研磨紙は2000番であり、この研磨紙を用いる場合にはかなり強く研磨しても深く研磨し過ぎることはない。しかしながら、2000番の研磨紙を用いると、240番〜800番の研磨紙を用いた場合より接着力が劣るという結果を得た。即ち2000番の研磨紙によって研磨した表面の凹部では浅すぎて、接着力の向上に寄与しない。一方、80番の研磨紙を使用すると、強めに十数回往復研磨することで金属合金面が露出した。従って、80番では粗すぎる。本発明者らの作業では、240番〜800番の研磨紙を使用することで好ましい結果を得た。   Specifically, the surface of the cured adhesive is reciprocally polished 10 to 20 times with the No. 240 to No. 800 polishing paper defined in JIS R6252. In the experimental example to be described later, reciprocal polishing was carried out more than ten times. Since this operation is performed for the purpose of roughening the adhesive layer, polishing is performed so that the metal alloy surface is not exposed due to excessive polishing. This is not a difficult task. The finest abrasive paper that is readily available is No. 2000, and when this abrasive paper is used, it will not be excessively polished even if it is considerably hardened. However, when No. 2000 polishing paper was used, the adhesive strength was inferior to that when No. 240-800 polishing paper was used. That is, the recesses on the surface polished by No. 2000 polishing paper are too shallow and do not contribute to the improvement of the adhesive strength. On the other hand, when No. 80 polishing paper was used, the metal alloy surface was exposed by strongly reciprocating and polishing 10 times. Therefore, 80 is too rough. In the work of the present inventors, preferable results were obtained by using abrasive papers of 240-800.

粗面化後の金属合金は、界面活性剤を湯に溶解した所謂脱脂液に浸漬して汚れを落とすことが好ましい。界面活性剤としては各種金属用脱脂剤を使用することができ、特にアルミ用脱脂剤の使用が好ましい。これらを脱脂剤メーカーの指示通りの濃度にして水に溶解し、メーカー指示の液温にして使用するのが適切である。このとき超音波を加えるとさらに良い。本発明者らは、市販されているアルミ用脱脂剤をメーカー指示通りの濃度、液温(60℃)とし、これに超音波を加えつつ粗面化した金属合金を5分間浸漬した。次いで水洗し、80℃とした温風乾燥機にて乾燥した。水洗水としてイオン交換水、工業用水、及び水道水を用いて試験を行ったが、いずれを用いた場合にも接着力に差異はなかった。しかしながら工業用水は川水が混ざっている場合があるので水道水又はイオン交換水の使用が好ましい。   The roughened metal alloy is preferably dipped in a so-called degreasing solution in which a surfactant is dissolved in hot water to remove dirt. As the surfactant, various metal degreasing agents can be used, and the use of an aluminum degreasing agent is particularly preferable. It is appropriate to dissolve these in water at a concentration as instructed by the degreasing agent manufacturer, and to use the solution at the temperature specified by the manufacturer. At this time, it is better to apply ultrasonic waves. The inventors set the commercially available degreasing agent for aluminum to a concentration and liquid temperature (60 ° C.) as instructed by the manufacturer, and immersed the roughened metal alloy for 5 minutes while applying ultrasonic waves thereto. Subsequently, it washed with water and dried with the warm air dryer which was 80 degreeC. Tests were performed using ion-exchanged water, industrial water, and tap water as flush water, but there was no difference in adhesive strength when any of them was used. However, since industrial water may be mixed with river water, tap water or ion-exchanged water is preferably used.

また、上記のような脱脂剤を使用せずとも、同等の洗浄が可能である。高圧の流水を粗面化部分にかけることで、界面活性剤を使用せずとも汚れを除くことができ、界面活性剤を使用した場合に近い接着力を得ることができた。これは実験により立証された。具体的には、水道水をその水圧のまま細い棒流にして、粗面化した部分に当てることで充分な洗浄が達成される。この洗浄方法は、金属合金が脱脂槽に入りきらない場合に有効である。金属合金の粗面化した範囲に対してのみ流水によって洗浄を行えば良い。特段の設備も不要であり、容易に洗浄することができる。但し、金属合金の表面処理に際して通常は脱脂層を使用しているので、これと同じものを使用するのであれば脱脂層の使用は負担とはならない。   Moreover, equivalent cleaning is possible without using a degreasing agent as described above. By applying high-pressure running water to the roughened portion, dirt could be removed without using a surfactant, and an adhesive force close to that obtained when a surfactant was used could be obtained. This was verified by experiment. Specifically, sufficient cleaning can be achieved by making tap water into a thin rod flow with its water pressure applied to a roughened portion. This cleaning method is effective when the metal alloy does not completely enter the degreasing tank. It is only necessary to perform cleaning with running water only on the roughened area of the metal alloy. No special equipment is required and can be easily cleaned. However, since the degreasing layer is usually used for the surface treatment of the metal alloy, the use of the degreasing layer is not a burden if the same material is used.

[CFRPについて]
強化繊維が炭素繊維であるFRPはCFRPであり、ガラス繊維を使用した物はGFRP(Glass-fiber reinforced plasticsの略)であり、アラミド繊維を使用した物はAFRP(Aramid-fiber reinforced plasticsの略)やKFRP(Kevler-fiber reinforced plasticsの略)と呼ばれる。FRPはこれらの総称でもある。本発明はエポキシ樹脂をマトリックス樹脂とするFRPについて論じているが、エポキシ樹脂をマトリックス樹脂とするFRPとしてはCFRPが一般的なので、以下ではCFRP部材について述べる。
[About CFRP]
FRP whose carbon fiber is reinforced fiber is CFRP, the one using glass fiber is GFRP (short for Glass-fiber reinforced plastics), and the one using aramid fiber is AFRP (short for Aramid-fiber reinforced plastics). And KFRP (Kevler-fiber reinforced plastics). FRP is also a generic name for these. Although the present invention discusses FRP using an epoxy resin as a matrix resin, CFRP is generally used as the FRP using an epoxy resin as a matrix resin. Therefore, a CFRP member will be described below.

形状化されたCFRPは、多層のCFRPプリプレグが重なり治具等で圧縮されながら加熱硬化した物であるのが一般的である。特に高強度のCFRP製造法としてプリプレグ利用法が標準的であり、これについて述べる。過去のCFRPプリプレグはマトリックス樹脂に現接着剤と似た粘着液状の熱硬化型エポキシ樹脂を使用していた。それ故、ベタついたシート状物であり、ポリエチレンフィルム等で挟んだシートとして供給され、使用時はそのまま切断し、その後にポリエチレンフィルムを剥がして使用したのである。しかし現行のプリプレグは、硬化剤に芳香族ジアミン類を多く使用して硬化物の耐熱性を上げていることもあり、粘着性のないシートである。厚さも0.2mm品が多く、標準化されており使用し易くなっている。   In general, the shaped CFRP is a product obtained by heat-curing a multilayer CFRP prepreg while being compressed by an overlapping jig or the like. In particular, a prepreg utilization method is standard as a high-strength CFRP production method, which will be described. Past CFRP prepregs used a sticky liquid thermosetting epoxy resin similar to the current adhesive for the matrix resin. Therefore, it is a sticky sheet-like material, supplied as a sheet sandwiched between polyethylene films and the like, cut as it is in use, and then peeled off and used the polyethylene film. However, the current prepreg is a non-adhesive sheet because it sometimes uses a large amount of aromatic diamine as a curing agent to increase the heat resistance of the cured product. There are many 0.2mm thick products, which are standardized and easy to use.

CFRP部材の製造工程は、コンピュータ制御された自動切断機でプリプレグを1枚づつ形状変化させつつ切断し、その切断した物を積層すれば立体形状が予期した物になるように自動化されている。積層物を治具に収めて形状が保てるようにした上でボルトやバネで締め付けてプリプレグシート間に圧力がかかるようにし、全体を密閉バッグやオートクレーブに入れて封じ、減圧する。減圧したまま昇温すると一旦溶融し、それからゲル化、硬化が始まる。溶融後は逆に高圧にすると、プリプレグ間から抜けた空気が存在していた隙間が潰されて一体化が進む。硬化が終了したら放冷し、治具等を外してCFRP部材が完成する。   The manufacturing process of the CFRP member is automated so that the three-dimensional shape becomes an expected one by cutting the prepreg while changing the shape one by one with a computer-controlled automatic cutting machine and stacking the cut pieces. The laminate is placed in a jig so that the shape can be maintained, and then tightened with bolts or springs so that pressure is applied between the prepreg sheets, and the whole is put in a sealed bag or an autoclave and sealed and decompressed. When the temperature is raised with the pressure reduced, it once melts and then gelation and curing begin. On the contrary, when the pressure is increased after melting, the gap where the air that has escaped from between the prepregs is crushed and the integration proceeds. When the curing is completed, the product is allowed to cool, and a jig or the like is removed to complete the CFRP member.

[CFRP部材の再焼成]
本発明者らは、市販のプリプレグから45mm×15mmの小片を切り取って、多数のプリプレグ片を作成した。これらを厚さ3mmに積層し、メーカーが指定する硬化条件(温度,時間)で硬化させてCFRP片を得た。これを1回焼き品と称す。この1回焼き品を、硬化に必要な温度以上の高温(最高180〜190℃)で再度加熱した。即ち再焼成を行った。これを2回焼き品と称す。さらに2回焼き品を同条件で再度加熱した。これを3回焼き品と称す。1回焼き品同士をコボンド法により1液性エポキシ接着剤で接着したCFRP片の接合体を複数得た。同様に2回焼き品同士、3回焼き品同士を1液性エポキシ接着剤で接着した接合体を各々複数得た。本発明者らが使用したCFRP片では、常温での平均せん断破断力を比較して、2回焼き品及び3回焼き品が高く、1回焼き品は明らかに低かった。これは、高温での再焼成によって、炭素繊維とマトリックス樹脂の接着力が向上したことを示すものである。
[Refiring of CFRP members]
The present inventors cut a small piece of 45 mm × 15 mm from a commercially available prepreg to produce a large number of prepreg pieces. These were laminated to a thickness of 3 mm and cured under curing conditions (temperature, time) specified by the manufacturer to obtain CFRP pieces. This is called a once-baked product. The once-baked product was heated again at a high temperature (a maximum of 180 to 190 ° C.) higher than the temperature necessary for curing. That is, refiring was performed. This is called a twice-baked product. Further, the twice-baked product was heated again under the same conditions. This is called a three-time baked product. A plurality of bonded CFRP pieces in which the single-baked products were bonded to each other with a one-component epoxy adhesive by a co-bonding method were obtained. Similarly, a plurality of joined bodies each obtained by bonding two-baked products and three-baked products with a one-component epoxy adhesive were obtained. In the CFRP pieces used by the present inventors, the average shear fracture strength at room temperature was high in the double-baked product and the triple-baked product, and the single-baked product was clearly low. This indicates that the adhesive strength between the carbon fiber and the matrix resin is improved by re-baking at a high temperature.

再加熱することでマトリックス樹脂と炭素繊維間の接着力を向上させるという着想はこれまでなされていない。これは従来、CFRP部材と金属合金を、本発明のような極めて強い接着力(50MPa以上のせん断破断力を示す程度の接着力)で接着する技術が存在せず、マトリックス樹脂と炭素繊維間で剥がれが生じるような事実に直面することは殆どなかったためである。即ち、マトリックス樹脂と炭素繊維間の接着力を向上させる必要性が生じなかったからといえる。しなしながら、前述したように、本発明者らが開発した接着技術によって、CFRP部材表層における硬化したマトリックス樹脂と硬化した接着剤の間の接着力が極めて高くなった結果、硬化したCFRP部材内部における硬化したマトリックス樹脂と炭素繊維の間の接着力を超える事態が生じた。これにより、破断時に、硬化したマトリックス樹脂と炭素繊維の間で先に剥離が生じることがあり、これが低い接着力として現れるという問題が生じたため、両者の接着力を高める必要性が生じたのである。従って、再加熱に限らず、硬化したマトリックス樹脂と炭素繊維の間の接着力を高める処理を施すことが好ましい。   The idea of improving the adhesive force between matrix resin and carbon fiber by reheating has not been made so far. Conventionally, there is no technique for bonding a CFRP member and a metal alloy with an extremely strong adhesive force (adhesive strength showing a shear breaking force of 50 MPa or more) as in the present invention, and between a matrix resin and a carbon fiber. This is because there was almost no fact that peeling occurred. That is, it can be said that the necessity of improving the adhesive force between the matrix resin and the carbon fiber did not occur. However, as described above, the adhesive technology developed by the present inventors has resulted in an extremely high adhesive force between the cured matrix resin and the cured adhesive on the surface of the CFRP member. A situation has occurred where the adhesive strength between the cured matrix resin and the carbon fiber is exceeded. As a result, there was a problem in that peeling occurred first between the cured matrix resin and the carbon fiber at the time of breakage, and this appeared as a low adhesive force, so the necessity to increase the adhesive force between the two occurred. . Therefore, it is preferable to perform not only reheating but also a treatment for increasing the adhesive force between the cured matrix resin and the carbon fiber.

本発明者らは、後述する実験例18で作成したCFRP片の1回焼き品、2回焼き品、及び3回焼き品について、それぞれ1液性エポキシ接着剤を使用して、NATに適合する表面形状及び表面構造としたアルミニウム合金「A7075」と接着してCFRP/A7075複合体を得た。各複合体についてせん断破断力を測定したところ、1回焼き品/A7075複合体が平均49.0MPa、2回焼き品/A7075複合体が平均58.8MPa、3回焼き品/A7075複合体が平均62.5MPaであった。この例と前述したCFRP片同士の接着例(2回焼き品及び3回焼き品の接着力が高いという結果)から、硬化済みのCFRP部材を再度加熱することが好ましいとした。そして、再焼成によって炭素繊維とマトリックス樹脂の接着力が向上したCFRP部材を使用し、金属合金との接着を行うこととした。   The present inventors use a one-component epoxy adhesive for the one-time baked product, the two-time baked product, and the three-time baked product of the CFRP piece prepared in Experimental Example 18 to be described later, and conform to NAT. A CFRP / A7075 composite was obtained by bonding with an aluminum alloy “A7075” having a surface shape and a surface structure. When the shear breaking force was measured for each composite, the average of the single-baked product / A7075 composite was 49.0 MPa, the average of the double-baked product / A7075 composite was 58.8 MPa, and the average of the triple-baked product / A7075 composite was 62.5 MPa. From this example and the example of bonding between the above-mentioned CFRP pieces (the result that the adhesive strength of the double-baked product and the triple-baked product is high), it is preferable to reheat the cured CFRP member. Then, the CFRP member whose adhesion between the carbon fiber and the matrix resin is improved by re-firing is used to bond the metal alloy.

[CFRP部材の粗面化及び洗浄]
CFRP部材の表面はマトリックス樹脂の硬化物が覆っているので、CFRP部材自体は、その表面からみるとエポキシ樹脂硬化物である。それ故、CFRP部材表面の粗面化は、前述した金属合金表面の接着剤硬化物層の粗面化と同様にして行うことができる。本発明者らが試行錯誤を行った結果、JISR6252に規定される80番〜480番、好ましくは120番〜240番のやや目の粗い研磨紙でCFRP部材表面を研磨したものが、安定的に高い接着力を発揮する被着材となった。但し、どの程度の粗さの研磨紙が適しているのかはマトリックス樹脂の組成にもよるので、最終的な金属合金とCFRP部材間の接着力を測定しつつ試行錯誤を行って決めるべきである。
[Roughening and cleaning of CFRP members]
Since the cured surface of the matrix resin covers the surface of the CFRP member, the CFRP member itself is a cured epoxy resin as viewed from the surface. Therefore, the roughening of the CFRP member surface can be performed in the same manner as the roughening of the cured adhesive layer on the metal alloy surface described above. As a result of trial and error by the present inventors, the surface of the CFRP member polished with a slightly coarse abrasive paper of No. 80 to No. 480, preferably No. 120 to No. 240 defined in JIS R6252, is stable. It became an adherend exhibiting high adhesive strength. However, the appropriate level of roughness of the abrasive paper depends on the composition of the matrix resin, and should be determined by trial and error while measuring the adhesion between the final metal alloy and the CFRP member. .

粗面化後のCFRP部材は、界面活性剤を湯に溶解した所謂脱脂液に浸漬して汚れを落とすことが好ましい。界面活性剤としては各種金属用脱脂剤を使用することができ、特にアルミ用脱脂剤の使用が好ましい。これらを脱脂剤メーカーの指示通りの濃度にして水に溶解し、メーカー指示の液温にして使用するのが適切である。このとき超音波を加えるとさらに良い。本発明者らは、市販されているアルミ用脱脂剤をメーカー指示通りの濃度、液温(60℃)とし、これに超音波を加えつつ粗面化したCFRP部材を5分間浸漬した。次いで水洗し、80℃とした温風乾燥機にて乾燥した。水洗水としてイオン交換水、工業用水、及び水道水を用いて試験を行ったが、いずれを用いた場合にも接着力に差異はなかった。しかしながら工業用水は川水が混ざっている場合があるので水道水又はイオン交換水の使用が好ましい。   The roughened CFRP member is preferably cleaned by immersing it in a so-called degreasing solution in which a surfactant is dissolved in hot water. As the surfactant, various metal degreasing agents can be used, and the use of an aluminum degreasing agent is particularly preferable. It is appropriate to dissolve these in water at a concentration as instructed by the degreasing agent manufacturer, and to use the solution at the temperature specified by the manufacturer. At this time, it is better to apply ultrasonic waves. The inventors set the commercially available aluminum degreasing agent to a concentration and liquid temperature (60 ° C.) according to the manufacturer's instructions, and immersed the roughened CFRP member for 5 minutes while applying ultrasonic waves thereto. Subsequently, it washed with water and dried with the warm air dryer which was 80 degreeC. Tests were performed using ion-exchanged water, industrial water, and tap water as flush water, but there was no difference in adhesive strength when any of them was used. However, since industrial water may be mixed with river water, tap water or ion-exchanged water is preferably used.

また、上記のような脱脂剤を使用せずとも、同等の洗浄が可能である。高圧の流水を粗面化部分にかけることで、界面活性剤を使用せずとも汚れを除くことができ、界面活性剤を使用した場合と同等の接着力を得ることができた。これは実験により立証された。具体的には、水道水をその水圧のまま細い棒流にして、粗面化した部分に当てることで充分な洗浄が達成される。この洗浄方法は、CFRP部材が脱脂槽に入りきらない場合に有効である。大型のCFRP部材と小型の金属合金を接着するケースは多いと考えられ、この場合には大型の脱脂槽を使用することなく、CFRP部材の粗面化した範囲に対してのみ流水によって洗浄を行えば良い。特段の設備も不要であり、容易に洗浄することができる。   Moreover, equivalent cleaning is possible without using a degreasing agent as described above. By applying high-pressure running water to the roughened portion, it was possible to remove dirt without using a surfactant, and it was possible to obtain an adhesive force equivalent to that obtained when a surfactant was used. This was verified by experiment. Specifically, sufficient cleaning can be achieved by making tap water into a thin rod flow with its water pressure applied to a roughened portion. This cleaning method is effective when the CFRP member does not fully enter the degreasing tank. There are many cases where large CFRP members are bonded to small metal alloys. In this case, only the roughened area of the CFRP member is washed with running water without using a large degreasing tank. Just do it. No special equipment is required and can be easily cleaned.

[金属合金とCFRP部材の接着]
接着剤硬化物層を粗面化した金属合金と、表面を粗面化したCFRP部材の双方を接着剤IIによって接着する。接着剤IIとしては、1液性エポキシ接着剤及び2液性エポキシ接着剤のいずれも使用できる。
[Adhesion between metal alloy and CFRP member]
Both the metal alloy having a roughened adhesive-cured material layer and the CFRP member having a roughened surface are bonded by an adhesive II. As the adhesive II, either a one-component epoxy adhesive or a two-component epoxy adhesive can be used.

(1液性エポキシ接着剤を使用する接着方法)
金属合金の接着剤硬化物層を粗面化したものと、CFRP部材の表面を覆ったマトリックス樹脂硬化物を粗面化したものの各々の所定箇所に、エポキシ接着剤IIとして1液性エポキシ接着剤を塗布する。筆塗りでもヘラ塗りでもよい。必要に応じて、接着剤IIを塗布した金属合金及びCFRPをデシケータ等の容器に入れて密閉し、容器内を真空ポンプ等で一旦減圧し、その後に常圧に戻す操作を行う。具体的には、容器内を数十mmHg程度まで減圧して一定時間以上(概ね数秒〜数分)置き、その後空気を入れて常圧に戻す(又は数気圧以上の圧力まで加圧する)ことが好ましい。減圧状態に置く時間は、接着剤IIの粗面化部分に係る凹凸への侵入具合に応じて調整する。このエポキシ樹脂IIを塗布した後の減圧/常圧戻し操作を「染み込まし処理II」という。染み込まし処理IIは、粗面化により生じた接着剤硬化物層の凹凸に接着剤IIを侵入させ、粗面化により生じたCFRP部材表面の凹凸に接着剤IIを侵入させることを目的とする。即ち、金属合金を覆っているエポキシ樹脂硬化物層と、CFRPのマトリックス樹脂が硬化したエポキシ樹脂硬化物に、エポキシ接着剤である接着剤IIを染み込ませるのである。硬化剤を混入した後の接着剤IIの粘度が数十Pa秒以上と高い場合には、染み込まし処理IIに使用する容器は予め50〜70℃に加熱しておく。これによりエポキシ接着剤IIの粘度を15Pa秒以下、好ましくは10Pa秒以下にする。
(Adhesion method using one-component epoxy adhesive)
A one-component epoxy adhesive as an epoxy adhesive II at a predetermined position on each of a roughened metal alloy adhesive cured layer and a roughened matrix resin covering the surface of a CFRP member. Apply. Brush painting or spatula painting may be used. If necessary, the metal alloy coated with the adhesive II and CFRP are placed in a container such as a desiccator and sealed, and the inside of the container is once depressurized with a vacuum pump or the like, and then returned to normal pressure. Specifically, the inside of the container is depressurized to about several tens of mmHg and left for a certain period of time (approximately several seconds to several minutes), and then air is returned to normal pressure (or pressure is increased to a pressure of several atmospheres or more). preferable. The time for placing the pressure-reduced state is adjusted according to the degree of intrusion into the irregularities related to the roughened portion of the adhesive II. The decompression / normal pressure return operation after the application of the epoxy resin II is referred to as “soaking treatment II”. The impregnation treatment II is intended to cause the adhesive II to penetrate into the irregularities of the cured adhesive layer produced by the roughening, and to cause the adhesive II to penetrate into the irregularities of the CFRP member surface caused by the roughening. . That is, the adhesive II, which is an epoxy adhesive, is impregnated into the cured epoxy resin layer covering the metal alloy and the cured epoxy resin obtained by curing the CFRP matrix resin. When the viscosity of the adhesive II after mixing the curing agent is as high as several tens of Pa seconds or more, the container that is soaked and used for the treatment II is heated to 50 to 70 ° C. in advance. Thereby, the viscosity of the epoxy adhesive II is set to 15 Pa seconds or less, preferably 10 Pa seconds or less.

染み込まし処理IIを経た金属合金とCFRP部材を各々容器から取り出し、両者を接着する。両者の接着剤塗布範囲同士を密着させた状態でクリップで固定する。クリップで固定できない場合は接着面に圧力がかかる治具で固定する。クリップを使用しないで治具等に収納して固定する場合、押さえ付けの力は重力やバネ、又はクランプ等を利用することになる。両者を固定した状態のまま熱風乾燥機又はオートクレーブを使用して接着剤を加熱硬化する。接着現場でバンドヒーター又はホットブラスターを用いて120℃程度以下に加熱して硬化させる場合は図16に示す簡易硬化方法を用いる。   The metal alloy and CFRP member soaked and treated II are taken out from the containers and bonded together. It fixes with a clip in the state which adhered both adhesive application ranges. If the clip cannot be fixed, fix it with a jig that applies pressure to the bonding surface. When storing and fixing in a jig or the like without using a clip, gravity, a spring, a clamp, or the like is used as the pressing force. The adhesive is heat-cured using a hot air dryer or an autoclave while both are fixed. When curing by heating to about 120 ° C. or lower using a band heater or a hot blaster at the bonding site, a simple curing method shown in FIG. 16 is used.

(2液性エポキシ接着剤を使用する接着方法)
充填材を分散させた状態の主液に硬化剤を添加し、よく混練して2液性エポキシ接着剤を調製する。金属合金の接着剤硬化物層を粗面化したものと、CFRP部材の表面を覆ったマトリックス樹脂硬化物を粗面化したものの各々の所定箇所に、エポキシ接着剤IIとして2液性エポキシ接着剤を塗布する。その後、1液性エポキシ接着剤と同様の染み込まし処理IIを行う。ここで2液性エポキシ接着剤の場合には、硬化剤を添加した後、常温下で作業を行い、添加後から4時間以内、好ましくは1時間以内に染み込まし処理IIを完了させる点に留意する。途中で作業を中断すべきではない。なお、2液性エポキシ接着剤の場合、混練後の粘度はそれほど高くないから、染み込まし処理IIに使用する容器を加熱しておく必要はない。
(Adhesion method using two-component epoxy adhesive)
A two-part epoxy adhesive is prepared by adding a curing agent to the main liquid in which the filler is dispersed and kneading the mixture well. A two-component epoxy adhesive as an epoxy adhesive II at a predetermined location on each of a roughened metal alloy adhesive hardened layer and a roughened matrix resin hardened material covering the surface of a CFRP member. Apply. After that, the same impregnation treatment II as that of the one-component epoxy adhesive is performed. Note that in the case of a two-part epoxy adhesive, work is performed at room temperature after adding a curing agent, and the process II is completed within 4 hours, preferably within 1 hour after the addition. To do. Work should not be interrupted along the way. In the case of a two-component epoxy adhesive, since the viscosity after kneading is not so high, it is not necessary to soak the container used for the treatment II.

染み込まし処理IIを経た金属合金とCFRP部材を各々容器から取り出し、両者を接着する。両者の接着剤塗布範囲同士を密着させた状態でクリップで固定する。クリップで固定できない場合は接着面に圧力がかかる治具で固定する。クリップを使用しないで治具等に収納して固定する場合、押さえ付けの力は重力やバネ、又はクランプ等を利用することになる。2液性エポキシ接着剤を使用する場合、常温下では24時間程度でクランプ等を外せる状態となり、少なくとも1週間から10日で完全硬化する。常温放置ではなく100〜110℃に加熱する操作をすれば、1〜2時間でほぼ完全硬化させることが出来る。   The metal alloy and CFRP member soaked and treated II are taken out from the containers and bonded together. It fixes with a clip in the state which adhered both adhesive application ranges. If the clip cannot be fixed, fix it with a jig that applies pressure to the bonding surface. When storing and fixing in a jig or the like without using a clip, gravity, a spring, a clamp, or the like is used as the pressing force. When a two-component epoxy adhesive is used, the clamp can be removed in about 24 hours at room temperature, and is completely cured in at least one week to 10 days. If the operation of heating to 100 to 110 ° C. is performed instead of leaving it at room temperature, it can be almost completely cured in 1 to 2 hours.

(染み込まし処理IIについて)
ここで、接着剤硬化物層及びCFRP部材に塗布しようとする接着剤IIの粘度が低い(例えば15Pa秒以下である)場合には上記減圧/常圧戻し操作を行うまでもなく、接着剤IIが粗面化部分に係る凹凸に侵入する場合がある。この場合には、当然染み込まし処理IIは不要である。また、塗布しようとする接着剤IIの粘度が高くても、金属合金及びCFRP部材を暖めておくことにより、塗布後に接着剤IIの粘度が低下して粗面化部分の凹凸に侵入する場合がある。この場合にも染み込まし処理IIは不要となる。これら、接着剤II塗布前における金属合金及びCFRP部材の加熱、及び染み込まし処理IIは、接着剤IIの凹凸への侵入具合に応じて行えばよい。接着剤硬化物層及びCFRP部材の粗面化部分は、染み込まし処理Iにおける超微細凹凸より粗い表面であるから、染み込まし処理IIの重要性は染み込まし処理Iには及ばない。なお、接着剤IIとして2液性エポキシ接着剤を使用する場合には、硬化剤が低粘度の液状物であって、その添加量も多くなるので、接着剤自体が低粘度となる。従って、染み込まし処理IIの効果は、1液性エポキシ接着剤と比較して小さい。
(About soaking process II)
Here, when the viscosity of the adhesive II to be applied to the cured adhesive layer and the CFRP member is low (for example, 15 Pa seconds or less), there is no need to perform the above-described decompression / normal pressure return operation, and the adhesive II May intrude into the irregularities of the roughened portion. In this case, naturally, the soaking process II is unnecessary. Moreover, even if the viscosity of the adhesive II to be applied is high, by warming the metal alloy and the CFRP member, the viscosity of the adhesive II may decrease after application and penetrate into the irregularities of the roughened portion. is there. In this case, the soaking process II is not necessary. The heating of the metal alloy and the CFRP member before the application of the adhesive II and the soaking process II may be performed according to the degree of penetration of the adhesive II into the unevenness. Since the roughened portion of the cured adhesive layer and the CFRP member has a surface rougher than the ultra fine unevenness in the treatment I, the importance of the soaking treatment II is infiltrated and does not reach the processing I. When a two-component epoxy adhesive is used as the adhesive II, the curing agent is a low-viscosity liquid and the amount of addition increases, so that the adhesive itself has a low viscosity. Therefore, the effect of the impregnation treatment II is small as compared with the one-component epoxy adhesive.

(接着剤の簡易硬化方法)
一般にCFRP部材は大型で単純な形状物となる。これは大型部品の軽量化を図る目的で使用されることが多いからであり、プリプレグの積層という点を考慮すると単純な形状とすることで製造が容易化されるからである。一方で金属合金は複雑な形状の加工に適している。それ故、大型のCFRP部材に小型の金属合金部品を強固に接着させることに関する要請がある。
(Simple curing method for adhesive)
In general, the CFRP member is large and has a simple shape. This is because it is often used for the purpose of reducing the weight of large-sized parts, and manufacturing is facilitated by adopting a simple shape in consideration of the lamination of prepregs. On the other hand, metal alloys are suitable for processing complicated shapes. Therefore, there is a demand for firmly bonding a small metal alloy component to a large CFRP member.

図16は、大型のCFRP板材50と小型の金属合金部品51を、熱風乾燥機を使用せずに接着させるための装置である。CFRP板材50の上面(粗面化済)と金属合金部品51の底面(粗面化済)に接着剤を塗布して、染み込まし処理を行った後、両者を密着させる。接着剤層を52として示す。CFRP板材50には、上面と底面を貫通する孔53が複数設けられている。金属合金部品51にも、縁部を上下に貫通する孔54が複数設けられている。これら孔53及び孔54に針金55を通すことによって、CFRP板材50と金属合金部品51を固定する。針金55は直径1mm程度のステンレス製の針金である。金属合金部品51の縁部上面側において針金55を湾曲させて固定する。一方、CFRP板材50の底面にはバネ材56の上端が固定されており、バネ材56の下端は板材57の上面に固定されている。この板材57にも針金55を通すための孔58が複数設けられており、孔54及び孔53を通した針金55は、さらに孔58を通って板材57の底面側で湾曲されることにより固定されている。このときバネ材56は通常よりも縮んだ状態にある。これによって、バネ材56のバネ圧でCFRP板材50に金属合金部品51が押し付けられることになる。   FIG. 16 is an apparatus for bonding a large CFRP plate material 50 and a small metal alloy component 51 without using a hot air dryer. An adhesive is applied to the top surface (roughened) of the CFRP plate material 50 and the bottom surface (roughened) of the metal alloy component 51, and after soaking and processing, the two are brought into close contact with each other. The adhesive layer is shown as 52. The CFRP plate member 50 is provided with a plurality of holes 53 penetrating the top and bottom surfaces. The metal alloy component 51 is also provided with a plurality of holes 54 penetrating up and down the edge. By passing the wire 55 through the hole 53 and the hole 54, the CFRP plate material 50 and the metal alloy component 51 are fixed. The wire 55 is a stainless steel wire having a diameter of about 1 mm. The wire 55 is curved and fixed on the upper surface side of the edge of the metal alloy component 51. On the other hand, the upper end of the spring material 56 is fixed to the bottom surface of the CFRP plate material 50, and the lower end of the spring material 56 is fixed to the upper surface of the plate material 57. The plate material 57 is also provided with a plurality of holes 58 through which the wire 55 passes, and the wire 55 that has passed through the holes 54 and 53 passes through the hole 58 and is fixed by being bent on the bottom surface side of the plate material 57. Has been. At this time, the spring material 56 is contracted more than usual. As a result, the metal alloy component 51 is pressed against the CFRP plate 50 by the spring pressure of the spring material 56.

また、ゴム製のカバー60によって接着剤層52を囲い込む。このカバー60に設けた窓から熱電対61を差し込む。カバー60には、大きめの空気孔62が設けられており、その反対側には空気出口63も設けられている。このカバー60は、その縁部を固定用の錘(図示外)で固定してある。空気孔62に近づけたホットブラスター64から200℃近い熱風を送風する。これにより接着剤層52を硬化させる。ここで、CFRP板材50の底面側からの放熱によって、安定的に加熱出来ない場合には、裏面側に断熱カバー70を設置すると良い。断熱カバー70の頂部には真空コック71が設置されており、この真空コック71は真空ライン72につながれている。これらによって断熱カバー70で覆った部分を減圧することができ、この減圧によって断熱カバー70はCFRP板材50の裏面側に吸い付き、かつ放熱が抑制されることになる。このように、熱電対61及びホットブラスター64の組み合わせによって温度制御を行い、100〜120℃で1〜2時間程度の加熱を可能とする。   Further, the adhesive layer 52 is enclosed by the rubber cover 60. A thermocouple 61 is inserted from a window provided in the cover 60. The cover 60 is provided with a large air hole 62, and an air outlet 63 is also provided on the opposite side. The edge of the cover 60 is fixed with a fixing weight (not shown). Hot air near 200 ° C. is blown from a hot blaster 64 close to the air hole 62. As a result, the adhesive layer 52 is cured. Here, when heat cannot be stably heated due to heat radiation from the bottom surface side of the CFRP plate material 50, a heat insulating cover 70 may be provided on the back surface side. A vacuum cock 71 is installed on the top of the heat insulating cover 70, and this vacuum cock 71 is connected to a vacuum line 72. By these, the part covered with the heat insulating cover 70 can be depressurized, and the heat insulating cover 70 sticks to the back surface side of the CFRP plate member 50 by this depressurization, and heat dissipation is suppressed. Thus, temperature control is performed by the combination of the thermocouple 61 and the hot blaster 64, and heating at about 100 to 120 ° C. for about 1 to 2 hours is enabled.

[接着力の測定]
以上の方法によって金属合金とCFRP部材の複合体が得られる。後述する実験例では、図14に示す金属合金片31とCFRP片32の複合体30を得た。これを試験片とする。この複合体の両端を引っ張り試験機にて引っ張り破断し、得られた破断力を接着面積で除してせん断破断力(MPa(Kgf/cm))を測定した。
[Measurement of adhesive strength]
The composite of a metal alloy and a CFRP member is obtained by the above method. In an experimental example to be described later, a composite 30 of the metal alloy piece 31 and the CFRP piece 32 shown in FIG. 14 was obtained. This is a test piece. Both ends of this composite were pulled and broken with a tensile tester, and the obtained breaking force was divided by the adhesion area to measure the shear breaking force (MPa (Kgf / cm 2 )).

本発明によれば、金属合金とCFRPを極めて強固に接着することが可能となる。本発明では硬化後のCFRPを金属合金と接着させるコボンド法を採用している。特に、本発明のコボンド法は、航空機や競争車のような高信頼性が要求される少量生産物に関しては、高い接着力を安定的に発揮するため適している。また、コボンド法の採用により、金属合金とCFRPの複合体の製造工程を多様化させることが可能である。具体的には、金属合金への接着剤の塗布、CFRPの硬化、金属合金とCFRPの接着という3工程を全て別の工場で行うことも可能となる。また、接着剤硬化物層が形成された金属合金、硬化後のCFRPを中間材として、当該中間材の状態での保管及び流通も容易となる。   According to the present invention, a metal alloy and CFRP can be bonded extremely firmly. In the present invention, a co-bonding method in which CFRP after curing is bonded to a metal alloy is employed. In particular, the co-bonding method of the present invention is suitable for a small quantity product that requires high reliability, such as an aircraft or a competitive vehicle, in order to stably exhibit high adhesive strength. In addition, by adopting the cobond method, it is possible to diversify the manufacturing process of the composite of the metal alloy and CFRP. Specifically, it is also possible to perform all three steps, that is, application of an adhesive to a metal alloy, curing of CFRP, and adhesion of the metal alloy and CFRP at another factory. In addition, storage and distribution in the state of the intermediate material are facilitated by using the metal alloy having the cured adhesive layer and the CFRP after curing as the intermediate material.

より詳細に説明すると、金属合金にエポキシ接着剤を塗布して硬化させ、当該接着剤硬化物層を粗面化した後、水洗、乾燥させた物は、フィルムを掛けておけば長期間保存することができ、この状態での輸送も容易である。また、硬化後のCFRP(即ちCFRP部材)を粗面化した後、水洗、乾燥させた物も、フィルムを掛けておけば長期間保存することができ、この状態での輸送も容易である。このような面で中間材の保管や流通は容易である。   More specifically, an epoxy adhesive is applied to a metal alloy and cured, and after the surface of the cured adhesive layer is roughened, the product washed with water and dried can be stored for a long period of time if it is covered with a film. And can be easily transported in this state. In addition, the CFRP (that is, the CFRP member) after curing is roughened, washed with water, and dried, and can be stored for a long period of time if it is covered with a film, and transportation in this state is easy. In this respect, the intermediate material can be easily stored and distributed.

一方、金属合金とCFRPをコキュア法で接着する場合、NATに適合する金属合金表面に1液性エポキシ接着剤を塗布し、染み込まし処理をする。そして、金属合金表面の1液性エポキシ接着剤を塗布した範囲にCFRPプリプレグを積層し、全体を加熱する。その結果、1液性エポキシ接着剤の硬化とCFRPの硬化が同時に達成される。このような過程を経るため、金属合金への接着剤の塗布と、この金属合金とCFRPとの接着とを別工場で行おうとする場合、染み込まし処理を経た金属合金を常温以下の状態で保管しなければならない。また、その金属合金をCFRPとの接着を行う工場に輸送する際にも常温以下とすべく夏季の輸送時には冷蔵車が必要となるし、最終的な接着作業を行うまで保存や保管時の温度に留意しなければならない。さらにこの場合、接着剤は硬化前の状態であり、粘度があるので取り扱いにも注意を払わなければならない。仮にコキュア法を採用する場合、NATに適合する表面とした金属合金を、接着剤を塗布していない状態で輸送し、CFRP部材との最終的な接着作業を行う際に接着剤を塗布する方法を採るとしても、以下の問題がある。まず、NATに適合する金属合金表面は化学的には安定しているが、超微細凹凸が数十nm程度の細かさであることから、指で触れただけで超微細凹凸が指脂で埋まり全く効果を消失してしまう。それ故、このような表面の金属合金を保管し、流通させる場合、接触しないように、また微細な塵が付着しないように、完全な梱包形態で保管し、流通させる必要がある。また、最終接着作業を行う際に染み込まし処理を行わなければならないとすると、最終接着作業を極力簡素化したい場合等(例えば外国の工場で複合体の製造を行う場合等)に適さない。   On the other hand, when a metal alloy and CFRP are bonded by a cocure method, a one-component epoxy adhesive is applied to the surface of a metal alloy that conforms to NAT, and is soaked and processed. Then, a CFRP prepreg is laminated in a range where the one-component epoxy adhesive on the surface of the metal alloy is applied, and the whole is heated. As a result, the curing of the one-component epoxy adhesive and the curing of CFRP are achieved at the same time. In order to go through such a process, when applying the adhesive to the metal alloy and bonding the metal alloy and CFRP in another factory, the metal alloy that has been soaked and processed is stored at room temperature or lower. Must. In addition, when transporting the metal alloy to a factory that bonds with CFRP, a refrigerated vehicle is required for transport in summer to keep it below room temperature, and the temperature during storage and storage until final bonding work is performed. You must keep in mind. Further, in this case, since the adhesive is in a state before curing and has a viscosity, care must be taken in handling. If the cocure method is adopted, a metal alloy having a surface conforming to NAT is transported in a state where no adhesive is applied, and the adhesive is applied when the final bonding operation with the CFRP member is performed. However, there are the following problems. First, the metal alloy surface conforming to NAT is chemically stable, but the ultra-fine irregularities are as small as several tens of nanometers. The effect is completely lost. Therefore, when storing and distributing such a metal alloy on the surface, it is necessary to store and distribute it in a complete packing form so as not to come into contact with it and to prevent fine dust from adhering. Further, if the final adhering operation must be soaked and processed, it is not suitable for the case where it is desired to simplify the final adhering operation as much as possible (for example, when manufacturing a composite in a foreign factory).

このような点から、本発明のコボンド法を採用することで、上記コキュア法が抱える問題を解決した。NATに適合する金属合金表面を接着剤硬化物層で覆った状態で保管、流通させることで、管理の煩雑さを回避することができ、最終工程を簡素化することができる。また、CFRPを硬化させた状態で流通させられるので、最終工程を簡素化することができる。   From such a point, the problem of the cocure method was solved by adopting the cobond method of the present invention. By storing and distributing the surface of the metal alloy that conforms to NAT in a state where it is covered with the cured adhesive layer, the complexity of management can be avoided and the final process can be simplified. In addition, since the CFRP is circulated in a cured state, the final process can be simplified.

本発明では、金属合金表面に塗布する1液性エポキシ接着剤に超微細無機充填材(ヒュームドシリカ)を添加することによって、耐熱性を向上させることが出来る。また、本発明において金属合金とCFRPを接着させる第2の接着剤にCNTを添加することによって、接着力を向上させている。また、第2の接着剤は、120℃以下の低温で、かつ2時間以下の加熱時間で硬化させることが可能であるため、接着設備を簡素化することができる。さらには、第2の接着剤として2液性エポキシ接着剤を用いることも可能である。この場合、低温かつ短時間の加熱でも完全硬化を図ることができるが、常温で放置することでも接着剤が完全硬化するため、硬化設備が一切不要となるという利点もある。   In the present invention, the heat resistance can be improved by adding an ultrafine inorganic filler (fumed silica) to the one-component epoxy adhesive applied to the metal alloy surface. In the present invention, the adhesive force is improved by adding CNT to the second adhesive for bonding the metal alloy and CFRP. Moreover, since the second adhesive can be cured at a low temperature of 120 ° C. or less and a heating time of 2 hours or less, the bonding equipment can be simplified. Further, a two-component epoxy adhesive can be used as the second adhesive. In this case, complete curing can be achieved even by heating at a low temperature for a short time, but there is also an advantage that no curing equipment is required because the adhesive is completely cured by leaving it at room temperature.

本発明はエポキシ樹脂をマトリックス樹脂とする繊維強化プラスチックに適用することができる。故に、本発明は、金属合金との接着対象はCFRPに限らず、強化繊維がガラス繊維であって、マトリックス樹脂がエポキシ樹脂であるGFRP(Glass Fiber Reinforced Plasticsの略)に適用可能であり、強化繊維がアラミド繊維であって、マトリックス樹脂がエポキシ樹脂であるKFRP(Kevlar Fiber Reinforced Plasticsの略)及びAFRP(Aramid Fiber Reinforced Plasticsの略)にも適用可能である。また、本発明は、プリプレグを積層したCFRP部材に限らず、フィラメントワインディング法により得られるCFRP部材にも適用できる。マトリックス樹脂がエポキシ樹脂であることに変わりないからである。   The present invention can be applied to a fiber reinforced plastic using an epoxy resin as a matrix resin. Therefore, the present invention can be applied to GFRP (abbreviation of Glass Fiber Reinforced Plastics), which is not limited to CFRP, but the reinforcing fiber is glass fiber, and the matrix resin is epoxy resin. The present invention can also be applied to KFRP (abbreviation of Kevlar Fiber Reinforced Plastics) and AFRP (abbreviation of Aramid Fiber Reinforced Plastics) in which the fiber is an aramid fiber and the matrix resin is an epoxy resin. In addition, the present invention is not limited to a CFRP member in which prepregs are laminated, and can also be applied to a CFRP member obtained by a filament winding method. This is because the matrix resin is still an epoxy resin.

図1は、A7075アルミニウム合金を苛性ソーダ水溶液で化学エッチングし、水和ヒドラジン水溶液で微細エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 1 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching an A7075 aluminum alloy with a caustic soda aqueous solution and finely etching with a hydrated hydrazine aqueous solution. 図2は、A5052アルミニウム合金を苛性ソーダ水溶液で化学エッチングし、水和ヒドラジン水溶液で微細エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 2 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching an A5052 aluminum alloy with an aqueous caustic soda solution and finely etching with an aqueous hydrazine solution. 図3は、AZ31Bマグネシウム合金をクエン酸水溶液で化学エッチングし、過マンガン酸カリ水溶液で化成処理した表面の10万倍電子顕微鏡写真((a)(b)いずれも10万倍)である。FIG. 3 is a 100,000 times electron micrograph (100% magnification of (a) and (b)) of a surface obtained by chemically etching an AZ31B magnesium alloy with a citric acid aqueous solution and chemical conversion treatment with a potassium permanganate aqueous solution. 図4は、C1100銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 4 is an electron micrograph of a surface obtained by chemically etching a C1100 copper alloy with an aqueous solution of sulfuric acid and hydrogen peroxide and surface-treating with an aqueous solution of sodium chlorite ((a): 10,000 times, (b): 100,000 times) ). 図5は、C5191リン青銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 5 is an electron micrograph ((a): 10,000 times, (b): 100,000) of a surface obtained by chemically etching a C5191 phosphor bronze alloy with sulfuric acid / hydrogen peroxide aqueous solution and surface hardening treatment with sodium chlorite aqueous solution. Times). 図6は、KFC銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。Fig. 6 shows electron micrographs of the surface of KFC copper alloy chemically etched with sulfuric acid / hydrogen peroxide solution and surface hardened with sodium chlorite solution ((a): 10,000 times, (b): 100,000 times) ). 図7は、KLF5銅合金を硫酸・過酸化水素水溶液で化学エッチングし、亜塩素酸ソーダ水溶液で表面硬化処理した表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 7 is an electron micrograph of a surface obtained by chemically etching a KLF5 copper alloy with sulfuric acid / hydrogen peroxide aqueous solution and surface-hardening with sodium chlorite aqueous solution ((a): 10,000 times, (b): 100,000 times) ). 図8は、KS40純チタン系チタン合金を1水素2弗化アンモニウム水溶液で化学エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 8 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching a KS40 pure titanium-based titanium alloy with an aqueous hydrogen difluoride ammonium solution. 図9は、KSTi−9α−β系チタン合金を1水素2弗化アンモニウム水溶液で化学エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 9 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching a KSTi-9α-β titanium alloy with an aqueous solution of 1 hydrogen difluoride ammonium fluoride. 図10は、SUS304ステンレス鋼を硫酸水溶液で化学エッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 10 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by chemically etching SUS304 stainless steel with a sulfuric acid aqueous solution. 図11は、SPCC冷間圧延鋼材を硫酸水溶液でエッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 11 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of a surface obtained by etching a SPCC cold rolled steel material with a sulfuric acid aqueous solution. 図12は、SPHC熱間圧延鋼材を硫酸水溶液でエッチングした表面の電子顕微鏡写真((a):1万倍,(b):10万倍)である。FIG. 12 is an electron micrograph ((a): 10,000 times, (b): 100,000 times) of the surface of SPHC hot-rolled steel material etched with a sulfuric acid aqueous solution. 図13は、CFRPプリプレグを重ね合せ、熱風乾燥機内で硬化させてCFRP片を作成するための焼成治具の断面図である。FIG. 13 is a cross-sectional view of a firing jig for making CFRP pieces by overlapping CFRP prepregs and curing them in a hot air dryer. 図14は、金属合金片とCFRP片を接着した試験片である。FIG. 14 shows a test piece obtained by bonding a metal alloy piece and a CFRP piece. 図15は、金属合金と1液性エポキシ接着剤が接合したときの表面構造を示す断面模式図である。FIG. 15 is a schematic cross-sectional view showing a surface structure when a metal alloy and a one-component epoxy adhesive are joined. 図16は、熱風乾燥機を使用せずに接着剤を硬化させるための装置の構造を示す断面図である。FIG. 16 is a cross-sectional view showing the structure of an apparatus for curing an adhesive without using a hot air dryer.

以下、本発明の実施の形態を実験例によって説明する。
測定等に使用した機器類は以下に示したものである。
(a)X線表面観察(XPS観察)
数μm径の表面を深さ1〜2nmまでの範囲で構成元素を観察する形式のESCA「AXIS−Nova(クレイトス(米国)/株式会社 島津製作所(日本国京都府)製)」を使用した。
(b)電子顕微鏡観察
SEM型の電子顕微鏡「S−4800(株式会社 日立製作所製)」及び「JSM−6700F(日本電子株式会社(日本国東京都)製)」を使用し1〜2KVにて観察した。
(c)走査型プローブ顕微鏡観察
ダイナミックフォース型の走査型プローブ顕微鏡「SPM−9600(株式会社 島津製作所製)」を使用した。
(d)X線回折分析(XRD分析)
「XRD−6100(株式会社 島津製作所製)」を使用した。
(e)複合体の接合強度の測定
引っ張り試験機「AG−10kNX(株式会社 島津製作所製)」を使用し、引っ張り速度10mm/分でせん断破断力を測定した。
(f)充填材の分散(湿式粉砕機の使用)
直径0.1〜0.5mmのジルコニアビーズをサンドとするサンドグラインドミル「ミニツエア(アシザワ・ファインテック株式会社製)」を使用した。
次に金属合金の表面処理について説明する。
Hereinafter, embodiments of the present invention will be described by experimental examples.
The equipment used for measurement etc. is shown below.
(A) X-ray surface observation (XPS observation)
An ESCA “AXIS-Nova (Kraitos (USA) / Shimadzu Corporation (Kyoto Prefecture, Japan))” that observes constituent elements on a surface having a diameter of several μm in a depth range of 1 to 2 nm was used.
(B) Electron microscope observation Using SEM type electron microscopes “S-4800 (manufactured by Hitachi, Ltd.)” and “JSM-6700F (manufactured by JEOL Ltd. (Tokyo, Japan))” at 1-2 KV Observed.
(C) Scanning Probe Microscope Observation A dynamic force scanning probe microscope “SPM-9600 (manufactured by Shimadzu Corporation)” was used.
(D) X-ray diffraction analysis (XRD analysis)
“XRD-6100 (manufactured by Shimadzu Corporation)” was used.
(E) Measurement of joint strength of composites Using a tensile tester “AG-10kNX (manufactured by Shimadzu Corporation)”, the shear breaking strength was measured at a pulling speed of 10 mm / min.
(F) Dispersion of filler (use of wet pulverizer)
A sand grind mill “Minitsu Air (manufactured by Ashizawa Finetech Co., Ltd.)” using zirconia beads having a diameter of 0.1 to 0.5 mm as sand was used.
Next, the surface treatment of the metal alloy will be described.

[実験例1](A7075アルミニウム合金片の表面処理)
市販の厚さ3mmのアルミニウム合金板材「A7075」を入手し、切断して45mm×15mmの長方形のA7075片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社(日本国東京都)製)」を投入して濃度7.5%の水溶液(60℃)とした。これに前記A7075片を7分浸漬し、よく水洗した。続いて別の槽に1%濃度の塩酸水溶液(40℃)を用意し、これに前記A7075片を1分浸漬してよく水洗した。次いで別の槽に1.5%濃度の苛性ソーダ水溶液(40℃)を用意し、これに前記A7075片を4分浸漬してよく水洗した。続いて別の槽に3%濃度の硝酸水溶液(40℃)を用意し、これに前記A7075片を1分浸漬し、水洗した。次いで別の槽に一水和ヒドラジンを3.5%含む水溶液(60℃)を用意し、これに前記A7075片を2分浸漬し、水洗した。次いで5%濃度の過酸化水素水溶液(40℃)を用意し、これに前記A7075片を5分浸漬し、水洗した。次いで前記A7075片を、67℃にした温風乾燥機に15分入れて乾燥した。
[Experimental Example 1] (A7075 aluminum alloy piece surface treatment)
A commercially available aluminum alloy sheet “A7075” having a thickness of 3 mm was obtained and cut to produce a large number of 45 mm × 15 mm rectangular A7075 pieces. A commercially available aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd. (Tokyo, Japan))” was added to the water in the tank to prepare an aqueous solution (60 ° C.) having a concentration of 7.5%. The A7075 pieces were immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% hydrochloric acid aqueous solution (40 ° C.) was prepared in another tank, and the A7075 piece was immersed in the tank for 1 minute and washed with water. Next, a 1.5% strength aqueous caustic soda solution (40 ° C.) was prepared in another tank, and the A7075 pieces were immersed in this for 4 minutes and washed with water. Subsequently, a 3% nitric acid aqueous solution (40 ° C.) was prepared in another tank, and the A7075 pieces were immersed in the tank for 1 minute and washed with water. Next, an aqueous solution (60 ° C.) containing 3.5% monohydric hydrazine was prepared in another tank, and the A7075 pieces were immersed in this for 2 minutes and washed with water. Next, a 5% hydrogen peroxide aqueous solution (40 ° C.) was prepared, and the A7075 piece was immersed in the solution for 5 minutes and washed with water. Next, the A7075 pieces were dried in a hot air dryer at 67 ° C. for 15 minutes.

前記と同じ処理をしたA7075片を電子顕微鏡観察したところ、40〜100nm径の凹部で覆われていることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図1に示した((a):1万倍,(b):10万倍)。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによるとRSmは3〜4μm、Rzは1〜2μmであった。   When the A7075 piece treated in the same manner as described above was observed with an electron microscope, it was found that the A7075 piece was covered with a recess having a diameter of 40 to 100 nm. A photograph of the electron microscope observed at 10,000 times and 100,000 times is shown in FIG. 1 ((a): 10,000 times, (b): 100,000 times). The roughness data was obtained by scanning probe microscope. According to this, RSm was 3-4 μm, and Rz was 1-2 μm.

[実験例2](A5052アルミニウム合金片の表面処理)
市販の厚さ1.6mmのアルミニウム合金板材「A5052」を入手し、切断して45mm×15mmの長方形のA5052片を多数作成した。槽の水に市販のアルミニウム合金用脱脂剤「NE−6」を投入して濃度7.5%の水溶液(60℃)とした。これに前記A5052片を7分浸漬し、よく水洗した。続いて別の槽に1%濃度の塩酸水溶液(40℃)を用意し、これに前記A5052片を1分浸漬してよく水洗した。次いで別の槽に1.5%濃度の苛性ソーダ水溶液(40℃)を用意し、これに前記A5052片を2分浸漬してよく水洗した。続いて別の槽に3%濃度の硝酸水溶液(40℃)を用意し、これに前記A5052片を1分浸漬し、水洗した。次いで別の槽に一水和ヒドラジンを3.5%含む水溶液(60℃)を用意し、これに前記A5052片を2分浸漬し、水洗した。次いで前記A5052片を、67℃にした温風乾燥機に15分入れて乾燥した。
[Experimental Example 2] (Surface treatment of A5052 aluminum alloy piece)
A commercially available 1.6 mm-thick aluminum alloy sheet “A5052” was obtained and cut to produce a large number of 45 mm × 15 mm rectangular A5052 pieces. A commercially available degreasing agent “NE-6” for aluminum alloy was added to the water in the tank to prepare an aqueous solution (60 ° C.) having a concentration of 7.5%. The A5052 piece was immersed in this for 7 minutes and washed thoroughly with water. Subsequently, a 1% hydrochloric acid aqueous solution (40 ° C.) was prepared in another tank, and the A5052 pieces were immersed in this for 1 minute and washed with water. Next, a 1.5% strength aqueous sodium hydroxide solution (40 ° C.) was prepared in another tank, and the A5052 pieces were immersed in this for 2 minutes and washed with water. Subsequently, a 3% nitric acid aqueous solution (40 ° C.) was prepared in another tank, and the A5052 pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (60 ° C.) containing 3.5% monohydric hydrazine was prepared in another tank, and the A5052 pieces were immersed in this for 2 minutes and washed with water. Next, the A5052 pieces were dried in a hot air dryer set at 67 ° C. for 15 minutes.

前記と同じ処理をしたA5052片を電子顕微鏡観察したところ、30〜100nm径の凹部で覆われていることが分かった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図2に示した((a):1万倍,(b):10万倍)。又、走査型プローブ顕微鏡にかけて粗度データを得た。これによるとRSmは2.0〜3.4μm、Rzは0.2〜0.5μmであった。   When the A5052 piece treated in the same manner as described above was observed with an electron microscope, it was found that the A5052 piece was covered with a recess having a diameter of 30 to 100 nm. A photograph when the electron microscope is observed at 10,000 times and 100,000 times is shown in FIG. 2 ((a): 10,000 times, (b): 100,000 times). The roughness data was obtained by scanning probe microscope. According to this, RSm was 2.0 to 3.4 μm, and Rz was 0.2 to 0.5 μm.

[実験例3](AZ31Bマグネシウム合金片の表面処理)
市販の厚さ1mmのマグネシウム合金板材「AZ31B」を入手し、切断して45mm×15mmの長方形のAZ31B片を多数作成した。槽の水に市販のマグネシウム合金用脱脂剤「クリーナー160(メルテックス株式会社製)」を投入して濃度7.5%の水溶液(65℃)とした。これに前記AZ31B片を5分浸漬し、よく水洗した。続いて別の槽に1%濃度の水和クエン酸水溶液(40℃)を用意し、これに前記AZ31B片を6分浸漬してよく水洗した。次いで別の槽に1%濃度の炭酸ナトリウムと1%濃度の炭酸水素ナトリウムを含む水溶液(65℃)を用意し、これに前記AZ31B片を5分浸漬してよく水洗した。続いて別の槽に15%濃度の苛性ソーダ水溶液(65℃)を用意し、これに前記AZ31B片を5分浸漬し、水洗した。次いで別の槽に0.25%濃度の水和クエン酸水溶液(40℃)を用意し、これに前記AZ31B片を1分浸漬して水洗した。次いで過マンガン酸カリを2%、酢酸を1%、水和酢酸ナトリウムを0.5%含む水溶液(45℃)を用意し、これに前記AZ31B片を1分浸漬し、15秒水洗した。次いで前記AZ31B片を、90℃にした温風乾燥機に15分入れて乾燥した。
[Experimental Example 3] (Surface treatment of AZ31B magnesium alloy piece)
A commercially available magnesium alloy sheet “AZ31B” having a thickness of 1 mm was obtained and cut to produce a large number of 45 mm × 15 mm rectangular AZ31B pieces. A commercially available magnesium alloy degreasing agent “Cleaner 160 (manufactured by Meltex Co., Ltd.)” was added to the water in the tank to prepare an aqueous solution (65 ° C.) having a concentration of 7.5%. The AZ31B piece was immersed in this for 5 minutes and washed thoroughly with water. Subsequently, a 1% strength aqueous hydrated citric acid solution (40 ° C.) was prepared in another tank, and the AZ31B piece was dipped in this for 6 minutes and washed with water. Next, an aqueous solution (65 ° C.) containing 1% concentration sodium carbonate and 1% concentration sodium hydrogen carbonate was prepared in another tank, and the AZ31B piece was immersed in this for 5 minutes and washed with water. Subsequently, a 15% strength aqueous caustic soda solution (65 ° C.) was prepared in another tank, and the AZ31B piece was immersed in this for 5 minutes and washed with water. Next, a 0.25% strength aqueous hydrated citric acid solution (40 ° C.) was prepared in another tank, and the AZ31B piece was immersed in this for 1 minute and washed with water. Next, an aqueous solution (45 ° C.) containing 2% potassium permanganate, 1% acetic acid and 0.5% hydrated sodium acetate was prepared, and the AZ31B piece was immersed in this for 1 minute and washed with water for 15 seconds. Next, the AZ31B piece was placed in a hot air dryer set at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたAZ31B片を電子顕微鏡観察したところ、5〜20nm径の棒状結晶が複雑に絡み合って100nm径程度の塊となり、その塊が面を作っている超微細凹凸形状で覆われている箇所があった。電子顕微鏡を10万倍として観察したときの写真を図3(a)及び(b)に示した。又、走査型プローブ顕微鏡で走査して粗度観測を行ったところRSmが2〜3μm、Rzが1〜1.5μmであった。   When the AZ31B piece treated in the same manner as described above was observed with an electron microscope, 5 to 20 nm diameter rod-shaped crystals were intertwined into a lump with a diameter of about 100 nm, and the lump was covered with a super fine uneven shape forming a surface. There was a place. 3A and 3B show photographs when the electron microscope is observed at a magnification of 100,000. Further, when the roughness was observed by scanning with a scanning probe microscope, RSm was 2 to 3 μm and Rz was 1 to 1.5 μm.

[実験例4](C1100銅合金片の表面処理)
市販の厚さ1.5mmの純銅系銅合金であるタフピッチ銅板材「C1100」を入手し、切断して45mm×15mmの長方形のC1100片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これに前記C1100片を5分浸漬して水洗した。次いで1.5%濃度の苛性ソーダ水溶液(40℃)に前記C1100片を1分浸漬して水洗することで予備塩基洗浄した。次いで銅合金用エッチング材「CB−5002(メック株式会社(日本国兵庫県)製)」を20%、30%過酸化水素を18%含む水溶液(25℃)をエッチング用水溶液として用意し、これに前記C1100片をを10分浸漬し、水洗した。次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記C1100片を1分浸漬してよく水洗した。次いで、前記C1100片を再び前記エッチング用水溶液に1分浸漬して水洗した後、前記酸化用水溶液に1分浸漬し、よく水洗した。その後、前記C1100片を、90℃とした温風乾燥機に15分入れて乾燥した。
[Experimental Example 4] (Surface treatment of C1100 copper alloy piece)
A commercially available tough pitch copper plate material “C1100”, which is a pure copper-based copper alloy with a thickness of 1.5 mm, was obtained and cut to create a large number of 45 mm × 15 mm rectangular C1100 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and the C1100 pieces were immersed in this for 5 minutes and washed with water. Next, the base was washed by immersing the C1100 piece in a 1.5% strength aqueous caustic soda solution (40 ° C.) for 1 minute and washing with water. Next, an aqueous solution (25 ° C.) containing 20% of an etching material for copper alloy “CB-5002 (MEC Co., Ltd., Hyogo, Japan)” and 18% of 30% hydrogen peroxide was prepared as an aqueous solution for etching. The C1100 piece was immersed in 10 minutes and washed with water. Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the C1100 pieces were immersed in this for 1 minute and washed with water. Next, the C1100 piece was again immersed in the aqueous solution for etching for 1 minute and washed with water, then immersed in the aqueous solution for oxidation for 1 minute, and thoroughly washed with water. Thereafter, the C1100 piece was placed in a warm air dryer at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたC1100片を走査型プローブ顕微鏡にかけた。その結果、RSmは3〜7μm、Rzは3〜5μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図4に示した((a):1万倍,(b):10万倍)。10万倍電子顕微鏡で観察したところ、直径又は長径短径の平均が10〜150nmの孔開口部又は凹部が30〜300nmの非定期な間隔で全面に存在する超微細凹凸形状でほぼ全面が覆われていた。   A piece of C1100 treated in the same manner as described above was applied to a scanning probe microscope. As a result, RSm was 3 to 7 μm, and Rz was 3 to 5 μm. A photograph of the electron microscope observed at 10,000 times and 100,000 times is shown in FIG. 4 ((a): 10,000 times, (b): 100,000 times). When observed with an electron microscope of 100,000 times, the hole or opening having a diameter or an average of a major axis and a minor axis having an average of 10 to 150 nm is covered with an ultrafine irregular shape having irregular intervals of 30 to 300 nm. It was broken.

[実験例5](C5191銅合金片の表面処理)
市販の厚さ1mmのリン青銅板材「C5191」を入手し、切断して45mm×15mmの長方形のC5191片を多数作成した。槽に市販のアルミ合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記C5191片を5分浸漬して脱脂し、よく水洗した。続いて別の槽に銅合金用エッチング材「CB−5002」を20%分、30%過酸化水素水を18%分含む水溶液(25℃)をエッチング用水溶液として用意し、これに前記C5191片を15分浸漬し、水洗した。次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記C5191片を1分浸漬してよく水洗した。次いで、前記C5191片を再び前記エッチング用水溶液に1分浸漬して水洗した後、前記酸化用水溶液に1分浸漬し、水洗した。その後、前記C5191片を、90℃にした温風乾燥機に15分入れて乾燥した。
[Experimental Example 5] (Surface treatment of C5191 copper alloy piece)
A commercially available phosphor bronze plate material “C5191” having a thickness of 1 mm was obtained and cut to produce a large number of rectangular C5191 pieces of 45 mm × 15 mm. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and this was used as a degreasing aqueous solution. The C5191 piece was immersed in this degreasing aqueous solution for 5 minutes for degreasing and thoroughly washed with water. Subsequently, an aqueous solution (25 ° C.) containing 20% of the copper alloy etching material “CB-5002” and 18% of 30% hydrogen peroxide was prepared as an aqueous solution for etching in another tank, and the C5191 piece was added thereto. Was immersed for 15 minutes and washed with water. Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the C5191 pieces were immersed in this for 1 minute and washed with water. Next, the C5191 piece was again immersed in the etching aqueous solution for 1 minute and washed with water, and then immersed in the oxidizing aqueous solution for 1 minute and washed with water. Thereafter, the C5191 pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたC5191片を走査型プローブ顕微鏡にかけた。その結果、RSmは1〜3μm、Rzは0.3〜0.4μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図5に示した((a):1万倍,(b):10万倍)。10万倍電子顕微鏡で観察したところ、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状であり、純銅系であるタフピッチ銅の微細構造とは全く異なった形状であった。   A C5191 piece treated in the same manner as described above was applied to a scanning probe microscope. As a result, RSm was 1 to 3 μm and Rz was 0.3 to 0.4 μm. A photograph when the electron microscope is observed at 10,000 times and 100,000 times is shown in FIG. 5 ((a): 10,000 times, (b): 100,000 times). When observed with a 100,000-fold electron microscope, a convex or concave portion having an average diameter or major axis and minor axis of 10 to 200 nm is mixed and is present on the entire surface. What is the microstructure of tough pitch copper that is pure copper? It was a completely different shape.

[実験例6](KFC銅合金片の表面処理)
市販の厚さ0.9mmの鉄含有銅合金板材「KFC(株式会社 神戸製鋼所製)」を入手し、切断して45mm×15mmの長方形のKFC片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これに前記KFC片を5分浸漬し、水洗した。次いで1.5%濃度の苛性ソーダ水溶液(40℃)に前記KFC片を1分浸漬して水洗することで予備塩基洗浄した。次いで銅合金用エッチング材「CB5002」を20%分、30%過酸化水素水を18%分含む水溶液(25℃)をエッチング用水溶液として用意し、これに前記KFC片を8分浸漬し、水洗した。次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記KFC片を1分浸漬してよく水洗した。次いで、前記KFC片を再び前記エッチング用水溶液に1分浸漬して水洗した後、前記酸化用水溶液に1分浸漬してよく水洗した。その後、前記KFC片を、90℃とした温風乾燥機に15分入れて乾燥した。
[Experimental Example 6] (Surface treatment of KFC copper alloy piece)
A commercially available iron-containing copper alloy sheet “KFC (manufactured by Kobe Steel, Ltd.)” having a thickness of 0.9 mm was obtained and cut to prepare a large number of 45 mm × 15 mm rectangular KFC pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and the KFC pieces were immersed in this for 5 minutes and washed with water. Next, the KFC pieces were immersed in a 1.5% strength aqueous caustic soda solution (40 ° C.) for 1 minute and washed with water to perform preliminary base washing. Next, an aqueous solution (25 ° C.) containing 20% of an etching material for copper alloy “CB5002” and 18% of 30% hydrogen peroxide is prepared as an aqueous solution for etching. The KFC piece is immersed in this for 8 minutes and washed with water. did. Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the KFC pieces were immersed in this for 1 minute and washed with water. Next, the KFC piece was again immersed in the etching aqueous solution for 1 minute and washed with water, and then immersed in the oxidizing aqueous solution for 1 minute and washed with water. Thereafter, the KFC pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたKFC片を走査型プローブ顕微鏡にかけた。その結果、RSmは1〜3μm、Rzは0.3〜0.5μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図6に示した((a):1万倍,(b):10万倍)。10万倍電子顕微鏡で観察したところ、直径又は長径短径の平均が10〜200nmの凸部が混ざり合って全面に存在する超微細凹凸形状で全面が覆われていた。   A KFC piece treated in the same manner as described above was applied to a scanning probe microscope. As a result, RSm was 1 to 3 μm and Rz was 0.3 to 0.5 μm. The photograph when observing the electron microscope at 10,000 times and 100,000 times is shown in FIG. 6 ((a): 10,000 times, (b): 100,000 times). When observed with a 100,000-fold electron microscope, the entire surface was covered with an ultrafine uneven shape in which convex portions having an average diameter or major axis and minor axis of 10 to 200 nm were mixed and present on the entire surface.

[実験例7](KLF5銅合金の表面処理)
市販の厚さ0.4mmの特殊銅合金板材「KLF5(株式会社 神戸製鋼所製)」を入手し、切断して45mm×15mmの長方形のKLF5片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これに前記KLF5片を5分浸漬し、水洗した。次いで1.5%濃度の苛性ソーダ水溶液(40℃)に前記KLF5片を1分浸漬して水洗することで予備塩基洗浄した。次いで銅合金用エッチング材「CB5002」を20%分、30%過酸化水素水を18%分含む水溶液(25℃)をエッチング用水溶液として用意し、これに前記KLF5片を8分浸漬し、水洗した。次いで別の槽に苛性ソーダを10%、亜塩素酸ナトリウムを5%含む水溶液(65℃)を酸化用水溶液として用意し、これに前記KLF5片を1分浸漬してよく水洗した。次いで、前記KLF5片を再び前記エッチング用水溶液に1分浸漬して水洗した後、前記酸化用水溶液に1分浸漬してよく水洗した。その後、前記KLF5片を、90℃とした温風乾燥機に15分入れて乾燥した。
[Experimental Example 7] (Surface treatment of KLF5 copper alloy)
Commercially available 0.4 mm thick special copper alloy sheet “KLF5 (manufactured by Kobe Steel, Ltd.)” was obtained and cut to produce a large number of 45 mm × 15 mm rectangular KLF5 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and the KLF5 pieces were immersed in this for 5 minutes and washed with water. Subsequently, the KLF5 pieces were immersed in a 1.5% strength aqueous sodium hydroxide solution (40 ° C.) for 1 minute and washed with water to perform preliminary base washing. Next, an aqueous solution (25 ° C.) containing 20% of an etching material for copper alloy “CB5002” and 18% of 30% hydrogen peroxide is prepared as an aqueous solution for etching. did. Next, an aqueous solution (65 ° C.) containing 10% caustic soda and 5% sodium chlorite was prepared as an oxidizing aqueous solution in another tank, and the KLF5 pieces were immersed in this for 1 minute and washed with water. Subsequently, the KLF5 piece was again immersed in the etching aqueous solution for 1 minute and washed with water, and then immersed in the oxidizing aqueous solution for 1 minute and washed with water. Thereafter, the KLF5 pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたKLF5片を走査型プローブ顕微鏡にかけた。その結果、RSmは1〜3μm、Rzは0.3〜0.5μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図7に示した((a):1万倍,(b):10万倍)。10万倍電子顕微鏡で観察したところ、直径10〜20nmの粒径物及び50〜150nm径の不定多角形状物が混ざり合って積み重なった形状、言わば溶岩台地斜面ガラ場状の超微細凹凸形状でほぼ全面が覆われていた。   A KLF5 piece treated in the same manner as described above was applied to a scanning probe microscope. As a result, RSm was 1 to 3 μm and Rz was 0.3 to 0.5 μm. A photograph when the electron microscope is observed at 10,000 times and 100,000 times is shown in FIG. 7 ((a): 10,000 times, (b): 100,000 times). When observed with a 100,000-fold electron microscope, the shape is a mixture of 10 to 20 nm diameter particles and 50 to 150 nm indefinite polygonal shapes mixed together, in other words, a lava plateau slope-like ultra-fine uneven shape. The entire surface was covered.

[実験例8](KS40チタン合金片の表面処理)
市販の厚さ1mmの純チタン型チタン合金板材「KS40(株式会社 神戸製鋼所製)」を入手し、切断して45mm×15mmの長方形のKS40片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記KS40片を5分浸漬して脱脂し、よく水洗した。次いで別の槽に1水素2弗化アンモニウムを40%含む万能エッチング材「KA−3(株式会社 金属化工技術研究所(日本国東京都)製)」を2%含む水溶液(60℃)を用意し、これに前記KS40片を3分浸漬し、イオン交換水でよく水洗した。次いで前記KS40片を3%濃度の硝酸水溶液に1分浸漬し、水洗した。その後、前記KS40片を、90℃とした温風乾燥機に15分入れて乾燥した。
[Experimental Example 8] (Surface treatment of KS40 titanium alloy piece)
A commercially available pure titanium type titanium alloy plate “KS40 (manufactured by Kobe Steel, Ltd.)” having a thickness of 1 mm was obtained and cut to produce a large number of 45 mm × 15 mm rectangular KS40 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and this was used as a degreasing aqueous solution. The KS40 pieces were immersed in this degreasing aqueous solution for 5 minutes to degrease and washed thoroughly with water. Next, an aqueous solution (60 ° C.) containing 2% of a universal etching material “KA-3 (manufactured by Metallurgy Engineering Laboratory (Tokyo, Japan))” containing 40% ammonium difluoride 40% in a separate tank is prepared. Then, the KS40 piece was immersed in this for 3 minutes and washed thoroughly with ion-exchanged water. Next, the KS40 piece was immersed in a 3% strength aqueous nitric acid solution for 1 minute and washed with water. Thereafter, the KS40 pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたKS40片を走査型プローブ顕微鏡で観察した。その結果、RSmは1〜3μm、Rzは0.8〜1.5μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図8に示した((a):1万倍,(b):10万倍)。電子顕微鏡での観察から、幅と高さが10〜数百nmで長さが数百〜数μmの湾曲した連山状突起が間隔周期10〜数百nmで面上に林立している超微細凹凸形状であることが分かった。さらに、XPSによる分析から、表面には酸素とチタンが大量に観察され、少量の炭素が観察された。これらから表層は酸化チタンが主成分であることが分かり、しかも暗色であることから3価のチタンの酸化物と推定された。   A KS40 piece treated in the same manner as described above was observed with a scanning probe microscope. As a result, RSm was 1 to 3 μm and Rz was 0.8 to 1.5 μm. Photographs obtained by observing the electron microscope at 10,000 times and 100,000 times are shown in FIG. 8 ((a): 10,000 times, (b): 100,000 times). From observation with an electron microscope, a curved continuous mountain-like projection having a width and height of 10 to several hundred nm and a length of several hundred to several μm stands on the surface with an interval period of 10 to several hundred nm. It was found to be an uneven shape. Furthermore, from the analysis by XPS, a large amount of oxygen and titanium were observed on the surface, and a small amount of carbon was observed. From these, it was found that the surface layer was composed mainly of titanium oxide, and because it was dark, it was estimated to be a trivalent titanium oxide.

[実験例9](KSTi−9チタン合金片の表面処理)
市販の厚さ1mmのα−β型チタン合金板材「KSTi−9(株式会社 神戸製鋼所製)」を入手し、切断して45mm×15mmの長方形のKSTi−9片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記KSTi−9片を5分浸漬して脱脂し、よく水洗した。次いで別の槽に苛性ソーダ1.5%濃度の水溶液(40℃)を用意し、これに前記KSTi−9片を1分浸漬し、水洗した。次いで別の槽に、市販汎用エッチング試薬「KA−3」を2重量%溶解した水溶液(60℃)を用意し、これに前記KSTi−9片を3分浸漬し、イオン交換水でよく水洗した。このKSTi−9片には黒色のスマットが付着していたので、3%濃度の硝酸水溶液(40℃)に3分浸漬し、次いで超音波を効かしたイオン交換水に5分浸漬してスマットを落とし、再び3%硝酸水溶液に0.5分浸漬し、水洗した。次いで前記KSTi−9片を、90℃とした温風乾燥機に15分入れて乾燥した。乾燥後のKSTi−9片に金属光沢はなく暗褐色であった。
[Experimental Example 9] (Surface treatment of KSTi-9 titanium alloy piece)
A commercially available α-β type titanium alloy plate “KSTi-9 (manufactured by Kobe Steel, Ltd.)” having a thickness of 1 mm was obtained and cut to produce a large number of 45 mm × 15 mm rectangular KSTi-9 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and this was used as a degreasing aqueous solution. The KSTi-9 pieces were immersed in this degreasing aqueous solution for 5 minutes for degreasing and thoroughly washed with water. Next, an aqueous solution (40 ° C.) having a caustic soda concentration of 1.5% was prepared in another tank, and the KSTi-9 pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (60 ° C.) in which 2% by weight of a commercially available general-purpose etching reagent “KA-3” was dissolved was prepared in another tank, and the KSTi-9 piece was immersed in this for 3 minutes and washed thoroughly with ion-exchanged water. . Since this KSTi-9 piece had a black smut attached, it was immersed in a 3% nitric acid aqueous solution (40 ° C.) for 3 minutes, and then immersed in ion-exchanged water subjected to ultrasonic waves for 5 minutes. Then, it was again immersed in a 3% nitric acid aqueous solution for 0.5 minutes and washed with water. Next, the KSTi-9 pieces were placed in a warm air dryer at 90 ° C. for 15 minutes and dried. The dried KSTi-9 pieces had a dark brown color with no metallic luster.

前記と同じ処理をしたKSTi−9片を走査型プローブ顕微鏡で観察した。走査解析によるとRSmは4〜6μm、Rzは1〜2μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図9に示した((a):1万倍,(b):10万倍)。その様子は実験例8の図8に酷似した部分に加え、表現が難しい枯葉状の部分が多く見られた。   The KSTi-9 piece treated in the same manner as described above was observed with a scanning probe microscope. According to scanning analysis, RSm was 4-6 μm and Rz was 1-2 μm. A photograph of the electron microscope observed at 10,000 times and 100,000 times is shown in FIG. 9 ((a): 10,000 times, (b): 100,000 times). In addition to the part very similar to FIG. 8 of Experimental Example 8, many dead leaf-like parts that are difficult to express were seen.

[実験例10](SUS304ステンレス鋼片の表面処理)
市販の厚さ1mmのステンレス鋼板材「SUS304」を入手し、切断して45mm×15mmの長方形のSUS304片を多数作成した。槽に市販のアルミニウム合金用脱脂剤「NE−6」を7.5%含む水溶液(60℃)を用意し、これを脱脂用水溶液とした。この脱脂用水溶液に前記SUS304片を5分浸漬して脱脂し、よく水洗した。続いて別の槽に1水素2弗化アンモニウムを1%と98%硫酸を5%含む水溶液(65℃)を用意し、これに前記SUS304片を4分浸漬し、イオン交換水でよく水洗した。次いで、前記SUS304片を、3%濃度の硝酸水溶液(40℃)に3分浸漬して水洗した。次いで前記SUS304片を、90℃とした温風乾燥機に15分入れて乾燥した。
[Experimental Example 10] (Surface treatment of SUS304 stainless steel piece)
A commercially available stainless steel plate “SUS304” having a thickness of 1 mm was obtained and cut to produce a large number of 45 mm × 15 mm rectangular SUS304 pieces. An aqueous solution (60 ° C.) containing 7.5% of a commercially available aluminum alloy degreasing agent “NE-6” was prepared in a tank, and this was used as a degreasing aqueous solution. The SUS304 pieces were immersed in this degreasing aqueous solution for 5 minutes to degrease and washed thoroughly with water. Subsequently, an aqueous solution (65 ° C.) containing 1% ammonium difluoride 1% and 98% sulfuric acid 5% was prepared in another tank, and the SUS304 piece was immersed in this for 4 minutes and washed thoroughly with ion-exchanged water. . Next, the SUS304 piece was immersed in a 3% nitric acid aqueous solution (40 ° C.) for 3 minutes and washed with water. Next, the SUS304 pieces were placed in a hot air dryer at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたSUS304片を走査型プローブ顕微鏡で観察した。走査解析によると、RSmは1〜2μmであり、Rzは0.3〜0.4μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図10に示した((a):1万倍,(b):10万倍)。電子顕微鏡による観察から、表面が直径20〜70nmの粒径物や不定多角形状物が積み重なった形状、言わば溶岩台地斜面ガラ場状の超微細凹凸形状で覆われていた。更に別の1個をXPS分析にかけた。このXPS分析から、表面には酸素と鉄が大量に、又、少量のニッケル、クロム、炭素、ごく少量のモリブデン、珪素が観察された。これらから表層は金属酸化物が主成分であることが分かった。この分析パターンはエッチング前のSUS304と殆ど同じであった。   A SUS304 piece treated in the same manner as described above was observed with a scanning probe microscope. According to scanning analysis, RSm was 1-2 μm and Rz was 0.3-0.4 μm. A photograph of the electron microscope observed at 10,000 times and 100,000 times is shown in FIG. 10 ((a): 10,000 times, (b): 100,000 times). From observation with an electron microscope, the surface was covered with a shape in which particle diameters having a diameter of 20 to 70 nm and indefinite polygonal shapes were stacked, in other words, a lava plateau slope-like ultra fine uneven shape. Another one was subjected to XPS analysis. From this XPS analysis, a large amount of oxygen and iron was observed on the surface, and a small amount of nickel, chromium, carbon, a very small amount of molybdenum and silicon were observed. From these, it was found that the surface layer was mainly composed of metal oxide. This analysis pattern was almost the same as SUS304 before etching.

〔実験例11〕(SPCC鋼材片の表面処理)
市販の厚さ1.6mmの冷間圧延鋼板材「SPCC」を入手し、切断して45mm×15mmの長方形のSPCC片を多数作成した。槽にアルミニウム合金用脱脂剤「NE−6」を7.5%を含む水溶液(60℃)を用意し、これに前記SPCC片を5分浸漬して水道水(群馬県太田市)で水洗した。次いで別の槽に1.5%苛性ソーダ水溶液(40℃)を用意し、これに前記SPCC片を1分浸漬し、水洗した。次いで別の槽に98%硫酸を10%含む水溶液(50℃)を用意し、これに前記SPCC片を6分浸漬し、イオン交換水で十分に水洗した。次いで前記SPCC片を、1%濃度のアンモニア水(25℃)に1分浸漬して水洗した。次いで前記SPCC片を、2%濃度の過マンガン酸カリ、1%濃度の酢酸、及び0.5%濃度の水和酢酸ナトリウムを含む水溶液(45℃)に1分浸漬して十分に水洗した。その後、前記SPCC片を、90℃とした温風乾燥機内に15分入れて乾燥した。
[Experimental Example 11] (SPCC steel piece surface treatment)
A commercially available cold rolled steel sheet material “SPCC” having a thickness of 1.6 mm was obtained and cut to produce a large number of 45 mm × 15 mm rectangular SPCC pieces. An aqueous solution (60 ° C.) containing 7.5% of an aluminum alloy degreasing agent “NE-6” was prepared in a tank, and the SPCC pieces were immersed in this for 5 minutes and washed with tap water (Ota City, Gunma Prefecture). . Next, a 1.5% caustic soda aqueous solution (40 ° C.) was prepared in another tank, and the SPCC pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (50 ° C.) containing 10% of 98% sulfuric acid was prepared in another tank, and the SPCC pieces were immersed in this for 6 minutes and sufficiently washed with ion-exchanged water. Next, the SPCC piece was immersed in 1% aqueous ammonia (25 ° C.) for 1 minute and washed with water. The SPCC pieces were then immersed in an aqueous solution (45 ° C.) containing 2% potassium permanganate, 1% acetic acid, and 0.5% sodium hydrate acetate for 1 minute and thoroughly washed with water. Thereafter, the SPCC piece was placed in a warm air dryer at 90 ° C. for 15 minutes and dried.

前記と同じ処理をしたSPCC片を走査型プローブ顕微鏡で観察した。走査解析によると、RSmが1〜3μm、Rzが0.3〜1.0μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図11に示した((a):1万倍,(b):10万倍)。10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜200nmで幅が数百〜数千nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが分かる。パーライト構造が剥き出しになった様子であり化成処理層はごく薄いことが分かる。   The SPCC piece treated in the same manner as described above was observed with a scanning probe microscope. According to scanning analysis, RSm was 1 to 3 μm and Rz was 0.3 to 1.0 μm. Photographs obtained by observing the electron microscope at 10,000 times and 100,000 times are shown in FIG. 11 ((a): 10,000 times, (b): 100,000 times). From the observation result with a 100,000 times electron microscope, it is found that the entire surface is almost covered with an ultra fine uneven shape having a height and depth of 80 to 200 nm and a width of several hundred to several thousand nm that is infinitely continuous. I understand. It can be seen that the pearlite structure is exposed and the chemical conversion treatment layer is very thin.

〔実験例12〕(SPHC鋼材片の表面処理)
市販の厚さ1.6mmの熱間圧延鋼材「SPHC」を入手し、切断して45mm×15mmの長方形のSPHC片を多数作成した。槽にアルミニウム合金用脱脂剤「NE−6」を7.5%を含む水溶液(60℃)を用意し、これに前記SPHC片を5分浸漬して水道水(群馬県太田市)で水洗した。次いで別の槽に1.5%苛性ソーダ水溶液(40℃)を用意し、これに前記SPHC片を1分浸漬し、水洗した。次いで別の槽に98%硫酸を10%と1水素2弗化アンモニウム1%を含む水溶液(65℃)を用意し、これに前記SPHC片を2分浸漬し、イオン交換水で十分に水洗した。次いで前記SPHC片を、1%濃度のアンモニア水(25℃)に1分浸漬して水洗した。次いで前記SPHC片を、80%正リン酸を1.5%、亜鉛華を0.21%、珪弗化ナトリウムを0.16%、塩基性炭酸ニッケルを0.23%含む水溶液(55℃)に1分浸漬して十分に水洗した。その後、前記SPHC片を、90℃とした温風乾燥機内に15分入れて乾燥した。
[Experimental example 12] (Surface treatment of SPHC steel piece)
A commercially available 1.6 mm thick hot rolled steel “SPHC” was obtained and cut to produce a large number of 45 mm × 15 mm rectangular SPHC pieces. An aqueous solution (60 ° C.) containing 7.5% of an aluminum alloy degreasing agent “NE-6” was prepared in a tank, and the SPHC pieces were immersed in this for 5 minutes and washed with tap water (Ota City, Gunma Prefecture). . Next, a 1.5% caustic soda aqueous solution (40 ° C.) was prepared in another tank, and the SPHC pieces were immersed in this for 1 minute and washed with water. Next, an aqueous solution (65 ° C.) containing 10% 98% sulfuric acid and 1% ammonium hydrogen fluoride in a separate tank was prepared, and the SPHC pieces were immersed in this for 2 minutes and thoroughly washed with ion-exchanged water. . Next, the SPHC pieces were immersed in 1% aqueous ammonia (25 ° C.) for 1 minute and washed with water. Next, the SPHC piece was an aqueous solution (55 ° C.) containing 80% orthophosphoric acid 1.5%, zinc white 0.21%, sodium silicofluoride 0.16% and basic nickel carbonate 0.23%. For 1 minute and thoroughly washed with water. Thereafter, the SPHC pieces were placed in a warm air dryer at 90 ° C. for 15 minutes and dried.

乾燥後、前記SPHC片を走査型プローブ顕微鏡で観察した。走査解析によると、RSmが1〜3μm、Rzが0.3〜1.0μmであった。電子顕微鏡を1万倍、10万倍として観察したときの写真を図12に示した((a):1万倍,(b):10万倍)。10万倍電子顕微鏡による観察結果から、高さ及び奥行きが80〜500nmで幅が数百〜数万nmの階段が無限に続いた形状の超微細凹凸形状でほぼ全面が覆われていることが分かり、これもパーライト構造であった。   After drying, the SPHC pieces were observed with a scanning probe microscope. According to scanning analysis, RSm was 1 to 3 μm and Rz was 0.3 to 1.0 μm. Photographs obtained by observing the electron microscope at 10,000 times and 100,000 times are shown in FIG. 12 ((a): 10,000 times, (b): 100,000 times). According to the result of observation with an electron microscope of 100,000 times, it was found that the entire surface was covered with an ultra-fine concavo-convex shape having an infinite number of steps having a height and depth of 80 to 500 nm and a width of several hundred to several tens of thousands of nm. Okay, this was also a pearlite structure.

[実験例13](接着剤の作成)
ビスフェノール型エポキシ樹脂の単量体型が主成分の分子量約370のエポキシ樹脂「JER828(ジャパンエポキシレジン株式会社製)」、固体である分子量約1300の多量体型のビスフェノール型エポキシ樹脂「JER1003(ジャパンエポキシレジン株式会社製)」、多官能型のフェノールノボラック型エポキシ樹脂「JER154(ジャパンエポキシレジン株式会社製)」、アニリン型の3官能エポキシ樹脂「JER630(ジャパンエポキシレジン株式会社製)」、平均粒径が十数μm程度のPES粉体「PES4100MP(住友化学株式会社製)」、平均粒径が20μm程度の水酸基付きPESの粉体「ウルトラゾーンE2020−SRMicro(BASF社製)」、平均粒径が8〜12μmの微粉タルク「ハイミクロンHE5(竹原化学工業株式会社(日本国兵庫県)製)」、直径が約50nmの多層型カーボンナノチューブ「MCNT(ナノカーボンテクノロジーズ株式会社(日本国東京都)製)」、ヒュームドシリカ「アエロジルR805(日本アエロジル株式会社製)」、エポキシ樹脂の硬化剤である微粉型ジシアンジアミド「DICY7(ジャパンエポキシレジン株式会社製)」、2−メチルイミダゾールの微粉「2MI(日本合成化学工業株式会社製)」、2−フェニルイミダゾール「2PI(日本合成化学工業株式会社製)」、1,4−ジメチルピペラジン「1,4−ジメチルピペラジン(昭和化学株式会社(日本国東京都)製)」、及び、3−(3,4−ジクロルフェニル)−1,1−ジメチルウレアの微粉「DCMU99(保土谷化学工業株式会社(日本国東京都)製)」を入手した。その他多種のアミン系化合物等を入手した。
[Experimental Example 13] (Preparation of adhesive)
An epoxy resin “JER828 (manufactured by Japan Epoxy Resin Co., Ltd.)” whose main component is a monomer type of bisphenol type epoxy resin, and a multimeric bisphenol type epoxy resin “JER1003 (Japan Epoxy Resin) having a molecular weight of about 1300 which is a solid. Co., Ltd.), multifunctional phenol novolac type epoxy resin “JER154 (Japan Epoxy Resin Co., Ltd.)”, aniline type trifunctional epoxy resin “JER630 (Japan Epoxy Resin Co., Ltd.)”, and average particle size PES powder “PES4100MP (manufactured by Sumitomo Chemical Co., Ltd.)” having an average particle diameter of about 10 μm, PES powder with a hydroxyl group having an average particle diameter of about 20 μm “Ultrazone E2020-SRMicro (manufactured by BASF)”, and an average particle diameter of 8 ~ 12μm fine talc "Hi-micro HE5 (manufactured by Takehara Chemical Industry Co., Ltd. (Hyogo, Japan)) ”, multi-walled carbon nanotube“ MCNT (manufactured by Nanocarbon Technologies, Inc., Tokyo, Japan) ”having a diameter of about 50 nm, fumed silica“ Aerosil R805 ” (Nippon Aerosil Co., Ltd.) ”, fine powder type dicyandiamide“ DICY7 (Japan Epoxy Resin Co., Ltd.) ”which is a curing agent for epoxy resin, 2-methylimidazole fine powder“ 2MI (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.) ”, 2-phenylimidazole “2PI (manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)”, 1,4-dimethylpiperazine “1,4-dimethylpiperazine (manufactured by Showa Chemical Co., Ltd. (Tokyo, Japan))”, and 3- ( Fine powder of 3,4-dichlorophenyl) -1,1-dimethylurea “DCMU99 (Hodogaya Chemical Industry) It was obtained a formula company (Tokyo, Japan) Ltd.) ". Various other amine compounds were obtained.

入手した薬剤のうち、「2PI」は粉末でなく顆粒であったので、直径150mmのセラミック製ボールミルに200g入れて30分粉砕してボールを篩分けし、更に325メッシュ通過品を粉末「2PI」として保管した。   Among the obtained drugs, “2PI” was not a powder but a granule. Therefore, 200 g was put in a ceramic ball mill having a diameter of 150 mm, pulverized for 30 minutes, and the balls were sieved. Stored as.

[接着剤I:1液性エポキシ接着剤「A、PES、DICY、2PI」の作成]
「JER828」を60質量部、「JER1003」を20質量部、「JER154」を10質量部、及び「JER630」10質量部をビーカーに取り、150℃とした熱風乾燥機内に放置して加熱し、固体型「JER1003」を溶融すると同時によく撹拌し、全体を均一化した。その後、放冷し、エポキシ樹脂液として保管した。
[Adhesive I: Preparation of 1-component epoxy adhesive "A, PES, DICY, 2PI"]
Take 60 parts by weight of "JER828", 20 parts by weight of "JER1003", 10 parts by weight of "JER154", and 10 parts by weight of "JER630" in a beaker and leave in a hot air drier at 150 ° C to heat. The solid type “JER1003” was melted and stirred at the same time to make the whole uniform. Then, it stood to cool and stored as an epoxy resin liquid.

直径0.3mmのジルコニアビーズを粉砕室容量の80%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」を用意し、その入口側に循環ポンプと撹拌機付きのオープンタンクを繋いだ。一方、サンドグラインドミルの出口はオープンタンクに開放した。上記のエポキシ樹脂液を60℃に再加熱して粘度を下げ、100質量部(350g)をオープンタンクに投入し、循環ポンプで粉砕室を完全に満たしてからミルの運転を開始した。ミルには水冷ラインがあるので通水を調整して粉砕室内が50〜60℃になるようにした。ミル回転子の周速は11〜12m/秒とした。   A sand grind mill “Tuea (made by Ashizawa Finetech Co., Ltd.)” filled with zirconia beads with a diameter of 0.3 mm and filled with 80% of the grinding chamber capacity is prepared. It is. On the other hand, the exit of the sand grind mill was opened to an open tank. The above epoxy resin liquid was reheated to 60 ° C. to lower the viscosity, 100 parts by mass (350 g) was charged into an open tank, and the mill was started after the grinding chamber was completely filled with a circulation pump. Since the mill has a water cooling line, water flow was adjusted so that the inside of the grinding chamber was 50-60 ° C. The peripheral speed of the mill rotor was set to 11 to 12 m / sec.

その後、オープンタンクにヒュームドシリカ「アエロジルR805」を1.75g(0.5質量部)入れて循環粉砕を進め、次いで微粉タルク「ハイミクロンHE5」を3質量部(10.5g)徐々に入れて循環粉砕を進め、次いでPES粉体「PES4100MP」4質量部(14g)を徐々に加えた後、60分間湿式粉砕(実質的にはエポキシ樹脂中に充填材を分散させる操作となる。)を続けた。その後、ミルの出口をオープンタンクからポリエチ瓶に向くようにし、このポリエチ瓶内に混合物を得た。この混合物107.5質量部には、エポキシ樹脂100質量部、無機充填材「ハイミクロンHE5」3質量部、超微細無機充填材「アエロジルR805」0.5質量部、及び熱可塑性樹脂粉体「PES4100MP」4質量部が含まれる。   Then, 1.75 g (0.5 parts by mass) of fumed silica “Aerosil R805” was added to the open tank, and the circulating pulverization proceeded. Then, 3 parts by mass (10.5 g) of fine talc “Hymicron HE5” was gradually added. Then, after cyclic pulverization, 4 parts by mass (14 g) of PES powder “PES4100MP” was gradually added, wet pulverization (substantially dispersing filler in the epoxy resin) for 60 minutes. Continued. Thereafter, the outlet of the mill was directed from the open tank to the polyethylene bottle, and a mixture was obtained in the polyethylene bottle. 107.5 parts by weight of this mixture includes 100 parts by weight of epoxy resin, 3 parts by weight of inorganic filler “Himicron HE5”, 0.5 parts by weight of ultrafine inorganic filler “Aerosil R805”, and thermoplastic resin powder “ 4 parts by mass of “PES4100MP” are included.

次いで乳鉢に、前記混合物107.5質量部、硬化剤として微粉型ジシアンジアミド「DICY7」5.4質量部、及び硬化助剤として2−フェニルイミダゾール粉体「2PI」2.7質量部を取った。この乳鉢を40℃とした温風乾燥機に30分入れて暖め、それから乳棒でよく混練した。これをポリエチ瓶に取り、1日間室内で放置してエージングし、その後5℃とした冷蔵庫に保管した。この接着剤の名称を「A、PES、DICY、2PI」とした。この接着剤の組成を表1に示す(実験例13)。   Next, 107.5 parts by mass of the mixture, 5.4 parts by mass of fine dicyandiamide “DICY7” as a curing agent, and 2.7 parts by mass of 2-phenylimidazole powder “2PI” as a curing aid were taken in a mortar. The mortar was placed in a warm air dryer at 40 ° C. for 30 minutes to warm, and then kneaded well with a pestle. This was taken up in a polyethylene bottle, left aged indoors for 1 day, and then stored in a refrigerator at 5 ° C. The name of the adhesive was “A, PES, DICY, 2PI”. The composition of this adhesive is shown in Table 1 (Experimental Example 13).

[実験例14](接着剤I:1液性エポキシ接着剤「PES、DICY、2PI」の作成)
ヒュームドシリカ「アエロジルR805」を添加しないという点以外は、実験例13と同様の方法で接着剤を作成した。この接着剤の名称を「PES、DICY、2PI」とした。この接着剤の組成を表1(実験例14)に示す。
[Experimental Example 14] (Adhesive I: Preparation of one-part epoxy adhesive “PES, DICY, 2PI”)
An adhesive was prepared in the same manner as in Experimental Example 13 except that fumed silica “Aerosil R805” was not added. The name of this adhesive was “PES, DICY, 2PI”. The composition of this adhesive is shown in Table 1 (Experimental Example 14).

[実験例15](接着剤I:1液性エポキシ接着剤「A、DICY、2PI」の作成)
「PES4100MP」を添加しないという点以外は、実験例13と同様の方法で接着剤を作成した。この接着剤の名称を「A、DICY、2PI」とした。この接着剤の組成を表1(実験例15)に示す。
[Experimental Example 15] (Adhesive I: Preparation of one-component epoxy adhesive “A, DICY, 2PI”)
An adhesive was prepared in the same manner as in Experimental Example 13 except that “PES4100MP” was not added. The name of this adhesive was “A, DICY, 2PI”. The composition of this adhesive is shown in Table 1 (Experimental Example 15).

[実験例16](接着剤Iの塗布,染み込まし処理I,及び硬化)
実験例1で作製したA7075片90個を用意した。そのうちの30個の端部には実験例13で作製した1液性エポキシ接着剤「A、PES、DICY、2PI」を塗布した。他の30個の端部には実験例14で作製した1液性エポキシ接着剤「PES、DICY、2PI」を塗布した。残り30個の端部には実験例15で作製した1液性エポキシ接着剤「A、DICY、2PI」を塗布した。予め60℃とした温風乾燥機内で暖めておいたデシケータに、これらのA7075片を入れて蓋をした。デシケータ内を真空ポンプで減圧し、3分ほど置いてから常圧に戻した。この減圧/常圧戻し操作を計3回行った(これは染み込まし処理Iである)。その後、A7075片をデシケータから取り出し、熱風乾燥機内を90℃として、この熱風乾燥機に入れて10分加熱した。その後、熱風乾燥機内を135℃に昇温し、135℃で50分加熱した。さらに熱風乾燥機内を165℃に昇温し、165℃で30分加熱した。その後に放冷した。このようにして接着剤Iを硬化させた。これにより接着剤「A、PES、DICY、2PI」の接着剤硬化物層が形成されたA7075片、接着剤「PES、DICY、2PI」の接着剤硬化物層が形成されたA7075片、及び接着剤「A、DICY、2PI」の接着剤硬化物層が形成されたA7075片を、それぞれ30個得た。
[Experimental Example 16] (Application of adhesive I, soaking treatment I, and curing)
90 pieces of A7075 pieces prepared in Experimental Example 1 were prepared. The one-component epoxy adhesive “A, PES, DICY, 2PI” prepared in Experimental Example 13 was applied to 30 end portions. The other 30 ends were coated with the one-component epoxy adhesive “PES, DICY, 2PI” prepared in Experimental Example 14. The remaining 30 edges were coated with the one-component epoxy adhesive “A, DICY, 2PI” prepared in Experimental Example 15. These A7075 pieces were put in a desiccator that had been heated in a hot air dryer set at 60 ° C. in advance and covered. The inside of the desiccator was depressurized with a vacuum pump and allowed to return to normal pressure after about 3 minutes. This depressurization / return to normal pressure operation was performed three times in total (this is the soaking process I). Then, A7075 piece was taken out from the desiccator, the inside of a hot air dryer was 90 degreeC, it put into this hot air dryer, and it heated for 10 minutes. Thereafter, the inside of the hot air dryer was heated to 135 ° C. and heated at 135 ° C. for 50 minutes. Further, the inside of the hot air dryer was heated to 165 ° C. and heated at 165 ° C. for 30 minutes. Then it was allowed to cool. In this way, the adhesive I was cured. As a result, an A7075 piece formed with an adhesive cured product layer of the adhesive "A, PES, DICY, 2PI", an A7075 piece formed with an adhesive cured product layer of the adhesive "PES, DICY, 2PI", and adhesion Thirty A7075 pieces each formed with the cured adhesive layer of the agent “A, DICY, 2PI” were obtained.

[実験例17](接着剤硬化物層の粗面化,洗浄,及び乾燥)
実験例16で作製したA7075片の接着剤硬化物層表面を、JISR6252に規定される800番の研磨紙でしっかり十数回往復研磨して粗面化した。粗面化したA7075片を実験例1で使用した脱脂液(「NE−6」の濃度7.5%水溶液(60℃))に浸漬した。この際、脱脂液の温度を60℃とし、これに強めの超音波をかけて5分間浸漬した。その後、水道水を満たした3基の水洗槽に順次浸漬した。この際、A7075片を水中で揺らしつつ浸漬した。その後、A7075片を取り出し、80℃とした熱風乾燥機に15分入れて乾燥した。
[Experimental Example 17] (Roughening, cleaning, and drying of the cured adhesive layer)
The surface of the cured A7075 adhesive layer produced in Experimental Example 16 was roughened by reciprocating firmly and dozens of times with No. 800 polishing paper defined in JIS R6252. The roughened A7075 piece was immersed in the degreasing solution used in Experimental Example 1 ("NE-6" 7.5% aqueous solution (60 ° C)). At this time, the temperature of the degreasing solution was set to 60 ° C., and a strong ultrasonic wave was applied to the degreasing solution for 5 minutes. Then, it was immersed in three washing tanks filled with tap water sequentially. At this time, the A7075 pieces were immersed while shaking in water. Thereafter, the A7075 piece was taken out and placed in a hot air drier at 80 ° C. for 15 minutes for drying.

[実験例18](CFRP片の作成)
本実験例では、CFRP部材の一例として、CFRP片を作成する。このCFRP片は複数のCFRPプリプレグの小片が積層されることにより構成されている。CFRPプリプレグ「パイロフィルTR3110(三菱レイヨン株式会社製)」を入手し、45mm×15mmの小片を多数切り出した。図13に示す焼成治具1を用いて長方体状のCFRP片を作成する。金型本体2及び金型底板5を組み合わせると、金型本体2の側壁と金型底板5の上面によって金型凹部が形成される。この金型凹部を覆うように、0.05mm厚の離型用フィルム17を敷いた。この離型用フィルム17の上にポリテトラフルオロエチレン樹脂(以下、「PTFE」という。)製のスペーサ11及び16を設置した。これらスペーサ11及び16の上面に、切断しておいた45mm×15mmのCFRPプリプレグの小片を3mm厚分積層した(積層物は図13中では12として示されており、硬化後にCFRP片12となる)。この積層物と金型本体2の側壁の空隙を埋めるためにPTFE製のスペーサ13を設置し、これらを覆うように離型用フィルム14を敷いた。
[Experiment 18] (Creation of CFRP piece)
In this experimental example, a CFRP piece is created as an example of a CFRP member. This CFRP piece is constituted by laminating a plurality of CFRP prepreg pieces. A CFRP prepreg “Pyrofil TR3110 (manufactured by Mitsubishi Rayon Co., Ltd.)” was obtained, and a large number of 45 mm × 15 mm pieces were cut out. A rectangular CFRP piece is created using the firing jig 1 shown in FIG. When the mold body 2 and the mold bottom plate 5 are combined, a mold recess is formed by the side wall of the mold body 2 and the upper surface of the mold bottom plate 5. A release film 17 having a thickness of 0.05 mm was laid so as to cover the mold recess. Spacers 11 and 16 made of polytetrafluoroethylene resin (hereinafter referred to as “PTFE”) were placed on the release film 17. A small piece of a 45 mm × 15 mm CFRP prepreg that had been cut was laminated on the upper surfaces of the spacers 11 and 16 by a thickness of 3 mm (the laminate is shown as 12 in FIG. 13 and becomes a CFRP piece 12 after curing). ). In order to fill the gap between the laminate and the side wall of the mold body 2, a PTFE spacer 13 was installed, and a release film 14 was laid so as to cover them.

離型用フィルム14の上にPTFE製のブロック15を乗せ、熱風乾燥機に入れた。さらにブロック15の上に鉄製の5kgの錘18を乗せて乾燥機に通電した。熱風乾燥機内を90℃まで昇温して90℃で30分加熱し、次いで120℃まで昇温して120℃で30分加熱し、次いで135℃まで昇温して135℃で30分加熱し、次いで165℃まで昇温して165℃で30分加熱し、更に180℃まで昇温して180℃で30分加熱した後、通電を止めて扉を閉めたまま放冷した。翌日、錘18、ブロック15、及び台座8を外して金型本体2を床に押し付けると、金型本体2の金型貫通孔4から金型底面7の下方に突出していた底板突起部6が、金型底板5を上方に押し出す。これにより、離型用フィルム14及び17によって覆われている成形物であるCFRP片12が焼成治具1から取り出せる。この作業を繰り返し、CFRP片12を多数得た。このようにして得られたCFRP片12を1回焼き品と称す。   A PTFE block 15 was placed on the release film 14 and placed in a hot air dryer. Further, an iron 5 kg weight 18 was placed on the block 15 and the dryer was energized. The inside of the hot air dryer is heated to 90 ° C. and heated at 90 ° C. for 30 minutes, then heated to 120 ° C. and heated at 120 ° C. for 30 minutes, then heated to 135 ° C. and heated at 135 ° C. for 30 minutes. Then, the temperature was raised to 165 ° C., heated at 165 ° C. for 30 minutes, further heated to 180 ° C. and heated at 180 ° C. for 30 minutes, and then the electricity was turned off and the door was allowed to cool with the door closed. The next day, when the weight 18, the block 15, and the pedestal 8 are removed and the mold body 2 is pressed against the floor, the bottom plate protrusion 6 that protrudes below the mold bottom surface 7 from the mold through hole 4 of the mold body 2 is formed. Then, the mold bottom plate 5 is pushed upward. Thereby, the CFRP piece 12 which is a molded product covered with the release films 14 and 17 can be taken out from the firing jig 1. This operation was repeated to obtain many CFRP pieces 12. The CFRP piece 12 thus obtained is referred to as a once-baked product.

3日後に、上記のようにして得たCFRP片12を再び熱風乾燥機に入れ、熱風乾燥機内を90℃まで昇温して90℃で30分加熱し、次いで135℃まで昇温して135℃で30分加熱し、次いで165℃まで昇温して165℃で30分加熱し、さらに190℃まで昇温して190℃で30分加熱した後、放冷した。即ち再焼成した。このようにして得られたCFRP片12を2回焼き品と称す。この2回焼き品を、3日後に同じ条件でもう一度焼いた。このようにして得られたCFRP片12を3回焼き品と称す。以下の実験例で使用するCFRP片は全て3回焼き品である。   Three days later, the CFRP piece 12 obtained as described above was put into the hot air dryer again, the inside of the hot air dryer was heated to 90 ° C., heated at 90 ° C. for 30 minutes, and then heated to 135 ° C. to 135 The resulting mixture was heated to 165 ° C. for 30 minutes, then heated to 165 ° C., heated at 165 ° C. for 30 minutes, further heated to 190 ° C., heated at 190 ° C. for 30 minutes, and then allowed to cool. That is, it was refired. The CFRP piece 12 thus obtained is referred to as a twice-baked product. This twice-baked product was baked again under the same conditions after 3 days. The CFRP piece 12 thus obtained is referred to as a three-time baked product. All CFRP pieces used in the following experimental examples are baked three times.

[実験例19](CFRP片の粗面化及び洗浄)
実験例18で得たCFRP片の端部を、JISR6252に規定される80番の研磨紙でしっかり十数回往復研磨して粗面化した。超音波振動端付きの水槽に水道水250リットルを入れ、これにアルミニウム合金用脱脂剤「NE−6(メルテックス株式会社製)」を20kg投入したものを脱脂液とした。この脱脂液を60℃に加熱して超音波をかけた状態とし、これに粗面化したCFRP片を5分間浸漬した。その後、このCFRP片を水道水の溢流のある水洗槽3基に順次浸漬して十分に水洗した。次いでCFRP片を80℃にセットした熱風乾燥機に15分入れて乾燥し、アルミ箔で包んで保管した。
[Experimental Example 19] (Roughening and cleaning of CFRP piece)
The ends of the CFRP pieces obtained in Experimental Example 18 were roughened by reciprocating firmly and dozens of times with No. 80 polishing paper defined in JIS R6252. 250 liters of tap water was placed in a water tank with an ultrasonic vibration end, and 20 kg of aluminum alloy degreasing agent “NE-6 (manufactured by Meltex Co., Ltd.)” was added thereto as a degreasing solution. The degreasing liquid was heated to 60 ° C. and subjected to ultrasonic waves, and the roughened CFRP piece was immersed in this for 5 minutes. Thereafter, the CFRP pieces were sequentially immersed in three washing tanks overflowing with tap water and sufficiently washed with water. Next, the CFRP piece was placed in a hot air dryer set at 80 ° C. for 15 minutes, dried, wrapped in aluminum foil and stored.

[実験例20](接着剤II:1液性エポキシ接着剤「MCNT、DICY、DCMU」の作成)
「JER828」を60質量部、「JER1003」を20質量部、「JER154」を10質量部、及び「JER630」10質量部をビーカーに取り、150℃とした熱風乾燥機内に放置して加熱し、固体型「JER1003」を溶融すると同時によく撹拌し、全体を均一化した。その後、放冷し、エポキシ樹脂液として保管した。
[Experimental Example 20] (Adhesive II: Preparation of one-part epoxy adhesive “MCNT, DICY, DCMU”)
Take 60 parts by weight of "JER828", 20 parts by weight of "JER1003", 10 parts by weight of "JER154", and 10 parts by weight of "JER630" in a beaker and leave in a hot air drier at 150 ° C to heat. The solid type “JER1003” was melted and stirred at the same time to make the whole uniform. Then, it stood to cool and stored as an epoxy resin liquid.

直径0.3mmのジルコニアビーズを粉砕室容量の80%充填したサンドグラインドミル「ツエア(アシザワ・ファインテック株式会社製)」を用意し、その入口側に循環ポンプと撹拌機付きのオープンタンクを繋いだ。一方、サンドグラインドミルの出口はオープンタンクに開放した。上記のエポキシ樹脂液を60℃に再加熱して粘度を下げ、100質量部(350g)をオープンタンクに投入し、循環ポンプで粉砕室を完全に満たしてからミルの運転を開始した。ミルには水冷ラインがあるので通水を調整して粉砕室内が50〜60℃になるようにした。ミル回転子の周速は11〜12m/秒とした。   A sand grind mill “Tuea (made by Ashizawa Finetech Co., Ltd.)” filled with zirconia beads with a diameter of 0.3 mm and filled with 80% of the grinding chamber capacity is prepared. It is. On the other hand, the exit of the sand grind mill was opened to an open tank. The above epoxy resin liquid was reheated to 60 ° C. to lower the viscosity, 100 parts by mass (350 g) was charged into an open tank, and the mill was started after the grinding chamber was completely filled with a circulation pump. Since the mill has a water cooling line, water flow was adjusted so that the inside of the grinding chamber was 50-60 ° C. The peripheral speed of the mill rotor was set to 11 to 12 m / sec.

その後、オープンタンクに「MCNT」を0.35g(0.1質量部)入れて循環粉砕を進め、次いで微粉タルク「ハイミクロンHE5」を3質量部(10.5g)徐々に入れて、60分間湿式粉砕(実質的にはエポキシ樹脂中に充填材を分散させる操作となる。)を続けた。その後、ミルの出口をオープンタンクからポリエチ瓶に向くようにし、このポリエチ瓶内に混合物を得た。この混合物103.1質量部には、エポキシ樹脂100質量部、無機充填材「ハイミクロンHE5」3質量部、及び「MCNT」0.1質量部が含まれる。   Thereafter, 0.35 g (0.1 part by mass) of “MCNT” was put into an open tank, and circulation pulverization was proceeded. Then, 3 parts by mass (10.5 g) of fine talc “Hymicron HE5” was gradually added, for 60 minutes. Wet grinding (substantially the operation of dispersing the filler in the epoxy resin) was continued. Thereafter, the outlet of the mill was directed from the open tank to the polyethylene bottle, and a mixture was obtained in the polyethylene bottle. 103.1 parts by mass of the mixture includes 100 parts by mass of an epoxy resin, 3 parts by mass of an inorganic filler “HIMICRON HE5”, and 0.1 part by mass of “MCNT”.

次いで乳鉢に、前記混合物103.1質量部、硬化剤として微粉型ジシアンジアミド「DICY7」5.2質量部、及び硬化助剤として3−(3,4−ジクロルフェニル)−1,1−ジメチルウレアの微粉「DCMU99」2.6質量部を取った。この乳鉢を40℃とした温風乾燥機に30分入れて暖め、それから乳棒でよく混練した。これをポリエチ瓶に取り、1日間室内で放置してエージングし、その後5℃とした冷蔵庫に保管した。この接着剤の名称を「MCNT、DICY、DCMU」とした。この接着剤の組成を表2に示す(実験例20)。   Next, 103.1 parts by mass of the mixture, 5.2 parts by mass of fine powder dicyandiamide “DICY7” as a curing agent, and 3- (3,4-dichlorophenyl) -1,1-dimethylurea as a curing aid are placed in a mortar. 2.6 parts by weight of fine powder “DCMU99” was taken. The mortar was placed in a warm air dryer at 40 ° C. for 30 minutes to warm, and then kneaded well with a pestle. This was taken up in a polyethylene bottle, left aged indoors for 1 day, and then stored in a refrigerator at 5 ° C. The name of the adhesive was “MCNT, DICY, DCMU”. The composition of this adhesive is shown in Table 2 (Experimental Example 20).

[実験例21](接着剤II:1液性エポキシ接着剤「MCNT、水酸基PES、DICY、DCMU」の作成)
充填材として、「MCNT」及び「ハイミクロンHE5」に加え、さらに水酸基付きPESの粉体「ウルトラゾーンE2020−SRMicro」を4質量部添加するという点以外は、実験例20と同様の方法で接着剤を作成した。但し、硬化剤「DICY7」の添加量は5.4質量部、硬化助剤「DCMU99」の添加量は2.7質量部とした。この接着剤の名称を「MCNT、水酸基PES、DICY、DCMU」とした。この接着剤の組成を表2(実験例21)に示す。
[Experimental Example 21] (Adhesive II: Preparation of one-part epoxy adhesive “MCNT, hydroxyl group PES, DICY, DCMU”)
In addition to “MCNT” and “Hi-micron HE5” as a filler, in addition to the addition of 4 parts by mass of PES powder “Ultrazone E2020-SRMicro” with a hydroxyl group, adhesion was performed in the same manner as in Experimental Example 20. An agent was created. However, the addition amount of the curing agent “DICY7” was 5.4 parts by mass, and the addition amount of the curing aid “DCMU99” was 2.7 parts by mass. The name of this adhesive was “MCNT, hydroxyl group PES, DICY, DCMU”. The composition of this adhesive is shown in Table 2 (Experimental example 21).

[実験例22](接着剤II:1液性エポキシ接着剤「DICY、DCMU」の作成)
「MCNT」を添加しないという点以外は、実験例20と同様の方法で接着剤を作成した。この接着剤の名称を「DICY、DCMU」とした。この接着剤の組成を表2(実験例22)に示す。
[Experimental Example 22] (Adhesive II: Preparation of one-component epoxy adhesive “DICY, DCMU”)
An adhesive was prepared in the same manner as in Experimental Example 20, except that “MCNT” was not added. The name of the adhesive was “DICY, DCMU”. The composition of this adhesive is shown in Table 2 (Experimental Example 22).

[実験例23](接着剤II:1液性エポキシ接着剤「MCNT、DICY、2PI」の作成)
「DCMU」を添加せず、代わりに同質量の2−フェニルイミダゾール「2PI」を添加するという点以外は、実験例20と同様の方法で接着剤を作成した。この接着剤の名称を「MCNT、DICY、2PI」とした。この接着剤の組成を表2(実験例23)に示す。
[Experimental Example 23] (Adhesive II: Preparation of one-part epoxy adhesive “MCNT, DICY, 2PI”)
An adhesive was prepared in the same manner as in Experimental Example 20, except that “DCMU” was not added and the same mass of 2-phenylimidazole “2PI” was added instead. The name of the adhesive was “MCNT, DICY, 2PI”. The composition of this adhesive is shown in Table 2 (Experimental Example 23).

[実験例24](接着剤II:1液性エポキシ接着剤「MCNT、DICY、DMP」の作成)
「DCMU」を添加せず、代わりに同質量の「1、4−ジメチルピペラジン」を添加するという点以外は、実験例20と同様の方法で接着剤を作成した。この接着剤の名称を「MCNT、DICY、DMP」とした。この接着剤の組成を表2(実験例24)に示す。
[Experimental Example 24] (Adhesive II: Preparation of one-part epoxy adhesive “MCNT, DICY, DMP”)
An adhesive was prepared in the same manner as in Experimental Example 20, except that “DCMU” was not added, but instead the same mass of “1,4-dimethylpiperazine” was added. The name of the adhesive was “MCNT, DICY, DMP”. The composition of this adhesive is shown in Table 2 (Experimental Example 24).

[実験例25](接着剤II:2液性エポキシ接着剤「MCNT、mXy、2PI」の作成)
実験例20と同様にしてエポキシ樹脂液を得た。また、実験例20と同様にして混合物を得た。即ち、この混合物103.1質量部には、エポキシ樹脂100質量部、無機充填材「ハイミクロンHE5」3質量部、及び「MCNT」0.1質量部が含まれる。
[Experimental Example 25] (Adhesive II: Preparation of two-component epoxy adhesive “MCNT, mXy, 2PI”)
In the same manner as in Experimental Example 20, an epoxy resin solution was obtained. Further, a mixture was obtained in the same manner as in Experimental Example 20. That is, 103.1 parts by mass of the mixture includes 100 parts by mass of an epoxy resin, 3 parts by mass of an inorganic filler “HIMICRON HE5”, and 0.1 part by mass of “MCNT”.

次いで乳鉢に、前記混合物103.1質量部に対し、硬化助剤として2−フェニルイミダゾール「2PI」を2.7質量部加えてよく混練し、1日放置してから再度混練した。次いで混練後の混合物に、硬化剤「m−キシリレンジアミン」を26質量部添加し、ガラス棒でよく混練した。混練後の2液性エポキシ接着剤は直ちに使用した。この接着剤には、タルクが2.3質量%、MCNTが0.08質量%、m−キシリレンジアミンが19.7質量%、2−フェニルイミダゾールが2.0質量%含まれている。この接着剤の名称を「MCNT、mXy、2PI」とした。この接着剤の組成を表2に示す(実験例25)。   Next, 2.7 parts by mass of 2-phenylimidazole “2PI” as a curing aid was added to 103.1 parts by mass of the mixture in a mortar, kneaded well, and allowed to stand for 1 day, and then kneaded again. Next, 26 parts by mass of the curing agent “m-xylylenediamine” was added to the mixture after kneading and well kneaded with a glass rod. The two-component epoxy adhesive after kneading was used immediately. This adhesive contains 2.3% by mass of talc, 0.08% by mass of MCNT, 19.7% by mass of m-xylylenediamine, and 2.0% by mass of 2-phenylimidazole. The name of this adhesive was “MCNT, mXy, 2PI”. The composition of this adhesive is shown in Table 2 (Experimental Example 25).

[実験例26](「A、PES、DICY、2PI」接着剤硬化物層が粗面化されたA7075片とCFRP片との接着)
実験例17で得られた「A、PES、DICY、2PI」接着剤硬化物層が粗面化されたA7075片と、実験例19で得られた粗面化されたCFRP片の、それぞれの粗面化した範囲に接着剤IIを塗布した。この接着剤IIとしては、実験例20で作成した「MCNT、DICY、DCMU」を使用した。接着剤IIを塗布したA7075片及びCFRP片を、予め60℃に暖めておいたデシケータに入れて蓋をした。デシケータ内を真空ポンプで減圧し、3分ほど置いてから常圧に戻した。この減圧/常圧戻し操作を計3回行った(これは染み込まし処理IIである)。その後、A7075片及びCFRP片をデシケータから取り出し、接着剤塗布範囲同士を密着させる。その際、接着面積が0.7〜0.8cmとなるようにする。この対をクリップで固定し、図14に示す試験片の形状とした。熱風乾燥機内を90℃とし、これに対としたA7075片及びCFRP片を入れて、10分加熱した。次いで、熱風乾燥機内を135℃に昇温し、135℃で50分加熱した。次いで、熱風乾燥機内を165℃に昇温し、165℃で30分加熱した。その後放冷してA7075/CFRP複合体である試験片を得た。翌日に試験片を引っ張り試験機にかけて破断させた。その際のせん断破断力(3対の平均値)を表3に示す(実験例26)。
[Experimental Example 26] (Adhesion between A7075 piece and CFRP piece with roughened surface of "A, PES, DICY, 2PI" adhesive cured product layer)
Each of the roughened A7075 pieces obtained by roughening the “A, PES, DICY, 2PI” adhesive cured product layer obtained in Experimental Example 17 and the roughened CFRP pieces obtained in Experimental Example 19 were obtained. Adhesive II was applied to the surface area. As this adhesive II, “MCNT, DICY, DCMU” prepared in Experimental Example 20 was used. The A7075 piece and the CFRP piece to which the adhesive II was applied were put in a desiccator previously heated to 60 ° C. and covered. The inside of the desiccator was depressurized with a vacuum pump and allowed to return to normal pressure after about 3 minutes. This decompression / return to normal pressure operation was performed a total of 3 times (this is impregnation treatment II). Thereafter, the A7075 piece and the CFRP piece are taken out from the desiccator, and the adhesive application ranges are brought into close contact with each other. At that time, the adhesion area is set to 0.7 to 0.8 cm 2 . This pair was fixed with a clip to obtain the shape of the test piece shown in FIG. The inside of the hot air dryer was set to 90 ° C., and A7075 pieces and CFRP pieces were put into the hot air dryer and heated for 10 minutes. Next, the inside of the hot air dryer was heated to 135 ° C. and heated at 135 ° C. for 50 minutes. Next, the temperature inside the hot air dryer was raised to 165 ° C. and heated at 165 ° C. for 30 minutes. Thereafter, it was allowed to cool to obtain a test piece which was an A7075 / CFRP composite. On the next day, the test piece was broken by a tensile tester. The shear breaking force (average value of 3 pairs) at that time is shown in Table 3 (Experimental Example 26).

[実験例27](「PES、DICY、2PI」接着剤硬化物層が粗面化されたA7075片とCFRP片との接着)
実験例17で得られた「PES、DICY、2PI」接着剤硬化物層が粗面化されたA7075片と、実験例19で得られた粗面化されたCFRP片を実験例26と同様の方法で接着した。これによりA7075/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表3に示す(実験例27)。
[Experimental Example 27] (Adhesion between A7075 piece and CFRP piece with roughened "PES, DICY, 2PI" adhesive cured layer)
The A7075 piece with the roughened “PES, DICY, 2PI” adhesive cured product layer obtained in Experimental Example 17 and the roughened CFRP piece obtained in Experimental Example 19 were the same as in Experimental Example 26. Bonded by the method. This obtained the test piece which is an A7075 / CFRP composite_body | complex. Table 3 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 27).

[実験例28](「A、DICY、2PI」接着剤硬化物層が粗面化されたA7075片とCFRP片との接着)
実験例17で得られた「A、DICY、2PI」接着剤硬化物層が粗面化されたA7075片と、実験例19で得られた粗面化されたCFRP片を実験例26と同様の方法で接着した。これによりA7075/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表3に示す(実験例28)。
[Experimental example 28] (Adhesion between A7075 piece and CFRP piece with roughened surface of "A, DICY, 2PI" adhesive cured product layer)
The A7075 piece with the roughened “A, DICY, 2PI” adhesive cured product layer obtained in Experimental Example 17 and the roughened CFRP piece obtained in Experimental Example 19 were the same as in Experimental Example 26. Bonded by the method. This obtained the test piece which is an A7075 / CFRP composite_body | complex. Table 3 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 28).

表3に示されるように、アエロジルが添加されていない接着剤Iを使用した実験例27では、100℃下におけるせん断破断力が32.7MPaである。これは、アエロジルが添加された接着剤Iを使用した実験例26(51.9MPa)及び実験例28(49.9MPa)と比較して、明らかに低い値である。これは超微細無機充填材を接着剤Iに添加することで耐熱性が向上することを示す。但し、常温下においてはアエロジルが添加されていない接着剤Iを使用した場合にも、57.0MPaという高いせん断破断力を示し、これはアエロジルを添加した場合と同等である。このことから、耐熱性が要求されない場合には、アエロジルの添加は必ずしも必要ないといえる。また、表3の結果から、PES4100MPが添加された接着剤Iを使用した実験例26、PES4100MPが添加されていない接着剤Iを使用した実験例28の結果に大きな差異がないことから、接着剤Iに熱可塑性樹脂粉体を添加した場合であっても、少なくとも接着力が大きく低下することはないことを確認した。   As shown in Table 3, in Experimental Example 27 using the adhesive I to which no Aerosil was added, the shear breaking strength at 100 ° C. was 32.7 MPa. This is a clearly lower value compared with Experimental Example 26 (51.9 MPa) and Experimental Example 28 (49.9 MPa) using the adhesive I to which Aerosil was added. This indicates that heat resistance is improved by adding an ultrafine inorganic filler to the adhesive I. However, even when the adhesive I to which no Aerosil is added is used at room temperature, a high shear breaking force of 57.0 MPa is exhibited, which is equivalent to the case where Aerosil is added. From this, it can be said that the addition of Aerosil is not necessarily required when heat resistance is not required. Further, from the results of Table 3, there is no significant difference between the results of Experimental Example 26 using the adhesive I to which PES4100MP was added and Experimental Example 28 using the adhesive I to which no PES4100MP was added. Even when the thermoplastic resin powder was added to I, it was confirmed that at least the adhesive strength was not greatly reduced.

[実験例29](「A、PES、DICY、2PI」接着剤硬化物層が粗面化されたA7075片とCFRP片との接着)
接着剤「A、PES、DICY、2PI」の接着剤硬化物層が形成されたA7075片(実験例16で作成されたもの)を、JISR6252に規定される800番の研磨紙でしっかり十数回往復研磨して粗面化した。水道(群馬県太田市)口に6mm径銅管を直接繋ぎ、先端部を絞って水道水の高速流を作った。この高速流を各A7075片の粗面化部分に2分間あてた。次いでヘヤードライヤーで乾燥し、アルミ箔で包んで保管した。
[Experimental example 29] (Adhesion between A7075 piece and CFRP piece with roughened surface of "A, PES, DICY, 2PI" adhesive cured product layer)
A7075 pieces (made in Experimental Example 16) on which an adhesive hardened layer of the adhesive “A, PES, DICY, 2PI” is formed are firmly and ten times with the 800th abrasive paper defined in JIS R6252. The surface was roughened by reciprocal polishing. A 6 mm diameter copper pipe was directly connected to the water supply (Ota City, Gunma Prefecture), and the tip was squeezed to create a high-speed flow of tap water. This high velocity flow was applied to the roughened portion of each A7075 piece for 2 minutes. Then, it was dried with a hair dryer, wrapped in aluminum foil and stored.

一方、実験例18で得たCFRP片の端部を、JISR6252に規定される80番の研磨紙でしっかり十数回往復研磨して粗面化した。水道(群馬県太田市)口に6mm径銅管を直接繋ぎ、先端部を絞って水道水の高速流を作った。この高速流を各CFRP片の粗面化部分に2分間あてた。次いでヘヤードライヤーで乾燥し、アルミ箔で包んで保管した。これらの処理を施したA7075片とCFRP片を、実験例26と同様の方法で接着した。これによA7075/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表1に示す(実験例29)。実験例26とは、A7075片及びCFRP片の洗浄方法のみが異なる。脱脂液を使用した実験例26と比較して、常温下及び100℃下で数MPa程度の接着力の低下がみられるものの実用上は大きな差異がなく、充分に高い接着力が認められる。このことから、粗面化部分の洗浄は流水によって行っても良く、脱脂液により行う必要は必ずしも無いといえる。   On the other hand, the end of the CFRP piece obtained in Experimental Example 18 was roughened by reciprocating firmly and dozens of times with No. 80 polishing paper defined in JIS R6252. A 6mm diameter copper tube was directly connected to the water supply (Ota City, Gunma Prefecture), and the tip was squeezed to create a high-speed flow of tap water. This high velocity flow was applied to the roughened portion of each CFRP piece for 2 minutes. Then, it was dried with a hair dryer, wrapped in aluminum foil and stored. The A7075 pieces and CFRP pieces subjected to these treatments were bonded in the same manner as in Experimental Example 26. Thereby, a test piece which is an A7075 / CFRP composite was obtained. Table 1 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 29). It differs from Experimental Example 26 only in the cleaning method of the A7075 piece and the CFRP piece. Compared with Experimental Example 26 using a degreasing solution, although a decrease in adhesive strength of several MPa is observed at room temperature and 100 ° C., there is no practical difference and a sufficiently high adhesive strength is recognized. From this, it can be said that the roughened portion may be washed with running water and not necessarily with a degreasing solution.

[実験例30](「MCNT、水酸基PES、DICY、DCMU」を使用した接着)
実験例17で得られた「A、PES、DICY、2PI」接着剤硬化物層が粗面化されたA7075片と、実験例19で得られた粗面化されたCFRP片の、それぞれの粗面化した範囲に接着剤IIを塗布した。この接着剤IIとしては、実験例21で作成した「MCNT、水酸基PES、DICY、DCMU」を使用した。接着剤IIを塗布したA7075片及びCFRP片を、予め60℃に暖めておいたデシケータに入れて蓋をした。デシケータ内を真空ポンプで減圧し、3分ほど置いてから常圧に戻した。この減圧/常圧戻し操作を計3回行った(これは染み込まし処理IIである)。その後、A7075片及びCFRP片をデシケータから取り出し、接着剤塗布範囲同士を密着させる。その際、接着面積が0.7〜0.8cmとなるようにする。この対をクリップで固定し、図14に示す試験片の形状とした。熱風乾燥機内を90℃とし、これに対としたA7075片及びCFRP片を入れて、10分加熱した。次いで、熱風乾燥機内を135℃に昇温し、135℃で50分加熱した。次いで、熱風乾燥機内を165℃に昇温し、165℃で30分加熱した。その後放冷してA7075/CFRP複合体である試験片を得た。翌日に試験片を引っ張り試験機にかけて破断させた。その際のせん断破断力(3対の平均値)を表4に示す(実験例30)。
[Experimental Example 30] (Adhesion using “MCNT, hydroxyl group PES, DICY, DCMU”)
Each of the roughened A7075 pieces obtained by roughening the “A, PES, DICY, 2PI” adhesive cured product layer obtained in Experimental Example 17 and the roughened CFRP pieces obtained in Experimental Example 19 were obtained. Adhesive II was applied to the surface area. As this adhesive II, “MCNT, hydroxyl group PES, DICY, DCMU” prepared in Experimental Example 21 was used. The A7075 piece and the CFRP piece to which the adhesive II was applied were put in a desiccator previously heated to 60 ° C. and covered. The inside of the desiccator was depressurized with a vacuum pump and allowed to return to normal pressure after about 3 minutes. This decompression / return to normal pressure operation was performed a total of 3 times (this is impregnation treatment II). Thereafter, the A7075 piece and the CFRP piece are taken out from the desiccator, and the adhesive application ranges are brought into close contact with each other. At that time, the adhesion area is set to 0.7 to 0.8 cm 2 . This pair was fixed with a clip to obtain the shape of the test piece shown in FIG. The inside of the hot air dryer was set to 90 ° C., and A7075 pieces and CFRP pieces were put into the hot air dryer and heated for 10 minutes. Next, the inside of the hot air dryer was heated to 135 ° C. and heated at 135 ° C. for 50 minutes. Next, the temperature inside the hot air dryer was raised to 165 ° C. and heated at 165 ° C. for 30 minutes. Thereafter, it was allowed to cool to obtain a test piece which was an A7075 / CFRP composite. On the next day, the test piece was broken by a tensile tester. The shear breaking force (average value of three pairs) at that time is shown in Table 4 (Experimental Example 30).

[実験例31](「DICY、DCMU」を使用した接着)
接着剤IIとして、実験例22で作成した「DICY、DCMU」を使用する点以外は、実験例30と同様の方法でA7075/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表4に示す(実験例31)。
[Experimental Example 31] (Adhesion using “DICY, DCMU”)
A test piece that was an A7075 / CFRP composite was obtained in the same manner as in Experimental Example 30, except that “DICY, DCMU” prepared in Experimental Example 22 was used as the adhesive II. Table 4 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 31).

[実験例32](「MCNT、DICY、2PI」を使用した接着)
接着剤IIとして、実験例23で作成した「MCNT、DICY、2PI」を使用する点以外は、実験例30と同様の方法でA7075/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表4に示す(実験例32)。
[Experiment 32] (Adhesion using “MCNT, DICY, 2PI”)
A test piece that was an A7075 / CFRP composite was obtained in the same manner as in Experimental Example 30, except that “MCNT, DICY, 2PI” prepared in Experimental Example 23 was used as the adhesive II. Table 4 shows the shear breaking force (average value of three pairs) when the specimen was broken by a tensile tester (Experimental Example 32).

[実験例33](「MCNT、DICY、DMP」を使用した接着)
接着剤IIとして、実験例24で作成した「MCNT、DICY、DMP」を使用する点以外は、実験例30と同様の方法でA7075/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表4に示す(実験例33)。
[Experimental Example 33] (Adhesion using “MCNT, DICY, DMP”)
A test piece that was an A7075 / CFRP composite was obtained in the same manner as in Experimental Example 30, except that “MCNT, DICY, DMP” prepared in Experimental Example 24 was used as the adhesive II. Table 4 shows the shear breaking force (average value of three pairs) when the specimen is broken by a tensile tester (Experimental Example 33).

[実験例34](「MCNT、mXy、2PI」を使用した接着)
接着剤IIとして、実験例25で作成した2液性エポキシ接着剤「MCNT、mXy、2PI」を使用する点以外は、実験例30と同様の方法でA7075/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表4に示す(実験例34)。
[Experimental Example 34] (Adhesion using “MCNT, mXy, 2PI”)
A test piece which is an A7075 / CFRP composite is obtained in the same manner as in Experimental Example 30, except that the two-component epoxy adhesive “MCNT, mXy, 2PI” prepared in Experimental Example 25 is used as the adhesive II. It was. Table 4 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 34).

表4は接着剤IIの接着力及び耐熱性の差異を示すものである。2液性エポキシ接着剤を使用した場合(実験例34)には、せん断破断力は常温下で43.7MPa、100℃下で33.2MPaを示し、MCNTを添加した1液性エポキシ接着剤を使用した結果(実験例26、30、32、及び33)と比較して明らかに低かった。常温下では15MPa〜20MPa程度も低く、100℃下でも13MPa〜22MPa程度低かった。しかしながら、それでも常温下で40MPa以上、100℃下でも30MPa以上のせん断破断力を示すことから、極めて高い信頼性が要求される用途以外には十分使用できる。そして加熱を全く行わずとも、1週間以上常温で放置することによって完全硬化が達成されるため、工程削減という大きな利点がある。   Table 4 shows the difference in adhesive strength and heat resistance of the adhesive II. When a two-component epoxy adhesive was used (Experimental Example 34), the shear breaking strength was 43.7 MPa at room temperature and 33.2 MPa at 100 ° C., and a one-component epoxy adhesive added with MCNT was used. It was clearly lower than the results used (Experimental Examples 26, 30, 32, and 33). It was as low as 15 MPa to 20 MPa at room temperature and as low as 13 MPa to 22 MPa even at 100 ° C. However, since it still exhibits a shear breaking force of 40 MPa or higher at room temperature and 30 MPa or higher even at 100 ° C., it can be sufficiently used for applications other than those requiring extremely high reliability. And even if it does not heat at all, since complete hardening is achieved by leaving it to stand at normal temperature for 1 week or more, there exists a big advantage of a process reduction.

また、MCNTを添加していない実験例31のせん断破断力が、常温下で52.1MPa、100℃下で40.0MPaである。これらの値はMCNTを添加した実験例26、30、32、及び33と比較して明らかに低い。特にMCNTの添加以外の条件を同一とした実験例26との比較では、常温下、100℃下のいずれにおいても10MPa以上の差が生じている。このことから接着剤IIにMCNTを添加することは、常温下及び高温下下における接着力を向上させる効果があるといえる。しかしながら、MCNTを添加しない場合にも十分に高い接着力を獲得することは可能であり、そのため接着剤IIについてもCNTの添加を必須条件としなくとも良い。また、水酸基付きPES粉体を添加した場合(実験例30)は、添加していない結果(実験例26)と比較して、常温下及び100℃下におけるせん断破断力が僅かに低下している。しかし、実用上問題となるような接着力の低下は認められず、接着剤の弾性化が必要な場合にはPES粉体を添加することに支障はないといえる。   Moreover, the shear breaking force of Experimental Example 31 to which MCNT is not added is 52.1 MPa at room temperature and 40.0 MPa at 100 ° C. These values are clearly lower than those of Experimental Examples 26, 30, 32, and 33 in which MCNT was added. In particular, in comparison with Experimental Example 26 in which the conditions other than the addition of MCNT were the same, a difference of 10 MPa or more occurred at both room temperature and 100 ° C. From this, it can be said that adding MCNT to the adhesive II has an effect of improving the adhesive strength at normal temperature and high temperature. However, even when MCNT is not added, it is possible to obtain a sufficiently high adhesive force. Therefore, it is not necessary to add CNT to the adhesive II as an essential condition. In addition, when the PES powder with a hydroxyl group was added (Experimental Example 30), the shear breaking force at room temperature and 100 ° C. was slightly reduced as compared with the result of not adding (Experimental Example 26). . However, a decrease in the adhesive strength that causes a problem in practical use is not recognized, and it can be said that there is no problem in adding the PES powder when it is necessary to make the adhesive elastic.

[実験例35](接着剤II「MCNT、DICY、DCMU」の硬化時間の短縮)
接着剤IIの硬化方法以外は、実験例26と同様の方法でA7075/CFRP複合体である試験片を得た。本実験例において、接着剤II「MCNT、DICY、DCMU」は、110℃で1時間加熱した。具体的には熱風乾燥機内を110℃とし、この熱風乾燥機にA7075片とCFRP片の対を入れてから1時間後に出して、放冷した。この際、段ボール紙の上に試験片を乗せて放冷したが、試料が高温から室温に下がるまでの時間は5分以下であった。接着物の急冷は通常好ましくないが、実際に接着作業が行われる環境下においては好ましい放冷が困難な場合もあるので、敢えてそのようにした。即ち、接着作業を行う現場では、ホットブラスターによる熱風で加熱して接着剤を硬化させることがあるが、接着作業が終了して熱風の送風を終えると接着物は高速で放冷されることになるから、その様な状況を再現しようとした。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表5に示す(実験例35)。
[Experimental Example 35] (Reduction of curing time of adhesive II “MCNT, DICY, DCMU”)
A test piece which is an A7075 / CFRP composite was obtained in the same manner as in Experimental Example 26 except for the method of curing the adhesive II. In this experimental example, the adhesive II “MCNT, DICY, DCMU” was heated at 110 ° C. for 1 hour. Specifically, the inside of the hot air dryer was set to 110 ° C., and a pair of A7075 pieces and CFRP pieces was put into the hot air dryer, and then the hot air dryer was taken out one hour and allowed to cool. At this time, a test piece was placed on cardboard paper and allowed to cool, but the time until the sample dropped from high temperature to room temperature was 5 minutes or less. Although rapid cooling of the adhesive is usually not preferable, it may be difficult to cool the adhesive in an environment where the bonding operation is actually performed. That is, at the site where the bonding work is performed, the adhesive may be cured by heating with hot air from a hot blaster, but when the bonding work is finished and the blowing of hot air is finished, the adhesive is allowed to cool at high speed. So, I tried to reproduce that situation. Table 5 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 35).

[実験例36](接着剤II「MCNT、DICY、2PI」の硬化時間の短縮)
接着剤IIの硬化方法以外は、実験例32と同様の方法でA7075/CFRP複合体である試験片を得た。本実験例において、接着剤II「MCNT、DICY、2PI」は、120℃で1時間加熱した。具体的には熱風乾燥機内を120℃とし、この熱風乾燥機にA7075片とCFRP片の対を入れてから1時間後に出して、放冷した。放冷に関しては実験例35と同様である。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表5に示す(実験例36)。
[Experimental example 36] (Reduction of curing time of adhesive II “MCNT, DICY, 2PI”)
A test piece which was an A7075 / CFRP composite was obtained in the same manner as in Experimental Example 32 except for the method of curing the adhesive II. In this experimental example, the adhesive II “MCNT, DICY, 2PI” was heated at 120 ° C. for 1 hour. Specifically, the inside of the hot air dryer was set to 120 ° C., and after putting a pair of A7075 pieces and CFRP pieces into this hot air dryer, it was taken out one hour later and allowed to cool. The cooling is the same as in Experimental Example 35. Table 5 shows the shear breaking force (average value of three pairs) when this specimen was broken by a tensile tester (Experimental Example 36).

本発明者らは、実験例35及び36に先だって接着剤の硬化に関する実験を行った。金属合金片同士を接着剤で接着し、硬化条件を異ならせて当該接着剤を硬化させ、せん断破断力を測定することにより硬化条件を特定するというものである。その実験の結果、実験例20で作製した接着剤「MCNT、DICY、DCMU」、及び実験例24で作成した「MCNT、DICY、DMP」は100℃で90分加熱するか、又は110℃で1時間加熱することにより、ほぼ完全硬化することを確認した。また、実験例23で作成した接着剤「MCNT、DICY、2PI」、及びこれの2−フェニルイミダゾール(2PI)を2−メチルイミダゾール(2MI)に置き換えた接着剤「CNT、DICY、2MI」は、120℃で1時間加熱することにより、ほぼ完全硬化することを確認した。そこでこれらの条件と同様の条件で接着剤IIの硬化を図ったのである。   Prior to Experimental Examples 35 and 36, the present inventors conducted an experiment regarding curing of the adhesive. The metal alloy pieces are bonded to each other with an adhesive, the curing condition is varied to cure the adhesive, and the shear breaking force is measured to specify the curing condition. As a result of the experiment, the adhesive “MCNT, DICY, DCMU” produced in Experimental Example 20 and “MCNT, DICY, DMP” produced in Experimental Example 24 were heated at 100 ° C. for 90 minutes, or 1 at 110 ° C. It was confirmed that the film was almost completely cured by heating for a period of time. In addition, the adhesive “MCNT, DICY, 2PI” created in Experimental Example 23 and the adhesive “CNT, DICY, 2MI” in which 2-phenylimidazole (2PI) is replaced with 2-methylimidazole (2MI) are as follows: It was confirmed that the film was almost completely cured by heating at 120 ° C. for 1 hour. Therefore, the adhesive II was cured under the same conditions as these conditions.

結果として、「MCNT、DICY、DCMU」を110℃で1時間加熱することで、常温下で65.3MPa、100℃下で52.8MPaのせん断破断力を示した(表5:実験例35)。これは、同接着剤を90℃で10分加熱し、135℃で50分加熱し、165℃で30分加熱した結果(表9:実験例26)と同等以上である。このことから、実験例35の硬化条件で、接着剤IIがほぼ完全硬化したことを把握できる。また「MCNT、DICY、2PI」を120℃で1時間加熱することで、常温下で59.8MPa、100℃下で53.5MPaのせん断破断力を示した(表5:実験例36)。これは、同接着剤を90℃で10分加熱し、135℃で50分加熱し、165℃で30分加熱した結果(表9:実験例32)と同等以上である。このことから、実験例36の硬化条件で、接着剤IIがほぼ完全硬化したことを把握できる。この結果から、硬化剤及び硬化助剤の組み合わせとして、DICY7及びDCMU99、又はDICY7及び2PIを使用したときに、比較的低温(110℃〜120℃)、短時間(1時間程度)での硬化を図ることができるといえる。即ち、接着作業を行うための設備を簡素化することができ、接着作業自体も容易となる。   As a result, when “MCNT, DICY, DCMU” was heated at 110 ° C. for 1 hour, a shear breaking force of 65.3 MPa at room temperature and 52.8 MPa at 100 ° C. was exhibited (Table 5: Experimental Example 35). . This is equivalent to or higher than the result of heating the adhesive at 90 ° C. for 10 minutes, heating at 135 ° C. for 50 minutes, and heating at 165 ° C. for 30 minutes (Table 9: Experimental Example 26). From this, it can be grasped that the adhesive II was almost completely cured under the curing conditions of Experimental Example 35. Further, by heating “MCNT, DICY, 2PI” at 120 ° C. for 1 hour, a shear breaking force of 59.8 MPa at room temperature and 53.5 MPa at 100 ° C. was shown (Table 5: Experimental Example 36). This is equal to or more than the result of heating the adhesive at 90 ° C. for 10 minutes, heating at 135 ° C. for 50 minutes, and heating at 165 ° C. for 30 minutes (Table 9: Experimental Example 32). From this, it can be understood that the adhesive II was almost completely cured under the curing conditions of Experimental Example 36. From this result, when DICY7 and DCMU99, or DICY7 and 2PI are used as a combination of a curing agent and a curing aid, curing at a relatively low temperature (110 ° C. to 120 ° C.) and a short time (about 1 hour) is possible. It can be said that it can be planned. That is, the equipment for performing the bonding operation can be simplified, and the bonding operation itself is facilitated.

[実験例37](A5052片とCFRP片の接着)
実験例35において、接着剤IIを低温で短時間加熱することにより(110℃で1時間)、十分に高い接着力を発揮することが確認された。本発明者らはA7075片に代えて実験例2で得たA5052片を用いて、実験例35と同様の方法でA5052/CFRP複合体である試験片を得た。即ち、本実験例37において、接着剤I「A、PES、DICY、2PI」の硬化条件は、90℃で10分加熱し、次に135℃で50分加熱し、さらに165℃で30分加熱するというものである。そして、接着剤II「MCNT、DICY、DCMU」の硬化条件は、110℃で1時間加熱するというものである。これは後述する実験例38〜47も同様である。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例37)。
[Experiment 37] (Adhesion of A5052 piece and CFRP piece)
In Experimental Example 35, it was confirmed that a sufficiently high adhesive force was exhibited by heating the adhesive II at a low temperature for a short time (1 hour at 110 ° C.). The present inventors obtained A5052 / CFRP composite test pieces in the same manner as in Experimental Example 35 using A5052 pieces obtained in Experimental Example 2 instead of A7075 pieces. That is, in this Experimental Example 37, the curing conditions of the adhesive I “A, PES, DICY, 2PI” were heated at 90 ° C. for 10 minutes, then heated at 135 ° C. for 50 minutes, and further heated at 165 ° C. for 30 minutes. It is to do. The curing condition for the adhesive II “MCNT, DICY, DCMU” is to heat at 110 ° C. for 1 hour. The same applies to Experimental Examples 38 to 47 described later. Table 6 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 37).

[実験例38](AZ31B片とCFRP片の接着)
本発明者らはA7075片に代えて実験例3で得たAZ31B片を用いて、実験例35と同様の方法でAZ31B/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例38)。
[Experiment 38] (Adhesion of AZ31B piece and CFRP piece)
The present inventors obtained a test piece that was an AZ31B / CFRP composite by the same method as in Experimental Example 35, using the AZ31B piece obtained in Experimental Example 3 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when the test piece was broken by a tensile tester (Experimental Example 38).

[実験例39](C1100片とCFRP片の接着)
本発明者らはA7075片に代えて実験例4で得たC1100片を用いて、実験例35と同様の方法でC1100/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例39)。
[Experimental Example 39] (Adhesion between C1100 piece and CFRP piece)
The present inventors obtained a test piece which is a C1100 / CFRP composite by the same method as in Experimental Example 35, using the C1100 piece obtained in Experimental Example 4 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when this specimen was broken by a tensile tester (Experimental Example 39).

[実験例40](C5191片とCFRP片の接着)
本発明者らはA7075片に代えて実験例5で得たC5191片を用いて、実験例35と同様の方法でC5191/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例40)。
[Experimental example 40] (Adhesion of C5191 piece and CFRP piece)
The present inventors obtained a test piece which is a C5191 / CFRP composite by the same method as in Experimental Example 35, using the C5191 piece obtained in Experimental Example 5 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when the test piece was broken by a tensile tester (Experimental Example 40).

[実験例41](KFC片とCFRP片の接着)
本発明者らはA7075片に代えて実験例6で得たKFC片を用いて、実験例35と同様の方法でKFC/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例41)。
[Experimental example 41] (Adhesion of KFC piece and CFRP piece)
The present inventors obtained a test piece which is a KFC / CFRP composite by the same method as in Experimental Example 35, using the KFC piece obtained in Experimental Example 6 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 41).

[実験例42](KLF5片とCFRP片の接着)
本発明者らはA7075片に代えて実験例7で得たKLF5片を用いて、実験例35と同様の方法でKLF5/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例42)。
[Experimental example 42] (Adhesion of KLF5 piece and CFRP piece)
The present inventors obtained a test piece which is a KLF5 / CFRP composite by the same method as in Experimental Example 35 using the KLF5 piece obtained in Experimental Example 7 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 42).

[実験例43](KS40片とCFRP片の接着)
本発明者らはA7075片に代えて実験例8で得たKS40片を用いて、実験例35と同様の方法でKS40/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例43)。
[Experimental example 43] (Adhesion of KS40 piece and CFRP piece)
The present inventors obtained a test piece which is a KS40 / CFRP composite by the same method as in Experimental Example 35, using the KS40 piece obtained in Experimental Example 8 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 43).

[実験例44](KSTi−9片とCFRP片の接着)
本発明者らはA7075片に代えて実験例9で得たKSTi−9片を用いて、実験例35と同様の方法でKSTi−9/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例44)。
[Experimental Example 44] (Adhesion of KSTi-9 piece and CFRP piece)
The present inventors obtained a test piece which is a KSTi-9 / CFRP composite by the same method as in Experimental Example 35, using the KSTi-9 piece obtained in Experimental Example 9 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when the test piece was broken by a tensile tester (Experimental Example 44).

[実験例45](SUS304片とCFRP片の接着)
本発明者らはA7075片に代えて実験例10で得たSUS304片を用いて、実験例35と同様の方法でSUS304/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例45)。
[Experimental Example 45] (Adhesion of SUS304 piece and CFRP piece)
The present inventors obtained a test piece which is a SUS304 / CFRP composite by the same method as in Experimental Example 35 using the SUS304 piece obtained in Experimental Example 10 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 45).

[実験例46](SPCC片とCFRP片の接着)
本発明者らはA7075片に代えて実験例11で得たSPCC片を用いて、実験例35と同様の方法でSPCC/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例46)。
[Experimental example 46] (Adhesion of SPCC piece and CFRP piece)
The present inventors obtained a test piece which is an SPCC / CFRP composite by the same method as in Experimental Example 35, using the SPCC piece obtained in Experimental Example 11 instead of the A7075 piece. Table 6 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 46).

[実験例47](SPHC片とCFRP片の接着)
本発明者らはA7075片に代えて実験例12で得たSPHC片を用いて、実験例35と同様の方法でSPHC/CFRP複合体である試験片を得た。この試験片を引っ張り試験機にかけて破断させた際のせん断破断力(3対の平均値)を表6に示す(実験例47)。
[Experimental Example 47] (Adhesion of SPHC pieces and CFRP pieces)
The present inventors obtained SPHC / CFRP composite test pieces in the same manner as in Experimental Example 35 using the SPHC pieces obtained in Experimental Example 12 instead of A7075 pieces. Table 6 shows the shear breaking force (average value of three pairs) when this test piece was broken by a tensile tester (Experimental Example 47).

表6に示される結果から、いずれの金属合金種においても、常温下において極めて高いせん断破断力を示した。それ故、本発明の接着方法は金属合金全般について使用可能であり、各種金属合金とCFRPを強固に接着せしめる技術であるといえる。また、100℃下におけるせん断破断力は常温下と比較して概ね5〜18MPa程度低下するものの、いずれも30MPa以上を示しており、各種金属合金とCFRPの複合体は、実用上十分な耐熱性を具備している。特に純銅系のC1100銅合金とCFRPの複合体に関しては、常温下でのせん断破断力が49.9MPaであるのに対し、100℃下では45.5MPaと極めて小さな低下(4.4MPa)に留まっており、極めて優れた耐熱性を有しているといえる。また、SUS304ステンレス鋼とCFRPの複合体に関しても、常温下でのせん断破断力が52.1MPaであるのに対し、100℃下では47.5MPaであるから、極めて優れた耐熱性を有しているといえる。   From the results shown in Table 6, all metal alloy types showed extremely high shear fracture strength at room temperature. Therefore, the bonding method of the present invention can be used for all metal alloys, and can be said to be a technique for firmly bonding various metal alloys and CFRP. Moreover, although the shear breaking force at 100 ° C. is generally reduced by about 5 to 18 MPa as compared with normal temperature, all show 30 MPa or more, and the composites of various metal alloys and CFRP have practically sufficient heat resistance. It has. In particular, for the composite of pure copper-based C1100 copper alloy and CFRP, the shear fracture strength at room temperature is 49.9 MPa, but at 100 ° C., it remains as extremely small as 45.5 MPa (4.4 MPa). It can be said that it has extremely excellent heat resistance. Also, regarding the composite of SUS304 stainless steel and CFRP, the shear fracture strength at room temperature is 52.1 MPa, whereas it is 47.5 MPa at 100 ° C., so it has extremely excellent heat resistance. It can be said that.

12…CFRPプリプレグ積層物
30…複合体
31…金属合金片
32…CFRP片
33…接着範囲
40…金属合金
41…セラミック質層
42…接着剤硬化物層
50…CFRP板材
51…金属合金部品
52…接着剤層
DESCRIPTION OF SYMBOLS 12 ... CFRP prepreg laminated body 30 ... Composite 31 ... Metal alloy piece 32 ... CFRP piece 33 ... Adhesion range 40 ... Metal alloy 41 ... Ceramic layer 42 ... Adhesive hardened material layer 50 ... CFRP board material 51 ... Metal alloy part 52 ... Adhesive layer

Claims (17)

金属合金の表面に、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、且つ、その粗度を有する面内に、5〜500nm周期の超微細凹凸を形成し、且つ、表層を金属酸化物又は金属リン酸化物の薄層とするための表面処理を行う表面処理工程と、
前記表面処理工程を経た金属合金の表面に、粒径分布の中心が5〜20μmの無機充填材を少なくとも含む1液性エポキシ接着剤である第1の接着剤を塗布する第1の塗布工程と、
前記金属合金に塗布した第1の接着剤を加熱して硬化させる第1の硬化工程と、
前記第1の硬化工程によって金属合金表面上に形成された接着剤硬化物層を粗面化する接着剤硬化物層粗面化工程と、
エポキシ樹脂をマトリックス樹脂とする繊維強化プラスチックを加熱して硬化させるFRP硬化工程と、
前記FRP硬化工程によって硬化した繊維強化プラスチックの表面を粗面化するFRP粗面化工程と、
前記接着剤硬化物層粗面化工程後の接着剤硬化物層及び前記FRP粗面化工程後の繊維強化プラスチックの表面に、粒径分布の中心が5〜20μmの無機充填材を少なくとも含むエポキシ接着剤である第2の接着剤を塗布する第2の塗布工程と、
前記第2の接着剤を塗布した金属合金及び繊維強化プラスチックについて、それぞれの第2の接着剤を塗布した範囲同士を密着させた状態で固定し、当該第2の接着剤を硬化させることで両者を一体化する第2の硬化工程と、
を含むことを特徴とする金属合金と繊維強化プラスチックの複合体の製造方法。
On the surface of the metal alloy, a roughness on the order of microns having an average length (RSm) of the contour curve element of 0.8 to 10 μm and a maximum height (Rz) of 0.2 to 5 μm is generated, and the roughness A surface treatment step of performing surface treatment for forming ultrafine irregularities with a period of 5 to 500 nm in a plane having a degree and forming a surface layer as a thin layer of metal oxide or metal phosphate;
A first application step of applying a first adhesive which is a one-component epoxy adhesive containing at least an inorganic filler having a particle size distribution center of 5 to 20 μm to the surface of the metal alloy that has undergone the surface treatment step; ,
A first curing step of heating and curing the first adhesive applied to the metal alloy;
An adhesive hardened material layer roughening step of roughening the adhesive hardened material layer formed on the metal alloy surface by the first hardening step;
An FRP curing step of heating and curing a fiber reinforced plastic having an epoxy resin as a matrix resin;
An FRP roughening step of roughening the surface of the fiber reinforced plastic cured by the FRP curing step;
Epoxy containing at least an inorganic filler having a center of particle size distribution of 5 to 20 μm on the surface of the cured adhesive layer after the roughening step of the cured adhesive layer and the surface of the fiber reinforced plastic after the roughening step of FRP. A second application step of applying a second adhesive which is an adhesive;
About the metal alloy and fiber reinforced plastic which apply | coated the said 2nd adhesive agent, the range which apply | coated each 2nd adhesive agent is fixed in the state which closely_contact | adhered, and both are obtained by hardening the said 2nd adhesive agent A second curing step for integrating
A method for producing a composite of a metal alloy and a fiber reinforced plastic, comprising:
請求項1に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第1の塗布工程を経た金属合金を密閉容器に封じて、その密閉容器内を一旦減圧後に昇圧する第1の染み込まし工程をさらに含み、
当該第1の染み込まし工程後に前記第1の硬化工程を行うことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1,
The metal alloy that has undergone the first application step is further sealed in a sealed container, and further includes a first soaking step that pressurizes the sealed container after depressurization.
The said manufacturing method characterized by performing the said 1st hardening process after the said 1st soaking process.
請求項1又は2に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の塗布工程を経た金属合金若しくは繊維強化プラスチック、又はこれらの双方を密閉容器に封じて、その密閉容器内を一旦減圧後に昇圧する第2の染み込まし工程をさらに含み、
当該第2の染み込まし工程後に前記第2の硬化工程を行うことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 or 2,
The metal alloy or fiber reinforced plastic that has undergone the second application step, or both of them are sealed in a sealed container, and further includes a second soaking step that once pressurizes the sealed container after depressurization,
The said manufacturing method characterized by performing the said 2nd hardening process after the said 2nd soaking process.
請求項1ないし3から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記金属合金は、アルミニウム合金、マグネシウム合金、銅合金、チタン合金、ステンレス鋼、及び鉄鋼材から選択されるいずれか1種であることを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 3,
The manufacturing method according to claim 1, wherein the metal alloy is any one selected from an aluminum alloy, a magnesium alloy, a copper alloy, a titanium alloy, stainless steel, and a steel material.
請求項1ないし4から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記繊維強化プラスチックは、CFRP(carbon fiber reinforced plastics)であることを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 4,
The manufacturing method, wherein the fiber reinforced plastic is CFRP (carbon fiber reinforced plastics).
請求項1ないし5から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第1の接着剤は、粒径が100nm以下の超微細無機充填材をさらに含むことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 5,
The manufacturing method according to claim 1, wherein the first adhesive further includes an ultrafine inorganic filler having a particle size of 100 nm or less.
請求項6に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第1の接着剤は、前記超微細無機充填材としてヒュームドシリカを0.3〜3.0質量%含むことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 6,
The manufacturing method according to claim 1, wherein the first adhesive contains 0.3 to 3.0 mass% of fumed silica as the ultrafine inorganic filler.
請求項1ないし5から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤は、直径が20nm以上のカーボンナノチューブを0.04〜0.2質量%さらに含むことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 5,
The manufacturing method according to claim 1, wherein the second adhesive further includes 0.04 to 0.2% by mass of carbon nanotubes having a diameter of 20 nm or more.
請求項1ないし5から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤は、1液性エポキシ接着剤であって、
硬化剤としてジシアンジアミドを含み、硬化助剤として3−(3,4−ジクロルフェニル)−1,1−ジメチルウレアを含むことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 5,
The second adhesive is a one-component epoxy adhesive,
The process as described above, wherein dicyandiamide is contained as a curing agent and 3- (3,4-dichlorophenyl) -1,1-dimethylurea is contained as a curing aid.
請求項1ないし5から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤は、1液性エポキシ接着剤であって、
硬化剤としてジシアンジアミドを含み、硬化助剤として1、4−ジメチルピペラジンを含むことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 5,
The second adhesive is a one-component epoxy adhesive,
The said manufacturing method characterized by including dicyandiamide as a hardening | curing agent and 1, 4- dimethyl piperazine as a hardening adjuvant.
請求項1ないし5から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤は、1液性エポキシ接着剤であって、
硬化剤としてジシアンジアミドを含み、硬化助剤として2−フェニルイミダゾール又は2−メチルイミダゾールを含むことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 5,
The second adhesive is a one-component epoxy adhesive,
The said manufacturing method characterized by including dicyandiamide as a hardening | curing agent and containing 2-phenylimidazole or 2-methylimidazole as a hardening adjuvant.
請求項9ないし11から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤を120℃以下の温度で2時間以下の時間加熱することによって硬化させることを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to one of claims 9 to 11, comprising:
The said manufacturing method characterized by hardening the said 2nd adhesive agent by heating for 2 hours or less at the temperature of 120 degrees C or less.
請求項1ないし5から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤は、2液性エポキシ接着剤であることを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 5,
The manufacturing method according to claim 2, wherein the second adhesive is a two-component epoxy adhesive.
請求項13に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤は、硬化剤としてm−キシリレンジアミンを含むことを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 13,
The said manufacturing method characterized by the said 2nd adhesive agent containing m-xylylenediamine as a hardening | curing agent.
請求項13又は14に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記第2の接着剤を硬化させる際、加熱を行わずに放置することによって硬化させることを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 13 or 14,
When the second adhesive is cured, the second adhesive is cured by being left without being heated.
請求項1ないし5から選択される1項に記載した金属合金と繊維強化プラスチックの複合体の製造方法であって、
前記FRP硬化工程において、加熱によって硬化した繊維強化プラスチックを、再度、硬化に必要な温度以上の温度で加熱することを特徴とする前記製造方法。
A method for producing a composite of a metal alloy and a fiber reinforced plastic according to claim 1 selected from claims 1 to 5,
In the FRP curing step, the fiber-reinforced plastic cured by heating is heated again at a temperature equal to or higher than a temperature necessary for curing.
α−β型チタン合金の表面に、輪郭曲線要素の平均長さ(RSm)が0.8〜10μm、最大高さ(Rz)が0.2〜5μmであるミクロンオーダーの粗度を生じさせ、且つ、10μm角の面積内に円滑なドーム形状と湾曲した枯葉形状の双方が存在する微細凹凸を形成し、且つ、表層を、主としてチタン及びアルミニウムを含む金属酸化物の薄層とするための表面処理を行う表面処理工程と、
前記表面処理工程を経たα−β型チタン合金の表面に、粒径分布の中心が5〜20μmの無機充填材を少なくとも含む1液性エポキシ接着剤である第1の接着剤を塗布する第1の塗布工程と、
前記α−β型チタン合金に塗布した第1の接着剤を加熱して硬化させる第1の硬化工程と、
前記第1の硬化工程によってα−β型チタン合金表面上に形成された接着剤硬化物層を粗面化する接着剤硬化物層粗面化工程と、
エポキシ樹脂をマトリックス樹脂とする繊維強化プラスチックを加熱して硬化させるFRP硬化工程と、
前記FRP硬化工程によって硬化した繊維強化プラスチックの表面を粗面化するFRP粗面化工程と、
前記接着剤硬化物層粗面化工程後の接着剤硬化物層及び前記FRP粗面化工程後の繊維強化プラスチックの表面に、粒径分布の中心が5〜20μmの無機充填材を少なくとも含むエポキシ接着剤である第2の接着剤を塗布する第2の塗布工程と、
前記第2の接着剤を塗布したα−β型チタン合金及び繊維強化プラスチックについて、それぞれの第2の接着剤を塗布した範囲同士を密着させた状態で固定し、当該第2の接着剤を硬化させることで両者を一体化する第2の硬化工程と、
を含むことを特徴とする金属合金と繊維強化プラスチックの複合体の製造方法。
On the surface of the α-β type titanium alloy, an average length (RSm) of the contour curve element is 0.8 to 10 μm, and a maximum height (Rz) is 0.2 to 5 μm, and a roughness on the order of microns is generated. And a surface for forming fine irregularities in which both a smooth dome shape and a curved dead leaf shape exist within an area of 10 μm square, and the surface layer is a thin layer of a metal oxide mainly containing titanium and aluminum. A surface treatment process for performing the treatment;
A first adhesive which is a one-component epoxy adhesive containing at least an inorganic filler having a particle size distribution center of 5 to 20 μm is applied to the surface of the α-β type titanium alloy that has undergone the surface treatment step. Application process of
A first curing step of heating and curing the first adhesive applied to the α-β type titanium alloy;
An adhesive hardened material layer roughening step for roughening the adhesive hardened material layer formed on the α-β type titanium alloy surface by the first hardening step;
An FRP curing step of heating and curing a fiber reinforced plastic having an epoxy resin as a matrix resin;
An FRP roughening step of roughening the surface of the fiber reinforced plastic cured by the FRP curing step;
Epoxy containing at least an inorganic filler having a center of particle size distribution of 5 to 20 μm on the surface of the cured adhesive layer after the roughening step of the cured adhesive layer and the surface of the fiber reinforced plastic after the roughening step of FRP. A second application step of applying a second adhesive which is an adhesive;
The α-β type titanium alloy coated with the second adhesive and the fiber reinforced plastic are fixed in a state where the areas where the second adhesive is applied are in close contact with each other, and the second adhesive is cured. A second curing step that integrates both of them,
A method for producing a composite of a metal alloy and a fiber reinforced plastic, comprising:
JP2009110165A 2009-04-28 2009-04-28 Method for producing composite of metal alloy and fiber reinforced plastic Expired - Fee Related JP4906004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110165A JP4906004B2 (en) 2009-04-28 2009-04-28 Method for producing composite of metal alloy and fiber reinforced plastic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110165A JP4906004B2 (en) 2009-04-28 2009-04-28 Method for producing composite of metal alloy and fiber reinforced plastic

Publications (2)

Publication Number Publication Date
JP2010260174A true JP2010260174A (en) 2010-11-18
JP4906004B2 JP4906004B2 (en) 2012-03-28

Family

ID=43358684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110165A Expired - Fee Related JP4906004B2 (en) 2009-04-28 2009-04-28 Method for producing composite of metal alloy and fiber reinforced plastic

Country Status (1)

Country Link
JP (1) JP4906004B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013106881A1 (en) * 2012-01-20 2013-07-25 Voestalpine Stahl Gmbh Device and method for connecting lamination parts to form a lamination core
WO2013146900A1 (en) * 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member
US9484123B2 (en) 2011-09-16 2016-11-01 Prc-Desoto International, Inc. Conductive sealant compositions
EP3278963A4 (en) * 2015-03-31 2018-11-21 Mitsubishi Heavy Industries, Ltd. Structural body production method and structural body
KR20190101227A (en) * 2018-02-22 2019-08-30 한밭대학교 산학협력단 Method of joining metal and plastic using hot metal pressing
CN110234723A (en) * 2017-08-07 2019-09-13 拓自达电线株式会社 Conductive adhesive
EP3640485A1 (en) * 2018-10-19 2020-04-22 Airbus Operations GmbH System and method for connecting two components
CN112552830A (en) * 2020-11-27 2021-03-26 郑州大学 Processing method for improving performance of CFRP-steel plate bonding interface

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094419A (en) * 1983-10-28 1985-05-27 Mitsui Petrochem Ind Ltd Epoxy resin composition
JPH0494921A (en) * 1990-08-10 1992-03-27 Sumitomo Chem Co Ltd Shaft made of fiber reinforced resin for transmitting driving force and production thereof
WO2008078714A1 (en) * 2006-12-22 2008-07-03 Taisei Plas Co., Ltd. Metal/resin composite and process for producing the composite
WO2008081933A1 (en) * 2006-12-28 2008-07-10 Taisei Plas Co., Ltd. Metal/resin composite and process for producing the same
WO2008114669A1 (en) * 2007-03-12 2008-09-25 Taisei Plas Co., Ltd. Aluminum alloy composite and method of bonding therefor
WO2008133096A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Magnesium alloy compound material, and its manufacturing method
WO2008133030A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Titanium alloy compound material, and its jointing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6094419A (en) * 1983-10-28 1985-05-27 Mitsui Petrochem Ind Ltd Epoxy resin composition
JPH0494921A (en) * 1990-08-10 1992-03-27 Sumitomo Chem Co Ltd Shaft made of fiber reinforced resin for transmitting driving force and production thereof
WO2008078714A1 (en) * 2006-12-22 2008-07-03 Taisei Plas Co., Ltd. Metal/resin composite and process for producing the composite
WO2008081933A1 (en) * 2006-12-28 2008-07-10 Taisei Plas Co., Ltd. Metal/resin composite and process for producing the same
WO2008114669A1 (en) * 2007-03-12 2008-09-25 Taisei Plas Co., Ltd. Aluminum alloy composite and method of bonding therefor
WO2008133096A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Magnesium alloy compound material, and its manufacturing method
WO2008133030A1 (en) * 2007-04-13 2008-11-06 Taisei Plas Co., Ltd. Titanium alloy compound material, and its jointing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484123B2 (en) 2011-09-16 2016-11-01 Prc-Desoto International, Inc. Conductive sealant compositions
WO2013106881A1 (en) * 2012-01-20 2013-07-25 Voestalpine Stahl Gmbh Device and method for connecting lamination parts to form a lamination core
WO2013146900A1 (en) * 2012-03-29 2013-10-03 帝人株式会社 Method for manufacturing joint member, and joint member
JP5634641B2 (en) * 2012-03-29 2014-12-03 帝人株式会社 Method for manufacturing joining member and joining member
JPWO2013146900A1 (en) * 2012-03-29 2015-12-14 帝人株式会社 Method for manufacturing joining member and joining member
US9527230B2 (en) 2012-03-29 2016-12-27 Teijin Limited Method for manufacturing joint member and joint member
EP3278963A4 (en) * 2015-03-31 2018-11-21 Mitsubishi Heavy Industries, Ltd. Structural body production method and structural body
CN110234723A (en) * 2017-08-07 2019-09-13 拓自达电线株式会社 Conductive adhesive
KR20190101227A (en) * 2018-02-22 2019-08-30 한밭대학교 산학협력단 Method of joining metal and plastic using hot metal pressing
KR102109127B1 (en) 2018-02-22 2020-05-12 한밭대학교 산학협력단 Method of joining metal and plastic using hot metal pressing
EP3640485A1 (en) * 2018-10-19 2020-04-22 Airbus Operations GmbH System and method for connecting two components
CN112552830A (en) * 2020-11-27 2021-03-26 郑州大学 Processing method for improving performance of CFRP-steel plate bonding interface

Also Published As

Publication number Publication date
JP4906004B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4906004B2 (en) Method for producing composite of metal alloy and fiber reinforced plastic
JP5295741B2 (en) Composite of metal alloy and fiber reinforced plastic and method for producing the same
JP5191961B2 (en) One-component epoxy adhesive and bonding method
JP4965347B2 (en) Tubular composite and manufacturing method thereof
JP5139426B2 (en) Steel composite and manufacturing method thereof
JP5426932B2 (en) Composite of metal alloy and thermosetting resin and method for producing the same
JP5094849B2 (en) Stainless steel composite
JP5372469B2 (en) Metal alloy laminate
JP5129903B2 (en) Magnesium alloy composite and manufacturing method thereof
JP4903897B2 (en) Zinc-based plated steel sheet and adherend bonded body and method for producing the same
JP5554483B2 (en) Metal-resin composite and method for producing the same
JP5108904B2 (en) Composite of metal and polyamide resin composition and method for producing the same
JP4501861B2 (en) Titanium or titanium alloy, adhesive resin composition, prepreg and composite material
JP4903881B2 (en) Joined body of metal alloy and adherend and method for producing the same
WO2010082660A1 (en) Adhesive-bonded composite containing metal alloy, and process for production of same
JP4965649B2 (en) Copper alloy composite and manufacturing method thereof
JP2011073191A (en) Joined body of cfrp and adherend and method of manufacturing the same
JP5295738B2 (en) Adhesive composite containing metal alloy and method for producing the same
JP5302315B2 (en) Composite of metal alloy and polyamide resin composition and method for producing the same
JPWO2009078466A1 (en) Metal-resin composite and method for producing the same
JP5253315B2 (en) Solvent type epoxy adhesive and bonding method
JP2010269534A (en) Bonded composite containing metal, and method for manufacturing the same
JP2011148937A (en) Solvent-type epoxy adhesive and adhering method
JP2009061648A (en) Joint composite material including metal alloy and manufacturing method thereof
JP5714864B2 (en) CFRP prepreg and bonded material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees