JP2010259326A - Controlling device for pwm inverter - Google Patents

Controlling device for pwm inverter Download PDF

Info

Publication number
JP2010259326A
JP2010259326A JP2010180086A JP2010180086A JP2010259326A JP 2010259326 A JP2010259326 A JP 2010259326A JP 2010180086 A JP2010180086 A JP 2010180086A JP 2010180086 A JP2010180086 A JP 2010180086A JP 2010259326 A JP2010259326 A JP 2010259326A
Authority
JP
Japan
Prior art keywords
carrier frequency
frequency
pwm
carrier
calculation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010180086A
Other languages
Japanese (ja)
Other versions
JP5121895B2 (en
Inventor
Masahito Suzuki
鈴木  優人
Kiyoshi Terasawa
清 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010180086A priority Critical patent/JP5121895B2/en
Publication of JP2010259326A publication Critical patent/JP2010259326A/en
Application granted granted Critical
Publication of JP5121895B2 publication Critical patent/JP5121895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carrier diffusion controlling means in a railway car that prevents increased loss in the main circuit elements of an inverter device, minimizes element-loss estimation calculation errors, reduces noise caused by electromagnetic sound, and does not adversely affect current control at a low carrier frequency. <P>SOLUTION: A controlling device for a pulse-width modulation (PWM) inverter includes a vector control calculating section 121, a PWM control calculating section 122, a carrier frequency calculating section 123, and an element-loss estimation calculating section 124. The carrier frequency calculating section 123 includes a constant table configured by pieces of data selected discontinuously and irregularly such as that an average value of diffusion frequency ±ΔFc added to a base carrier frequency Fc0 is approximately 0. A means is provided to narrow the dispersion frequency ±ΔFc based on the carrier frequency when the base carrier frequency Fc0 is smaller than a predetermined value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、PWMインバータの制御装置に係り、特に、鉄道車両の起動時に発生する電磁騒音を、IGBT等の主回路素子の発熱を増加させずに低減する搬送波の周波数拡散方法に関する。   The present invention relates to a PWM inverter control device, and more particularly, to a carrier frequency spreading method for reducing electromagnetic noise generated at the start of a railway vehicle without increasing heat generation of a main circuit element such as an IGBT.

鉄道車両におけるPWMインバータの制御装置では、主回路素子の発熱の問題から搬送波(以下、キャリアと呼ぶ)の周波数を数100〜数kHz程度としてインバータ装置を駆動している。   In a control device for a PWM inverter in a railway vehicle, the inverter device is driven by setting the frequency of a carrier wave (hereinafter referred to as a carrier) to about several hundreds to several kHz due to the problem of heat generation of a main circuit element.

この周波数帯は人間の可聴周波数帯に含まれるため、車両が動き始めると転動音により掻き消されるが、特に車両の起動時には電動機などから発生する一定の電磁音が騒音となり不快感を与えている。   This frequency band is included in the human audible frequency band, so when the vehicle starts to move, it is wiped out by rolling noise. Especially when the vehicle starts up, certain electromagnetic noise generated from the electric motor becomes noise and gives unpleasant feeling. Yes.

このため、従来から、キャリア周波数を変調してホワイトノイズ化する、いわゆるキャリア拡散制御の研究が行われており、この一例として下記の方式が提案されている。   For this reason, research on so-called carrier diffusion control, in which carrier frequency is modulated to generate white noise, has been conventionally conducted, and the following method has been proposed as an example.

1つの記載の方式は、周波数fに対して1/fの関数で変調を加えることにより、人間が聞いた場合に不快感を与えないようにしている(例えば、特許文献1参照)。   In one described system, modulation is applied to the frequency f by a function of 1 / f so as not to cause discomfort when a human hears (see, for example, Patent Document 1).

他の方式は、電流制御周期を一定に保つようにキャリアの半周期を変調することにより、電磁音のホワイトノイズ化と電流制御を両立させるようにしている(例えば、特許文献2参照)。   In another method, the half-cycle of the carrier is modulated so as to keep the current control period constant, so that the white noise of the electromagnetic sound and the current control are compatible (for example, see Patent Document 2).

また、最近の鉄道車両では回生ブレーキを極低速度まで有効とする、いわゆる全電気ブレーキ停止制御が導入されつつある。この制御を導入するとインバータ周波数Fi≒0[Hz]付近まで回生ブレーキを動作させるため、主回路素子の発熱が問題となる。そこで、回生ブレーキ時に速度の低い領域ではキャリア周波数を小さくする制御が行われている。   Also, in recent railway vehicles, so-called all-electric brake stop control is being introduced that makes regenerative braking effective up to extremely low speeds. When this control is introduced, the regenerative brake is operated up to the vicinity of the inverter frequency Fi≈0 [Hz], so that heat generation of the main circuit element becomes a problem. Therefore, control is performed to reduce the carrier frequency in a region where the speed is low during regenerative braking.

特開平6−14557号公報JP-A-6-14557 特開2000−184729号公報JP 2000-184729 A

鉄道車両の制御装置では、IGBT等の主回路素子の発熱による破壊を防止するため、ソフトにより素子の温度を推定し、保護を行うための素子損失推定演算が行われている。この演算には、時々刻々変化する電圧、電流等のアナログ量の他にキャリア周波数も精度良く入力する必要がある。しかしながら、上記の従来技術ではキャリア周波数変調による低騒音化については述べられているが、所定範囲内での平均キャリア周波数の変動による素子損失推定演算誤差については考慮されていないため、発熱による保護のタイミングを誤り、素子破壊に至るおそれがある。   In a railway vehicle control device, in order to prevent destruction of a main circuit element such as an IGBT due to heat generation, an element loss estimation calculation for estimating the temperature of the element by software and performing protection is performed. In this calculation, it is necessary to input the carrier frequency with high accuracy in addition to analog quantities such as voltage and current that change every moment. However, in the above prior art, although the noise reduction by the carrier frequency modulation is described, since the element loss estimation calculation error due to the variation of the average carrier frequency within the predetermined range is not taken into consideration, the protection by the heat generation is not considered. There is a risk of incorrect timing and device destruction.

また、全電気ブレーキ停止制御時等のキャリア周波数が小さい状態でキャリア拡散制御を実行すると、キャリア周波数が更に小さくなるため、電流リップルが大きくなり、これによる誤差で全電気ブレーキ停止制御の制御精度が劣化する恐れがある。   Also, if carrier diffusion control is executed with a low carrier frequency, such as during all electric brake stop control, the carrier frequency will be further reduced, resulting in a large current ripple. There is a risk of deterioration.

本発明の目的は、インバータ装置の主回路素子の損失増加を防止するとともに、素子損失推定演算誤差を最小限にし、電磁音による騒音を低減するキャリア拡散制御手段を備えたPWMインバータの制御装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a PWM inverter control device provided with carrier diffusion control means for preventing an increase in loss of a main circuit element of an inverter device, minimizing an element loss estimation calculation error, and reducing noise due to electromagnetic noise. It is to provide.

上記目的を達成するため、本発明に係るPEMインバータの制御装置では、基本のキャリア周波数Fc0に加算する拡散周波数±ΔFcの平均値が≒0となるようにする。   In order to achieve the above object, in the control apparatus for a PEM inverter according to the present invention, the average value of the spreading frequencies ± ΔFc added to the basic carrier frequency Fc0 is set to approximately zero.

また、前記基本のキャリア周波数Fc0に加算する拡散周波数±ΔFcの平均値が≒0となるようにするものとしての定数テーブルのデータは電磁音に含まれる特定の成分を極力排除するため、不連続且つ不規則に選択したデータで構成した。   In addition, the constant table data as the average value of the diffusion frequency ± ΔFc added to the basic carrier frequency Fc0 is approximately zero so as to eliminate a specific component included in the electromagnetic sound as much as possible. And it was composed of randomly selected data.

本発明によれば、素子の損失増加を防止すると共に素子損失推定演算に用いるキャリア周波数を常に基本のキャリア周波数Fc0とすることできたため、演算誤差を最小限にすることができる。   According to the present invention, an increase in element loss can be prevented and the carrier frequency used for the element loss estimation calculation can always be set to the basic carrier frequency Fc0, so that the calculation error can be minimized.

また、本発明によれば、電磁音をホワイトノイズ化することができるため、低騒音化が図れる。   In addition, according to the present invention, electromagnetic noise can be made white noise, so that noise can be reduced.

本発明の実施形態を示す図。The figure which shows embodiment of this invention. 本発明の第一の実施例の構成を示す図。The figure which shows the structure of the 1st Example of this invention. 本発明の定数テーブルのデータ例を示す図。The figure which shows the example of data of the constant table of this invention. 本発明の第二の実施例の構成を示す図。The figure which shows the structure of the 2nd Example of this invention. 本発明の第二の実施例の適用例を示す図。The figure which shows the example of application of the 2nd Example of this invention.

以下、本発明の実施形態を、図面を用いて説明する。図1に本発明を適用した一般的な直流電車用PWMインバータ装置の構成を示す。架線の直流電力は、パンタグラフ1、高速度遮断器2、断流器3、および並列接続されたと断流器4抵抗器5とを介して、リアクトル6(以下、フィルタリアクトルと呼ぶ)とコンデンサ7(以下、フィルタコンデンサと呼ぶ)からなるフィルタ回路に入力され、このフィルタ回路で平滑化された直流電力がインバータ装置8に供給される。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a general PWM inverter device for a DC train to which the present invention is applied. The DC power of the overhead line is connected to a reactor 6 (hereinafter referred to as a filter reactor) and a capacitor 7 through a pantograph 1, a high-speed circuit breaker 2, a current breaker 3, and a current breaker 4 resistor 5 connected in parallel. DC power input to a filter circuit (hereinafter referred to as a filter capacitor) and smoothed by the filter circuit is supplied to the inverter device 8.

インバータ装置8は、インバータ制御装置12から出力されるPWM信号SPWMに基づいて前記直流電力を可変電圧、可変周波数の3相交流電力に変換し、誘導電動機10に供給する。   The inverter device 8 converts the DC power into variable voltage, variable frequency three-phase AC power based on the PWM signal SPWM output from the inverter control device 12, and supplies it to the induction motor 10.

CT9a,9b,9cは、インバータ装置8と誘導電動機10を接続する3相の配線にそれぞれ挿入され、誘導電動機10に流れる各相電流Iu、Iv、Iwを検出する。   CTs 9 a, 9 b, 9 c are respectively inserted into three-phase wirings connecting the inverter device 8 and the induction motor 10, and detect the respective phase currents Iu, Iv, Iw flowing through the induction motor 10.

速度信号発生器11は、誘導電動機10の回転軸に取り付けられ、回転数に応じた速度信号SPGを出力する。   The speed signal generator 11 is attached to the rotating shaft of the induction motor 10 and outputs a speed signal SPG corresponding to the number of rotations.

インバータ制御装置12は、前記フィルタコンデンサ7の電圧Ecfと電流検出器9a,9b,9cから出力される誘導電動機10の相電流Iu,Iv,Iwおよび速度信号発生器11の情報を取り込み、これに基づいて前記PWM信号SPWMを生成する。   The inverter control device 12 takes in the voltage Ecf of the filter capacitor 7 and the phase currents Iu, Iv, Iw of the induction motor 10 output from the current detectors 9a, 9b, 9c and the information of the speed signal generator 11 into this. Based on this, the PWM signal SPWM is generated.

以下、同図を用いて、本発明に関するインバータ制御装置12の概略構成について説明する。インバータ制御装置12は、ベクトル制御演算部121を中心にPWM制御演算部122、キャリア周波数演算部123、素子損失推定演算部124、および速度信号変換部125からなる。   Hereinafter, the schematic configuration of the inverter control device 12 according to the present invention will be described with reference to FIG. The inverter control device 12 includes a PWM control calculation unit 122, a carrier frequency calculation unit 123, an element loss estimation calculation unit 124, and a speed signal conversion unit 125 with a vector control calculation unit 121 as a center.

速度信号変換部125は、前記速度信号発生器11から出力された速度信号SPGを誘導電動機10のロータ周波数Frに変換する。鉄道車両における一般的な誘導電動機は4極モータであり、また、速度信号発生器は、誘導電動機のロータ1回転当り60パルスの信号を出力するため、速度信号SPGとロータ周波数Frの間には、下記(1)式の関係が成り立つ。   The speed signal converter 125 converts the speed signal SPG output from the speed signal generator 11 into the rotor frequency Fr of the induction motor 10. A general induction motor in a railway vehicle is a four-pole motor, and the speed signal generator outputs a signal of 60 pulses per rotation of the rotor of the induction motor. The relationship of the following formula (1) is established.

Figure 2010259326
Figure 2010259326

ベクトル制御演算部121は、アナログ信号で入力されるフィルタコンデンサ電圧Ecfおよび相電流Iu,Iv,Iwをアナログ/デジタル変換処理を介して取り込み、デジタル演算に都合の良い値に換算したフィルタコンデンサ電圧Ecfおよび相電流Iu,Iv,Iwと上記ロータ周波数Frを基に演算を実行し、インバータ周波数Fi、電圧指令Vcおよび偏角δを出力する。   The vector control calculation unit 121 takes in the filter capacitor voltage Ecf and the phase currents Iu, Iv, Iw inputted as analog signals through analog / digital conversion processing, and converts them into values convenient for digital calculation. The calculation is executed based on the phase currents Iu, Iv, Iw and the rotor frequency Fr, and the inverter frequency Fi, the voltage command Vc, and the deflection angle δ are output.

キャリア周波数演算部123は、後述のようにPWM信号SPWMを生成するための拡散制御されたキャリア周波数Fcを出力する。   The carrier frequency calculation unit 123 outputs a carrier frequency Fc subjected to spreading control for generating the PWM signal SPWM as will be described later.

PWM制御演算部122は、上記インバータ周波数Fi、電圧指令Vc、偏角δおよびキャリア周波数Fcを基に、所定の電圧と周波数の交流電力を発生するためのPWM信号SPWMを生成する。これにより、インバータ装置8を介して誘導電動機10が駆動される。   The PWM control calculation unit 122 generates a PWM signal SPWM for generating AC power having a predetermined voltage and frequency based on the inverter frequency Fi, the voltage command Vc, the deflection angle δ, and the carrier frequency Fc. Thereby, the induction motor 10 is driven via the inverter device 8.

素子損失推定演算部124は、ベクトル制御演算部121から出力されるフィルタコンデンサ電圧Ecfと相電流Iu,Iv,Iwおよびキャリア周波数Fcを基に主回路素子の損失を求め、これによる発熱が予め定めた値を超えると推定される場合は、まず、キャリア周波数演算部123に対してキャリア周波数低下信号SFCを出力し、更に危険と判断した場合はPWM制御演算部122に対してゲートストップ信号SGSを出力する。   The element loss estimation calculation unit 124 calculates the loss of the main circuit element based on the filter capacitor voltage Ecf output from the vector control calculation unit 121, the phase currents Iu, Iv, Iw, and the carrier frequency Fc, and the heat generation by this is determined in advance. When it is estimated that the value exceeds the first value, first, the carrier frequency lowering signal SFC is output to the carrier frequency calculating unit 123. Output.

次に、本発明のキャリア周波数演算部123について詳細に説明する。図2に本実施例のキャリア周波数演算部123の構成を示す。キャリア周波数演算部123は、定数1231と、定数1232と、定数1233と、スイッチ1234と、テーブル1235と、乗算器1236と、加算器1237とを有している。   Next, the carrier frequency calculation unit 123 of the present invention will be described in detail. FIG. 2 shows the configuration of the carrier frequency calculation unit 123 of this embodiment. The carrier frequency calculation unit 123 includes a constant 1231, a constant 1232, a constant 1233, a switch 1234, a table 1235, a multiplier 1236, and an adder 1237.

定数1231は通常走行時の電圧指令Vcに応じて変化するキャリア周波数パターンFcp、定数1232は発熱異常時の電圧指令Vcに応じて変化するキャリア周波数パターンFch、定数1233はキャリア周波数変動分ΔFcであり、予め設定した定数である。また、テーブル1235は−1.0〜+1.0の係数k1を出力するテーブルであり、キャリア周波数演算部123が起動される毎に係数k1は更新される。   The constant 1231 is a carrier frequency pattern Fcp that changes according to the voltage command Vc during normal running, the constant 1232 is the carrier frequency pattern Fch that changes according to the voltage command Vc when heat generation is abnormal, and the constant 1233 is the carrier frequency variation ΔFc. , A preset constant. The table 1235 is a table that outputs a coefficient k1 of −1.0 to +1.0, and the coefficient k1 is updated every time the carrier frequency calculation unit 123 is activated.

テーブル1235に格納されるテーブルデータの一例を図3に示す。テーブルデータは、不連続、かつ規則性の無い1024個のデータで構成されており、全データの平均値は≒0となるように選択される。これにより、テーブルデータが一巡したときのキャリア周波数Fcの平均値は≒Fc0となり、キャリア周波数を変動させることによる発熱の増加は、発生しない。   An example of table data stored in the table 1235 is shown in FIG. The table data is composed of 1024 pieces of data that are discontinuous and without regularity, and the average value of all data is selected to be ≈0. As a result, the average value of the carrier frequency Fc when the table data makes a round becomes ≈Fc0, and no increase in heat generated by changing the carrier frequency occurs.

以下、本キャリア周波数演算部123の動作を説明する。まず、通常走行時は、スイッチ1234により定数1231のキャリア周波数パターンFcpが選択され、電圧指令Vcに応じた基本キャリア周波数Fc0が出力される。一方、テーブル1235から求める係数k1と定数1233のキャリア周波数変動分ΔFcを乗算器1236で乗算して最終的なキャリア周波数変動分ΔFc’を求め、このキャリア周波数変動分ΔFc’と基本キャリア周波数Fc0を加算器1237により加算し、キャリア周波数Fcとして出力する。このキャリア周波数Fc算出手順を式で表すと、下記(2)式のようになる。   Hereinafter, the operation of the carrier frequency calculation unit 123 will be described. First, during normal driving, the carrier frequency pattern Fcp of the constant 1231 is selected by the switch 1234, and the basic carrier frequency Fc0 corresponding to the voltage command Vc is output. On the other hand, the coefficient k1 obtained from the table 1235 and the carrier frequency variation ΔFc of the constant 1233 are multiplied by the multiplier 1236 to obtain the final carrier frequency variation ΔFc ′, and the carrier frequency variation ΔFc ′ and the basic carrier frequency Fc0 are obtained. Addition is performed by the adder 1237 and output as the carrier frequency Fc. This carrier frequency Fc calculation procedure is expressed by the following equation (2).

Figure 2010259326
Figure 2010259326

次に、発熱異常時は、素子損失推定演算部124からキャリア周波数低下信号SFCが出力されるため、これに応じてスイッチ1234が切り替わり、定数1232のキャリア周波数パターンFchが選択され、上記と同様に電圧指令Vcに応じた基本キャリア周波数Fc0が出力される。以下の処理は上記通常走行時と同じである。ここで、キャリア周波数パターンFcp,Fchは通常Fcp≧Fchとなるように設定する。   Next, when the heat generation is abnormal, the carrier loss lowering signal SFC is output from the element loss estimation calculation unit 124, and accordingly, the switch 1234 is switched, and the carrier frequency pattern Fch of the constant 1232 is selected. A basic carrier frequency Fc0 corresponding to the voltage command Vc is output. The following processing is the same as that in the normal running. Here, the carrier frequency patterns Fcp and Fch are normally set to satisfy Fcp ≧ Fch.

このようにして得られたキャリア周波数Fcを基に生成されるPWM信号SPWMによりインバータ装置8を介して誘導電動機10が駆動される。   The induction motor 10 is driven via the inverter device 8 by the PWM signal SPWM generated based on the carrier frequency Fc thus obtained.

以上のように、本実施例によれば、キャリア周波数Fcの平均値が≒Fc0となるため、素子の損失増加を防止するとともに、素子損失推定演算の演算誤差を最小限にすることができ、さらに、電磁音をホワイトノイズ化することができるため、低騒音化も図れる。   As described above, according to the present embodiment, since the average value of the carrier frequency Fc becomes ≈Fc0, it is possible to prevent an increase in element loss and minimize an operation error in the element loss estimation calculation. Further, since the electromagnetic noise can be made white noise, noise can be reduced.

図4に本発明の他の実施例のキャリア周波数演算部123の構成を示す。図中図2と同じ記号は同意味のため説明を省略する。この実施例では、定数1238と、力行/回生判別処理1239と、処理123Aと、第2のスイッチ123Bと、第2の乗算器123Cを負荷した点に特徴を有している。   FIG. 4 shows the configuration of the carrier frequency calculation unit 123 according to another embodiment of the present invention. In the figure, the same symbols as those in FIG. This embodiment is characterized in that a constant 1238, a power running / regeneration determination process 1239, a process 123A, a second switch 123B, and a second multiplier 123C are loaded.

図4において、定数1238は電圧指令Vcに応じて変化する第三のキャリア周波数パターンFcbであり、予め設定した定数である。また、力行/回生判別処理1239は力行/回生判別処理であり、回生ブレーキ時に切替信号SBを出力する。処理123Aは基本キャリア周波数Fc0’がFc1からFc2の間で0.0から1.0に連続的に変化する係数k2を出力する演算を行う。   In FIG. 4, a constant 1238 is a third carrier frequency pattern Fcb that varies according to the voltage command Vc, and is a preset constant. The power running / regeneration determination process 1239 is a power running / regeneration determination process, and outputs a switching signal SB during regenerative braking. The process 123A performs an operation of outputting a coefficient k2 in which the basic carrier frequency Fc0 'continuously changes from 0.0 to 1.0 between Fc1 and Fc2.

以下、本キャリア周波数演算部123の動作を、図2と異なる部分について説明する。まず、力行時はスイッチ1234により基本キャリア周波数Fc0が選択され、電圧指令Vcに応じた最終的な基本キャリア周波数Fc0’が出力される。一方、最終的な基本キャリア周波数Fc0’に応じて処理123Aから求まる係数k2とテーブル1235から求まる係数k1を乗算器123Cで乗算して係数k3を求め、更に、この係数k3と定数1233のキャリア周波数変動分ΔFcを乗算器1236で乗算した最終的なキャリア周波数変動分ΔFc’を求める。このキャリア周波数変動分Fc’と基本キャリア周波数Fc0’を加算器1237により加算し、キャリア周波数Fcとして出力する。このキャリア周波数Fc算出手順を式で表すと、下記(3)式のようになる。   Hereinafter, the operation of the carrier frequency calculation unit 123 will be described with respect to parts different from those in FIG. First, at the time of power running, the basic carrier frequency Fc0 is selected by the switch 1234, and the final basic carrier frequency Fc0 'corresponding to the voltage command Vc is output. On the other hand, the coefficient k2 obtained from the processing 123A according to the final basic carrier frequency Fc0 ′ and the coefficient k1 obtained from the table 1235 are multiplied by the multiplier 123C to obtain the coefficient k3. Further, the coefficient k3 and the carrier frequency of the constant 1233 are obtained. A final carrier frequency variation ΔFc ′ obtained by multiplying the variation ΔFc by the multiplier 1236 is obtained. The carrier frequency variation Fc ′ and the basic carrier frequency Fc0 ′ are added by the adder 1237 and output as the carrier frequency Fc. This carrier frequency Fc calculation procedure is expressed by the following equation (3).

Figure 2010259326
Figure 2010259326

次に、回生ブレーキ時は力行/回生判別処理1239からブレーキ信号SBが出力されるため、これに応じてスイッチ123Bが切り替わり、定数1238のキャリア周波数パターンFcBが選択され、上記と同様に電圧指令Vcに応じた基本キャリア周波数Fc0’が出力される。以下の処理は上記力行時と同じである。ここで、キャリア周波数パターンFcp,Fch,Fcbは通常Fcp≧Fch≧Fcbとなるように設定する。   Next, since the brake signal SB is output from the power running / regeneration determination processing 1239 during regenerative braking, the switch 123B is switched accordingly, and the carrier frequency pattern FcB of the constant 1238 is selected, and the voltage command Vc is similar to the above. The basic carrier frequency Fc0 ′ corresponding to is output. The following processing is the same as in the above power running. Here, the carrier frequency patterns Fcp, Fch, Fcb are normally set so that Fcp ≧ Fch ≧ Fcb.

図5に本実施例を適用したキャリア周波数特性の一例を示す。同図はパルスモードを電圧指令Vcが0≧Vc≧Vc2の範囲はバイポーラ変調モード、Vc2<Vc<100%の範囲はキャリア周波数を最大値Fcmaxまで変化させる過変調モード、以降は1パルスモードで構成し、力行時のキャリア周波数パターンFcpとFchが等しく、回生ブレーキ時のキャリア周波数パターンFcbを電圧指令Vcが0%≦Vc≦Vc1の小さい範囲で徐々に低下させる場合である。   FIG. 5 shows an example of carrier frequency characteristics to which this embodiment is applied. The figure shows the pulse mode in the bipolar modulation mode when the voltage command Vc is 0 ≧ Vc ≧ Vc2, the overmodulation mode in which the carrier frequency is changed to the maximum value Fcmax in the range of Vc2 <Vc <100%, and the one pulse mode thereafter. In this case, the carrier frequency patterns Fcp and Fch at the time of power running are equal, and the carrier frequency pattern Fcb at the time of regenerative braking is gradually lowered in a range where the voltage command Vc is 0% ≦ Vc ≦ Vc1.

本実施例において、キャリア拡散制御は図示網掛け部の範囲で適用するため、回生ブレーキ時に基本キャリア周波数Fc0’がFc1まで低下しても電流制御精度に悪影響を与えることが無い。   In this embodiment, since carrier diffusion control is applied within the shaded area shown in the figure, even if the basic carrier frequency Fc0 'decreases to Fc1 during regenerative braking, current control accuracy is not adversely affected.

1 直流架線
2 高速遮断器
3,5 断流器
4 充電抵抗器
6 フィルタリアクトル
7 フィルタコンデンサ
8 インバータ装置
9a,9b,9c 電流検出器
10 誘導電動機
11 速度信号発生器
12 インバータ制御装置
121 ベクトル制御演算部
122 PWM制御演算部
123 キャリア周波数演算部
124 素子損失推定演算部
125 速度信号変換部
1231,1232,1238 キャリア周波数パターン定数
1233 キャリア周波数変動分定数
1234,123B スイッチ
1235 定数テーブル
1236,123C 乗算器
1237 加算器
1239 力行/回生判別処理
123A 係数k2演算処理
DESCRIPTION OF SYMBOLS 1 DC overhead wire 2 High-speed circuit breaker 3, 5 Current breaker 4 Charging resistor 6 Filter reactor 7 Filter capacitor 8 Inverter device 9a, 9b, 9c Current detector 10 Induction motor 11 Speed signal generator 12 Inverter control device 121 Vector control calculation Unit 122 PWM control calculation unit 123 carrier frequency calculation unit 124 element loss estimation calculation unit 125 speed signal conversion unit 1231, 1232, 1238 carrier frequency pattern constant 1233 carrier frequency fluctuation component constant 1234, 123B switch 1235 constant table 1236, 123C multiplier 1237 Adder 1239 Power running / regenerative discrimination process 123A Coefficient k2 calculation process

Claims (4)

変調波と搬送波に従ってPWMパルスを発生するPWMパルス発生手段を有し、誘導電動機を駆動するインバータ装置を前記PWMパルスにより制御するPWMインバータ制御装置において、
前記PWMパルス発生手段で使用する搬送波の基本周波数を拡散させるキャリア周波数拡散手段を備え、
該キャリア周波数拡散手段は、拡散させた搬送波の周波数の平均値が所定の範囲で≒前記基本周波数となるように搬送波の周波数を拡散することを特徴とするPWMインバータ制御装置。
In a PWM inverter control device having PWM pulse generation means for generating a PWM pulse according to a modulated wave and a carrier wave, and controlling an inverter device for driving an induction motor by the PWM pulse,
Carrier frequency spreading means for spreading the fundamental frequency of the carrier used in the PWM pulse generating means,
The carrier frequency spreading means spreads the frequency of the carrier wave so that the average value of the spread carrier wave frequency becomes the above-mentioned fundamental frequency within a predetermined range.
請求項1記載のPWMインバータ制御装置において、
前記キャリア周波数拡散手段は、不連続なデータからなる定数テーブルを基に、拡散周波数±ΔFcを発生し、前記定数テーブルの全データの平均値は≒0となる
ことを特徴とするPWMインバータ制御装置。
The PWM inverter control device according to claim 1,
The carrier frequency spreading means generates a spreading frequency ± ΔFc based on a constant table composed of discontinuous data, and an average value of all data in the constant table becomes ≈0. .
変調波と搬送波に従ってPWMパルスを発生するPWM発生手段を有し、誘導電動機を駆動するインバータ装置を前記PWMパルスにより制御するPWMインバータ制御装置において、
変調波と搬送波によってPWMパルスを発生するPWMパルス発生手段であるPWM制御演算部と、
前記PWM制御演算部で使用する搬送波の基本周波数Fc0を拡散させるキャリア周波数拡散手段であるキャリア周波数演算部と、
誘導電動機の相電流Iu,Iv,Iwおよび速度信号Frならびにインバータ装置の入力のフィルタコンデンサ電圧Efcに基づいてインバータの周波数Fi、電圧指令Vc、偏角δおよびフィルタコンデンサ電圧Efc、相電流Iu,Iv,Iwを演算するベクトル制御演算部と、
ベクトル制御演算部から出力されるフィルタコンデンサ電圧Efc、相電流Iu,Iv,Iwおよびキャリア周波数演算部から出力されるキャリア周波数Fcを基に主回路素子の損失を求め、発熱が予め定めた値を超えると推定される場合はキャリア周波数演算部に対してキャリア周波数低下信号SFCを出力し、さらに危険と判断した場合にはPWM制御演算部に対してゲートストップ信号SGSを出力する素子損失推定演算部と
を備え、
前記キャリア周波数拡散手段は、拡散させた搬送波の周波数の平均値が所定の範囲で≒前記基本周波数となるように搬送波の周波数を拡散することを特徴とするPWMインバータ制御装置。
In a PWM inverter control device having PWM generation means for generating a PWM pulse according to a modulated wave and a carrier wave, and controlling an inverter device for driving an induction motor by the PWM pulse,
A PWM control calculation unit which is a PWM pulse generating means for generating a PWM pulse by a modulated wave and a carrier wave;
A carrier frequency calculation unit that is a carrier frequency spreading unit that spreads a fundamental frequency Fc0 of a carrier used in the PWM control calculation unit;
Based on the phase currents Iu, Iv, Iw of the induction motor, the speed signal Fr and the filter capacitor voltage Efc of the input of the inverter device, the frequency Fi of the inverter, the voltage command Vc, the deflection angle δ and the filter capacitor voltage Efc, the phase currents Iu, Iv , Iw, a vector control calculation unit,
The loss of the main circuit element is obtained based on the filter capacitor voltage Efc output from the vector control calculation unit, the phase currents Iu, Iv, and Iw and the carrier frequency Fc output from the carrier frequency calculation unit, and the heat generation is set to a predetermined value. When it is estimated that it exceeds, the carrier frequency lowering signal SFC is output to the carrier frequency calculating unit, and when it is determined to be dangerous, the gate loss signal SGS is output to the PWM control calculating unit. And
The PWM inverter control device, wherein the carrier frequency spreading means spreads the frequency of the carrier so that the average value of the spread carrier frequency is approximately the fundamental frequency within a predetermined range.
請求項3記載のPWMインバータ制御装置において、
前記キャリア周波数拡散手段は、不連続なデータからなる定数テーブルを基に、拡散周波数±ΔFcを発生し、前記定数テーブルの全データの平均値は≒0となる
ことを特徴とするPWMインバータ制御装置。
In the PWM inverter control device according to claim 3,
The carrier frequency spreading means generates a spreading frequency ± ΔFc based on a constant table composed of discontinuous data, and an average value of all data in the constant table becomes ≈0. .
JP2010180086A 2010-08-11 2010-08-11 PWM inverter control device Active JP5121895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010180086A JP5121895B2 (en) 2010-08-11 2010-08-11 PWM inverter control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010180086A JP5121895B2 (en) 2010-08-11 2010-08-11 PWM inverter control device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004365854A Division JP4974457B2 (en) 2004-12-17 2004-12-17 PWM inverter control device

Publications (2)

Publication Number Publication Date
JP2010259326A true JP2010259326A (en) 2010-11-11
JP5121895B2 JP5121895B2 (en) 2013-01-16

Family

ID=43319568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010180086A Active JP5121895B2 (en) 2010-08-11 2010-08-11 PWM inverter control device

Country Status (1)

Country Link
JP (1) JP5121895B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046459A1 (en) * 2011-09-30 2013-04-04 三菱電機株式会社 Main electric motor for railway vehicle
JP2014017911A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Power conversion device
EP2779401A2 (en) 2013-03-15 2014-09-17 Hitachi, Ltd. DC Power Supply

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6384398B2 (en) 2015-05-13 2018-09-05 株式会社デンソー Rotating electrical machine control system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133872A (en) * 1986-11-21 1988-06-06 Toshiba Corp Controller for inverter
JPH0265672A (en) * 1988-08-29 1990-03-06 Toyota Motor Corp Inverter control method
JPH04295271A (en) * 1991-03-20 1992-10-20 Fujitsu Ltd Dc chopper device
JPH05284755A (en) * 1992-03-31 1993-10-29 Mitsubishi Electric Corp Controller for inverter
JPH0614557A (en) * 1992-06-23 1994-01-21 Toyo Electric Mfg Co Ltd Modulation system for pwm inverter
JPH0947026A (en) * 1995-07-25 1997-02-14 Mitsubishi Electric Corp Pwm waveform generator
JPH11155297A (en) * 1997-11-21 1999-06-08 Mitsubishi Electric Corp Motor driving device
JP2000184731A (en) * 1998-12-18 2000-06-30 Meidensha Corp Power converter
JP2000184729A (en) * 1998-12-17 2000-06-30 Meidensha Corp Method for modulating pwm inverter
JP2001157303A (en) * 1999-11-25 2001-06-08 Hitachi Ltd Control system of power converter for car
WO2004082114A1 (en) * 2003-03-12 2004-09-23 Mitsubishi Denki Kabushiki Kaisha Motor controller

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133872A (en) * 1986-11-21 1988-06-06 Toshiba Corp Controller for inverter
JPH0265672A (en) * 1988-08-29 1990-03-06 Toyota Motor Corp Inverter control method
JPH04295271A (en) * 1991-03-20 1992-10-20 Fujitsu Ltd Dc chopper device
JPH05284755A (en) * 1992-03-31 1993-10-29 Mitsubishi Electric Corp Controller for inverter
JPH0614557A (en) * 1992-06-23 1994-01-21 Toyo Electric Mfg Co Ltd Modulation system for pwm inverter
JPH0947026A (en) * 1995-07-25 1997-02-14 Mitsubishi Electric Corp Pwm waveform generator
JPH11155297A (en) * 1997-11-21 1999-06-08 Mitsubishi Electric Corp Motor driving device
JP2000184729A (en) * 1998-12-17 2000-06-30 Meidensha Corp Method for modulating pwm inverter
JP2000184731A (en) * 1998-12-18 2000-06-30 Meidensha Corp Power converter
JP2001157303A (en) * 1999-11-25 2001-06-08 Hitachi Ltd Control system of power converter for car
WO2004082114A1 (en) * 2003-03-12 2004-09-23 Mitsubishi Denki Kabushiki Kaisha Motor controller

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046459A1 (en) * 2011-09-30 2013-04-04 三菱電機株式会社 Main electric motor for railway vehicle
CN103828195A (en) * 2011-09-30 2014-05-28 三菱电机株式会社 Main electric motor for railway vehicle
KR20140068223A (en) * 2011-09-30 2014-06-05 미쓰비시덴키 가부시키가이샤 Main electric motor for railway vehicle
US20140319952A1 (en) * 2011-09-30 2014-10-30 Mitsubishi Electric Corporation Main motor for railway vehicle
JPWO2013046459A1 (en) * 2011-09-30 2015-03-26 三菱電機株式会社 Main motor for railway vehicles
AU2011377670B2 (en) * 2011-09-30 2015-07-02 Mitsubishi Electric Corporation Main electric motor for railway vehicle
KR101616657B1 (en) 2011-09-30 2016-04-28 미쓰비시덴키 가부시키가이샤 Main electric motor for railway vehicle
EP2763287B1 (en) 2011-09-30 2018-01-10 Mitsubishi Electric Corporation Main electric motor for railway vehicle
US10367388B2 (en) 2011-09-30 2019-07-30 Mitsubishi Electric Corporation Main motor for railway vehicle
JP2014017911A (en) * 2012-07-06 2014-01-30 Hitachi Ltd Power conversion device
EP2779401A2 (en) 2013-03-15 2014-09-17 Hitachi, Ltd. DC Power Supply

Also Published As

Publication number Publication date
JP5121895B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
EP2343800B1 (en) Control device and control method for ac motor
JP4819970B2 (en) Electric motor drive power converter
EP2194643B1 (en) Controller for electric motor
US7595600B2 (en) Method and system for torque control in permanent magnet machines
EP1695862B1 (en) Battery vehicle and method of controlling the same
JP3867270B2 (en) Electric vehicle control device
JP4657215B2 (en) AC rotating machine control device and AC rotating machine control method
US20160079900A1 (en) Motor control device
JP4974457B2 (en) PWM inverter control device
JP5121895B2 (en) PWM inverter control device
JP5025818B2 (en) Electric motor drive power converter
JP2010246207A (en) Controller for alternating-current motor
JP5734138B2 (en) Motor control device, motor drive system, and motor control method
JP2008086082A (en) Controller of permanent magnet motor
JP2012065481A (en) Pwm inverter control device and railroad vehicle provided with pwm inverter control device
JP2009273302A (en) Controller for electric motor
JP6169924B2 (en) Induction motor type electric vehicle and control method thereof
JP2004088974A (en) Electric car control device
JP6838469B2 (en) Drive device
CN112567620B (en) Inverter device
JP2013090400A (en) Rotating electrical machine control system
JP4977739B2 (en) Electric vehicle power converter
JP5705677B2 (en) Rotating electrical machine control system
JP2003339199A (en) Speed sensorless vector control inverter
WO2024101080A1 (en) Motor control device and electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121023

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5121895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150