JP2010258598A - Optical space transmission system - Google Patents

Optical space transmission system Download PDF

Info

Publication number
JP2010258598A
JP2010258598A JP2009104226A JP2009104226A JP2010258598A JP 2010258598 A JP2010258598 A JP 2010258598A JP 2009104226 A JP2009104226 A JP 2009104226A JP 2009104226 A JP2009104226 A JP 2009104226A JP 2010258598 A JP2010258598 A JP 2010258598A
Authority
JP
Japan
Prior art keywords
light
mirror
optical
communication device
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009104226A
Other languages
Japanese (ja)
Other versions
JP5255508B2 (en
Inventor
Yuichi Miyamoto
祐一 宮本
Mitsuhiro Ito
充啓 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2009104226A priority Critical patent/JP5255508B2/en
Publication of JP2010258598A publication Critical patent/JP2010258598A/en
Application granted granted Critical
Publication of JP5255508B2 publication Critical patent/JP5255508B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To always enable polarization separation of transmitting light and receiving light. <P>SOLUTION: The optical space transmission system 1 includes spatial optical communication devices 2 and 3 each having: a laser diode 22 for generating transmitting light A; a photodetector 20 for receiving light B; a polarization beam splitter 17 for reflecting either the transmitting light A at a predetermined polarization angle or the receiving light B at a polarization angle perpendicular to the polarization angle of the transmitting light A; a rotatable mirror 5 configured so as to reflect the transmitting light A to output it and reflect the receiving light B for incident; a photodetector 12 for position detection for detecting the incident position of the receiving light B; and a mirror driving control part 11 for rotatably driving the mirror 5 on the basis of the incident position of the receiving light B. The optical space transmission system 1 performs transmission and reception using the spatial optical communication devices 2 and 3 as a pair, wherein the elevation angle of the mirror 5 of the spatial optical communication device 2 is set opposite to the that of a mirror 7 of the spatial optical communication device 3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光空間伝送システムに関するものである。   The present invention relates to an optical space transmission system.

共通の光軸をもち双方向通信が可能な光空間通信装置において、送信光と受信光とを分離するための手法として、例えば特許文献1のような偏光分離方式がある。特許文献1に記載の光空間通信装置では、偏光ビームスプリッタを用いることにより、レーザダイオードから送出されるレーザ光(送信光)の偏光角度が、相手装置から受信するレーザ光(受信光)の偏光角度と略直交するように調整される。また、この装置は、位置検出用光検出器上の受信光の検出位置に基づいて、追尾用ミラーを方位角及び仰角の2方向に制御することで、レーザ光の追尾を行う。   In an optical space communication device having a common optical axis and capable of two-way communication, for example, there is a polarization separation method as described in Patent Document 1 as a method for separating transmitted light and received light. In the optical space communication device described in Patent Document 1, by using a polarization beam splitter, the polarization angle of the laser light (transmitted light) transmitted from the laser diode is the polarization of the laser light (received light) received from the counterpart device. It is adjusted so as to be substantially orthogonal to the angle. Further, this apparatus performs tracking of the laser light by controlling the tracking mirror in two directions of azimuth and elevation based on the detection position of the received light on the position detection photodetector.

また、このような偏光分離型の光空間通信装置において、送信(受信)光学系の前段にλ/2波長板を配置し、この波長板を回転させることにより送信光と受信光の偏光状態を直交させ、送受信光を完全分離することが特許文献2に記載されている。   Also, in such a polarization separation type optical space communication device, a λ / 2 wave plate is arranged in front of the transmission (reception) optical system, and the polarization state of the transmission light and the reception light is changed by rotating the wave plate. Patent Document 2 describes that transmission and reception light are completely separated by making them orthogonal.

特開平5−133716号公報JP-A-5-133716 特許第2522379号公報Japanese Patent No. 2522379

ここで、特許文献1に記載の光通信装置2つを一対とした光空間伝送システムにおいて、固定基地局と移動局とに光通信装置をそれぞれ設置した場合に、移動局が移動している際にも光通信装置間で双方向通信を行うことができるのが好ましい。   Here, in the optical space transmission system in which two optical communication devices described in Patent Document 1 are paired, when the optical communication device is installed in each of the fixed base station and the mobile station, the mobile station is moving. In addition, it is preferable that bidirectional communication can be performed between optical communication apparatuses.

しかしながら、特許文献1に記載の装置では、移動局側の光通信装置の移動に追従して追尾用ミラーを方位角方向に広範囲で回転させた場合、追尾用ミラーの回転に伴って送信光及び受信光の偏光角度が逆方向に変化してしまうため、送信光の偏光角度と受信光の偏光角度とを略直交に維持することができなくなる。これにより、送受信光の偏光分離が完全ではなくなってしまい、ノイズ及び送受信光のレベルが低下して通信に影響を与えるという問題があった。   However, in the device described in Patent Document 1, when the tracking mirror is rotated in a wide range in the azimuth direction following the movement of the optical communication device on the mobile station side, the transmission light and the tracking mirror are rotated along with the rotation of the tracking mirror. Since the polarization angle of the received light changes in the opposite direction, it becomes impossible to maintain the polarization angle of the transmitted light and the polarization angle of the received light substantially orthogonal. As a result, the polarization separation of the transmitted / received light is not perfect, and there is a problem that the noise and the level of the transmitted / received light are lowered to affect the communication.

また、特許文献2に記載の装置では、随時、波長板を回転制御する必要があるため、λ/2波長板を制御するための機構が必要となり、装置が大型化してしまう。   Further, in the apparatus described in Patent Document 2, since it is necessary to control the rotation of the wave plate at any time, a mechanism for controlling the λ / 2 wave plate is required, and the apparatus becomes large.

本発明は、上記課題を解決するためになされたものであり、常に送信光及び受信光の偏光分離が可能な光空間伝送システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical space transmission system capable of always separating the polarization of transmitted light and received light.

本発明者らは、鋭意努力を重ねた結果、送信光の偏光角度と受信光の偏光角度との間には、光空間伝送システムが含む一対の空間光通信装置のそれぞれの追尾用ミラーの方位角を同じ方向に回転させた場合であっても、光送受信部に対する光学ミラーの仰角の方向が互いに一致する場合、向かい合う光の偏光角度は空間で逆方向に回転する関係があることを見出した。   As a result of intensive efforts, the present inventors have found that between the polarization angle of the transmitted light and the polarization angle of the received light, the orientation of each tracking mirror of the pair of spatial optical communication devices included in the optical spatial transmission system Even when the angles are rotated in the same direction, when the directions of the elevation angles of the optical mirrors with respect to the optical transmitter / receiver coincide with each other, it has been found that the polarization angle of the facing light has a relationship of rotating in the opposite direction in space. .

すなわち、本発明に係る光空間伝送システムは、情報信号で変調された送信光を発生させる光源と、変調された受信光を受信する検出器と、光源から発生した送信光のうち所定の偏光角度を有する光、及び検出器へ受信される受信光のうち送信光の偏光角度と直交する偏光角度を有する光のいずれか一方を反射し、他方を透過する偏光ビームスプリッタと、偏光ビームスプリッタから射出された送信光を反射して出力すると共に、入力された受信光を反射して偏光ビームスプリッタに入射するよう構成された、回転可能なミラーと、受信光の入射する位置を検出する位置検出器と、位置検出器により検出された信号から取得された位置情報に基づいてミラーを回転駆動する駆動手段と、をそれぞれ有する第1及び第2の空間光通信装置を備え、第1の空間光通信装置と第2の空間光通信装置とを1対として送受信を行うと共に、第1の空間光通信装置のミラーの仰角と、第2の空間光通信装置のミラーの仰角とが逆向きとなるよう構成されたことを特徴とする。   That is, an optical space transmission system according to the present invention includes a light source that generates transmission light modulated by an information signal, a detector that receives the modulated reception light, and a predetermined polarization angle among transmission light generated from the light source. And a polarized beam splitter that reflects one of the received light received by the detector and the light having a polarization angle orthogonal to the polarization angle of the transmitted light and transmits the other, and exits from the polarized beam splitter A rotatable mirror configured to reflect and output the received transmitted light and reflect the received received light to be incident on the polarization beam splitter, and a position detector that detects a position where the received light is incident And first and second spatial light communication devices each having drive means for rotationally driving the mirror based on position information acquired from the signal detected by the position detector. The first spatial light communication device and the second spatial light communication device perform transmission / reception as a pair, the elevation angle of the mirror of the first spatial light communication device, and the elevation angle of the mirror of the second spatial light communication device Is configured to be reversed.

このような光空間伝送システムによれば、第1の空間光通信装置のミラーの仰角と、第2の空間光通信装置のミラーの仰角とが逆向きとなるよう配置される。このため、追尾動作における第1及び第2の空間光通信装置のミラーの方位角回転方向は逆方向となり、送信光及び受信光の偏光角度が同じ方向に回転する。この結果、送信光の偏光角度と受信光の偏光角度とを常に略直交に維持することができるようになり、常に送信光及び受信光の偏光分離が可能となる。   According to such an optical space transmission system, the elevation angle of the mirror of the first spatial optical communication device and the elevation angle of the mirror of the second spatial optical communication device are arranged in opposite directions. For this reason, the azimuth rotation directions of the mirrors of the first and second spatial light communication devices in the tracking operation are reversed, and the polarization angles of the transmission light and the reception light rotate in the same direction. As a result, the polarization angle of the transmission light and the polarization angle of the reception light can always be maintained substantially orthogonal, and the transmission light and the reception light can always be separated from each other.

また、光空間伝送システムは、位置検出器により取得された受信光の位置情報をミラーの方位角に応じて補正演算する信号処理手段をさらに有し、駆動手段が、信号処理手段により補正演算された位置情報に基づいてミラーを回転駆動することが好適である。これにより、ミラーの方位角による受信光の位置情報の変化を補正した上でミラーの回転駆動を行うことができるので、ミラーによる受信光の追尾動作の精度が向上する。   The optical space transmission system further includes signal processing means for correcting the position information of the received light acquired by the position detector according to the azimuth angle of the mirror, and the driving means is corrected by the signal processing means. It is preferable to rotate the mirror based on the positional information. As a result, the mirror can be driven to rotate after correcting the change in position information of the received light due to the azimuth angle of the mirror, so that the accuracy of the tracking operation of the received light by the mirror is improved.

同様に、光空間伝送システムは、ミラーの方位角に応じて偏光ビームスプリッタと位置検出器との間の受信光の光軸上に配置された光像回転素子を用いて、受信光が位置検出器へ入射する位置を補正する補正手段をさらに有することが好適である。これにより、ミラーの方位角による影響を受けることなく位置検出器が受信光の入射位置を検出できるため、ミラーによる受信光の追尾動作の精度が向上する。   Similarly, an optical space transmission system detects the position of received light using an optical image rotation element arranged on the optical axis of the received light between the polarization beam splitter and the position detector according to the azimuth angle of the mirror. It is preferable to further have a correcting means for correcting the position incident on the device. As a result, the position detector can detect the incident position of the received light without being affected by the azimuth angle of the mirror, so that the accuracy of the tracking operation of the received light by the mirror is improved.

同様に、光空間伝送システムは、ミラーが、受信光の一部を透過させる透過部を有し、位置検出器が、ミラーの透過部を透過した受信光の一部を検出するよう配置されると共に、駆動手段によりミラーと共に回転可能に配置されることが好適である。これにより、ミラーの方位角による影響を受けることなく位置検出器が受信光の入射位置を検出できるため、ミラーによる受信光の追尾動作の精度が向上する。   Similarly, in the optical space transmission system, the mirror has a transmission part that transmits a part of the reception light, and the position detector is arranged to detect a part of the reception light transmitted through the transmission part of the mirror. At the same time, it is preferable that the driving means is disposed so as to be rotatable together with the mirror. As a result, the position detector can detect the incident position of the received light without being affected by the azimuth angle of the mirror, so that the accuracy of the tracking operation of the received light by the mirror is improved.

本発明の光空間伝送システムによれば、常に送信光及び受信光の偏光分離が可能となる。   According to the optical space transmission system of the present invention, transmission light and reception light can always be polarized and separated.

本発明の第1実施形態に係る光空間伝送システムの全体構成を示す図である。1 is a diagram showing an overall configuration of an optical space transmission system according to a first embodiment of the present invention. 図1中の空間光通信装置の構成を示す図である。It is a figure which shows the structure of the space optical communication apparatus in FIG. 移動局に設置された空間光通信装置が移動する際の送信光及び受信光の偏光角度の変化を装置上方から示す概略図である。It is the schematic which shows the change of the polarization angle of the transmitted light and the received light when the spatial optical communication apparatus installed in the mobile station moves from the apparatus upper direction. 位置検出用光検出器にCCD、PSDなど多画素の光検出器を用いた場合の受信光の検出位置を直交座標で表した図である。It is the figure which represented the detection position of the received light at the time of using the photodetector of many pixels, such as CCD and PSD, for a position detection photodetector with a rectangular coordinate. 位置検出用光検出器にCCD、PSDなど多画素の光検出器を用いた場合の受信光の検出位置を極座標で表した図である。It is the figure which represented the detection position of the received light by a polar coordinate at the time of using the photodetector of many pixels, such as CCD and PSD, for the photodetector for position detection. 位置検出用光検出器に4分割フォトダイオードを用い、追尾用ミラーの方位角が初期角度にある場合の、4分割フォトダイオード上にビームスポットが結像された様子を示す概略図である。It is the schematic which shows a mode that the beam spot was imaged on the 4-part dividing photodiode when a 4-part dividing photodiode is used for the photodetector for position detection, and the azimuth angle of a tracking mirror exists in an initial angle. 位置検出用光検出器に4分割フォトダイオードを用い、追尾用ミラーの方位角が角度θ分変化した場合のビームスポットのエネルギー成分の配置を示す概略図である。It is the schematic which shows arrangement | positioning of the energy component of a beam spot when a quadrant photodiode is used for the photodetector for position detection, and the azimuth angle of a tracking mirror changes by angle (theta). 第2実施形態における空間光通信装置の構成を示す図である。It is a figure which shows the structure of the space optical communication apparatus in 2nd Embodiment. ビームスプリッタから位置検出用光検出器までの構成を詳細に示す図である。It is a figure which shows the structure from a beam splitter to the photodetector for position detection in detail. 第3実施形態における空間光通信装置の構成を示す図である。It is a figure which shows the structure of the spatial optical communication apparatus in 3rd Embodiment.

以下、本発明による光空間伝送システムの好適な実施形態について図面を参照しながら説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。図1は、本発明の第1実施形態に係る光空間伝送システム1の全体構成を示す図である。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an optical space transmission system according to the invention will be described with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted. FIG. 1 is a diagram showing an overall configuration of an optical space transmission system 1 according to the first embodiment of the present invention.

光空間伝送システム1は、一対の空間光通信装置2,3の間で双方向の送受信を行うものである。一対の空間光通信装置2,3は、例えば一方が固定基地局に設置され、他方が移動局に設置されて利用される。図1では空間光通信装置(第1の空間光通信装置)2が固定基地局側に設置され、空間光通信装置(第2の空間光通信装置)3が移動局側に設置されている。空間光通信装置2は、内部に送受信のための光学系が配置された光無線モジュール4と、相手局からの光ビームに対して、光無線モジュール4の光学系が追尾可能なように方位角及び仰角の2方向に制御可能な追尾用ミラー5とを備えている。空間光通信装置3も、空間光通信装置2と同様の構成をとる光無線モジュール6及び追尾用ミラー7を備えている。   The optical space transmission system 1 performs bidirectional transmission / reception between a pair of space optical communication apparatuses 2 and 3. For example, one of the pair of space optical communication apparatuses 2 and 3 is installed in a fixed base station and the other is installed in a mobile station. In FIG. 1, a spatial optical communication device (first spatial optical communication device) 2 is installed on the fixed base station side, and a spatial optical communication device (second spatial optical communication device) 3 is installed on the mobile station side. The spatial optical communication device 2 includes an optical wireless module 4 in which an optical system for transmission / reception is arranged, and an azimuth angle so that the optical system of the optical wireless module 4 can track the light beam from the counterpart station. And a tracking mirror 5 that can be controlled in two directions of elevation. The spatial optical communication device 3 also includes an optical wireless module 6 and a tracking mirror 7 that have the same configuration as the spatial optical communication device 2.

特に本実施形態においては、空間光通信装置2の光無線モジュール4及び追尾用ミラー5の位置関係と、空間光通信装置3の光無線モジュール6及び追尾用ミラー7の位置関係とが、互いに上下逆になるように配置されている。すなわち、図1に示すように固定基地局側の空間光通信装置2が光無線モジュール4の上方に追尾用ミラー5を配置する場合には、移動局側の空間光通信装置3は、光無線モジュール6の下方に追尾用ミラー7が配置される。そして、空間光通信装置2,3は、追尾用ミラー5,7の間に共通の光軸をもち、双方向通信を行うことができるように、追尾用ミラー5,7の仰角が逆向きとなるよう構成されている。   In particular, in the present embodiment, the positional relationship between the optical wireless module 4 and the tracking mirror 5 of the spatial optical communication device 2 and the positional relationship between the optical wireless module 6 and the tracking mirror 7 of the spatial optical communication device 3 are mutually up and down. They are arranged to be reversed. That is, as shown in FIG. 1, when the spatial optical communication device 2 on the fixed base station side arranges the tracking mirror 5 above the optical wireless module 4, the spatial optical communication device 3 on the mobile station side A tracking mirror 7 is disposed below the module 6. The spatial light communication devices 2 and 3 have a common optical axis between the tracking mirrors 5 and 7, and the elevation angles of the tracking mirrors 5 and 7 are opposite so that bidirectional communication can be performed. It is comprised so that it may become.

図2は、空間光通信装置2の構成を示す図である。図2に示すように、本実施形態では、追尾用ミラー5の方位角とは、光無線モジュール4の軸線まわりの回転角のことをいい、仰角とは、光無線モジュール4の軸線と直交する面と追尾用ミラー5とのなす角のことをいう。追尾用ミラー5は、相手局(空間光通信装置3)からの光ビームに対して、光無線モジュール4の光学系が追尾可能なように、ミラー駆動制御部(駆動手段)11によって方位角及び仰角の2方向を自動的に調整可能とされている。追尾用ミラー5の追尾動作は、まず、位置検出用光検出器(位置検出器)12によって検出された信号から取得される、相手局からの光ビームの検出位置に関する情報を、角度検出部13によって検出された信号から取得される追尾用ミラー5の方位角に関する情報に基づいて信号処理部(信号処理手段)14が補正演算し、この補正演算された位置情報を用いて、ミラー駆動制御部11が追尾用ミラー5を駆動制御することでなされる。なお、信号処理部14における信号処理の詳細については後述する。   FIG. 2 is a diagram illustrating a configuration of the spatial light communication device 2. As shown in FIG. 2, in the present embodiment, the azimuth angle of the tracking mirror 5 refers to a rotation angle around the axis of the optical wireless module 4, and the elevation angle is orthogonal to the axis of the optical wireless module 4. This is the angle between the surface and the tracking mirror 5. The tracking mirror 5 is adjusted by the mirror drive control unit (drive means) 11 so that the optical system of the optical wireless module 4 can track the light beam from the partner station (spatial optical communication device 3). Two directions of elevation can be automatically adjusted. In the tracking operation of the tracking mirror 5, first, information on the detection position of the light beam from the counterpart station, which is obtained from the signal detected by the position detection photodetector (position detector) 12, is detected by the angle detection unit 13. The signal processing unit (signal processing means) 14 performs a correction calculation based on information on the azimuth angle of the tracking mirror 5 acquired from the signal detected by the mirror, and the mirror drive control unit uses the position information calculated by the correction. 11 is performed by driving and controlling the tracking mirror 5. Details of the signal processing in the signal processing unit 14 will be described later.

光無線モジュール4の送信機能としての光学系は、投受光用光学レンズ15、ビームエクスパンダ部16,偏光ビームスプリッタ17、レーザダイオード(光源)22からの光を集光する光学レンズ23から構成される。レーザダイオード22は、図示しない送受信回路からの送信信号で変調され偏光された(図1の例では垂直方向に偏光された)光を発生する。光学レンズ23によって集光され、ほぼ平行にされた光ビームは、偏光ビームスプリッタ17によって反射され、ビームエクスパンダ部16で大口径ビームに変換され、投受光用光学レンズ15を経て追尾用ミラー5へ反射されて、送信光Aとして相手局の空間光通信装置3に送信される。   The optical system as a transmission function of the optical wireless module 4 includes a light projecting / receiving optical lens 15, a beam expander unit 16, a polarization beam splitter 17, and an optical lens 23 that collects light from a laser diode (light source) 22. The The laser diode 22 generates light that is modulated and polarized by a transmission signal from a transmission / reception circuit (not shown) (polarized light in the vertical direction in the example of FIG. 1). The light beam condensed by the optical lens 23 and made almost parallel is reflected by the polarization beam splitter 17, converted into a large aperture beam by the beam expander unit 16, and passes through the light projecting / receiving optical lens 15 to follow the tracking mirror 5. And transmitted to the spatial optical communication device 3 of the counterpart station as transmission light A.

光無線モジュール4の受信機能としての光学系は、投受光用光学レンズ15、ビームエクスパンダ部16、偏光ビームスプリッタ17、ビームスプリッタ18、光学レンズ19から構成される。対向して設置された相手局の空間光通信装置3からは送信光Aとは偏光角度が約90度異なるレーザ光が、受信光Bとして受信される。追尾用ミラー5によって反射され、投受光用光学レンズ15を経てビームエクスパンダ部16で小口径ビームとなった受信光Bは、偏光ビームスプリッタ17、ビームスプリッタ18を透過して、光学レンズ19によって光検出器(検出器)20に集光される。そして、光検出器20からの受信信号は、図示しない送受信回路に送られる。受信光Bのうちの一部は、ビームスプリッタ18で反射されて光学レンズ21によって、位置検出用光検出器12に集光される。位置検出用光検出器12は、例えば、CCD、PSD、4分割フォトダイオード等のセンサによって構成され、集光された受信光Bの位置信号を、信号処理部14を介してミラー駆動制御部11に送信することで、投受光用光学レンズ15の光軸が受信光Bの光路中心に一致するように、追尾用ミラー5の前記追尾動作がなされる。   The optical system as a reception function of the optical wireless module 4 includes a light projecting / receiving optical lens 15, a beam expander unit 16, a polarization beam splitter 17, a beam splitter 18, and an optical lens 19. A laser beam having a polarization angle different from that of the transmission light A by about 90 degrees is received as the reception light B from the spatial light communication device 3 of the partner station that is installed facing. The received light B reflected by the tracking mirror 5, passing through the light projecting / receiving optical lens 15 and becoming a small aperture beam at the beam expander unit 16 is transmitted through the polarization beam splitter 17 and the beam splitter 18, and is transmitted by the optical lens 19. The light is collected on a photodetector (detector) 20. The received signal from the photodetector 20 is sent to a transmission / reception circuit (not shown). A part of the received light B is reflected by the beam splitter 18 and condensed on the position detection photodetector 12 by the optical lens 21. The position detection photodetector 12 includes, for example, a sensor such as a CCD, a PSD, or a four-division photodiode, and the position signal of the collected reception light B is sent to the mirror drive control unit 11 via the signal processing unit 14. , The tracking operation of the tracking mirror 5 is performed so that the optical axis of the light projecting / receiving optical lens 15 coincides with the optical path center of the received light B.

なお、空間光通信装置3の構成は、光源であるレーザダイオード22から発生する光(上述の受信光B)の偏光角度が空間光通信装置2のものと略直交する(図1の例では水平方向に偏光される)点以外は、図2に示した空間光通信装置2のものと同様である。また、空間光通信装置3は、光無線モジュール6と追尾用ミラー7の配置は、空間光通信装置2の光無線モジュール4と追尾用ミラー5の配置と逆になっている。   The configuration of the spatial light communication device 3 is such that the polarization angle of the light (the above-described received light B) generated from the laser diode 22 as the light source is substantially orthogonal to that of the spatial light communication device 2 (in the example of FIG. Except for the point that is polarized in the direction), it is the same as that of the spatial optical communication apparatus 2 shown in FIG. In the spatial optical communication device 3, the arrangement of the optical wireless module 6 and the tracking mirror 7 is opposite to the arrangement of the optical wireless module 4 and the tracking mirror 5 of the spatial optical communication device 2.

このように構成された光空間伝送システム1では、移動局に設置された空間光通信装置3が例えば図1に示す矢印30の方向へ移動している場合、送信光A及び受信光Bの偏光角度は図3に示すように変化する。図3は、移動局に設置された空間光通信装置3が移動する際の送信光A及び受信光Bの偏光角度の変化を装置上方から示す概略図である。   In the optical space transmission system 1 configured as described above, when the space optical communication device 3 installed in the mobile station is moving in the direction of the arrow 30 shown in FIG. The angle varies as shown in FIG. FIG. 3 is a schematic diagram showing changes in the polarization angles of the transmission light A and the reception light B when the spatial optical communication device 3 installed in the mobile station moves, from above the device.

図3に示すように、空間光通信装置3が左方に移動すると、空間光通信装置2の追尾用ミラー5は、方位角を空間光通信装置3の移動方向に追尾するよう反時計周りに回転する。このとき光無線モジュール4の方位角は変わらないため、空間光通信装置2から出力される送信光Aの偏光角度は、追尾用ミラー5の回転角度に応じて垂直方向から時計周りに回転する。   As shown in FIG. 3, when the spatial optical communication device 3 moves to the left, the tracking mirror 5 of the spatial optical communication device 2 counterclockwise so as to track the azimuth angle in the moving direction of the spatial optical communication device 3. Rotate. At this time, since the azimuth angle of the optical wireless module 4 does not change, the polarization angle of the transmission light A output from the spatial optical communication device 2 rotates clockwise from the vertical direction according to the rotation angle of the tracking mirror 5.

これに対し、空間光通信装置3では、追尾用ミラー7が、追尾用ミラー5と同様に、方位角を空間光通信装置2の方向に追尾するよう反時計周りに回転するものの、追尾用ミラー7の仰角が追尾用ミラー5のものと逆方向であるため、空間光通信装置3から出力される送信光(受信光B)の偏光角度も送信光Aの逆方向に回転する。つまり、受信光Bは、空間光通信装置3側から見て水平方向から反時計周りに回転する。   On the other hand, in the spatial light communication device 3, the tracking mirror 7 rotates counterclockwise so as to track the azimuth angle in the direction of the spatial light communication device 2, as with the tracking mirror 5. 7 is in the opposite direction to that of the tracking mirror 5, the polarization angle of the transmitted light (received light B) output from the spatial light communication device 3 is also rotated in the opposite direction of the transmitted light A. That is, the received light B rotates counterclockwise from the horizontal direction when viewed from the spatial light communication device 3 side.

したがって、送信光A及び受信光Bは、図3の符号31で示すように、空間では同じ方向に偏光角度が回転することになる。例えば移動局として電車を考え、固定基地局が駅などに設置される状況など、移動局の進行方向が固定基地局に対してほぼ一定である場合には、送受信光の偏光回転角度は一致する。   Accordingly, the transmission light A and the reception light B have their polarization angles rotated in the same direction in space, as indicated by reference numeral 31 in FIG. For example, when a train is considered as a mobile station and the traveling direction of the mobile station is almost constant with respect to the fixed base station, such as when a fixed base station is installed at a station, the polarization rotation angles of the transmitted and received light coincide with each other. .

このような光空間伝送システム1によれば、空間光通信装置2の追尾用ミラー5の仰角と、空間光通信装置3の追尾用ミラー7の仰角とが逆向きとなるよう配置される。このため、追尾動作における追尾用ミラー5,7の方位角回転方向は逆方向となり、送信光A及び受信光Bの偏光角度が同じ方向に回転する。この結果、送信光Aの偏光角度と受信光Bの偏光角度とを常に略直交に維持することができるようになり、常に送信光A及び受信光Bの偏光分離が可能となる。   According to such an optical space transmission system 1, the elevation angle of the tracking mirror 5 of the spatial light communication device 2 and the elevation angle of the tracking mirror 7 of the spatial light communication device 3 are arranged in opposite directions. For this reason, the azimuth rotation direction of the tracking mirrors 5 and 7 in the tracking operation is reversed, and the polarization angles of the transmission light A and the reception light B rotate in the same direction. As a result, the polarization angle of the transmission light A and the polarization angle of the reception light B can always be maintained substantially orthogonal, and the transmission light A and the reception light B can always be separated from each other.

次に、図4〜図7を参照して、信号処理部14における信号処理について説明する。本実施形態において、追尾用ミラー5,7の方位角が変化することは光無線モジュール4,6内にある位置検出用光検出器12上に結像された像が回転することと等しい。つまり検出されるビームスポットの位置が示す追尾目標からの偏差量はその時の追尾用ミラー5,7の方位角によって方向が変化する。そこで、追尾用ミラー5,7の方位角方向の変化に依らず、常に正しい方向へ追尾制御できることが望ましい。信号処理部14は、このために位置検出用光検出器12により取得された受信光の位置情報の偏差を補正する機能である。   Next, the signal processing in the signal processing unit 14 will be described with reference to FIGS. In the present embodiment, the change in the azimuth angle of the tracking mirrors 5 and 7 is equivalent to the rotation of the image formed on the position detection photodetector 12 in the optical wireless modules 4 and 6. That is, the direction of the deviation amount from the tracking target indicated by the position of the detected beam spot changes depending on the azimuth angle of the tracking mirrors 5 and 7 at that time. Therefore, it is desirable that the tracking control can always be performed in the correct direction regardless of the change in the azimuth direction of the tracking mirrors 5 and 7. The signal processing unit 14 has a function of correcting the positional information deviation of the received light acquired by the position detection photodetector 12 for this purpose.

信号処理部14における信号処理は、位置検出用光検出器12に(a)CCD、PSDなど多画素の光検出器を用いた場合、(b)4分割フォトダイオードを用いた場合によって具体的な処理が異なる。   The signal processing in the signal processing unit 14 is performed in a specific manner depending on whether (a) a multi-pixel photodetector such as a CCD or PSD is used for the position detection photodetector 12, or (b) a quadrant photodiode is used. Processing is different.

まず、図4、5を参照して、位置検出用光検出器12にCCD、PSDなど多画素の光検出器を用いた場合の処理について説明する。   First, with reference to FIGS. 4 and 5, processing when a multi-pixel photodetector such as a CCD or PSD is used as the position detection photodetector 12 will be described.

CCDのような多画素の光検出器やPSDのような光位置検出器ではそのスポットの位置を図4のように直交座標上の位置として決定できる。   In a multi-pixel photodetector such as a CCD or an optical position detector such as a PSD, the spot position can be determined as a position on orthogonal coordinates as shown in FIG.

次に、直交座標で表される座標を極座標へと変換すれば図5のように表わされる。ここで追尾用ミラー5,7の回転中心軸と制御目標が座標の原点に一致するものとし、位置検出用光検出器12の上に仮定した縦軸と原点および座標点を結ぶ直線とのなす角をθとする。   Next, if the coordinates represented by the orthogonal coordinates are converted into polar coordinates, they are represented as shown in FIG. Here, it is assumed that the rotation center axis of the tracking mirrors 5 and 7 and the control target coincide with the origin of the coordinates, and the vertical axis assumed on the position detection photodetector 12 is a straight line connecting the origin and the coordinate points. Let the angle be θ.

このとき、追尾用ミラー5,7の初期角からの方位角変化量をγとすれば、追尾用ミラー5,7の方位角に依らない偏差量を決定するためには追尾用ミラー5,7の方位角が変化した後に位置検出用光検出器12から得られる座標を極座標に変換し、角度成分にγを加算すればよい。即ち、計算の流れとしては
(1)位置検出用光検出器12から直交座標[x,y]を得る
(2)直交座標[x,y]を極座標[ρsinθ,ρcosθ]に変換する。
(3)角度検出部13から得たミラーの方位角γを角度成分に加算する
(4)極座標[ρsin(θ+γ),ρcos(θ+γ)]を直交座標[X,Y]に変換する
(5)上記(4)で決定した座標の偏差を元に追尾用ミラー5,7の制御をおこなう
となる。
At this time, if the amount of azimuth change from the initial angle of the tracking mirrors 5 and 7 is γ, the tracking mirrors 5 and 7 After the azimuth angle changes, the coordinates obtained from the position detection photodetector 12 are converted into polar coordinates and γ is added to the angle component. That is, as a calculation flow, (1) obtaining orthogonal coordinates [x, y] from the position detection photodetector 12 (2) converting the orthogonal coordinates [x, y] into polar coordinates [ρsinθ, ρcosθ].
(3) Add the mirror azimuth angle γ obtained from the angle detector 13 to the angle component. (4) Convert polar coordinates [ρsin (θ + γ), ρcos (θ + γ)] to Cartesian coordinates [X, Y]. (5) The tracking mirrors 5 and 7 are controlled based on the coordinate deviation determined in (4) above.

次に、図6,7を参照して、位置検出用光検出器12に4分割フォトダイオードを用いた場合の処理について説明する。   Next, with reference to FIGS. 6 and 7, processing when a quadrant photodiode is used for the position detection photodetector 12 will be described.

4分割フォトダイオード上にビームスポットが結像された様子を図6に示す。ここでは理解しやすいようにビームスポットの大きさを拡大し、かつ中心を検出器の中央部に一致させている。   FIG. 6 shows a state in which the beam spot is imaged on the quadrant photodiode. Here, the size of the beam spot is enlarged for easy understanding, and the center is made to coincide with the center of the detector.

追尾用ミラーが初期角度にあるときそれぞれの画素a,b,c,dで検出されるビームスポットのエネルギー成分をそれぞれA,B,C,Dとする。この各エネルギー成分A,B,C,Dは追尾用ミラー5,7を制御するために用いられる制御信号に等しい。   When the tracking mirror is at the initial angle, the energy components of the beam spots detected by the respective pixels a, b, c, and d are A, B, C, and D, respectively. Each energy component A, B, C, D is equal to a control signal used to control the tracking mirrors 5, 7.

このとき追尾動作により追尾用ミラー5,7の方位角が角度θ分変化すると各エネルギー成分の配置は図7のようになる。   At this time, when the azimuth angle of the tracking mirrors 5 and 7 is changed by the angle θ by the tracking operation, the arrangement of the energy components is as shown in FIG.

図7を参考に各制御信号A,B,C,Dを求めると、
(1)0°≦θ<90°では
計算を簡単にするために代入用の変数γを仮定する。
γ=θとし

Figure 2010258598
When the control signals A, B, C, and D are obtained with reference to FIG.
(1) For 0 ° ≦ θ <90 °, a substitution variable γ is assumed to simplify the calculation.
γ = θ
Figure 2010258598

(2)90°≦θ<180°では
γ=θ−90とし

Figure 2010258598
(2) When 90 ° ≦ θ <180 °, γ = θ−90
Figure 2010258598

(3)180°≦θ<270°では
γ=θ−180とし

Figure 2010258598
(3) When 180 ° ≦ θ <270 °, γ = θ−180
Figure 2010258598

(4)270°≦θ<360°では
γ=θ−270とし

Figure 2010258598

と表せる。 (4) When 270 ° ≦ θ <360 °, γ = θ−270
Figure 2010258598

It can be expressed.

これにより得られる各成分A,B,C,Dから制御信号を求めることで、追尾用ミラー5,7の方位角による受信光の位置情報の変化量(偏差)を補正した上で追尾用ミラーの回転駆動を行うことができるので、追尾用ミラーによる受信光の追尾動作の精度を向上させることが可能となる。   By obtaining a control signal from the components A, B, C, and D thus obtained, the amount of change (deviation) in the positional information of the received light due to the azimuth angle of the tracking mirrors 5 and 7 is corrected, and then the tracking mirror Therefore, the accuracy of the tracking operation of the received light by the tracking mirror can be improved.

次に、図8,9を参照して、本発明の第2実施形態について説明する。図8は、第2実施形態における空間光通信装置2aの構成を示す図である。本実施形態の空間光通信装置2aは、信号処理部14を備えない点、及び、ビームスプリッタ18と位置検出用光検出器12との間に、例えばイメージローテータプリズムなどの光像回転素子24aを用いた補正手段24を備える点で、第1実施形態の空間光通信装置2と相違する。   Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a diagram illustrating a configuration of the spatial light communication device 2a according to the second embodiment. The spatial optical communication device 2a of the present embodiment includes an optical image rotation element 24a such as an image rotator prism between the beam splitter 18 and the position detection photodetector 12 in that the signal processing unit 14 is not provided. It differs from the spatial light communication apparatus 2 of the first embodiment in that the correction means 24 used is provided.

図9は、図8中のビームスプリッタ18から位置検出用光検出器12までの構成を詳細に示す図である。図9に示すように、本実施形態では、位置検出用光検出器12より前の光軸上に補正手段24を配置し、角度検出部13により検出された追尾用ミラー5の回転角度に合わせて、補正手段24のイメージローテータプリズム(ダブプリズム)24aの光軸方向を中心に回転させることにより、受信光が位置検出用光検出器12に入射する位置を光学的に補正する。ただし、イメージローテータプリズム24aによる像の回転角度はプリズム24aの回転角度に対して2倍となるため、追尾用ミラー5の方位角変化に対して半分の角度で制御する必要がある。   FIG. 9 is a diagram showing in detail the configuration from the beam splitter 18 to the position detection photodetector 12 in FIG. As shown in FIG. 9, in the present embodiment, the correction means 24 is arranged on the optical axis before the position detection photodetector 12, and is matched with the rotation angle of the tracking mirror 5 detected by the angle detection unit 13. Thus, the position where the received light enters the position detection photodetector 12 is optically corrected by rotating the image rotator prism (dub prism) 24a of the correction means 24 around the optical axis direction. However, since the rotation angle of the image by the image rotator prism 24a is twice the rotation angle of the prism 24a, it is necessary to control the rotation angle at half of the change in the azimuth angle of the tracking mirror 5.

このような構成により、追尾用ミラー5の方位角により影響を受けることなく、位置検出用光検出器12が受信光の入射位置を検出できるため、追尾用ミラーによる受信光の追尾動作の精度を向上させることが可能となる。   With such a configuration, the position detection photodetector 12 can detect the incident position of the received light without being affected by the azimuth angle of the tracking mirror 5, so that the accuracy of the tracking operation of the received light by the tracking mirror is improved. It becomes possible to improve.

次に、図10を参照して、本発明の第3実施形態について説明する。図10は、第3実施形態における空間光通信装置2bの構成を示す図である。本実施形態の空間光通信装置2bは、信号処理部14及び角度検出部13を備えない点、並びに、光学レンズ21及び位置検出用光検出器12が光無線モジュール4ではなく追尾用ミラー5に設けられる点で、第1実施形態の空間光通信装置2と相違する。   Next, a third embodiment of the present invention will be described with reference to FIG. FIG. 10 is a diagram illustrating a configuration of the spatial light communication device 2b according to the third embodiment. The spatial optical communication device 2b of the present embodiment does not include the signal processing unit 14 and the angle detection unit 13, and the optical lens 21 and the position detection photodetector 12 are not included in the optical wireless module 4 but in the tracking mirror 5. It differs from the spatial optical communication apparatus 2 of the first embodiment in that it is provided.

図10に示すように、本実施形態では、追尾用ミラー5の一部に開口又は部分透過ミラーである透過部5aが設けられ、受信光の一部がこの透過部5aを透過するよう構成される。そして、光学レンズ21及び位置検出用光検出器12が、透過部5aを透過した受信光を検出するように追尾用ミラー5の裏側に配置される。これにより、追尾用ミラー5の方位角により影響を受けることなく、位置検出用光検出器12が受信光の入射位置を検出できるため、追尾用ミラーによる受信光の追尾動作の精度を向上させることが可能となる。   As shown in FIG. 10, in this embodiment, a part of the tracking mirror 5 is provided with a transmission part 5a that is an opening or a partial transmission mirror, and a part of the received light is configured to pass through the transmission part 5a. The Then, the optical lens 21 and the position detection light detector 12 are arranged on the back side of the tracking mirror 5 so as to detect the received light transmitted through the transmission part 5a. Thereby, since the position detection photodetector 12 can detect the incident position of the received light without being affected by the azimuth angle of the tracking mirror 5, the accuracy of the received light tracking operation by the tracking mirror can be improved. Is possible.

以上、本発明に係る光空間伝送システムについて好適な実施形態を挙げて説明したが、本発明は上記実施形態に限られるものではない。例えば、上記実施形態では、偏光ビームスプリッタ12が送信光を反射し、受信光を透過していたが、これとは逆に送信光を透過し、受信光を反射してもよい。この場合、図2に示す光無線モジュール4の送信機能及び受信機能の配置も逆になる。   The optical space transmission system according to the present invention has been described with reference to the preferred embodiment, but the present invention is not limited to the above embodiment. For example, in the above embodiment, the polarizing beam splitter 12 reflects the transmission light and transmits the reception light. However, conversely, the transmission light may be transmitted and the reception light may be reflected. In this case, the arrangement of the transmission function and the reception function of the optical wireless module 4 shown in FIG. 2 is also reversed.

また、上記実施形態では、光無線モジュール4,6と追尾用ミラー5,7との位置関係は上下方向だったが、両者の相対的な位置関係さえ保持されていれば他の方向としてもよい。   In the above embodiment, the positional relationship between the optical wireless modules 4 and 6 and the tracking mirrors 5 and 7 is the vertical direction. However, as long as the relative positional relationship between the two is maintained, the other direction may be used. .

1…光空間伝送システム、2,2a,2b…空間光通信装置(第1の空間光通信装置)、3…空間光通信装置(第2の空間光通信装置)、4,6…光無線モジュール、5,7…追尾用ミラー、5a…透過部、11…ミラー駆動制御部(駆動手段)、12…位置検出用光検出器(位置検出器)、13…角度検出部、14…信号処理部(信号処理手段)、17…偏光ビームスプリッタ、20…光検出器(検出器)、22…レーザダイオード(光源)、24…補正手段、24a…イメージローテータプリズム(光像回転素子)、A…送信光、B…受信光。   DESCRIPTION OF SYMBOLS 1 ... Optical space transmission system, 2, 2a, 2b ... Spatial optical communication apparatus (1st spatial optical communication apparatus), 3 ... Spatial optical communication apparatus (2nd spatial optical communication apparatus), 4, 6 ... Optical wireless module 5, 7 ... Tracking mirror, 5a ... Transmission unit, 11 ... Mirror drive control unit (drive means), 12 ... Position detection photodetector (position detector), 13 ... Angle detection unit, 14 ... Signal processing unit (Signal processing means), 17 ... Polarizing beam splitter, 20 ... Photo detector (detector), 22 ... Laser diode (light source), 24 ... Correction means, 24a ... Image rotator prism (optical image rotating element), A ... Transmission Light, B ... Received light.

Claims (4)

情報信号で変調された送信光を発生させる光源と、
変調された受信光を受信する検出器と、
前記光源から発生した送信光のうち所定の偏光角度を有する光、及び前記検出器へ受信される受信光のうち前記送信光の偏光角度と直交する偏光角度を有する光のいずれか一方を反射し、他方を透過する偏光ビームスプリッタと、
前記偏光ビームスプリッタから射出された送信光を反射して出力すると共に、入力された受信光を反射して偏光ビームスプリッタに入射するよう構成された、回転可能なミラーと、
前記受信光の入射する位置を検出する位置検出器と、
前記位置検出器により検出された信号から取得された前記受信光の位置情報に基づいて前記ミラーを回転駆動する駆動手段と、をそれぞれ有する第1及び第2の空間光通信装置を備え、
前記第1の空間光通信装置と前記第2の空間光通信装置とを1対として送受信を行うと共に、
前記第1の空間光通信装置の前記ミラーの仰角と、前記第2の空間光通信装置の前記ミラーの仰角とが逆向きとなるよう構成されたことを特徴とする光空間伝送システム。
A light source that generates transmission light modulated by an information signal;
A detector for receiving the modulated received light;
Reflects either one of the transmitted light generated from the light source having a predetermined polarization angle and one of the received light received by the detector and having a polarization angle orthogonal to the polarization angle of the transmitted light. A polarizing beam splitter that transmits the other,
A rotatable mirror configured to reflect and output transmission light emitted from the polarization beam splitter, and to reflect input reception light and enter the polarization beam splitter;
A position detector for detecting a position where the received light is incident;
A first and a second spatial light communication device each having driving means for rotationally driving the mirror based on position information of the received light acquired from a signal detected by the position detector;
The first spatial optical communication device and the second spatial optical communication device perform transmission and reception as a pair,
An optical space transmission system configured such that an elevation angle of the mirror of the first spatial light communication device is opposite to an elevation angle of the mirror of the second spatial light communication device.
前記位置検出器により取得された前記受信光の位置情報を前記ミラーの方位角に応じて補正演算する信号処理手段をさらに有し、
前記駆動手段が、前記信号処理手段により補正演算された前記位置情報に基づいて前記ミラーを回転駆動することを特徴とする、請求項1に記載の光空間伝送システム。
Signal processing means for correcting the position information of the received light acquired by the position detector according to the azimuth angle of the mirror;
2. The optical space transmission system according to claim 1, wherein the driving unit rotationally drives the mirror based on the position information corrected and calculated by the signal processing unit.
前記ミラーの方位角に応じて前記偏光ビームスプリッタと前記位置検出器との間の前記受信光の光軸上に配置された光像回転素子を用いて、前記受信光が前記位置検出器へ入射する位置を補正する補正手段をさらに有することを特徴とする、請求項1に記載の光空間伝送システム。   The received light is incident on the position detector by using an optical image rotation element arranged on the optical axis of the received light between the polarization beam splitter and the position detector according to the azimuth angle of the mirror. The optical space transmission system according to claim 1, further comprising correction means for correcting the position to be corrected. 前記ミラーが、前記受信光の一部を透過させる透過部を有し、
前記位置検出器が、前記ミラーの透過部を透過した受信光の一部を検出するよう配置されると共に、前記駆動手段により前記ミラーと共に回転可能に配置されることを特徴とする、請求項1に記載の光空間伝送システム。
The mirror has a transmission part that transmits a part of the received light,
2. The position detector is disposed so as to detect a part of received light transmitted through a transmission part of the mirror, and is disposed rotatably with the mirror by the driving means. The optical space transmission system described in 1.
JP2009104226A 2009-04-22 2009-04-22 Optical space transmission system Expired - Fee Related JP5255508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009104226A JP5255508B2 (en) 2009-04-22 2009-04-22 Optical space transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009104226A JP5255508B2 (en) 2009-04-22 2009-04-22 Optical space transmission system

Publications (2)

Publication Number Publication Date
JP2010258598A true JP2010258598A (en) 2010-11-11
JP5255508B2 JP5255508B2 (en) 2013-08-07

Family

ID=43319055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009104226A Expired - Fee Related JP5255508B2 (en) 2009-04-22 2009-04-22 Optical space transmission system

Country Status (1)

Country Link
JP (1) JP5255508B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198234A (en) * 1989-01-26 1990-08-06 Nec Corp Space light transmitter
JPH05133716A (en) * 1991-11-13 1993-05-28 Canon Inc Bi-directional spatial optical communication device
JP2004312390A (en) * 2003-04-07 2004-11-04 Victor Co Of Japan Ltd Optical wireless transmission apparatus, optical axis alignment method of optical wireless transmission apparatus, optical wireless communication method, and optical wireless transmission system
JP2005175968A (en) * 2003-12-11 2005-06-30 Canon Inc Optical space transmitter and optical space communication system
JP2006060863A (en) * 2005-10-14 2006-03-02 Victor Co Of Japan Ltd Optical radio communication apparatus, optical axis adjusting method for optical radio communication apparatus, optical radio communication method, and optical radio communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02198234A (en) * 1989-01-26 1990-08-06 Nec Corp Space light transmitter
JP2522379B2 (en) * 1989-01-26 1996-08-07 日本電気株式会社 Space optical transmission device
JPH05133716A (en) * 1991-11-13 1993-05-28 Canon Inc Bi-directional spatial optical communication device
JP2004312390A (en) * 2003-04-07 2004-11-04 Victor Co Of Japan Ltd Optical wireless transmission apparatus, optical axis alignment method of optical wireless transmission apparatus, optical wireless communication method, and optical wireless transmission system
JP2005175968A (en) * 2003-12-11 2005-06-30 Canon Inc Optical space transmitter and optical space communication system
JP2006060863A (en) * 2005-10-14 2006-03-02 Victor Co Of Japan Ltd Optical radio communication apparatus, optical axis adjusting method for optical radio communication apparatus, optical radio communication method, and optical radio communication system

Also Published As

Publication number Publication date
JP5255508B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP2009504110A (en) Acquisition, indication, and tracking architecture for laser communications
CN110579872B (en) Tracking and aiming system and adjusting method
US7920794B1 (en) Free space optical communication
CN106767543B (en) A kind of hot spot alignment methods based on 4 quadrant detector
WO2010068240A1 (en) Gimbaled system with optical coudé path and method transferring data
US11916593B2 (en) Point ahead offset angle for free space optical nodes
US11909439B2 (en) Wavefront sensor with inner detector and outer detector
JP2004015135A (en) Optical space communication unit having direction regulating function
US9450670B1 (en) Position sensor for a fast steering mirror
WO2015178173A1 (en) Optical spatial communication device
JP5599365B2 (en) Acquisition and tracking device
JP5255508B2 (en) Optical space transmission system
US11619711B2 (en) Scanning system and transmitting and receiving device for a scanning system
JP2014081244A (en) Tracking laser device and measuring device
JP2006319881A (en) Optical space communication system
JP4462048B2 (en) Spatial optical transmission system and optical receiver
JPH08204640A (en) Optical space transmitter
JP2009121981A (en) Light acquiring/tracking apparatus
JP2518066B2 (en) Laser beam direction control device
JP3220344B2 (en) Space optical communication equipment
JP3870197B2 (en) Optical space transmission equipment
JPH07175021A (en) Optical spatial communication device
KR102547049B1 (en) Flash LIDAR device with wide field of view
JP2778577B2 (en) Light beam angle detector
KR20180031926A (en) Non-mechanical movement 360° LIDAR system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees