JP2010257736A - Manufacturing method of lithium iron nitride, anode active material for lithium secondary battery, and lithium secondary battery - Google Patents

Manufacturing method of lithium iron nitride, anode active material for lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
JP2010257736A
JP2010257736A JP2009106094A JP2009106094A JP2010257736A JP 2010257736 A JP2010257736 A JP 2010257736A JP 2009106094 A JP2009106094 A JP 2009106094A JP 2009106094 A JP2009106094 A JP 2009106094A JP 2010257736 A JP2010257736 A JP 2010257736A
Authority
JP
Japan
Prior art keywords
iron nitride
temperature
lithium
atmosphere
lithium iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009106094A
Other languages
Japanese (ja)
Other versions
JP5467244B2 (en
Inventor
Atsuo Yamada
淳夫 山田
Shingo Matsumoto
慎吾 松本
Yoichi Nakamura
洋一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Tokyo Institute of Technology NUC
Original Assignee
Toda Kogyo Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp, Tokyo Institute of Technology NUC filed Critical Toda Kogyo Corp
Priority to JP2009106094A priority Critical patent/JP5467244B2/en
Publication of JP2010257736A publication Critical patent/JP2010257736A/en
Application granted granted Critical
Publication of JP5467244B2 publication Critical patent/JP5467244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compounds Of Iron (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method enabling direct-solid phase method synthesizing of a stratified lithium iron nitride Li<SB>3-x</SB>Fe<SB>x</SB>N of an Li3N structure simply at low temperature and enabling composition control, discarding a conventional method using calcination at 900°C or more in an N<SB>2</SB>atmosphere or complicated procedures through an antifluorite structure. <P>SOLUTION: A temperature profile and atmospheric control at baking are interlocked, and a method of directly synthesizing Li<SB>3-x</SB>Fe<SB>x</SB>N of a wide composition area at 600°C by a solid phase method is established. More concretely, (1) restraint of decomposition of a raw material at a low-temperature range by augmenting velocity at temperature raising, (2) restraint of decomposition of a raw material at a low-temperature range under a nitrogen atmosphere only at temperature raising and, after raising of temperature, stabilization of the Li<SB>3-x</SB>Fe<SB>x</SB>N under an inert atmosphere, (3) adoption of inert gas for controlling a reduction property of a baking atmosphere, (4) ensued stabilization of iron with a low formal charge, and further, stabilization of the Li<SB>3-x</SB>Fe<SB>x</SB>N having a stratified structure are to be essential features. The Li<SB>3-x</SB>Fe<SB>x</SB>N thus made shows excellent lithium ion secondary battery anode characteristics. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン二次電池の負極活物質である充放電特性に優れた層状のリチウム鉄窒化物の製造方法を提供することを目的とする。   An object of this invention is to provide the manufacturing method of the layered lithium iron nitride excellent in the charge / discharge characteristic which is a negative electrode active material of a lithium ion secondary battery.

また、本発明は、当該製造方法を用いて製造された層状のリチウム鉄窒化物からなる充放電特性に優れたリチウム二次電池用負極活物質を提供することを目的とする。   Moreover, an object of this invention is to provide the negative electrode active material for lithium secondary batteries excellent in the charge / discharge characteristic which consists of the layered lithium iron nitride manufactured using the said manufacturing method.

また、本発明は、本発明の製造方法により得られた層状のリチウム鉄窒化物からなる優れたリチウムイオン二次電池用の負極活物質を用いたリチウムイオン二次電池を提供することを目的とする。   Another object of the present invention is to provide a lithium ion secondary battery using an excellent negative electrode active material for a lithium ion secondary battery comprising a layered lithium iron nitride obtained by the production method of the present invention. To do.

一般的にLi−M−N 3元系(M=3d遷移金属)の結晶構造は、M=Ti〜Feでは逆ホタル石型、M=Fe〜CuではLiN型層状構造に分類される。 In general, the crystal structure of the Li—M—N ternary system (M = 3d transition metal) is classified into an inverted fluorite type for M = Ti to Fe and a Li 3 N type layered structure for M = Fe to Cu. .

両者の結晶構造の相安定性の境界に位置づけられるM=Feの場合、逆ホタル石構造を有するLiFeNの方が安定であり、LiN型構造のLi3−xFeNを得るには、N中で密閉容器を用いた850℃以上での焼成や、逆ホタル石構造を介した複雑な合成を行う必要があり、組成の制御も困難であった。 In the case of M = Fe, which is positioned at the boundary of phase stability between the two crystal structures, Li 3 FeN 2 having an inverted fluorite structure is more stable, and Li 3−x Fe x N having a Li 3 N type structure is more stable. In order to obtain it, it was necessary to perform firing at 850 ° C. or higher using a sealed container in N 2 and complicated synthesis via an inverted fluorite structure, and it was difficult to control the composition.

リチウムイオン電池用負極材料のリチウム鉄窒化物については、J.L.C.RowsellらがLi2.7Fe0.3Nの化合物の電気化学的可逆的容量(550mA・h/g)がLi2.6Co0.4Nと同様に優れていることを報告している(非特許文献1)。化合物の生成反応は、LiNの加圧成型した塊を高純度の鉄容器に300kPaの窒素圧力下で封入し、850−1050℃の温度範囲で12時間加熱後、急冷することによって行う。 Regarding lithium iron nitride as a negative electrode material for lithium ion batteries, see J.A. L. C. Rowsell et al. Report that the electrochemically reversible capacity (550 mA · h / g) of a compound of Li 2.7 Fe 0.3 N is as good as Li 2.6 Co 0.4 N. (Non-patent document 1). The compound formation reaction is carried out by enclosing a pressure-molded mass of Li 3 N in a high-purity iron container under a nitrogen pressure of 300 kPa, heating in a temperature range of 850-1050 ° C. for 12 hours, and then rapidly cooling.

非特許文献2は、Li[(Li1−xFeI )N](x=0.63)の単結晶が、Li[FeN]とアルカリ金属(Li,Na)の1:1のモル比の混合物を1気圧のAr雰囲気下で熱処理することによって得られることを報告している。熱処理は、前記混合物を最初523K(250℃)まで1.3K/分で12時間掛けて昇温し、続けて3K/分で1173K(900℃)まで加熱して、最高温度に達した後、反応生成物を3K/分で室温まで冷却することによって行う。 Non-Patent Document 2 discloses that a single crystal of Li 2 [(Li 1−x Fe I x ) N] (x = 0.63) is 1: 1 of Li 3 [FeN 2 ] and an alkali metal (Li, Na). It is reported that it can be obtained by heat-treating a mixture with a molar ratio of 1 at Ar under an atmosphere of 1 atm. In the heat treatment, the mixture was first heated to 523 K (250 ° C.) at 1.3 K / min for 12 hours, then heated to 1173 K (900 ° C.) at 3 K / min to reach the maximum temperature, The reaction product is cooled to room temperature at 3 K / min.

Jesse L. C. Rowsell, Vale´rie Pralong, and LindaF. Nazar J. Am. Chem. Soc. 123, 8598-8599(2001).Jesse L. C. Rowsell, Vale´rie Pralong, and LindaF. Nazar J. Am. Chem. Soc. 123, 8598-8599 (2001). J. Klatyk and R. Kniep, Z. Kristallogr.NCS 214, 447-448(1999).J. Klatyk and R. Kniep, Z. Kristallogr. NCS 214, 447-448 (1999).

LiN型構造の層状のリチウム鉄窒化物Li3−xFeNを簡便かつ低温で直接合成することは、現在、最も要求されているところであるが、未だ得られていない。 The direct synthesis of layered lithium iron nitride Li 3-x Fe x N having a Li 3 N-type structure at a simple and low temperature is currently most demanded, but has not yet been obtained.

即ち、前記非特許文献1に記載の技術は、製造方法が工業的でなく、得られた層状リチウム鉄窒化物はリチウムイオン二次電池用負極活物質として特性的にも未だ十分とは言い難い。   That is, the technique described in Non-Patent Document 1 is not industrial in production, and the obtained layered lithium iron nitride is still not sufficient as a negative electrode active material for a lithium ion secondary battery. .

前記非特許文献2ではリチウム鉄窒化物を得るために原料として逆ホタル石構造のリチウム鉄窒化物を用いるなど、工業的な応用に適さない製造方法であり、得られた材料のLiとFeの比率の組成も異なる。また、リチウムイオン二次電池用負極活物質として使用できるかどうかも不明である。   In Non-Patent Document 2, a lithium iron nitride having a reverse fluorite structure is used as a raw material to obtain lithium iron nitride, which is a manufacturing method not suitable for industrial application. The composition of the ratio is also different. It is also unclear whether it can be used as a negative electrode active material for lithium ion secondary batteries.

また、前記非特許文献のいずれの方法も固溶量の制御が困難である。   Moreover, it is difficult to control the amount of solid solution in any of the methods of the non-patent literature.

そこで、本発明は、LiN型構造の層状のリチウム鉄窒化物Li3−xFeNを簡便かつ低温で直接固相法合成すること、および組成制御を可能とする製造方法を提供することを目的とする。 Thus, the present invention provides a production method that enables direct solid phase synthesis of Li 3 N-type layered lithium iron nitride Li 3-x Fe x N at a low temperature and composition control. For the purpose.

また、本発明は、本発明の製造方法により得られた層状のリチウム鉄窒化物からなる優れたリチウムイオン二次電池用の負極活物質を提供することを目的とする。   Another object of the present invention is to provide an excellent negative electrode active material for a lithium ion secondary battery comprising a layered lithium iron nitride obtained by the production method of the present invention.

また、本発明は、本発明の製造方法により得られた層状のリチウム鉄窒化物からなる優れたリチウムイオン二次電池用の負極活物質を用いたリチウムイオン二次電池を提供することを目的とする。   Another object of the present invention is to provide a lithium ion secondary battery using an excellent negative electrode active material for a lithium ion secondary battery comprising a layered lithium iron nitride obtained by the production method of the present invention. To do.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

本発明は、組成式がLi3−xFeN(0<x<0.4)で表される層状のリチウム鉄窒化物の製造方法であって、窒化リチウムと窒化鉄を混合し、窒素雰囲気下400〜700℃まで昇温後、Ar雰囲気に切り替えて加熱焼成することを特徴とする層状のリチウム鉄窒化物の製造方法である(本発明1)。 The present invention relates to a method for producing a layered lithium iron nitride having a composition formula of Li 3-x Fe x N (0 <x <0.4), in which lithium nitride and iron nitride are mixed, nitrogen This is a method for producing a layered lithium iron nitride characterized by heating to 400 to 700 ° C. in an atmosphere and then switching to an Ar atmosphere and heating and firing (Invention 1).

本発明は、組成式がLi3−xFeN(0<x<0.4)で表される層状のリチウム鉄窒化物の製造方法であって、窒化リチウムと窒化鉄を混合し、窒素又はAr雰囲気下10℃/分以上の昇温速度で400〜700℃まで昇温後、Ar雰囲気に切り替えて加熱焼成することを特徴とする層状のリチウム鉄窒化物の製造方法である(本発明2)。 The present invention relates to a method for producing a layered lithium iron nitride having a composition formula of Li 3-x Fe x N (0 <x <0.4), in which lithium nitride and iron nitride are mixed, nitrogen Alternatively, it is a method for producing a layered lithium iron nitride characterized by heating to 400 to 700 ° C. at a temperature rising rate of 10 ° C./min or more in an Ar atmosphere, and then switching to an Ar atmosphere and baking. 2).

本発明は、窒化リチウムと窒化鉄との混合比がLi/Feのモル比として5以上であることを特徴とする本発明1あるいは本発明2に記載の層状のリチウム鉄窒化物の製造方法である(本発明3)。   The present invention is the method for producing a layered lithium iron nitride according to the present invention 1 or 2, wherein the mixing ratio of lithium nitride and iron nitride is 5 or more as the molar ratio of Li / Fe. There is (Invention 3).

また、本発明は本発明1乃至3のいずれかに記載の製造方法で製造された層状リチウム鉄窒化物からなるリチウム二次電池用負極活物質である(本発明4)。 Moreover, this invention is a negative electrode active material for lithium secondary batteries which consists of layered lithium iron nitride manufactured with the manufacturing method in any one of this invention 1 thru | or 3 (this invention 4).

また、本発明は本発明4に記載のリチウム二次電池用負極活物質を用いたリチウムイオン二次電池である(本発明5)。 Moreover, this invention is a lithium ion secondary battery using the negative electrode active material for lithium secondary batteries of this invention 4 (this invention 5).

本発明に係るリチウム鉄窒化物の製造方法は、LiN型構造の層状のリチウム鉄窒化物Li3−xFeNを簡便かつ低温で直接合成することができるので、リチウム鉄窒化物の製造方法として好適である。 The method for producing lithium iron nitride according to the present invention can synthesize Li 3 N-type layered lithium iron nitride Li 3-x Fe x N easily and directly at low temperature. It is suitable as a manufacturing method.

実施例2と実施例3とで得られたリチウム鉄窒化物のX線回折パターンである。Fe原料の比較をしたものである。(上から実施例2と実施例3)2 is an X-ray diffraction pattern of lithium iron nitride obtained in Example 2 and Example 3. FIG. This is a comparison of Fe raw materials. (Example 2 and Example 3 from above) 実施例4で得られたリチウム鉄窒化物のX線回折パターンである。Ar雰囲気で昇温および焼成した製造例である(実施例4)。下のX線回折パターンのLi2.7Fe0.3N model simulationはICSD (無機結晶構造データベース)に基づく。4 is an X-ray diffraction pattern of lithium iron nitride obtained in Example 4. This is a production example in which the temperature was raised and fired in an Ar atmosphere (Example 4). The lower X-ray diffraction pattern Li 2.7 Fe 0.3 N model simulation is based on ICSD (inorganic crystal structure database). 比較例1で得られたリチウム鉄窒化物のX線回折パターンである。N雰囲気で昇温および焼成した製造例である(比較例1)。下のX線回折パターンはICSD (無機結晶構造データベース)に基づくLi3FeNの逆ホタル石結晶構造のX線回折パターンである。2 is an X-ray diffraction pattern of lithium iron nitride obtained in Comparative Example 1. FIG. This is a production example in which the temperature is raised and fired in an N 2 atmosphere (Comparative Example 1). The lower X-ray diffraction pattern is an X-ray diffraction pattern of the inverted fluorite crystal structure of Li 3 FeN 2 based on ICSD (inorganic crystal structure database). 実施例1及び5で得られたリチウム鉄窒化物のX線回折パターンである。昇温雰囲気の比較したものである(上から実施例5および1)。2 is an X-ray diffraction pattern of lithium iron nitride obtained in Examples 1 and 5. FIG. The temperature rising atmospheres are compared (Examples 5 and 1 from the top). 実施例1、7〜9及び比較例3で得られたリチウム鉄窒化物のX線回折パターンである。焼成温度の比較をしたものである(上から実施例7、1、8、9および比較例3)。2 is an X-ray diffraction pattern of lithium iron nitride obtained in Examples 1 and 7 to 9 and Comparative Example 3. FIG. The firing temperatures were compared (Examples 7, 1, 8, 9 and Comparative Example 3 from the top). 実施例1、10、11及び比較例4で得られたリチウム鉄窒化物の充放電特性である(上から比較例4、実施例10、11および1)。It is a charging / discharging characteristic of the lithium iron nitride obtained in Examples 1, 10, 11 and Comparative Example 4 (Comparative Example 4, Examples 10, 11 and 1 from the top).

本発明に係る層状のリチウム鉄窒化物の製造方法について述べる。   A method for producing a layered lithium iron nitride according to the present invention will be described.

従来、Li3−xFeNの合成法は、N雰囲気中での850℃以上での焼成や、逆ホタル石構造を介した複雑な手順を用いた方法しか報告されていなかった。本発明では焼成時の昇温条件(昇温速度及び雰囲気)、温度、雰囲気制御を連動させ、幅広い組成領域のLi3−xFeNを、固相法により400〜700℃という低温で直接合成する手法を確立した。 Conventionally, the synthesis method of Li 3-x Fe x N has only been reported as a method using a complicated procedure through calcination at 850 ° C. or higher in an N 2 atmosphere or an inverted fluorite structure. In the present invention, Li 3 -x Fe x N having a wide composition range is directly applied at a low temperature of 400 to 700 ° C. by a solid phase method by interlocking temperature raising conditions (temperature raising rate and atmosphere), temperature, and atmosphere control during firing. A method of synthesis was established.

本発明では、窒化リチウムと窒化鉄とを混合した後、混合粉を窒素雰囲気下で加熱焼成温度まで昇温し、Ar雰囲気に切り替えて加熱焼成するものである。   In the present invention, after mixing lithium nitride and iron nitride, the mixed powder is heated to a heating and firing temperature in a nitrogen atmosphere, and is switched to an Ar atmosphere and fired.

具体的には、(1)昇温時の速度を速めることによる低温領域での原料の分解の抑制。(2) 昇温時のみ窒素雰囲気として低温領域での原料の分解の抑制し、昇温後不活性雰囲気とすることでLi3−xFeNを安定化。(3)焼成雰囲気の還元性を制御するための不活性ガスの採用。(4)これによる形式電荷の低い鉄を安定化、引いては層状構造を有するLi3−xFeNの安定化すること、を骨子とする。作製したLi3−xFeNは優れたリチウムイオン2次電池負極特性を示した。 Specifically, (1) Suppressing decomposition of raw materials in a low temperature region by increasing the rate of temperature increase. (2) Li 3-x Fe x N is stabilized by suppressing the decomposition of the raw material in a low temperature region as a nitrogen atmosphere only at the time of temperature rise, and by setting the inert atmosphere after temperature rise. (3) Use of an inert gas to control the reducibility of the firing atmosphere. (4) Stabilize iron with a low formal charge, and thereby stabilize Li 3 -x Fe x N having a layered structure. The produced Li 3-x Fe x N exhibited excellent lithium ion secondary battery negative electrode characteristics.

本発明者らは昇温時の低温領域において、原料が分解することに注目した。そのため昇温速度を10℃/分から35℃/分の範囲となるように速めることにより、不純物の金属鉄の生成をほぼ抑制できるのではないかと本発明者らは考えた。 The present inventors paid attention to the decomposition of the raw material in a low temperature region at the time of temperature increase. For this reason, the present inventors have considered that the generation of impurity metallic iron can be substantially suppressed by increasing the rate of temperature rise so as to be in the range of 10 ° C./min to 35 ° C./min.

また、鉄はLiN型層状構造中(Li3−xFeI N)では逆ホタル石構造中(LiFeIII)より低い形式電荷をとることから、Nより還元性の強いAr雰囲気中で焼成することで、鉄を低い価数状態に安定化させ、層状構造を有するリチウム鉄窒化物Li3−xFeNが安定に得られるのではないかと本発明者らは考えた。 In addition, iron takes a lower formal charge in the Li 3 N-type layered structure (Li 3−x Fe I x N) than in the reverse fluorite structure (Li 3 Fe III N 2 ), so that it is more reducible than N 2 . by firing in strong Ar atmosphere, iron is stabilized in the lower valence state, lithium iron nitride having a layered structure Li 3-x Fe x N is that it would be stably obtained inventors Thought.

本発明において窒化リチウム原料としては、LiNを用いることができる。また、窒化鉄原料としては、FeN、FeN、あるいはFeN(3<x<4)等であり、より好ましくはFeNである。 In the present invention, Li 3 N can be used as the lithium nitride raw material. The iron nitride raw material is Fe 4 N, Fe 3 N, or Fe x N (3 <x <4), and more preferably Fe 4 N.

窒化リチウムと窒化鉄との混合割合は、LiとFeとのモル比(Li/Fe)で5以上であることが好ましい。さらに好ましくは、混合割合の比は6.5以上である。   The mixing ratio of lithium nitride and iron nitride is preferably 5 or more in terms of the molar ratio of Li to Fe (Li / Fe). More preferably, the ratio of the mixing ratio is 6.5 or more.

窒化リチウムと窒化鉄との混合は、常法に従って行えばよい。好ましくは遊星型ボールミル等での均一混合である。   Mixing of lithium nitride and iron nitride may be performed according to a conventional method. Preference is given to uniform mixing with a planetary ball mill or the like.

加熱焼成における昇温時の雰囲気は、窒素雰囲気又はAr雰囲気である。好ましくは窒素雰囲気での昇温である。   The atmosphere at the time of temperature increase in heating and firing is a nitrogen atmosphere or an Ar atmosphere. Preferably, the temperature is raised in a nitrogen atmosphere.

加熱焼成における昇温時の昇温速度は、10℃/分以上が好ましい。さらに好ましくは20℃/分以上である。さらに好ましくは30℃/分以上である。   The heating rate during heating is preferably 10 ° C./min or more. More preferably, it is 20 ° C./min or more. More preferably, it is 30 ° C./min or more.

加熱焼成の雰囲気は、Ar雰囲気である。   The atmosphere for heating and baking is an Ar atmosphere.

加熱焼成の温度は400〜700℃である。加熱焼成温度が400℃未満では、反応しない。加熱焼成温度が700℃を超える場合には、溶解が起こる。   The temperature for heating and baking is 400 to 700 ° C. When the heating and baking temperature is less than 400 ° C., there is no reaction. When the heating and baking temperature exceeds 700 ° C., dissolution occurs.

本発明の製造方法によって得られる層状のリチウム鉄窒化物は、組成式がLi3−xFeN(0<x<0.4)である。xの範囲は好ましくは0<x≦0.32である。より好ましくは0.1≦x≦0.32である。さらに好ましくは0.16≦x≦0.32である。 The layered lithium iron nitride obtained by the production method of the present invention has a composition formula of Li 3-x Fe x N (0 <x <0.4). The range of x is preferably 0 <x ≦ 0.32. More preferably, 0.1 ≦ x ≦ 0.32. More preferably, 0.16 ≦ x ≦ 0.32.

本発明の製造方法によって得られる層状のリチウム鉄窒化物のc軸の格子定数は、3.79〜3.87Åが好ましい。   The c-axis lattice constant of the layered lithium iron nitride obtained by the production method of the present invention is preferably 3.79 to 3.87%.

本発明の製造方法によって得られる層状のリチウム鉄窒化物は、層状のリチウム鉄窒化物のX線回折におけるメインピーク(100面)と金属Feのメインピーク(110面)との回折最高カウント数比が1.8以上であることが好ましい。好ましくは強度比が9以上である。さらに好ましくは30以上になることである。より好ましくは金属Feのメインピークが観測されないことである。   The layered lithium iron nitride obtained by the production method of the present invention has a diffraction maximum count number ratio between the main peak (100 plane) and the main peak of metal Fe (110 plane) in the X-ray diffraction of the layered lithium iron nitride. Is preferably 1.8 or more. The intensity ratio is preferably 9 or more. More preferably, it is 30 or more. More preferably, the main peak of metallic Fe is not observed.

次に、本発明に係る層状のリチウム鉄窒化物からなる負極活物質を用いた負極について述べる。   Next, a negative electrode using a negative electrode active material made of layered lithium iron nitride according to the present invention will be described.

本発明における負極活物質を用いて負極を製造する場合には、常法に従って、導電剤と結着剤とを添加混合する。導電剤としてはケッチェンブラック(Ketjenblack International Corporation製)、アセチレンブラック、カーボンブラック、黒鉛等が好ましく、結着剤としてはポリテトラフルオロエチレン、ポリフッ化ビニリデン等が好ましい。   When producing a negative electrode using the negative electrode active material in the present invention, a conductive agent and a binder are added and mixed according to a conventional method. As the conductive agent, ketjen black (manufactured by Ketjenblack International Corporation), acetylene black, carbon black, graphite and the like are preferable, and as the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like are preferable.

本発明における負極活物質を用いて製造される二次電池は、前記負極、正極及び電解質から構成される。   The secondary battery manufactured using the negative electrode active material in this invention is comprised from the said negative electrode, a positive electrode, and electrolyte.

正極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、オリビン化合物及びそれらに異種元素が置換したものなど従来公知の正極活物質を用いることができる。   As the positive electrode active material, conventionally known positive electrode active materials such as lithium cobaltate, lithium nickelate, lithium manganate, olivine compounds, and those substituted with a different element can be used.

また、電解液の溶媒としては、炭酸エチレンと炭酸ジエチルの組み合わせ以外に、炭酸プロピレン、炭酸ジメチル等のカーボネート類や、ジメトキシエタン等のエーテル類の少なくとも1種類を含む有機溶媒を用いることができる。   In addition to the combination of ethylene carbonate and diethyl carbonate, an organic solvent containing at least one of carbonates such as propylene carbonate and dimethyl carbonate and ethers such as dimethoxyethane can be used as the solvent for the electrolytic solution.

さらに、電解質としては、六フッ化リン酸リチウム以外に、過塩素酸リチウム、四フッ化ホウ酸リチウム等のリチウム塩の少なくとも1種類を上記溶媒に溶解して用いることができる。   Further, as the electrolyte, in addition to lithium hexafluorophosphate, at least one lithium salt such as lithium perchlorate and lithium tetrafluoroborate can be dissolved in the above solvent and used.

<作用>
本発明に係る層状のリチウム鉄窒化物の製造方法が簡便で低温で実施可能な理由については、本発明者は次のように考えている。
<Action>
The present inventor considers the reason why the method for producing the layered lithium iron nitride according to the present invention is simple and can be carried out at a low temperature as follows.

ArとNの還元性の違いを利用して、焼成時の還元性雰囲気を制御した。昇温時には原料の分解を抑制するために還元性の弱いNを、反応温度に達した後はLi3−xFeNを安定化させるために還元性の強いArをそれぞれ用いて焼成を行った。また、反応温度よりも原料の分解温度の方が低いことを考慮し、昇温を10〜35℃/分という速い速度で行い、できるだけ原料の分解による鉄の析出を防いだ。原理上、昇温速度に上限を考える必要はないが、実験的には50℃/分まで確認している。 The reducing atmosphere during firing was controlled using the difference in reducing properties between Ar and N 2 . Calcination is performed using weakly reducing N 2 in order to suppress decomposition of the raw material at the time of temperature rise, and highly reducing Ar in order to stabilize Li 3-x Fe x N after reaching the reaction temperature. went. In consideration of the fact that the decomposition temperature of the raw material is lower than the reaction temperature, the temperature was raised at a fast rate of 10 to 35 ° C./min to prevent iron precipitation due to the decomposition of the raw material as much as possible. In principle, there is no need to consider the upper limit of the heating rate, but it has been confirmed experimentally up to 50 ° C./min.

従来、Li3−xFeNは850℃以上の焼成条件でないと合成できなかったが、焼成時に還元性の強いAr雰囲気を用いることで600℃での合成が可能となった。また、本発明では複雑な手順を用いず固相法合成を用いることで手順を簡便化した。 Conventionally, Li 3−x Fe x N could not be synthesized unless the firing conditions were 850 ° C. or higher, but synthesis at 600 ° C. became possible by using an Ar atmosphere having a strong reducing property during firing. In the present invention, the procedure is simplified by using solid phase synthesis without using a complicated procedure.

昇温速度を上げる、または昇温時にN雰囲気を用いることで原料由来の金属鉄の生成を抑制し、最適条件下ではほぼ単相のLi3−xFeNを得ることに成功した。 The production of metallic iron derived from the raw material was suppressed by increasing the temperature rise rate or using the N 2 atmosphere at the time of temperature rise, and succeeded in obtaining almost single-phase Li 3-x Fe x N under optimum conditions.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

生成物の結晶構造は、CoKαを線源に用いた粉末X線回折測定によって同定し、c軸の格子定数を求めた。また、層状のリチウム鉄窒化物Li3−xFeNのX線回折におけるメインピーク(100面)と金属Fe(α−Fe)のメインピーク(110面)とのX線回折最高カウント数比を求めた。X線回折最高カウント数はベースラインのカウント数を引いた値を使う。 The crystal structure of the product was identified by powder X-ray diffraction measurement using CoKα as a radiation source, and the c-axis lattice constant was determined. In addition, the X-ray diffraction maximum count ratio between the main peak (100 plane) and the main peak (110 plane) of metal Fe (α-Fe) in the X-ray diffraction of the layered lithium iron nitride Li 3-x Fe x N Asked. The X-ray diffraction maximum count is obtained by subtracting the baseline count.

生成物のFeの固溶量xは次のようにして求めた。原子吸光分析によってLiとFeの組成比を求め、その値によって固溶量xを決定した。   The solid solution amount x of the product Fe was determined as follows. The composition ratio of Li and Fe was determined by atomic absorption analysis, and the solid solution amount x was determined from the value.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

実施例1 <層状のリチウム鉄窒化物の調製>
原料の混合、焼成はすべて不活性雰囲気下(露点<−65℃)で行った。出発原料をLiN((株)高純度化学研究所,99%up)とFeN((株)高純度化学研究所,99.9%)とした。出発原料をそれぞれ1.8303gと1.1697gを遊星型ボールミル((株)伊藤製作所;LP.4)に入れて、60rpmで30分、120rpmで30分、240rpmで5時間粉砕混合した。その後ペレット状にしてN雰囲気下、35℃/分で600℃まで昇温し、焼成温度到達後にAr雰囲気に切り替え12時間保持した後、室温まで放冷した。
Example 1 <Preparation of layered lithium iron nitride>
The raw materials were mixed and fired under an inert atmosphere (dew point <−65 ° C.). The starting materials were Li 3 N (High Purity Chemical Laboratory, 99% up) and Fe 4 N (High Purity Chemical Laboratory, 99.9%). 1.8303 g and 1.1697 g of the starting materials were put in a planetary ball mill (ITO MFG. Co., Ltd .; LP.4), and pulverized and mixed at 60 rpm for 30 minutes, 120 rpm for 30 minutes, and 240 rpm for 5 hours. Thereafter, the mixture was pelletized, heated to 600 ° C. at 35 ° C./min in an N 2 atmosphere, switched to the Ar atmosphere after reaching the firing temperature, held for 12 hours, and then allowed to cool to room temperature.

<層状のリチウム鉄窒化物を用いた電池セルの作成と充放電試験>
得られた層状のリチウム鉄窒化物とアセチレンブラックとポリテトラフルオロエチレンを9:1:1の組成で混合したものを作用極とし、対極には金属リチウム箔、電解液には1M−LiPF/炭酸エチレン‐炭酸ジエチル(3:7)を用いて電池セルを作成した。
<Creation and charge / discharge test of battery cell using layered lithium iron nitride>
A mixture of the obtained layered lithium iron nitride, acetylene black, and polytetrafluoroethylene in a composition of 9: 1: 1 was used as a working electrode, a metal lithium foil as a counter electrode, and 1M-LiPF 6 / A battery cell was prepared using ethylene carbonate-diethyl carbonate (3: 7).

充放電試験は、0.05−1.3V(vs. Li/Li+)の電位範囲で、低電流(C/20)−低電圧(<C/200)モード(1C=550mAh/gと仮定)で行った。   The charge / discharge test is performed in a low current (C / 20) -low voltage (<C / 200) mode (assuming 1C = 550 mAh / g) in a potential range of 0.05 to 1.3 V (vs. Li / Li +). I went there.

実施例2〜12、比較例1〜6
表1に記載した条件以外は、実施例1と同様な方法で試料を作成した。得られた試料の特性および試験結果は実施例1の結果と一緒に表2にまとめた。
Examples 2-12, Comparative Examples 1-6
Samples were prepared in the same manner as in Example 1 except for the conditions described in Table 1. The properties and test results of the obtained samples are summarized in Table 2 together with the results of Example 1.

比較例1及び2で得られたリチウム鉄窒化物は逆ホタル石構造であった。比較例3では、反応が進行せず微量の逆ホタル石構造のリチウム鉄窒化物しか得られなかった。比較例4はFe固溶量x=0の例である。比較例4のc軸の格子定数は層状のリチウム鉄窒化物と同じ結晶構造を有するLiNの格子定数である。 The lithium iron nitride obtained in Comparative Examples 1 and 2 had an inverted fluorite structure. In Comparative Example 3, the reaction did not proceed and only a small amount of lithium iron nitride having an inverted fluorite structure was obtained. Comparative Example 4 is an example in which the Fe solid solution amount x = 0. The c-axis lattice constant of Comparative Example 4 is that of Li 3 N having the same crystal structure as the layered lithium iron nitride.

本発明に係る製造方法によって得られた層状のリチウム鉄窒化物は、不純物として生成する金属Feの存在量が少ないので、充放電試験の高い初期酸化容量・還元容量を有することが期待できる。

Since the layered lithium iron nitride obtained by the production method according to the present invention has a small amount of metallic Fe produced as an impurity, it can be expected to have a high initial oxidation capacity / reduction capacity in a charge / discharge test.

本発明の層状のリチウム鉄窒化物の製造方法によって得られる層状のリチウム鉄窒化物はリチウムイオン二次電池用負極活物質として好適である。   The layered lithium iron nitride obtained by the method for producing a layered lithium iron nitride of the present invention is suitable as a negative electrode active material for a lithium ion secondary battery.

Claims (5)

組成式がLi3−xFeN(0<x<0.4)で表される層状のリチウム鉄窒化物の製造方法であって、窒化リチウムと窒化鉄を混合し、窒素雰囲気下400〜700℃まで昇温後、Ar雰囲気に切り替えて加熱焼成することを特徴とする層状のリチウム鉄窒化物の製造方法。 A method for producing a layered lithium iron nitride represented by a composition formula of Li 3-x Fe x N (0 <x <0.4), in which lithium nitride and iron nitride are mixed, A method for producing a layered lithium iron nitride, wherein the temperature is raised to 700 ° C., followed by switching to an Ar atmosphere and heating and firing. 組成式がLi3−xFeN(0<x<0.4)で表される層状のリチウム鉄窒化物の製造方法であって、窒化リチウムと窒化鉄を混合し、窒素又はAr雰囲気下10℃/分以上の昇温速度で400〜700℃まで昇温後、Ar雰囲気に切り替えて加熱焼成することを特徴とする層状のリチウム鉄窒化物の製造方法。 A method for producing a layered lithium iron nitride represented by a composition formula of Li 3-x Fe x N (0 <x <0.4), wherein lithium nitride and iron nitride are mixed, A method for producing a layered lithium iron nitride, wherein the temperature is raised to 400 to 700 ° C. at a rate of temperature increase of 10 ° C./min or more, and then switched to an Ar atmosphere and fired. 窒化リチウムと窒化鉄との混合比がLi/Feのモル比として5以上であることを特徴とする請求項1あるいは請求項2に記載の層状のリチウム鉄窒化物の製造方法。   The method for producing a layered lithium iron nitride according to claim 1 or 2, wherein a mixing ratio of lithium nitride and iron nitride is 5 or more as a molar ratio of Li / Fe. 請求項1乃至3のいずれかに記載の製造方法で製造された層状リチウム鉄窒化物からなるリチウム二次電池用負極活物質。 The negative electrode active material for lithium secondary batteries which consists of layered lithium iron nitride manufactured with the manufacturing method in any one of Claims 1 thru | or 3. 請求項4に記載のリチウム二次電池用負極活物質を用いたリチウムイオン二次電池。
The lithium ion secondary battery using the negative electrode active material for lithium secondary batteries of Claim 4.
JP2009106094A 2009-04-24 2009-04-24 Method for producing lithium iron nitride, negative electrode active material for lithium secondary battery, and lithium secondary battery Active JP5467244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106094A JP5467244B2 (en) 2009-04-24 2009-04-24 Method for producing lithium iron nitride, negative electrode active material for lithium secondary battery, and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106094A JP5467244B2 (en) 2009-04-24 2009-04-24 Method for producing lithium iron nitride, negative electrode active material for lithium secondary battery, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010257736A true JP2010257736A (en) 2010-11-11
JP5467244B2 JP5467244B2 (en) 2014-04-09

Family

ID=43318442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106094A Active JP5467244B2 (en) 2009-04-24 2009-04-24 Method for producing lithium iron nitride, negative electrode active material for lithium secondary battery, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5467244B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061770A1 (en) 2011-10-25 2013-05-02 トヨタ自動車株式会社 Negative electrode active material and metal ion battery using same
WO2023127358A1 (en) * 2021-12-27 2023-07-06 Tdk株式会社 Substance and lithium ion secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102313A (en) * 1995-10-03 1997-04-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of negative active material holder
JPH1197020A (en) * 1997-09-24 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of negative electrode, and lithium secondary cell employing it
JP2002083597A (en) * 2000-06-30 2002-03-22 Matsushita Electric Ind Co Ltd Lithium secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09102313A (en) * 1995-10-03 1997-04-15 Nippon Telegr & Teleph Corp <Ntt> Manufacture of negative active material holder
JPH1197020A (en) * 1997-09-24 1999-04-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of negative electrode, and lithium secondary cell employing it
JP2002083597A (en) * 2000-06-30 2002-03-22 Matsushita Electric Ind Co Ltd Lithium secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013061770A1 (en) 2011-10-25 2013-05-02 トヨタ自動車株式会社 Negative electrode active material and metal ion battery using same
US9406935B2 (en) 2011-10-25 2016-08-02 Toyota Jidosha Kabushiki Kaisha Anode active material and metal ion battery prepared therewith
WO2023127358A1 (en) * 2021-12-27 2023-07-06 Tdk株式会社 Substance and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5467244B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US10396356B2 (en) Nickel manganese composite hydroxide particles and manufacturing method thereof, cathode active material for a non-aqueous electrolyte secondary battery and manufacturing method thereof, and a non-aqueous electrolyte secondary battery
KR101928683B1 (en) Positive electrode material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
KR101852792B1 (en) Method for manufacturing cathode electrode materials
JP5298286B2 (en) Method for producing lithium silicate compound
JP5013622B2 (en) Method for producing lithium borate compound
US20160156020A1 (en) Method for manufacturing cathode electrode materials
JPWO2019171623A1 (en) Positive electrode active material for lithium-ion secondary battery and lithium-ion secondary battery
JP5294225B2 (en) Single crystal particles of oxide for lithium secondary battery electrode, method for producing the same, and lithium secondary battery using the same
JP2008305777A (en) Lithium transition metal compound powder, its production method, spray dried product being baking precursor of the powder, positive electrode for lithium secondary battery using the product, and lithium secondary battery
Shi et al. Core–shell structured Li [(Ni0. 8Co0. 1Mn0. 1) 0.7 (Ni0. 45Co0. 1Mn0. 45) 0.3] O2 cathode material for high-energy lithium ion batteries
JP5737513B2 (en) Positive electrode active material powder for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5252064B2 (en) Lithium silicate compound and method for producing the same
JP2012006810A (en) Method for producing lithium silicate compound
Butt et al. Recent advances in enhanced performance of Ni‐rich cathode materials for Li‐ion batteries: a review
JP2018060759A (en) Method for manufacturing nickel cobalt manganese-containing composite hydroxide, positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use of positive electrode active material hereof
Xie et al. Facile Synthesis and characterization of Li4Ti5O12 as anode material for lithium ion batteries
JP5110664B2 (en) Method for producing lithium borate compound
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP6826447B2 (en) Method for reducing the amount of residual lithium in the positive electrode active material particles
JP6109399B1 (en) Positive electrode active material particles for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP5467244B2 (en) Method for producing lithium iron nitride, negative electrode active material for lithium secondary battery, and lithium secondary battery
JP2018186038A (en) Positive electrode material for secondary battery, manufacturing method for the same, lithium ion secondary battery, and manufacturing method for the same
JP5880996B2 (en) Lithium manganese silicate composite, positive electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPWO2018066633A1 (en) Titanium and / or germanium substituted lithium manganese based composite oxide and method for producing the same
CN102126716A (en) Cathode material of lithium iron phosphate lithium battery and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131218

R150 Certificate of patent or registration of utility model

Ref document number: 5467244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250