JP2010255530A - Liquid flow rate measuring device - Google Patents

Liquid flow rate measuring device Download PDF

Info

Publication number
JP2010255530A
JP2010255530A JP2009106863A JP2009106863A JP2010255530A JP 2010255530 A JP2010255530 A JP 2010255530A JP 2009106863 A JP2009106863 A JP 2009106863A JP 2009106863 A JP2009106863 A JP 2009106863A JP 2010255530 A JP2010255530 A JP 2010255530A
Authority
JP
Japan
Prior art keywords
liquid
flow rate
fuel
fuel injection
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009106863A
Other languages
Japanese (ja)
Inventor
Morinobu Mizunuma
守信 水沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2009106863A priority Critical patent/JP2010255530A/en
Publication of JP2010255530A publication Critical patent/JP2010255530A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid flow rate measuring device capable of accurately and efficiently measuring a liquid flow rate in a measured apparatus without being influenced by a temperature change of an environment even if the flow rate is minute. <P>SOLUTION: The device includes a liquid tank 1 storing liquid 2, a transparent thin pipe 3 having a smaller diameter then the liquid tank 1, a first supply control means 10 connecting the liquid tank 1 and the thin pipe 3, supplying and shutting off the liquid 2 to the thin pipe 3 from the liquid tank 1, and a second supply control means 11 supplying liquid 2 from to the measured apparatus I from the thin pipe 3. When the liquid introduced from the thin pipe 3 by the operation of the measured apparatus I is discharged after the supply of the liquid 2 to the thin pipe 3 is shut off by the first supply control means 10, a liquid discharge flow rate at the measured apparatus I is read out based on a liquid surface change in the thin pipe 3 accompanied by the discharge. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は,被計測機器での液体流量,例えばエンジン用電磁式燃料噴射弁の燃料噴射流量を計測する液体流量計測装置に関する。   The present invention relates to a liquid flow rate measuring apparatus for measuring a liquid flow rate in a device to be measured, for example, a fuel injection flow rate of an electromagnetic fuel injection valve for an engine.

エンジン用電磁式燃料噴射弁の燃料噴射流量を計測する液体流量計測装置は,特許文献1に開示されるように既に知られている。   A liquid flow rate measuring device for measuring a fuel injection flow rate of an electromagnetic fuel injection valve for an engine is already known as disclosed in Patent Document 1.

特開2006−105656号公報JP 2006-105656 A

特許文献1記載の液体流量計測装置は,燃料噴射弁の噴射燃料を受容する密閉室を有するハウジングと,その密閉室に接続していて燃料噴射弁から密閉室に噴射された燃料の体積変化を検出する検出手段とを備え,検出手段により検出した噴射燃料の体積変化から,燃料噴射弁の噴射流量を計測するものである。   The liquid flow rate measuring device described in Patent Document 1 includes a housing having a sealed chamber that receives fuel injected from a fuel injection valve, and a volume change of fuel that is connected to the sealed chamber and injected from the fuel injection valve into the sealed chamber. Detecting means for detecting, and measuring the injection flow rate of the fuel injection valve from the volume change of the injected fuel detected by the detecting means.

こうした従来のものでは,燃料噴射弁の噴射燃料は,噴射直後,霧化状態にあるので,それが液化状態となるのを待って,密閉室に噴射された燃料の体積変化を検出する必要があり,計測に待ち時間が長くかかり,計測を能率的に行うことができない。しかも,密閉室に微量な燃料を噴射した場合の,密閉室における燃料の体積変化は極めて微量であり,その微量な体積変化から燃料噴射量を求めることは極めて困難である。したがって,例えば,燃料噴射弁の1回の燃料噴射流量を求めることは極めて困難である。さらに密閉室に噴射された燃料の体積変化は,周囲の温度変化にも影響されるため,計測精度の信頼性にも問題がる。   In such a conventional device, the fuel injected from the fuel injection valve is in an atomized state immediately after injection, so it is necessary to wait for it to become a liquefied state and detect the volume change of the fuel injected into the sealed chamber. Yes, it takes a long time to measure, and the measurement cannot be performed efficiently. In addition, when a small amount of fuel is injected into the sealed chamber, the volume change of the fuel in the sealed chamber is extremely small, and it is extremely difficult to obtain the fuel injection amount from the minute volume change. Therefore, for example, it is extremely difficult to obtain the single fuel injection flow rate of the fuel injection valve. Furthermore, since the volume change of the fuel injected into the sealed chamber is also affected by the ambient temperature change, there is a problem in the reliability of measurement accuracy.

本発明は,かゝる事情に鑑みてなされたもので,被計測機器での液体流量を微量でも,周囲の温度変化に影響されることなく正確に且つ能率良く計測し得る液体流量計測装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and a liquid flow rate measuring device capable of accurately and efficiently measuring a liquid flow rate in a device to be measured even if a small amount of liquid flow rate is not affected by ambient temperature changes. The purpose is to provide.

上記目的を達成するために,本発明の液体流量計測装置は,液体を貯留する液体タンクと,この液体タンクより小径で透明の細管と,液体タンク及び細管間を接続して,液体タンクから細管への液体の供給及び遮断を行う第1供給制御手段と,細管から被計測機器への液体の供給を行う第2供給制御手段と,液体タンクから細管への液体の供給を前記第1供給制御手段により遮断した後,被計測機器がその作動により細管から導入した流体を吐出したとき,その吐出に伴なう細管内の液面変化より被計測機器の液体吐出流量を読み取る流量読み取り手段とよりなることを第1の特徴とする。   In order to achieve the above object, a liquid flow rate measuring device according to the present invention comprises a liquid tank for storing liquid, a thin tube having a diameter smaller than that of the liquid tank, and a liquid tank and a thin tube connected to each other. The first supply control means for supplying and blocking the liquid to the apparatus, the second supply control means for supplying the liquid from the thin tube to the device to be measured, and the first supply control for supplying the liquid from the liquid tank to the thin tube And a flow rate reading means for reading the liquid discharge flow rate of the measured device from the change in the liquid level in the narrow tube that accompanies the discharge when the measured device discharges the fluid introduced from the narrow tube due to its operation. This is the first feature.

また本発明は,第1の特徴に加えて,前記第2供給制御手段を,細管から被計測機器への液体の供給を遮断し得るように構成したことを第2の特徴とする。   In addition to the first feature, the second feature of the present invention is that the second supply control means is configured so that the supply of the liquid from the thin tube to the device to be measured can be shut off.

さらに本発明は,第1又は第2の特徴に加えて,液体タンク及び細管内の上部空間相互を連通したことを第3の特徴とする。   In addition to the first or second feature, the third feature of the present invention is that the upper space in the liquid tank and the narrow tube communicate with each other.

さらにまた本発明は,第1〜第3の特徴の何れかに加えて,被計測機器は電磁式燃料噴射弁であり,また前記液体は燃料であり,前記燃料噴射弁に燃料噴射圧力を付与すべく,細管内の液面に所定の気体圧力を付与する気体圧力源を備えることを第4の特徴とする。尚,前記気体圧力源は,後述する本発明の実施例中の空気圧力源22に対応する。   Furthermore, according to the present invention, in addition to any of the first to third features, the device to be measured is an electromagnetic fuel injection valve, the liquid is fuel, and a fuel injection pressure is applied to the fuel injection valve. Accordingly, a fourth feature is that a gas pressure source for applying a predetermined gas pressure to the liquid surface in the narrow tube is provided. The gas pressure source corresponds to the air pressure source 22 in the embodiment of the present invention described later.

本発明の第1の特徴によれば,被計測機器での液体流量を,細管内の液面の変化量に基づいて計測するようにしたので,被計測機器の出口側の温度変化に影響されることなく,被計測機器での液体流量を能率良く且つ正確に計測することができる。特に,細管を極小径に形成すれば,細管からの微量な液体流出時にも,細管内の液面を敏感に変化させることができ,したがって,被計測機器における微量な液体流量の計測も可能となる。   According to the first feature of the present invention, since the liquid flow rate in the device under measurement is measured based on the amount of change in the liquid level in the narrow tube, it is influenced by the temperature change at the outlet side of the device under measurement. Therefore, the liquid flow rate in the device to be measured can be measured efficiently and accurately. In particular, if the capillaries are formed with a very small diameter, the liquid level in the capillaries can be changed sensitively even when a small amount of liquid flows out of the capillaries, and therefore it is possible to measure a minute amount of liquid flow in the device being measured. Become.

本発明の第2の特徴によれば,被計測機器の交換時,第2供給制御手段を遮断状態にすることにより,細管からの無用な液体の流出を防ぐことができる。   According to the second feature of the present invention, when the device to be measured is replaced, the second supply control means is turned off to prevent unnecessary liquid from flowing out of the narrow tube.

本発明の第3の特徴によれば,液体タンクに液体を補給する際,細管内の液面は,上部の空気を連通管を通して液体タンク側に押し出しながらスムーズに上昇して,液体タンク内の液面と同レベルになる。したがって,透明な細管内の液面を見て液体タンク内の液面レベルを知り,液体の補給量の適否を判断することができる。   According to the third aspect of the present invention, when the liquid is supplied to the liquid tank, the liquid level in the narrow tube rises smoothly while pushing the air in the upper part through the communication pipe to the liquid tank side. It becomes the same level as the liquid level. Accordingly, the level of liquid in the liquid tank can be known by looking at the level of liquid in the transparent thin tube, and the suitability of the replenishment amount of the liquid can be determined.

本発明の第4の特徴によれば,電磁式燃料噴射弁の燃料噴射流量を能率良く且つ正確に計測することができる。特に,極小径の細管の使用により,細管からの微量な燃料流出時にも,細管内の液面を敏感に変化させることができ,したがって,燃料噴射弁の1回の微量な燃料噴射流量の計測も可能となる。   According to the fourth aspect of the present invention, the fuel injection flow rate of the electromagnetic fuel injection valve can be measured efficiently and accurately. In particular, the use of a very small diameter tube allows the liquid level in the tube to be sensitively changed even when a small amount of fuel flows out of the tube, and therefore measurement of a small amount of fuel injection flow of the fuel injection valve once. Is also possible.

本発明の第1実施例に係る液体流量計測装置の概要側面図。1 is a schematic side view of a liquid flow rate measuring apparatus according to a first embodiment of the present invention. 本発明の第2実施例に係る液体流量計測装置の概要側面図。The outline side view of the liquid flow measuring device concerning the 2nd example of the present invention. 本発明の第3実施例に係る液体流量計測装置の概要側面図。The outline side view of the liquid flow measuring device concerning the 3rd example of the present invention.

本発明の実施の形態を,添付図面に示す本発明の好適な実施例に基づいて以下に説明する。先ず,図1に示す本発明の第1実施例の説明より始める。   Embodiments of the present invention will be described below on the basis of preferred embodiments of the present invention shown in the accompanying drawings. First, the description starts with the description of the first embodiment of the present invention shown in FIG.

液体流量計測装置Mは,エンジン用電磁式燃料噴射弁Iの燃料噴射流量を計測するために使用されもので,燃料2を貯留する燃料タンク1と,この燃料タンク1の一側方に隣接配置される透明ガラスよりなる細管3とを備えており,この細管3は,燃料タンク1より遥かに小径に形成される。燃料タンク1は,上部に通常キャップ9で閉鎖される給油口1bを有する。これら燃料タンク1及び細管3は,それら内部の底部同士が第1供給路4を介して連通しており,この第1供給路4の途中に,それを遮断し得る第1遮断弁6が介装される。而して,第1供給路4及び第1遮断弁6は,燃料タンク1から細管3への燃料2の供給及び遮断を行う第1供給制御手段10を構成する。   The liquid flow rate measuring device M is used for measuring the fuel injection flow rate of the engine electromagnetic fuel injection valve I, and is disposed adjacent to a fuel tank 1 for storing fuel 2 and one side of the fuel tank 1. And a thin tube 3 made of transparent glass. The thin tube 3 is formed to have a diameter much smaller than that of the fuel tank 1. The fuel tank 1 has a fuel filler opening 1b normally closed with a cap 9 at the top. The fuel tank 1 and the narrow tube 3 communicate with each other at the bottoms thereof via a first supply path 4, and a first shutoff valve 6 is provided in the middle of the first supply path 4. Be dressed. Thus, the first supply path 4 and the first cutoff valve 6 constitute a first supply control means 10 that supplies and shuts off the fuel 2 from the fuel tank 1 to the narrow tube 3.

また燃料タンク1及び細管3の上部空間1a,3aには,それらを相互に直接連通する連通路13が接続される。   In addition, a communication passage 13 is directly connected to the upper spaces 1a and 3a of the fuel tank 1 and the narrow tube 3 so as to communicate them directly with each other.

細管3の下端部には,第2供給路5を介して被計測機器としての電磁式燃料噴射弁Iが接続され,この第2供給路5には,それを遮断し得る第2遮断弁7が介装される。而して,上記第2供給路5及び第2遮断弁7は,細管3から燃料噴射弁Iへの燃料2の供給及び遮断を行う第2供給制御手段11を構成する。   An electromagnetic fuel injection valve I as a device to be measured is connected to the lower end portion of the thin tube 3 via a second supply path 5, and a second cutoff valve 7 that can shut it off is connected to the second supply path 5. Is inserted. Thus, the second supply path 5 and the second cutoff valve 7 constitute second supply control means 11 that supplies and shuts off the fuel 2 from the narrow tube 3 to the fuel injection valve I.

燃料噴射弁Iには,それを開弁すべく噴射信号を出力する噴射信号手段手段15が接続され,燃料噴射弁Iの直下には,燃料噴射弁Iの噴射燃料を受ける燃料溜め14が設置される。される。   An injection signal means 15 for outputting an injection signal is connected to the fuel injection valve I, and a fuel reservoir 14 for receiving the fuel injected from the fuel injection valve I is installed immediately below the fuel injection valve I. Is done. Is done.

細管3の一側には,その管内の燃料液面L1又はL2を読み取る液面センサとしてのCCDカメラ17が配設される。このCCDカメラ17は,読み取った細管3内の液面信号を電子制御ユニット18に出力するようになっており,電子制御ユニット18は,上記液面信号から得た液面変化量hと,それに対応する細管3からの燃料流出量Qとの関係を示すマップ19を備えると共に,適時そのマップ19から得た燃料流出量をモニタ20に表示するようになっている。而して,CCDカメラ17,電子制御ユニット18及びモニタ20は,細管3内の液面変化より燃料噴射弁Iの燃料噴射流量を読み取る流量読み取り手段21を構成する。   On one side of the narrow tube 3, a CCD camera 17 is disposed as a liquid level sensor that reads the fuel liquid level L1 or L2 in the tube. The CCD camera 17 outputs the read liquid level signal in the narrow tube 3 to the electronic control unit 18, and the electronic control unit 18 detects the liquid level change amount h obtained from the liquid level signal, A map 19 showing the relationship with the fuel outflow amount Q from the corresponding narrow tube 3 is provided, and the fuel outflow amount obtained from the map 19 is displayed on the monitor 20 in a timely manner. Thus, the CCD camera 17, the electronic control unit 18, and the monitor 20 constitute a flow rate reading means 21 that reads the fuel injection flow rate of the fuel injection valve I from the liquid level change in the narrow tube 3.

燃料タンク1及び細管3の上部空間1a,3aには,空気圧力源22から延出する圧力導管23の下流側で二股状に分岐した分岐管23a,23bが接続され,この圧力導管23には,その上流側から順に第3遮断弁8,レギュレータ弁25,及び圧力センサ26が設けられる。レギュレータ弁25は,空気圧力源22から細管3内の燃料液面L1に作用させる空気圧力を燃料噴射弁Iの規定の噴射圧力に対応するように調整する。このレギュレータ弁25は,圧力導管23の分岐管23a,23bの分岐点24より上流側に配置される。   The upper spaces 1a and 3a of the fuel tank 1 and the narrow tube 3 are connected to branch pipes 23a and 23b that are bifurcated on the downstream side of the pressure conduit 23 extending from the air pressure source 22, and to the pressure conduit 23, , A third shut-off valve 8, a regulator valve 25, and a pressure sensor 26 are provided in this order from the upstream side. The regulator valve 25 adjusts the air pressure applied from the air pressure source 22 to the fuel liquid level L1 in the narrow tube 3 so as to correspond to the prescribed injection pressure of the fuel injection valve I. The regulator valve 25 is disposed upstream of the branch point 24 of the branch pipes 23 a and 23 b of the pressure conduit 23.

次に,この第1実施例の作用について説明する。   Next, the operation of the first embodiment will be described.

電磁式燃料噴射弁Iの噴射燃料流量を計測するに当たっては,先ず,第1遮断弁6を開放状態,第2及び第3遮断弁7,8を遮断状態にして,第2供給路5の下流端に,計測する電磁式燃料噴射弁Iを接続する。また給油口1bから燃料タンク1に燃料を補給すれば,その燃料は,第1供給路4を通して細管3にも補給される。その際,燃料タンク1及び細管3の上部空間1a,3aは,連通路13を介して相互に連通しているので,細管3内の液面L1は,上部空間3aの空気を連通路13を通して燃料タンク1の上部空間1a側に押し出しながらスムーズに上昇して,燃料タンク1内の液面と同レベルになる。したがって,透明な細管3内の液面を見て燃料タンク1内の液面レベルを知り,燃料の補給量の適否を判断することができる。   In measuring the injected fuel flow rate of the electromagnetic fuel injection valve I, first, the first shutoff valve 6 is opened, the second and third shutoff valves 7 and 8 are shut off, and the downstream of the second supply path 5 An electromagnetic fuel injection valve I to be measured is connected to the end. If fuel is supplied to the fuel tank 1 from the fuel filler port 1 b, the fuel is also supplied to the narrow tube 3 through the first supply path 4. At that time, since the fuel tank 1 and the upper spaces 1a, 3a of the narrow tube 3 communicate with each other via the communication passage 13, the liquid level L1 in the narrow tube 3 causes the air in the upper space 3a to pass through the communication passage 13. The fuel tank 1 rises smoothly while being pushed out to the upper space 1a side, and reaches the same level as the liquid level in the fuel tank 1. Accordingly, it is possible to know the liquid level in the fuel tank 1 by observing the liquid level in the transparent thin tube 3 and determine whether or not the fuel replenishment amount is appropriate.

次に,第2及び第3遮断弁7,8を開放状態にして,レギュレータ弁25により規制される空気圧力源22の圧力を燃料タンク1及び細管3内の燃料液面に作用させることにより,電磁式燃料噴射弁Iに噴射圧力を付与する。   Next, by opening the second and third shut-off valves 7 and 8 and causing the pressure of the air pressure source 22 regulated by the regulator valve 25 to act on the fuel level in the fuel tank 1 and the narrow tube 3, An injection pressure is applied to the electromagnetic fuel injection valve I.

そこで,このときの細管3内の燃料液面L1をCCDカメラ17により読み取り,その液面信号を電子制御ユニット18に出力する。そして噴射信号出力手段15の作動により電磁式燃料噴射弁Iに所定回数の噴射信号を付与すれば,燃料噴射弁Iは細管3内の燃料を燃料溜め14に向かって所定回数噴射することになる。その結果,細管3内の燃料液面は,L1からL2へと下がり,その下がった燃料液面L2をCCDカメラ17が読み取り,その液面信号を電子制御ユニット18に出力すると,電子制御ユニット18は,その液面信号と当初の液面信号とから液面変化量hを演算し,マップ19から細管3からの燃料流出量,即ち燃料噴射弁Iの燃料噴射流量を得てモニタ20に表示する。   Therefore, the fuel level L 1 in the narrow tube 3 at this time is read by the CCD camera 17 and the level signal is output to the electronic control unit 18. If the injection signal output means 15 is operated to give a predetermined number of injection signals to the electromagnetic fuel injection valve I, the fuel injection valve I will inject the fuel in the narrow tube 3 toward the fuel reservoir 14 a predetermined number of times. . As a result, the fuel level in the narrow tube 3 falls from L1 to L2, and when the CCD camera 17 reads the lowered fuel level L2 and outputs the level signal to the electronic control unit 18, the electronic control unit 18 Calculates the level change amount h from the liquid level signal and the initial level signal, and obtains the fuel outflow amount from the narrow tube 3, that is, the fuel injection flow rate of the fuel injection valve I from the map 19, and displays it on the monitor 20. To do.

このように,燃料噴射弁Iの燃料噴射流量を,細管3内の燃料液面L1,L2の変化量hに基づいて計測するので,燃料噴射弁Iの出口側の温度変化に影響されることなく,燃料噴射弁Iの燃料噴射流量を即座に且つ正確に計測することができる。特に,細管3を極小径に形成すれば,細管3からの微量な燃料流出時にも,細管3内の燃料液面をL1からL2へと敏感に変化させることができ,したがって,燃料噴射弁Iの1回の開弁時における微量な燃料噴射流量の計測も可能となる。   Thus, since the fuel injection flow rate of the fuel injection valve I is measured based on the change amount h of the fuel liquid level L1, L2 in the narrow tube 3, it is influenced by the temperature change on the outlet side of the fuel injection valve I. In addition, the fuel injection flow rate of the fuel injection valve I can be measured immediately and accurately. In particular, if the narrow tube 3 is formed with a very small diameter, the fuel level in the narrow tube 3 can be sensitively changed from L1 to L2 even when a small amount of fuel flows out of the narrow tube 3, and therefore the fuel injection valve I It is also possible to measure a small amount of fuel injection flow rate at the time of one valve opening.

計測後は,再び第2遮断弁7を遮断状態にして,第2供給路5において新たに計測する燃料噴射弁Iを計測後の燃料噴射弁Iと交換する。この燃料噴射弁Iの交換時,第2遮断弁7の閉鎖により,細管3からの無用な燃料の流出を防ぐことができる。この間,第3遮断弁8は開弁状態のまゝでもよい。その後,第1遮断弁6を開放状態にして,燃料タンク1内の燃料を第1供給路4を通して細管3側へ補給して,細管3内の燃料液面を燃料タンク1内の燃料液面に合わせる。そして細管3内の燃料液面をCCDカメラ17に読み取らせ,以後,前記と同様の要領により,新たな燃料噴射弁Iの燃料噴射流量を計測する。   After the measurement, the second shutoff valve 7 is again shut off, and the fuel injection valve I newly measured in the second supply path 5 is replaced with the fuel injection valve I after the measurement. When the fuel injection valve I is replaced, unnecessary fuel outflow from the narrow tube 3 can be prevented by closing the second shutoff valve 7. During this time, the third shut-off valve 8 may remain open. Thereafter, the first shutoff valve 6 is opened, and the fuel in the fuel tank 1 is replenished to the narrow tube 3 side through the first supply path 4, and the fuel level in the narrow tube 3 is changed to the fuel level in the fuel tank 1. To match. Then, the fuel level in the narrow tube 3 is read by the CCD camera 17, and thereafter, the fuel injection flow rate of the new fuel injection valve I is measured in the same manner as described above.

この第1実施例においては,第3遮断弁8より下流側の圧力導管23によっても燃料タンク1及び細管3内の上部空間1a,3aは相互に連通しているので,その両上部空間1a,3aを相互に直接連通する連通路13を廃止しても,両上部空間1a,3a相互の連通状態を確保することができる。しかしながら,連通路13を設けた方がその連通距離を極力短くして連通路13の流路抵抗を極力小さくし,燃料タンク1から細管3への燃料補給をスムーズに行うことができる。   In the first embodiment, the fuel tank 1 and the upper spaces 1a, 3a in the narrow tube 3 are also communicated with each other by the pressure conduit 23 downstream of the third shut-off valve 8, so that both upper spaces 1a, Even if the communication path 13 that directly communicates 3a with each other is eliminated, the communication state between the upper spaces 1a and 3a can be ensured. However, if the communication path 13 is provided, the communication distance can be shortened as much as possible to reduce the flow resistance of the communication path 13 as much as possible, so that fuel can be smoothly supplied from the fuel tank 1 to the narrow tube 3.

次に図2示す本発明の第2実施例について説明する。   Next, a second embodiment of the present invention shown in FIG. 2 will be described.

この第2実施例は,前記第1実施例において,圧力導管23の,燃料タンク1の上部空間1aに連通する分岐管23aを廃止したものに相当する。したがって圧力導管23は細管3の上部空間3aにのみ接続される。尚,図2中,前記第1実施例に対応する部分には同一の参照符号を付して,重複する説明を省略する。   The second embodiment corresponds to the first embodiment in which the branch pipe 23a communicating with the upper space 1a of the fuel tank 1 of the pressure conduit 23 is eliminated. Therefore, the pressure conduit 23 is connected only to the upper space 3 a of the narrow tube 3. In FIG. 2, parts corresponding to those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

この第2実施例によれば,圧力導管23の配管構造の簡素化を図ることができると共に,連通路13により,燃料タンク1及び細管3の上部空間1a,3a相互の連通状態を確保し,燃料タンク1から細管3への燃料の補給を支障なく行うことができる。   According to the second embodiment, the piping structure of the pressure conduit 23 can be simplified, and the communication path 13 ensures the communication between the upper spaces 1a and 3a of the fuel tank 1 and the narrow tube 3, Fuel can be replenished from the fuel tank 1 to the narrow tube 3 without hindrance.

最後に図3に示す本発明の第3実施例について説明する。   Finally, a third embodiment of the present invention shown in FIG. 3 will be described.

この第3実施例は,前記第1実施例において,圧力導管23の,細管3の上部空間3aに連通する分岐管23bを廃止したものに相当する。したがって圧力導管23は燃料タンク1の上部空間1aにのみ接続される。尚,図3中,前記第1実施例に対応する部分には同一の参照符号を付して,重複する説明を省略する。   This third embodiment corresponds to the pressure pipe 23 in which the branch pipe 23b communicating with the upper space 3a of the thin pipe 3 is eliminated in the first embodiment. Therefore, the pressure conduit 23 is connected only to the upper space 1 a of the fuel tank 1. In FIG. 3, parts corresponding to those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

この第3実施例によれば,圧力導管23の配管構造の簡素化を図ることができると共に,空気圧力源22の空気圧力を連通路13を通して細管3内の燃料液面L1,L2に付与することができる。   According to the third embodiment, the piping structure of the pressure conduit 23 can be simplified, and the air pressure of the air pressure source 22 is applied to the fuel liquid levels L1 and L2 in the narrow tube 3 through the communication passage 13. be able to.

本発明は上記実施例に限定されるものではなく,その要旨を逸脱しない範囲で種々の設計変更が可能である。例えば,空気圧力源22に代えて,他のガスを圧縮してなる圧力源を使用することもできる。   The present invention is not limited to the above embodiment, and various design changes can be made without departing from the scope of the invention. For example, instead of the air pressure source 22, a pressure source formed by compressing another gas can be used.

I・・・・・被計測機器(電磁式燃料噴射弁)
L1,L2・・・細管内の液面
M・・・・・液体流量計測装置
1・・・・・液体タンク(燃料タンク)
1a・・・・液体タンクの上部空間
2・・・・・液体(燃料)
3・・・・・細管
3a・・・・細管の上部空間
10・・・・第1供給制御手段
11・・・・第2供給制御手段弁体
13・・・・連通路
21・・・・流量読み取り手段
22・・・・気体圧力源(空気圧力源)
I: Equipment to be measured (electromagnetic fuel injection valve)
L1, L2 ... Liquid level M in the narrow tube ... Liquid flow measuring device 1 ... Liquid tank (fuel tank)
1a .. Upper space of liquid tank 2 ... Liquid (fuel)
3... Fine tube 3 a... Upper space 10 of the thin tube... First supply control means 11... Second supply control means valve element 13. Flow rate reading means 22... Gas pressure source (air pressure source)

Claims (4)

液体(2)を貯留する液体タンク(1)と,この液体タンク(1)より小径で透明の細管(3)と,液体タンク(1)及び細管(3)間を接続して,液体タンク(1)から細管(3)への液体(2)の供給及び遮断を行う第1供給制御手段(10)と,細管(3)から被計測機器(I)への液体(2)の供給を行う第2供給制御手段(11)と,液体タンク(1)から細管(3)への液体(2)の供給を前記第1供給制御手段(10)により遮断した後,被計測機器(I)がその作動により細管(3)から導入した流体を吐出したとき,その吐出に伴なう細管(3)内の液面変化より被計測機器(I)の液体吐出流量を読み取る流量読み取り手段(21)とよりなることを特徴とする液体流量計測装置。   A liquid tank (1) for storing the liquid (2), a thin tube (3) having a diameter smaller than that of the liquid tank (1), and the liquid tank (1) and the thin tube (3) are connected to each other. The first supply control means (10) for supplying and shutting off the liquid (2) from the 1) to the thin tube (3) and the liquid (2) from the thin tube (3) to the device to be measured (I). After the second supply control means (11) and the supply of the liquid (2) from the liquid tank (1) to the thin tube (3) are shut off by the first supply control means (10), the device to be measured (I) When the fluid introduced from the narrow tube (3) is discharged by the operation, the flow rate reading means (21) for reading the liquid discharge flow rate of the device to be measured (I) from the liquid level change in the narrow tube (3) accompanying the discharge A liquid flow rate measuring device characterized by comprising: 請求項1記載の液体流量計測装置において,
前記第2供給制御手段(11)を,細管(3)から被計測機器(I)への液体(2)の供給を遮断し得るように構成したことを特徴とする液体流量計測装置。
In the liquid flow measuring device according to claim 1,
A liquid flow rate measuring apparatus, wherein the second supply control means (11) is configured to be able to block the supply of the liquid (2) from the narrow tube (3) to the device to be measured (I).
請求項1又は2記載の液体流量計測装置において,
液体タンク(1)及び細管(3)内の上部空間(1a,3a)相互を連通したことを特徴とする液体流量計測装置。
In the liquid flow measuring device according to claim 1 or 2,
A liquid flow rate measuring device characterized in that the upper space (1a, 3a) in the liquid tank (1) and the narrow tube (3) communicate with each other.
請求項1〜3記載の液体流量計測装置において,
被計測機器は電磁式燃料噴射弁(I)であり,また前記液体は燃料(2)であり,前記燃料噴射弁(I)に燃料噴射圧力を付与すべく,細管(3)内の液面(L1)に所定の気体圧力を付与する気体圧力源(22)を備えることを特徴とする液体流量計測装置。
In the liquid flow measuring device according to claims 1 to 3,
The device to be measured is an electromagnetic fuel injection valve (I), and the liquid is fuel (2). The liquid level in the narrow tube (3) is applied to the fuel injection valve (I) to apply fuel injection pressure. A liquid flow rate measuring device comprising a gas pressure source (22) for applying a predetermined gas pressure to (L1).
JP2009106863A 2009-04-24 2009-04-24 Liquid flow rate measuring device Pending JP2010255530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009106863A JP2010255530A (en) 2009-04-24 2009-04-24 Liquid flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009106863A JP2010255530A (en) 2009-04-24 2009-04-24 Liquid flow rate measuring device

Publications (1)

Publication Number Publication Date
JP2010255530A true JP2010255530A (en) 2010-11-11

Family

ID=43316705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009106863A Pending JP2010255530A (en) 2009-04-24 2009-04-24 Liquid flow rate measuring device

Country Status (1)

Country Link
JP (1) JP2010255530A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330118A (en) * 2014-11-10 2015-02-04 沈阳黎明航空发动机(集团)有限责任公司 Automatic flow measurement system and automatic flow measurement method of aircraft fuel oil main pipe
CN109211345A (en) * 2017-07-03 2019-01-15 合肥锦佳汽车零部件有限公司 A kind of system and its measurement method measuring fuel tank surplus and liquid level relationship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330118A (en) * 2014-11-10 2015-02-04 沈阳黎明航空发动机(集团)有限责任公司 Automatic flow measurement system and automatic flow measurement method of aircraft fuel oil main pipe
CN104330118B (en) * 2014-11-10 2017-10-20 沈阳黎明航空发动机(集团)有限责任公司 A kind of Aviation Fuel house steward flow automatic measuring system and its measuring method
CN109211345A (en) * 2017-07-03 2019-01-15 合肥锦佳汽车零部件有限公司 A kind of system and its measurement method measuring fuel tank surplus and liquid level relationship

Similar Documents

Publication Publication Date Title
TWI354096B (en)
US7263448B2 (en) Continuous flow chemical metering apparatus
KR100929580B1 (en) Leakage Tester for Low Temperature Valve
KR20140003611A (en) Pressure-based flow control device with flow monitor
RU2012158359A (en) FUEL LEAKAGE DETECTION SYSTEM AND TURBINE SUPPLIED WITH SUCH SYSTEM
JP2008089575A5 (en)
KR101131948B1 (en) method and apparatus for airtight inspection using equalization
KR20130031260A (en) Calibration method and flow-rate measurement method for flow-rate controller of gas supplying apparatus
JP2007232666A (en) Method and device for inspecting leakage in pipe line
BRPI0722233A2 (en) APPARATUS AND METHOD FOR SUPPLYING AN AIRCRAFT TANK SYSTEM
ES2784299T3 (en) System and measurement method for cryogenic liquids
CN109724667B (en) Method and system for detecting volume percentage of liquid in container and dispenser with system
JP2010209980A (en) Gas supply device and gas station equipped with gas supply device
JP2007525638A (en) Measurement of fluid volume in a container using pressure
TW201802438A (en) Gas supply device capable of measuring flow rate, flowmeter, and flow rate measuring method
JP2006153635A (en) Leak detector for liquid in tank
JP2010255530A (en) Liquid flow rate measuring device
JP2006275906A (en) Leakage inspection method and system
KR101432485B1 (en) Apparatus for testing water meter
JP2011013098A (en) Liquid discharge flow rate measuring apparatus
JP2007271087A (en) Gas filling device
JP2005114041A (en) Gas filling device
CN104964724A (en) Liquid storage tank evaporation rate measuring device and measuring method thereof
JP5357734B2 (en) Differential pressure gauge inspection device and method of using the same
JP6122890B2 (en) Test gas generator