JP2010255500A - Intake air composition variable internal combustion engine and method for controlling the same - Google Patents

Intake air composition variable internal combustion engine and method for controlling the same Download PDF

Info

Publication number
JP2010255500A
JP2010255500A JP2009105726A JP2009105726A JP2010255500A JP 2010255500 A JP2010255500 A JP 2010255500A JP 2009105726 A JP2009105726 A JP 2009105726A JP 2009105726 A JP2009105726 A JP 2009105726A JP 2010255500 A JP2010255500 A JP 2010255500A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
intake
carbon dioxide
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009105726A
Other languages
Japanese (ja)
Inventor
Masaomi Inoue
正臣 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009105726A priority Critical patent/JP2010255500A/en
Publication of JP2010255500A publication Critical patent/JP2010255500A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make intake air composition appropriate according to an engine operation state. <P>SOLUTION: A gas separation device 24 is disposed at a downstream side of a catalyst 22 in an exhaust pipe 21, exhaust gas purified by a catalyst 22 is made to flow into a gas separation device 24, and nitrogen and a carbon dioxide are separated from the exhaust gas. The nitrogen and the carbon dioxide separate by the gas separation device 24 are introduced to an intake air passage of the engine 11 with its mix rate and/or mix quantity (intake system introduction quantity) which is changed according to an engine operation state. Consequently, the composition of intake air (concentration of the nitrogen and the carbon dioxide) can be changed to a composition suitable for the engine operation state according to the engine operation state, and theoretical thermal efficiency and actual efficiency are improved while reducing the occurrence of the knocking and the formation of NOx. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、吸気中の二酸化炭素と窒素の割合(組成比)を変化させる機能を備えた吸気組成可変内燃機関及びその制御装置に関する発明である。   The present invention relates to an intake composition variable internal combustion engine having a function of changing the ratio (composition ratio) of carbon dioxide and nitrogen in intake air, and a control apparatus therefor.

従来の吸気組成可変内燃機関としては、特許文献1(特開平3−217649号公報)に記載されているように、パティキュレートの排出量を増加させることなくNOx排出量を低減することを課題として、排気管から吸気側に還流させるEGRガス中の二酸化炭素ガスを分離するCO2 分離装置を設け、このCO2 分離装置で分離した二酸化炭素ガスを内燃機関の吸気に添加するようにしたものがある。 As a conventional intake composition variable internal combustion engine, as described in Patent Document 1 (Japanese Patent Laid-Open No. 3-217649), the problem is to reduce NOx emission without increasing particulate emission. and those to the CO 2 separation device for separating the carbon dioxide gas of the EGR gas to be recirculated to the intake side from the exhaust pipe is provided, the addition of carbon dioxide gas separated in the CO 2 separation device to the intake of an internal combustion engine is there.

特開平3−217649号公報JP-A-3-217649

上記特許文献1の技術では、高負荷時に、二酸化炭素ガスの添加により混合気の燃焼温度(圧力)を低下させてNOx排出量を低減する効果を期待できるが、二酸化炭素は比熱比κが空気よりも小さいため、低負荷時に多くの二酸化炭素を吸気に添加すると、吸気の比熱比κが低下して理論熱効率が低下して燃費が低下する。   In the technique of Patent Document 1 described above, the effect of reducing the combustion temperature (pressure) of the air-fuel mixture by reducing the combustion temperature (pressure) of the air-fuel mixture by adding carbon dioxide gas at high load can be expected, but carbon dioxide has a specific heat ratio κ of air. Therefore, if a large amount of carbon dioxide is added to the intake air at a low load, the specific heat ratio κ of the intake air is lowered, the theoretical thermal efficiency is lowered, and the fuel efficiency is lowered.

ここで、オットーサイクルにおける理論熱効率は、次式で表され、理論熱効率を高めるには、比熱比κを大きくすれば良いことが分かる。   Here, the theoretical thermal efficiency in the Otto cycle is expressed by the following equation, and it is understood that the specific heat ratio κ may be increased to increase the theoretical thermal efficiency.

Figure 2010255500
Figure 2010255500

一般に、図3に示すように、ガソリンを燃料とする車両の排出ガスには、70%の窒素と12.5%の二酸化炭素が含まれる。図4に示すように、二酸化炭素は、空気や窒素と比べて定容モル比熱が大きいため、混合気の燃焼温度を低下させてNOx排出量を低減する場合は、二酸化炭素を吸気に添加すれば良いが、図5に示すように、二酸化炭素は、空気や窒素と比べて比熱比κが小さいため、二酸化炭素を吸気に添加すると、吸気の比熱比κが低下して理論熱効率が低下する。   In general, as shown in FIG. 3, the exhaust gas of a vehicle fueled with gasoline contains 70% nitrogen and 12.5% carbon dioxide. As shown in FIG. 4, carbon dioxide has a large constant volume molar specific heat compared to air and nitrogen. Therefore, when reducing the combustion temperature of the air-fuel mixture and reducing NOx emissions, carbon dioxide should be added to the intake air. As shown in FIG. 5, carbon dioxide has a smaller specific heat ratio κ than air and nitrogen. Therefore, when carbon dioxide is added to the intake air, the specific heat ratio κ of the intake air decreases and the theoretical thermal efficiency decreases. .

吸気の比熱比κを大きくするには、窒素を吸気に添加して吸気中の窒素の割合を増加させれば良いが、一方、比熱比κが大きいと、オットーサイクル上は圧縮上死点温度が高くなるため、高負荷時のようにノックが発生しやすい条件においては、点火時期を遅角する必要があり、実効率が低下する。圧縮上死点温度は、燃焼ガスの定容モル比熱(熱容量)が大きいほど低下する。図4に示すように、定容モル比熱を大きするには、二酸化炭素を吸気に添加して、吸気中の二酸化炭素の割合を増加させれば良く、これにより、二酸化炭素の割合の増加により、圧縮上死点温度を低下させてノックの発生を抑制することが可能である。   In order to increase the specific heat ratio κ of the intake air, nitrogen can be added to the intake air to increase the proportion of nitrogen in the intake air. On the other hand, if the specific heat ratio κ is large, the compression top dead center temperature on the Otto cycle Therefore, under conditions where knocking is likely to occur, such as when the load is high, it is necessary to retard the ignition timing, resulting in a decrease in actual efficiency. The compression top dead center temperature decreases as the constant volume specific heat (heat capacity) of the combustion gas increases. As shown in FIG. 4, in order to increase the constant volume specific heat, it is only necessary to add carbon dioxide to the intake air to increase the proportion of carbon dioxide in the intake air, thereby increasing the proportion of carbon dioxide. It is possible to suppress the occurrence of knock by reducing the compression top dead center temperature.

そこで、本発明が解決しようとする課題は、内燃機関の運転状態に応じて吸気の組成を適正化して、ノックの発生やNOxの発生を低減しながら理論熱効率や実効率を高めることができる吸気組成可変内燃機関及びその制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to optimize the composition of the intake air in accordance with the operating state of the internal combustion engine, and to increase the theoretical thermal efficiency and the actual efficiency while reducing the generation of knocks and NOx. An object is to provide a variable composition internal combustion engine and a control device therefor.

上記課題を解決するために、請求項1に係る発明は、吸気中の二酸化炭素と窒素の割合を変化させる機能を備えた吸気組成可変内燃機関において、内燃機関の排出ガスの少なくとも一部から窒素と二酸化炭素を分離するガス分離手段と、内燃機関の運転状態に応じて前記ガス分離手段で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて内燃機関の吸気通路に導入する制御手段とを備えた構成としたものである。   In order to solve the above-mentioned problem, an invention according to claim 1 is directed to an intake composition variable internal combustion engine having a function of changing a ratio of carbon dioxide and nitrogen in intake air. The gas separation means for separating the carbon dioxide and the carbon dioxide, and the mixing ratio and / or the mixing amount of nitrogen and carbon dioxide separated by the gas separation means according to the operating state of the internal combustion engine are changed and introduced into the intake passage of the internal combustion engine And a control means.

この構成では、内燃機関の運転状態に応じて、排出ガスから分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて吸気に添加することで、吸気の組成(窒素と二酸化炭素の濃度)を内燃機関の運転状態に適した組成に変化させることが可能となり、ノックの発生やNOxの発生を低減しながら理論熱効率や実効率を高めることができる。   In this configuration, the composition of the intake air (the composition of the nitrogen and carbon dioxide is changed by adding to the intake air by changing the mixing ratio and / or the mixing amount of nitrogen and carbon dioxide separated from the exhaust gas according to the operating state of the internal combustion engine. (Concentration) can be changed to a composition suitable for the operating state of the internal combustion engine, and the theoretical thermal efficiency and actual efficiency can be increased while reducing the occurrence of knocks and NOx.

具体的には、請求項2のように、低負荷域では窒素の混合割合を多くし、高負荷になるほど二酸化炭素の混合割合を多くしたガスを吸気通路に導入するようにすると良い。低負荷域では、高負荷域に比べて圧縮上死点温度が低く、ノックが発生しにくいため、低負荷域では、窒素の混合割合を多くして、吸気の比熱比κを大きくすることで、理論熱効率を高めることができる。そして、高負荷になるほど二酸化炭素の混合割合を多くすることで、高負荷になるほど圧縮上死点温度の上昇を抑えることで、高負荷域でもノックの発生を抑制できる。これにより、ノックの発生を抑制できる範囲内で窒素の混合割合を多くして理論熱効率や実効率を高めることができる。   Specifically, as described in claim 2, it is preferable to introduce a gas having a higher nitrogen mixing ratio in a low load range and a higher carbon dioxide mixing ratio into the intake passage as the load becomes higher. In the low load range, the compression top dead center temperature is lower than in the high load range and knocking is less likely to occur. Therefore, in the low load range, the nitrogen mixing ratio is increased to increase the specific heat ratio κ of the intake air. The theoretical thermal efficiency can be increased. Further, by increasing the mixing ratio of carbon dioxide as the load becomes higher, and suppressing the increase in the compression top dead center temperature as the load becomes higher, the occurrence of knocking can be suppressed even in a high load range. Thereby, the theoretical thermal efficiency and the actual efficiency can be increased by increasing the mixing ratio of nitrogen within a range in which the occurrence of knocking can be suppressed.

また、請求項3のように、内燃機関の冷却水温又は油温に基づいて窒素と二酸化炭素の混合割合及び/又は混合量を変化させるようにすると良い。要するに、内燃機関の温度が低いほど、ノックが発生しにくいため、内燃機関の温度に相関する冷却水温又は油温に基づいて窒素と二酸化炭素の混合割合及び/又は混合量を変化させるようにすれば、内燃機関の温度に応じて窒素と二酸化炭素の混合割合及び/又は混合量を適正に変化させることができる。   Further, as in claim 3, the mixing ratio and / or mixing amount of nitrogen and carbon dioxide may be changed based on the cooling water temperature or oil temperature of the internal combustion engine. In short, the lower the temperature of the internal combustion engine, the less likely knocking occurs. Therefore, the mixing ratio and / or mixing amount of nitrogen and carbon dioxide should be changed based on the cooling water temperature or oil temperature correlated with the temperature of the internal combustion engine. For example, the mixing ratio and / or mixing amount of nitrogen and carbon dioxide can be appropriately changed according to the temperature of the internal combustion engine.

具体的には、請求項4のように、内燃機関の冷却水温又は油温が低いほど窒素の混合割合及び/又は混合量を増加させるようにすると良い。内燃機関の温度が低いほど、ノックが発生しにくくなるため、低温領域で、窒素の混合割合及び/又は混合量を増加させて理論熱効率を高めるという制御が可能となる。   Specifically, as described in claim 4, it is preferable to increase the mixing ratio and / or mixing amount of nitrogen as the cooling water temperature or oil temperature of the internal combustion engine is lower. As the temperature of the internal combustion engine is lower, knocking is less likely to occur. Therefore, it is possible to increase the theoretical thermal efficiency by increasing the mixing ratio and / or amount of nitrogen in the low temperature range.

また、請求項5のように、内燃機関の回転速度が低いほど二酸化炭素の混合割合及び/又は混合量を増加させるようにしても良い。内燃機関の回転速度が低いほど、ノックが発生しやすくなるため、内燃機関の回転速度が低いほど、二酸化炭素の混合割合及び/又は混合量を増加させれば、低回転領域でのノックの発生を抑制することができる。   Further, as in claim 5, the lower the rotational speed of the internal combustion engine, the higher the mixing ratio and / or the mixing amount of carbon dioxide. As the rotational speed of the internal combustion engine is lower, knocking is more likely to occur. Therefore, if the mixing ratio and / or amount of carbon dioxide is increased as the rotational speed of the internal combustion engine is lower, knocking occurs in the low rotational speed region. Can be suppressed.

本発明は、排出ガスの一部(例えばEGRガス)から窒素と二酸化炭素を分離するようにしても良いが、排出ガス中の二酸化炭素の割合が少ないことを考慮して、請求項6のように、内燃機関の排気通路に、該排気通路を流れる排出ガスを全て通過させてその通過中に該排出ガスから窒素と二酸化炭素を分離して窒素と二酸化炭素の混合ガスを該内燃機関の吸気通路に導入するガス分離装置を設けた構成としても良い。この構成によれば、排気通路を流れる排出ガスを全てガス分離装置に流して、二酸化炭素量を確保することができる。   In the present invention, nitrogen and carbon dioxide may be separated from a part of the exhaust gas (for example, EGR gas). However, considering that the ratio of carbon dioxide in the exhaust gas is small, as in claim 6 In addition, all exhaust gas flowing through the exhaust passage is passed through the exhaust passage of the internal combustion engine, and during the passage, nitrogen and carbon dioxide are separated from the exhaust gas, and a mixed gas of nitrogen and carbon dioxide is taken into the intake air of the internal combustion engine. It is good also as a structure which provided the gas separation apparatus introduce | transduced into a channel | path. According to this configuration, it is possible to ensure the amount of carbon dioxide by flowing all the exhaust gas flowing through the exhaust passage to the gas separation device.

この場合、請求項7のように、ガス分離装置には、分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて吸気通路に導入する混合調整手段を設けた構成とすると良い。このようにすれば、内燃機関の運転状態に応じて窒素と二酸化炭素の混合割合及び/又は混合量を変化させるという制御が可能となる。   In this case, as described in claim 7, it is preferable that the gas separation device is provided with a mixing adjusting means for changing the mixing ratio and / or mixing amount of the separated nitrogen and carbon dioxide and introducing them into the intake passage. In this way, it is possible to control to change the mixing ratio and / or the mixing amount of nitrogen and carbon dioxide according to the operating state of the internal combustion engine.

また、排出ガス中にパティキュレート(粒子状物質PM)が含まれることを考慮して、請求項8のように、排気通路のうちの触媒よりも下流側にガス分離装置を設けるようにすると良い。このようにすれば、排出ガスが触媒を通過する過程で、排出ガス中のパティキュレートが取り除かれてから、該排出ガスがガス分離装置に流れ込むようになるため、ガス分離装置の内部の微細な通気孔がパティキュレートで目詰りする等の不具合の発生を防止することができる。   Further, considering that particulates (particulate matter PM) are included in the exhaust gas, a gas separation device may be provided on the downstream side of the catalyst in the exhaust passage as in claim 8. . In this way, in the process of exhaust gas passing through the catalyst, the particulate matter in the exhaust gas is removed and then the exhaust gas flows into the gas separation device. It is possible to prevent the occurrence of problems such as the vent hole being clogged with particulates.

図1は本発明の一実施例におけるエンジン制御システム全体の概略構成図である。FIG. 1 is a schematic configuration diagram of an entire engine control system according to an embodiment of the present invention. 図2はガス分離装置の構成例を説明する図である。FIG. 2 is a diagram illustrating a configuration example of the gas separation device. 図3は空気(大気)と排出ガスの組成を説明する図である。FIG. 3 is a diagram for explaining the composition of air (atmosphere) and exhaust gas. 図4はCO2 、空気、N2 、O2 、Arの温度と定容モル比熱との関係を説明する図である。FIG. 4 is a diagram for explaining the relationship between the temperature of CO 2 , air, N 2 , O 2 and Ar and the constant volume specific heat. 図5はCO2 、空気、N2 、O2 、Arの温度と比熱比との関係を説明する図である。FIG. 5 is a diagram for explaining the relationship between the temperature of CO 2 , air, N 2 , O 2 , and Ar and the specific heat ratio. 図6は吸気組成可変制御プログラムの処理の流れを示すフローチャートである。FIG. 6 is a flowchart showing the flow of processing of the intake composition variable control program. 図7(a)は、混合割合ベース値マップの一例を概念的に示す図、同図(b)はN2 割合乗算係数マップの一例を概念的に示す図である。FIG. 7A is a diagram conceptually illustrating an example of the mixture ratio base value map, and FIG. 7B is a diagram conceptually illustrating an example of the N 2 ratio multiplication coefficient map. 図8(a)は導入量ベース値マップの一例を概念的に示す図、同図(b)は導入量補正係数マップの一例を概念的に示す図である。FIG. 8A is a diagram conceptually showing an example of the introduction amount base value map, and FIG. 8B is a diagram conceptually showing an example of the introduction amount correction coefficient map. 図9は吸気組成可変制御の実行例を示すタイムチャートである。FIG. 9 is a time chart showing an execution example of the intake composition variable control.

以下、本発明を実施するための形態を具体化した一実施例を説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
内燃機関であるエンジン11の吸気管12(吸気通路)には、吸入空気量を調整するスロットルバルブ13と、このスロットルバルブ13の開度(スロットル開度)を検出するスロットル開度センサ14とが設けられている。スロットルバルブ13の下流側には、サージタンク15(吸気通路)が設けられ、このサージタンク15には、エンジン11の各気筒に空気を導入する吸気マニホールド16(吸気通路)が設けられ、各気筒の吸気マニホールド16の吸気ポート近傍に、それぞれ吸気ポートに向けて燃料を噴射する燃料噴射弁17が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ18が取り付けられ、各点火プラグ18の火花放電によって筒内の混合気に着火される。
Hereinafter, an embodiment embodying a mode for carrying out the present invention will be described.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
In an intake pipe 12 (intake passage) of an engine 11 that is an internal combustion engine, there are a throttle valve 13 that adjusts the amount of intake air and a throttle opening sensor 14 that detects the opening (throttle opening) of the throttle valve 13. Is provided. A surge tank 15 (intake passage) is provided downstream of the throttle valve 13, and an intake manifold 16 (intake passage) for introducing air into each cylinder of the engine 11 is provided in the surge tank 15. In the vicinity of the intake port of the intake manifold 16, a fuel injection valve 17 for injecting fuel toward the intake port is attached. A spark plug 18 is attached to each cylinder of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by the spark discharge of each spark plug 18.

一方、エンジン11の排気管21(排気通路)には、排出ガスを浄化する三元触媒等の触媒22が設けられ、この触媒22の上流側には、排出ガスの空燃比又はリッチ/リーンを検出する排出ガスセンサ23(空燃比センサ又は酸素センサ等)が設けられている。   On the other hand, the exhaust pipe 21 (exhaust passage) of the engine 11 is provided with a catalyst 22 such as a three-way catalyst for purifying the exhaust gas, and the air / fuel ratio or rich / lean of the exhaust gas is provided upstream of the catalyst 22. An exhaust gas sensor 23 (such as an air-fuel ratio sensor or an oxygen sensor) for detection is provided.

更に、排気管21のうちの触媒22の下流側には、ガス分離装置24が設けられている。このガス分離装置24は、図2に示すように、ケーシング25内に例えばポリイミド樹脂製の中空糸膜により形成した筒状のガス分離膜26(ガス分離手段)を設け、排気管21内を流れる排出ガスが全て筒状のガス分離膜26に流れ込むようになっている。このガス分離膜26は、排出ガス中のN2 (窒素)よりもCO2 (二酸化炭素)の方が透過しやすいように構成されている。 Further, a gas separation device 24 is provided on the downstream side of the catalyst 22 in the exhaust pipe 21. As shown in FIG. 2, the gas separation device 24 is provided with a cylindrical gas separation membrane 26 (gas separation means) formed of a hollow fiber membrane made of, for example, polyimide resin in a casing 25, and flows in the exhaust pipe 21. All the exhaust gas flows into the tubular gas separation membrane 26. The gas separation membrane 26 is configured such that CO 2 (carbon dioxide) is more permeable than N 2 (nitrogen) in the exhaust gas.

ガス分離装置24のケーシング25には、ガス分離膜26を透過したCO2 を取り出す二酸化炭素通路27と、ガス分離膜26を透過せずに流れるN2 を取り出す窒素通路28とが設けられている。二酸化炭素通路27と窒素通路28は、下流側で合流排気管29に合流すると共に、二酸化炭素通路27と窒素通路28との間には、CO2 とN2 とを混合させる混合通路30が設けられ、この混合通路30には、CO2 とN2 の混合割合を調整する混合割合調整バルブ31が設けられている。この混合割合調整バルブ31の開度調整によりCO2 とN2 の混合割合が調整された混合ガスは、EGR通路32を通してエンジン11のスロットルバルブ13の下流側の吸気通路(サージタンク15、排気管21、吸気マニホールド16のいずれか)に導入される。合流排気管29には、導入量調整バルブ33が設けられ、この導入量調整バルブ33の開度調整により排気圧力を調整することで、EGR通路32を通してエンジン11の吸気側に導入する混合ガス量を調整するように構成されている。この場合、混合割合調整バルブ31と導入量調整バルブ33は、特許請求の範囲でいう混合調整手段として機能する。 The casing 25 of the gas separation device 24 is provided with a carbon dioxide passage 27 for taking out CO 2 that has permeated through the gas separation membrane 26, and a nitrogen passage 28 for taking out N 2 that flows without passing through the gas separation membrane 26. . The carbon dioxide passage 27 and the nitrogen passage 28 merge with the merged exhaust pipe 29 on the downstream side, and a mixing passage 30 for mixing CO 2 and N 2 is provided between the carbon dioxide passage 27 and the nitrogen passage 28. The mixing passage 30 is provided with a mixing ratio adjusting valve 31 for adjusting the mixing ratio of CO 2 and N 2 . This gas mixture mixing ratio of the opening adjustment by CO 2 and N 2 were adjusted mixing ratio adjustment valve 31, the downstream side of the intake passage (the surge tank 15 of the throttle valve 13 of the engine 11 through the EGR passage 32, an exhaust pipe 21 or any one of the intake manifolds 16). The combined exhaust pipe 29 is provided with an introduction amount adjusting valve 33, and the amount of mixed gas introduced into the intake side of the engine 11 through the EGR passage 32 by adjusting the exhaust pressure by adjusting the opening degree of the introduction amount adjusting valve 33. Configured to adjust. In this case, the mixing ratio adjusting valve 31 and the introduction amount adjusting valve 33 function as mixing adjusting means in the claims.

尚、図2の構成例では、合流排気管29に導入量調整バルブ33を設けたが、EGR通路32に導入量調整バルブを設け、この導入量調整バルブの開度調整によりエンジン11の吸気側に導入する混合ガス量を調整するようにしても良い。   In the configuration example of FIG. 2, the introduction amount adjustment valve 33 is provided in the merged exhaust pipe 29, but an introduction amount adjustment valve is provided in the EGR passage 32, and the opening side of the introduction amount adjustment valve adjusts the opening of the engine 11. The amount of the mixed gas introduced into may be adjusted.

また、エンジン11には、冷却水温を検出する冷却水温センサ34や、クランク角センサ35が設けられ、このクランク角センサ35の出力信号に基づいてクランク角やエンジン回転速度Ne が検出される。   Further, the engine 11 is provided with a cooling water temperature sensor 34 for detecting the cooling water temperature and a crank angle sensor 35, and a crank angle and an engine rotation speed Ne are detected based on an output signal of the crank angle sensor 35.

これら各種センサの出力は、エンジン制御回路(以下「ECU」と表記する)36に入力される。このECU36は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶された各種のエンジン制御プログラムを実行することで、エンジン運転状態に応じて燃料噴射弁17の燃料噴射量や点火プラグ18の点火時期を制御する。更に、ECU36は、後述する図6の吸気組成可変制御プログラムを実行することで、エンジン運転状態に応じて混合割合調整バルブ31と導入量調整バルブ33の開度を調整することで、ガス分離膜26で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させてエンジン11の吸気通路に導入して、吸気の組成(窒素と二酸化炭素の濃度)をエンジン運転状態に適した組成に変化させる。   Outputs of these various sensors are input to an engine control circuit (hereinafter referred to as “ECU”) 36. The ECU 36 is mainly composed of a microcomputer, and executes various engine control programs stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 17 and the like can be determined according to the engine operating state. The ignition timing of the spark plug 18 is controlled. Further, the ECU 36 executes an intake composition variable control program shown in FIG. 6 to be described later, thereby adjusting the opening degrees of the mixing ratio adjusting valve 31 and the introduction amount adjusting valve 33 in accordance with the engine operating state, so that the gas separation membrane The mixing ratio and / or the mixing amount of nitrogen and carbon dioxide separated in 26 are changed and introduced into the intake passage of the engine 11 so that the composition of the intake air (the concentration of nitrogen and carbon dioxide) becomes a composition suitable for the engine operating state. Change.

オットーサイクルにおける理論熱効率は、次式で表され、理論熱効率を高めるには、比熱比κを大きくすれば良いことが分かる。   The theoretical thermal efficiency in the Otto cycle is expressed by the following equation, and it is understood that the specific heat ratio κ may be increased in order to increase the theoretical thermal efficiency.

Figure 2010255500
Figure 2010255500

一般に、図3に示すように、ガソリンを燃料とする車両の排出ガスには、70%のN2 と12.5%のCO2 が含まれる。図4に示すように、CO2 は空気やN2 と比べて定容モル比熱が大きいため、混合気の燃焼温度を低下させてNOx排出量を低減する場合は、CO2 を吸気に添加すれば良いが、図5に示すように、CO2 は空気やN2 と比べて比熱比κが小さいため、CO2 を吸気に添加すると、吸気の比熱比κが低下して理論熱効率が低下する。 In general, as shown in FIG. 3, the exhaust gas of a vehicle fueled with gasoline contains 70% N 2 and 12.5% CO 2 . As shown in FIG. 4, CO 2 has a constant volume specific heat larger than that of air or N 2 , so when reducing the NOx emission amount by lowering the combustion temperature of the air-fuel mixture, add CO 2 to the intake air. However, as shown in FIG. 5, since CO 2 has a smaller specific heat ratio κ than air or N 2 , when CO 2 is added to the intake air, the specific heat ratio κ of the intake air decreases and the theoretical thermal efficiency decreases. .

吸気の比熱比κを大きくするには、N2 を吸気に添加して吸気中のN2 の割合を増加させれば良いが、一方、比熱比κが大きいと、オットーサイクル上は圧縮上死点温度が高くなるため、高負荷時のようにノックが発生しやすい条件においては、点火時期を遅角する必要があり、実効率が低下する。圧縮上死点温度は、燃焼ガスの定容モル比熱(熱容量)が大きいほど低下する。図4に示すように、定容モル比熱を大きするには、CO2 を吸気に添加して、吸気中のCO2 の割合を増加させれば良く、これにより、CO2 の割合の増加により、圧縮上死点温度を低下させてノックの発生を抑制することが可能である。 In order to increase the specific heat ratio κ of the intake air, it is only necessary to add N 2 to the intake air to increase the ratio of N 2 in the intake air. On the other hand, if the specific heat ratio κ is large, compression top dead on the Otto cycle Since the point temperature becomes high, it is necessary to retard the ignition timing under conditions where knocking is likely to occur, such as when the load is high, and the actual efficiency decreases. The compression top dead center temperature decreases as the constant volume specific heat (heat capacity) of the combustion gas increases. As shown in FIG. 4, in order to increase the constant volume specific heat, it is only necessary to add CO 2 to the intake air to increase the proportion of CO 2 in the intake air, thereby increasing the proportion of CO 2. It is possible to suppress the occurrence of knock by reducing the compression top dead center temperature.

このような特性を考慮して、本実施例では、低負荷域ではN2 の混合割合を多くし、高負荷になるほどCO2 の混合割合を多くしたガスをエンジン11の吸気系に導入するようにしている。低負荷域では、高負荷域に比べて圧縮上死点温度が低く、ノックが発生しにくいため、低負荷域では、N2 の混合割合を多くして、吸気の比熱比κを大きくすることで、理論熱効率を高めるようにすれば良い。そして、高負荷になるほどCO2 の混合割合を多くすることで、高負荷になるほど圧縮上死点温度の上昇を抑えることで、高負荷域でもノックの発生を抑制できる。これにより、ノックの発生を抑制できる範囲内でN2 の混合割合や混合量を多くして理論熱効率や実効率を高めることができる。 In consideration of such characteristics, in the present embodiment, the N 2 mixing ratio is increased in the low load region, and the gas with the CO 2 mixing ratio increasing as the load becomes higher is introduced into the intake system of the engine 11. I have to. In the low load range, the compression top dead center temperature is lower than in the high load range, and knocking is less likely to occur. Therefore, in the low load range, increase the mixing ratio of N 2 and increase the specific heat ratio κ of the intake air. Therefore, the theoretical thermal efficiency may be increased. Further, by increasing the mixing ratio of CO 2 as the load becomes higher, and suppressing the increase in the compression top dead center temperature as the load becomes higher, the occurrence of knocking can be suppressed even in the high load range. As a result, the theoretical thermal efficiency and actual efficiency can be increased by increasing the mixing ratio and mixing amount of N 2 within a range in which the occurrence of knocking can be suppressed.

また、エンジン11の温度が低いほど、ノックが発生しにくいため、エンジン11の温度に相関する冷却水温(又は油温)に基づいてN2 とCO2 の混合割合と吸気系導入量を変化させるようにすれば、エンジン11の温度に応じてN2 とCO2 の混合割合と吸気系導入量を適正に変化させることができる。 Further, since knocking is less likely to occur as the temperature of the engine 11 is lower, the mixing ratio of N 2 and CO 2 and the intake system introduction amount are changed based on the coolant temperature (or oil temperature) correlated with the temperature of the engine 11. By doing so, the mixing ratio of N 2 and CO 2 and the intake system introduction amount can be appropriately changed according to the temperature of the engine 11.

具体的には、エンジン11の冷却水温(又は油温)が低いほどN2 の混合割合と混合量を増加させるようにしている。エンジン11の温度が低いほど、ノックが発生しにくくなるため、低温領域で、N2 の混合割合と混合量を増加させて理論熱効率を高めるという制御が可能となる。 Specifically, so that increase the coolant temperature (or oil temperature) of the mixing ratio and mixing amount of low that N 2 of the engine 11. As the temperature of the engine 11 is lower, knocking is less likely to occur. Therefore, it is possible to increase the theoretical thermal efficiency by increasing the mixing ratio and mixing amount of N 2 in the low temperature region.

また、エンジン回転速度Ne が低いほどCO2 の混合割合と混合量を増加させるようにしている。エンジン回転速度Ne が低いほど、ノックが発生しやすくなるため、エンジン回転速度Ne が低いほど、CO2 の混合割合と混合量を増加させれば、低回転領域でのノックの発生を抑制することができる。 Further, the lower the engine speed Ne, the higher the CO 2 mixing ratio and the mixing amount. As the engine speed Ne becomes lower, knocking is more likely to occur. Therefore, if the CO 2 mixing ratio and amount are increased as the engine speed Ne becomes lower, the occurrence of knocking in the low speed region can be suppressed. Can do.

以上説明した本実施例の吸気組成可変制御は、ECU36によって図6の吸気組成可変制御プログラムに従って次のようにして実行される。
図6の吸気組成可変制御プログラムは、エンジン運転中に所定周期で繰り返し実行され、特許請求の範囲でいう制御手段としての役割を果たす。本プログラムが起動されると、まずステップ101で、エンジン回転速度Ne 、負荷、冷却水温を読み込み、次のステップ102で、図7(a)の混合割合ベース値マップを参照して現在のエンジン回転速度Ne と負荷に応じてN2 とCO2 の混合割合ベース値を算出すると共に、図7(b)のN2 割合乗算係数マップを参照して、現在の冷却水温に応じたN2 割合乗算係数を算出し、このN2 割合乗算係数を混合割合ベース値に乗算することで、N2 とCO2 の混合割合を求める。
The intake composition variable control of the present embodiment described above is executed by the ECU 36 in the following manner according to the intake composition variable control program of FIG.
The intake composition variable control program of FIG. 6 is repeatedly executed at a predetermined cycle during engine operation, and serves as a control means in the claims. When this program is started, first, at step 101, the engine speed Ne, load, and cooling water temperature are read, and at the next step 102, the current engine speed is referred to with reference to the mixture ratio base value map of FIG. depending on the load and speed Ne to calculate the mixing ratio based values of N 2 and CO 2, with reference to N 2 ratio multiplication coefficient map of FIG. 7 (b), N 2 ratio multiplied in accordance with the present cooling water temperature A coefficient is calculated, and the mixing ratio base value is multiplied by the N 2 ratio multiplication coefficient to obtain the mixing ratio of N 2 and CO 2 .

ここで、図7(a)の混合割合ベース値マップは、低負荷域では、N2 の混合割合を多くし、高負荷になるほどCO2 の混合割合を多くするように設定されている。また、図7(b)のN2 割合乗算係数マップは、冷却水温(又は油温)が低いほど、N2 割合乗算係数を大きくしてN2 の混合割合を増加させるように設定されている。 Here, the mixing ratio base value map of FIG. 7A is set so that the mixing ratio of N 2 is increased in the low load region, and the mixing ratio of CO 2 is increased as the load becomes higher. Further, the N 2 ratio multiplication coefficient map of FIG. 7B is set so that the N 2 ratio multiplication coefficient is increased and the mixing ratio of N 2 is increased as the cooling water temperature (or oil temperature) is lower. .

この後、ステップ103に進み、上記ステップ102で算出したN2 とCO2 の混合割合に基づいて、当該混合割合を実現する混合割合調整バルブ31の開度をマップ等により算出する。 Thereafter, the process proceeds to step 103, and based on the mixing ratio of N 2 and CO 2 calculated in step 102, the opening of the mixing ratio adjusting valve 31 that realizes the mixing ratio is calculated by a map or the like.

この後、ステップ104に進み、図8(a)の導入量ベース値マップを参照して現在のエンジン回転速度Ne と負荷に応じた導入量ベース値を算出すると共に、図8(b)の導入量補正係数マップを参照して、現在の冷却水温に応じた導入量補正係数を算出し、この導入量補正係数を導入量ベース値に乗算することで、吸気系導入量を求める。   Thereafter, the process proceeds to step 104, where the introduction amount base value corresponding to the current engine speed Ne and the load is calculated with reference to the introduction amount base value map of FIG. 8A, and the introduction of FIG. Referring to the amount correction coefficient map, an introduction amount correction coefficient corresponding to the current cooling water temperature is calculated, and the introduction amount base value is multiplied by the introduction amount correction coefficient to obtain the intake system introduction amount.

ここで、図8(a)の導入量ベース値マップは、低負荷域では、導入量を少なくし、高負荷になるほど導入量を多くするように設定されている。また、図8(b)の導入量補正係数マップは、冷却水温(又は油温)が低いほど、導入量補正係数を小さくして吸気系導入量を減少させるように設定されている。   Here, the introduction amount base value map of FIG. 8A is set so that the introduction amount is reduced in the low load region and the introduction amount is increased as the load becomes higher. In addition, the introduction amount correction coefficient map in FIG. 8B is set so that the introduction amount correction coefficient is decreased and the intake system introduction amount is decreased as the coolant temperature (or oil temperature) is lower.

この後、ステップ105に進み、上記ステップ104で算出した吸気系導入量に基づいて、当該吸気系導入量を実現する導入量調整バルブ33の開度をマップ等により算出する。そして、次のステップ106で、混合割合調整バルブ31の開度と導入量調整バルブ33の開度を、それぞれ上記ステップ103、105で算出した開度に駆動することで、上記ステップ102、104で算出したN2 とCO2 の混合割合と吸気系導入量を実現する。 Thereafter, the process proceeds to step 105, and based on the intake system introduction amount calculated in step 104, the opening degree of the introduction amount adjusting valve 33 that realizes the intake system introduction amount is calculated by a map or the like. Then, in the next step 106, the opening of the mixing ratio adjusting valve 31 and the opening of the introduction amount adjusting valve 33 are driven to the opening calculated in steps 103 and 105, respectively. The calculated mixing ratio of N 2 and CO 2 and the intake system introduction amount are realized.

以上説明した本実施例の吸気組成可変制御の実行例を図9を用いて説明する。図9の例では、エンジン回転速度Ne が上昇すると、それから少し遅れて負荷が上昇し、エンジン回転速度Ne が低下すると、それから少し遅れて負荷が低下する。低温時と高温時とを比較すると、全ての運転条件で、N2 の混合割合は、低温時の方が高温時よりも多く、一方、CO2 の混合割合は、高温時の方が低温時よりも多くなる。また、吸気系導入量は、高温時の方が低温時よりも多くなる。 An execution example of the intake composition variable control of the present embodiment described above will be described with reference to FIG. In the example of FIG. 9, when the engine speed Ne increases, the load increases slightly later, and when the engine speed Ne decreases, the load decreases slightly later. Comparing low temperature and high temperature, under all operating conditions, the mixing ratio of N 2 is higher at low temperatures than at high temperatures, while the mixing ratio of CO 2 is lower at higher temperatures. More than. Further, the intake system introduction amount is higher at high temperatures than at low temperatures.

低温時と高温時のいずれの場合も、負荷が上昇すると、N2 の混合割合が減少して、CO2 の混合割合が増加し、吸気系導入量が増加する。反対に、負荷が低下すると、N2 の混合割合が増加して、CO2 の混合割合が減少し、吸気系導入量が減少する。 In both cases of low temperature and high temperature, when the load increases, the mixing ratio of N 2 decreases, the mixing ratio of CO 2 increases, and the intake system introduction amount increases. On the other hand, when the load decreases, the mixing ratio of N 2 increases, the mixing ratio of CO 2 decreases, and the intake system introduction amount decreases.

また、低温時と高温時のいずれの場合も、エンジン回転速度Ne が上昇すると、吸気系導入量が少しだけ増加し、エンジン回転速度Ne が低下すると、N2 の混合割合が減少して、CO2 の混合割合が増加し、吸気系導入量が増加する。 Further, in both cases of low temperature and high temperature, when the engine rotational speed Ne increases, the intake system introduction amount slightly increases. When the engine rotational speed Ne decreases, the mixing ratio of N 2 decreases, and CO 2 The mixing ratio of 2 increases and the intake system introduction amount increases.

以上説明した本実施例によれば、エンジン運転状態に応じて混合割合調整バルブ31と導入量調整バルブ33の開度を調整することで、ガス分離膜26で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させてエンジン11の吸気通路に導入するようにしたので、エンジン運転状態に応じて吸気の組成(窒素と二酸化炭素の濃度)をエンジン運転状態に適した組成に変化させることが可能となり、ノックの発生やNOxの発生を抑制しながら理論熱効率や実効率を高めることができる。   According to the present embodiment described above, the mixing ratio of nitrogen and carbon dioxide separated by the gas separation membrane 26 is adjusted by adjusting the opening degree of the mixing ratio adjusting valve 31 and the introduction amount adjusting valve 33 according to the engine operating state. Since the mixture amount is changed and introduced into the intake passage of the engine 11, the composition of the intake air (nitrogen and carbon dioxide concentrations) is changed to a composition suitable for the engine operation state according to the engine operation state. This makes it possible to increase the theoretical thermal efficiency and actual efficiency while suppressing the occurrence of knocks and NOx.

しかも、本実施例では、排出ガス中のCO2 の割合が少ないことを考慮して、排気管21にガス分離装置24を設けて、排気管21内を流れる排出ガスを全てガス分離装置24に流すようにしたので、CO2 量を確保しやすい利点がある。但し、本発明は、排出ガスの一部を吸気系に戻すEGR通路にガス分離装置を設けた構成としても良い。 In addition, in this embodiment, considering that the ratio of CO 2 in the exhaust gas is small, a gas separation device 24 is provided in the exhaust pipe 21, and all the exhaust gas flowing in the exhaust pipe 21 is supplied to the gas separation device 24. since to flow, there is an advantage that tends to secure the amount of CO 2. However, the present invention may be configured such that a gas separation device is provided in the EGR passage for returning a part of the exhaust gas to the intake system.

更に、本実施例では、排気管21のうちの触媒22の下流側にガス分離装置24を設けたので、排出ガスが触媒22を通過する過程で、排出ガス中のパティキュレートが取り除かれてから、該排出ガスがガス分離装置24に流れ込むようになり、ガス分離装置24の内部のガス分離膜26の微細孔がパティキュレートで目詰りする等の不具合の発生を防止することができる。   Further, in the present embodiment, since the gas separation device 24 is provided on the downstream side of the catalyst 22 in the exhaust pipe 21, the particulates in the exhaust gas are removed in the process of passing the exhaust gas. The exhaust gas flows into the gas separation device 24, and it is possible to prevent the occurrence of problems such as clogging of fine holes in the gas separation membrane 26 inside the gas separation device 24 with particulates.

尚、本発明は、ガス分離装置24の構成を適宜変更しても良い等、要旨を逸脱しない範囲内で種々変更して実施できる。   It should be noted that the present invention can be implemented with various modifications within a range not departing from the gist, such as appropriately changing the configuration of the gas separation device 24.

11…エンジン(内燃機関)、12…吸気管(吸気通路)、15…サージタンク(吸気通路)、16…吸気マニホールド(吸気通路)、21…排気管(排気通路)、22…触媒、24…ガス分離装置、26…ガス分離膜(ガス分離手段)、27…二酸化炭素通路、28…窒素通路、29…合流排気管、30…混合通路、31…混合割合調整バルブ(混合調整手段)、32…EGR通路、33…導入量調整バルブ(混合調整手段)、34…冷却水温センサ、35…クランク角センサ、36…ECU(制御手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe (intake passage), 15 ... Surge tank (intake passage), 16 ... Intake manifold (intake passage), 21 ... Exhaust pipe (exhaust passage), 22 ... Catalyst, 24 ... Gas separation device 26 ... Gas separation membrane (gas separation means) 27 ... Carbon dioxide passage 28 ... Nitrogen passage 29 ... Confluence exhaust pipe 30 ... Mixing passage 31 ... Mixing ratio adjusting valve (mixing adjusting means) 32 ... EGR passage, 33 ... Introduction amount adjusting valve (mixing adjusting means), 34 ... Cooling water temperature sensor, 35 ... Crank angle sensor, 36 ... ECU (control means)

Claims (8)

吸気中の二酸化炭素と窒素の割合を変化させる機能を備えた吸気組成可変内燃機関において、
内燃機関の排出ガスの少なくとも一部から窒素と二酸化炭素を分離するガス分離手段と、
内燃機関の運転状態に応じて前記ガス分離手段で分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて内燃機関の吸気通路に導入する制御手段と
を備えていることを特徴とする吸気組成可変内燃機関の制御装置。
In the intake composition variable internal combustion engine having the function of changing the ratio of carbon dioxide and nitrogen in the intake air,
Gas separation means for separating nitrogen and carbon dioxide from at least part of the exhaust gas of the internal combustion engine;
Control means for introducing into the intake passage of the internal combustion engine by changing the mixing ratio and / or the mixing amount of nitrogen and carbon dioxide separated by the gas separation means in accordance with the operating state of the internal combustion engine. A control device for an intake composition variable internal combustion engine.
前記制御手段は、低負荷域では窒素の混合割合を多くし、高負荷になるほど二酸化炭素の混合割合を多くしたガスを吸気通路に導入することを特徴とする請求項1に記載の吸気組成可変内燃機関の制御装置。   2. The intake composition variable according to claim 1, wherein the control means introduces into the intake passage a gas in which the mixing ratio of nitrogen is increased in a low load region and the mixing ratio of carbon dioxide is increased as the load becomes higher. Control device for internal combustion engine. 前記制御手段は、内燃機関の冷却水温又は油温に基づいて窒素と二酸化炭素の混合割合及び/又は混合量を変化させることを特徴とする請求項1又は2に記載の吸気組成可変内燃機関の制御装置。   3. The intake composition variable internal combustion engine according to claim 1, wherein the control unit changes a mixing ratio and / or a mixing amount of nitrogen and carbon dioxide based on a cooling water temperature or an oil temperature of the internal combustion engine. Control device. 前記制御手段は、内燃機関の冷却水温又は油温が低いほど窒素の混合割合及び/又は混合量を増加させることを特徴とする請求項3に記載の吸気組成可変内燃機関の制御装置。   4. The control apparatus for an intake composition variable internal combustion engine according to claim 3, wherein the control means increases the mixing ratio and / or mixing amount of nitrogen as the cooling water temperature or oil temperature of the internal combustion engine is lower. 前記制御手段は、内燃機関の回転速度が低いほど二酸化炭素の混合割合及び/又は混合量を増加させることを特徴とする請求項1乃至4のいずれかに記載の吸気組成可変内燃機関の制御装置。   The control device for an intake air composition variable internal combustion engine according to any one of claims 1 to 4, wherein the control means increases the mixing ratio and / or the mixing amount of carbon dioxide as the rotational speed of the internal combustion engine is lower. . 吸気中の二酸化炭素と窒素の割合を変化させる機能を備えた吸気組成可変内燃機関において、
内燃機関の排気通路に、該排気通路を流れる排出ガスを全て通過させてその通過中に該排出ガスから窒素と二酸化炭素を分離して窒素と二酸化炭素の混合ガスを該内燃機関の吸気通路に導入するガス分離装置を設けたことを特徴とする吸気組成可変内燃機関。
In the intake composition variable internal combustion engine having the function of changing the ratio of carbon dioxide and nitrogen in the intake air,
All exhaust gas flowing through the exhaust passage is passed through the exhaust passage of the internal combustion engine, and during the passage, nitrogen and carbon dioxide are separated from the exhaust gas, and a mixed gas of nitrogen and carbon dioxide is supplied to the intake passage of the internal combustion engine. An intake composition variable internal combustion engine comprising a gas separation device to be introduced.
前記ガス分離装置は、分離した窒素と二酸化炭素の混合割合及び/又は混合量を変化させて吸気通路に導入する混合調整手段を有することを特徴とする請求項6に記載の吸気組成可変内燃機関。   7. The intake composition variable internal combustion engine according to claim 6, wherein the gas separation device has a mixing adjusting means for introducing into the intake passage by changing a mixing ratio and / or mixing amount of the separated nitrogen and carbon dioxide. . 前記排気通路には、排出ガス浄化用の触媒が設けられ、
前記ガス分離装置は、前記排気通路のうちの前記触媒よりも下流側に設けられていることを特徴とする請求項6又は7に記載の吸気組成可変内燃機関。
The exhaust passage is provided with a catalyst for purifying exhaust gas,
The intake composition variable internal combustion engine according to claim 6 or 7, wherein the gas separation device is provided downstream of the catalyst in the exhaust passage.
JP2009105726A 2009-04-23 2009-04-23 Intake air composition variable internal combustion engine and method for controlling the same Pending JP2010255500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105726A JP2010255500A (en) 2009-04-23 2009-04-23 Intake air composition variable internal combustion engine and method for controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105726A JP2010255500A (en) 2009-04-23 2009-04-23 Intake air composition variable internal combustion engine and method for controlling the same

Publications (1)

Publication Number Publication Date
JP2010255500A true JP2010255500A (en) 2010-11-11

Family

ID=43316677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105726A Pending JP2010255500A (en) 2009-04-23 2009-04-23 Intake air composition variable internal combustion engine and method for controlling the same

Country Status (1)

Country Link
JP (1) JP2010255500A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017754A1 (en) * 2015-07-27 2017-02-02 株式会社日立製作所 Power train system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017017754A1 (en) * 2015-07-27 2017-02-02 株式会社日立製作所 Power train system
JPWO2017017754A1 (en) * 2015-07-27 2018-03-01 株式会社日立製作所 Powertrain system
US10458347B2 (en) 2015-07-27 2019-10-29 Hitachi, Ltd. Power train system

Similar Documents

Publication Publication Date Title
JP5552686B2 (en) Internal combustion engine
JP5110205B2 (en) Control device for internal combustion engine
US7320214B2 (en) Exhaust gas purifier for internal combustion engine
US20120285400A1 (en) Fuel-property reforming apparatus for internal combustion engine
JP4443839B2 (en) Control device for internal combustion engine
JP4225126B2 (en) Engine exhaust gas purification device
JP4720779B2 (en) Exhaust temperature reduction control device and method
JP2013119832A (en) Internal combustion engine control device
JP2008291758A (en) Control device of internal combustion engine
JP2007278119A (en) Ignition-timing control system of internal combustion engine
JP2010255500A (en) Intake air composition variable internal combustion engine and method for controlling the same
JP2010127203A (en) Control device for internal combustion engine
JP2010261345A (en) Exhaust emission control device of internal combustion engine
JP2007303302A (en) Combustion control system for compression ignition type internal combustion engine
JP2008180184A (en) Control device for cylinder injection type spark ignition internal combustion engine
JP4523766B2 (en) Combustion control device for internal combustion engine
JP2017186997A (en) Control device of internal combustion engine
JP2016153613A (en) Fuel reforming control device
JP2007154692A (en) Exhaust emission control device for internal combustion engine
JP2009156153A (en) Fuel injection control system for internal combustion engine
JP2010190119A (en) Combustion control device for diesel engine
JP2007071090A (en) Control device of internal combustion engine
JP4063743B2 (en) Fuel injection timing control device for internal combustion engine
KR20180067898A (en) Method for reducing exhaust gas of engine in case of controlling scavenging
JP2008002440A (en) Abnormality determination device for exhaust gas concentration sensor of internal combustion engine