JP2008180184A - Control device for cylinder injection type spark ignition internal combustion engine - Google Patents

Control device for cylinder injection type spark ignition internal combustion engine Download PDF

Info

Publication number
JP2008180184A
JP2008180184A JP2007015703A JP2007015703A JP2008180184A JP 2008180184 A JP2008180184 A JP 2008180184A JP 2007015703 A JP2007015703 A JP 2007015703A JP 2007015703 A JP2007015703 A JP 2007015703A JP 2008180184 A JP2008180184 A JP 2008180184A
Authority
JP
Japan
Prior art keywords
control device
internal combustion
combustion engine
speed
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007015703A
Other languages
Japanese (ja)
Other versions
JP4943873B2 (en
Inventor
Takeo Miyake
威生 三宅
Takashi Okamoto
多加志 岡本
Toshio Hori
堀  俊雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007015703A priority Critical patent/JP4943873B2/en
Publication of JP2008180184A publication Critical patent/JP2008180184A/en
Application granted granted Critical
Publication of JP4943873B2 publication Critical patent/JP4943873B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for a cylinder injection type spark ignition internal combustion engine capable of controlling idling speed with corresponding to load fluctuation or the like almost without dropping warming up action of exhaust gas on an exhaust emission control catalyst by minimizing drop of exhaust gas temperature under idling condition during catalyst warming up. <P>SOLUTION: When it is judged that the exhaust emission control catalyst is not warmed up during idling of an internal combustion engine, ignition timing is retarded than base advancing value and exhaust gas temperature is raised to warm up the catalyst. When load fluctuates and rotation speed fluctuates during warming up of the catalyst, target suction air quantity is calculated from difference between target idling speed and actual idling speed and intake air quantity is changed by an intake air quantity adjusting means. Output of the internal combustion engine is adjusted by changing ignition timing together. When load fluctuation is large, ignition timing is also changed together. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は燃料を直接燃焼室内部に噴射する燃料噴射弁を備えた筒内噴射式火花点火内燃機関の制御装置に関するものである。   The present invention relates to a control device for a direct injection spark ignition internal combustion engine provided with a fuel injection valve that injects fuel directly into a combustion chamber.

自動車の排出ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の排出ガス物質を低減することが求められており、火花点火内燃機関では空燃比制御と触媒とによる浄化作用を利用して排出ガス物質を低減してきた。しかしながら触媒の作用が有効となるのは触媒の温度が一定以上になって触媒が活性化してからであり、内燃機関始動直後の触媒が冷えた状態では排出ガス物質がそのまま排出されてしまう。よって始動直後は点火時期を通常よりも遅角させ、排気ガス温度を上昇させることで触媒の暖機を促進させ、触媒を早期に活性化するようにする内燃機関の制御が行われている。   There is a demand for reducing exhaust gas substances such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) contained in automobile exhaust gas. The exhaust gas substances have been reduced by utilizing the purification action by the catalyst. However, the action of the catalyst becomes effective after the temperature of the catalyst becomes higher than a certain level and the catalyst is activated. When the catalyst is cooled immediately after the internal combustion engine is started, the exhaust gas substance is discharged as it is. Therefore, immediately after start-up, the internal combustion engine is controlled such that the ignition timing is retarded more than usual and the exhaust gas temperature is raised to promote warming up of the catalyst and to activate the catalyst at an early stage.

さらに燃料を直接燃焼室内部に噴射する燃料噴射弁を備えた筒内噴射式火花点火内燃機関においては、点火プラグの周りに可燃混合気を偏在させた状態に燃料を噴射することで、点火時期を一層遅角させることができる。このため、筒内噴射式火花点火内燃機関は、燃料を吸気ポートで噴射させる内燃機関よりも排気温度を上昇させることができるので、触媒の活性化までの時間を一層短縮させ排出ガス物質の低減を図っている(特許文献1)。   Further, in a cylinder injection type spark ignition internal combustion engine provided with a fuel injection valve for directly injecting fuel into the combustion chamber, the ignition timing is obtained by injecting the fuel in a state where the combustible mixture is unevenly distributed around the ignition plug. Can be further retarded. Therefore, the in-cylinder spark-ignition internal combustion engine can raise the exhaust gas temperature more than the internal combustion engine that injects fuel at the intake port, thereby further reducing the time until activation of the catalyst and reducing exhaust gas substances. (Patent Document 1).

従来、筒内噴射式火花点火内燃機関におけるアイドリング時の回転数制御については、特許文献2に示されるように吸気量補正手段のみならず燃料噴射量補正手段に基づいて回転数制御を行い、回転速度が急激に増減変化するような場合でも、燃料噴射量を補正することによって速やかにアイドル回転速度を適正な回転速度に制御でき、アイドル運転の安定化を図ることができる。   Conventionally, with respect to rotational speed control during idling in a direct injection spark ignition internal combustion engine, as shown in Patent Document 2, rotational speed control is performed based on not only intake air amount correction means but also fuel injection amount correction means. Even when the speed changes rapidly, the idle speed can be quickly controlled to an appropriate speed by correcting the fuel injection amount, and the idling operation can be stabilized.

また、筒内噴射式火花点火内燃機関において、吸気行程に燃料を噴射して均質混合気を形成しているアイドル運転時には、点火時期を補正してアイドル回転速度を目標回転速度に一致させるべく制御し、圧縮行程に燃料を噴射して成層混合気を形成しているアイドル運転時には、燃料噴射量または空燃比を補正してアイドル回転速度を目標回転速度に一致させるべく制御する内燃機関の制御装置がある(特許文献3)。   Also, in an in-cylinder spark-ignition internal combustion engine, during idle operation in which fuel is injected during the intake stroke to form a homogeneous mixture, control is performed to correct the ignition timing so that the idle rotation speed matches the target rotation speed. In the idling operation in which the fuel is injected in the compression stroke to form the stratified mixture, the control device for the internal combustion engine which controls the fuel injection amount or the air-fuel ratio so as to match the idle rotation speed with the target rotation speed (Patent Document 3).

さらに、筒内噴射型内燃機関において、内燃機関の実エンジン回転数を検出する回転数検出手段を設け、アイドル安定化制御手段が目標アイドルエンジン回転数と実エンジン回転数との差に応じて燃料噴射時期を制御することにより目標アイドルエンジン回転数におけるアイドル運転の安定化、運転フィーリングの改善を実現することが提案されている(特許文献4)。   Further, in the direct injection internal combustion engine, a rotation speed detecting means for detecting the actual engine speed of the internal combustion engine is provided, and the idle stabilization control means performs fuel according to the difference between the target idle engine speed and the actual engine speed. It has been proposed to stabilize the idling operation at the target idling engine speed and improve the driving feeling by controlling the injection timing (Patent Document 4).

特開2000−38945号公報JP 2000-38945 A 特許第3478318号公報Japanese Patent No. 3478318 特許第3700328号公報Japanese Patent No. 3700328 特開平9−126010号公報Japanese Patent Laid-Open No. 9-120101

上述したように、火花点火内燃機関のアイドリング状態における回転制御には、エンジン負荷の変動に対応して、吸入空気量を制御することによりアイドル回転数を維持するもの、燃料噴射量による空燃比を制御することによりアイドル回転数を維持するもの、点火時期を制御することによりアイドル回転数を維持するもの等、アイドル回転数を維持するアイドリング制御は各種提案されている。しかしながら、触媒暖機中のアイドリング状態において触媒暖機を考慮した上でエンジン回転数を維持するようにアイドリング制御するものは提案されていない。   As described above, the rotation control in the idling state of the spark ignition internal combustion engine includes the one that maintains the idle rotation speed by controlling the intake air amount corresponding to the fluctuation of the engine load, and the air-fuel ratio by the fuel injection amount. Various idling controls have been proposed for maintaining the idling speed, such as maintaining the idling speed by controlling, and maintaining the idling speed by controlling the ignition timing. However, no idling control has been proposed to maintain the engine speed in consideration of catalyst warm-up in the idling state during catalyst warm-up.

そして、筒内噴射式火花点火内燃機関のアイドリング状態において、触媒暖機のために点火遅角を行っている場合には、吸気ポート噴射内燃機関に比べて点火遅角量が大きいため、スロットル弁開度が大きくなっていて吸入空気量が多くなっている。そのためスロットル弁のような吸入空気量調節手段の操作による空気量増減の応答性はいっそう遅くなり、アイドル回転数を維持するための制御性も悪化している。   In the idling state of the in-cylinder injection spark ignition internal combustion engine, when the ignition delay is performed for warming up the catalyst, the ignition delay amount is larger than that of the intake port injection internal combustion engine. The opening is large and the amount of intake air is large. Therefore, the responsiveness of the air amount increase / decrease due to the operation of the intake air amount adjusting means such as the throttle valve is further delayed, and the controllability for maintaining the idle speed is also deteriorated.

また、負荷変動に対してスロットル弁の開度を変化させ吸入空気量を調節する場合には、スロットル弁によって調節された吸入空気量は、コレクタ、吸気管を通って燃焼室に導入されるため、エンジン回転数を目標エンジン回転数にするには時間がかかり、急な負荷変動には対応できない。   In addition, when adjusting the intake air amount by changing the opening of the throttle valve in response to load fluctuations, the intake air amount adjusted by the throttle valve is introduced into the combustion chamber through the collector and the intake pipe. It takes time to set the engine speed to the target engine speed, and it cannot cope with a sudden load fluctuation.

そのため、従来は触媒暖機中のアイドリング状態において、急な負荷変動があった場合には点火時期を変化させることで対応していた。つまり負荷が増大した場合、まず点火時期を進角することでエンジン回転の落ち込みを防ぎ、負荷の増大に見合う吸入空気量が増加された後、点火時期を本来のリタード(遅角)時期に戻すことになる。しかしながら内燃機関の構造上、シリンダ内に吸入される空気量の変化は遅れを伴うため、この間は本来の点火時期から進角させることとなり触媒の暖機性能が悪化する。   For this reason, conventionally, when there is a sudden load change in the idling state during catalyst warm-up, the ignition timing is changed. In other words, when the load increases, the ignition timing is first advanced to prevent the engine rotation from dropping, and after the intake air amount corresponding to the increase in load is increased, the ignition timing is returned to the original retard (retard) timing. It will be. However, because of the structure of the internal combustion engine, the change in the amount of air taken into the cylinder is delayed, and during this time, the ignition timing is advanced from the original ignition timing, and the warm-up performance of the catalyst deteriorates.

そこで、本発明者らは、筒内噴射式火花点火内燃機関におけるアイドリング状態における内燃機関の燃焼状態等を検証すべく様々な実験を行い、その挙動を解析した。   Therefore, the present inventors conducted various experiments in order to verify the combustion state of the internal combustion engine in the idling state in the direct injection spark ignition internal combustion engine, and analyzed the behavior thereof.

図6(a)は、点火時期を遅角させ、膨張行程に設定して燃焼させているときに、空燃比(A/F)を変えた場合の空燃比と排気ガスの炭化水素(HC)成分、排気ガス温度との関係を示すものである。この燃焼形態では点火時期を遅らせることでシリンダ内での燃焼反応を緩慢にし、空燃比をストイキよりリーンとすることで排気ガス中に余剰酸素が存在するため、排気管以降で未燃燃料の後燃え反応が起こり、排気温度が上昇する。しかし、空燃比がリーン状態では、リーンにするほど排気温度が低くなり、未燃の燃料成分を表す未燃炭化水素(HC)の排出量が増加する。図6(b)はその時のスモーク(SOOT)の排出量を示したものである。空燃比が16よりリッチな状態ではスモークの排出が急激に増加している。スモークは燃料成分が酸素不足の蒸焼きの状態で生成されるため、燃料がリッチな条件ほど排出されやすい。以上より三元触媒を早期に暖機するためには空燃比をストイキよりリーン側で、できるだけリッチにする必要があるが、スモーク排出量を基準値以下にする必要があり、空燃比はこれらを満たすように、適切な空燃比に設定しなければならない。このため触媒暖機を行っているアイドル状態において負荷変動に対して空燃比で調節することはできない。   FIG. 6A shows the air-fuel ratio and the exhaust gas hydrocarbon (HC) when the air-fuel ratio (A / F) is changed while retarding the ignition timing and setting the combustion to the expansion stroke. It shows the relationship between components and exhaust gas temperature. In this combustion mode, the combustion reaction in the cylinder is slowed by delaying the ignition timing, and surplus oxygen is present in the exhaust gas by making the air-fuel ratio leaner than the stoichiometric, so after the unburned fuel after the exhaust pipe. A burning reaction occurs and the exhaust temperature rises. However, when the air-fuel ratio is lean, the exhaust temperature decreases as the air-fuel ratio becomes leaner, and the amount of unburned hydrocarbon (HC) that represents unburned fuel components increases. FIG. 6B shows the amount of smoke (SOOT) discharged at that time. When the air-fuel ratio is richer than 16, smoke emissions increase rapidly. Smoke is produced in a steamed state where the fuel component is oxygen-deficient, so that the richer the fuel, the easier it is to discharge. From the above, in order to warm up the three-way catalyst at an early stage, it is necessary to make the air-fuel ratio as rich as possible on the lean side of the stoichiometry, but it is necessary to make the smoke emission amount below the reference value. An appropriate air / fuel ratio must be set to satisfy. For this reason, in the idling state where the catalyst is warmed up, it is impossible to adjust the load variation with the air-fuel ratio.

図7は、点火時期を遅角させ、膨張行程に設定して燃焼させているときに、点火時期を変えた場合の点火時期と排気温度、図示平均有効圧の関係を示したものである。点火時期を遅角させると図示平均有効圧は低下し、排気温度が上昇する。点火時期を遅角させると燃焼が緩慢となり、有効仕事が減少するためであると考えられる。したがって、触媒暖機を行っているアイドル状態においては外部負荷の変動に対して点火時期を変化させることでエンジン出力を調節し、エンジン回転数を維持することができる。しかしながら点火時期を進角させると排気温度が低下するため、特に外部負荷が増大した場合に点火時期を変えてエンジン回転数を維持することは、触媒に対する排気ガスの暖機作用を低下させることになる。   FIG. 7 shows the relationship between the ignition timing, the exhaust temperature, and the indicated mean effective pressure when the ignition timing is changed when the ignition timing is retarded and set to the expansion stroke for combustion. When the ignition timing is retarded, the indicated mean effective pressure decreases and the exhaust temperature rises. It is considered that if the ignition timing is retarded, the combustion becomes slow and the effective work decreases. Therefore, in the idling state in which the catalyst is warmed up, the engine output can be adjusted by changing the ignition timing with respect to the fluctuation of the external load, and the engine speed can be maintained. However, if the ignition timing is advanced, the exhaust temperature will decrease, so maintaining the engine speed by changing the ignition timing, especially when the external load increases, reduces the warming-up action of the exhaust gas on the catalyst. Become.

図8は、点火時期を遅角させ、膨張行程に設定して燃焼させているときに、燃料噴射時期を変えた場合の燃料噴射時期と排気温度、図示平均有効圧の関係を示している。圧縮行程で燃料噴射を行う場合、噴射時期を遅角させるほど図示平均有効圧は増加しているが、排気温度はほとんど変化しない。噴射時期を遅角させると点火時期までの時間が短くなり、気化燃料が点火プラグ周りに偏在しやすくなる。そのため、燃焼速度が向上して有効仕事が増加するため図示平均有効圧が増加すると考えられる。しかも、燃料噴射時期を進角側あるいは遅角側に変更して図示平均有効圧を変更させても排気温度がほとんど変化しない。したがって、筒内噴射式火花点火内燃機関において、触媒暖機を行っているアイドリング状態には、燃料噴射時期を調節することによってエンジントルクを調節してエンジン回転数を制御することが有効であることを知得した。   FIG. 8 shows the relationship between the fuel injection timing, the exhaust temperature, and the indicated mean effective pressure when the fuel injection timing is changed when the ignition timing is retarded and the combustion is set in the expansion stroke. When fuel injection is performed in the compression stroke, the indicated mean effective pressure increases as the injection timing is retarded, but the exhaust temperature hardly changes. If the injection timing is retarded, the time until the ignition timing is shortened, and vaporized fuel tends to be unevenly distributed around the spark plug. For this reason, it is considered that the indicated mean effective pressure increases because the effective rate of work increases as the combustion speed increases. Moreover, even if the fuel injection timing is changed to the advance side or the retard side to change the indicated mean effective pressure, the exhaust temperature hardly changes. Therefore, in an in-cylinder injection spark ignition internal combustion engine, it is effective to control the engine speed by adjusting the engine torque by adjusting the fuel injection timing in the idling state where the catalyst is warmed up. I knew.

本発明は、上記のような実験とその考察による知得に基づいてなされたものであり、触媒暖機中のアイドリング状態において、排気温度の低下を最小とし、排気ガス浄化触媒に対する排気ガスの暖機作用をほとんど低下させないで、負荷変動等に対応したアイドリング回転数を速やかに制御することができる筒内噴射式火花点火内燃機関の制御装置を提供することを目的とする。   The present invention has been made on the basis of the above-described experiments and knowledge based on the consideration thereof. In the idling state during catalyst warm-up, the exhaust gas temperature is minimized and the exhaust gas purification catalyst is warmed. It is an object of the present invention to provide a control device for a direct injection spark ignition internal combustion engine capable of quickly controlling the idling rotational speed corresponding to load fluctuation or the like with almost no reduction in mechanical action.

前記目的を達成するために、本発明に係る筒内噴射式火花点火内燃機関の制御装置は、燃焼室に直接燃料を噴射する燃料噴射弁と、排気ガス通路に排気ガス浄化触媒と、内燃機関の回転数検出手段と、排気ガス浄化触媒の暖機状態を判別する手段と、アイドル状態を判別する手段を備え、前記制御装置は、前記アイドル状態を判別する手段が内燃機関がアイドル状態であることを判別し、かつ、前記排気ガス浄化触媒の暖機状態を判別する手段が、排気ガス浄化触媒が未暖機であると判断した場合は、点火時期を基本進角値より遅角させるとともに、少なくとも燃料噴射時期を変化させることによりアイドル回転数を制御することを特徴としている。   In order to achieve the above object, a control device for an in-cylinder spark ignition internal combustion engine according to the present invention includes a fuel injection valve that directly injects fuel into a combustion chamber, an exhaust gas purification catalyst in an exhaust gas passage, and an internal combustion engine. , A means for determining a warm-up state of the exhaust gas purifying catalyst, and a means for determining an idle state, wherein the control device is configured such that the means for determining the idle state is an idling state of the internal combustion engine. When the means for determining the warm-up state of the exhaust gas purification catalyst determines that the exhaust gas purification catalyst is not warmed up, the ignition timing is retarded from the basic advance value. In addition, the idle speed is controlled by changing at least the fuel injection timing.

本発明は、排気浄化触媒が未暖機である場合には、点火時期を基本進角値より遅角させるので、排気温度を高温として排気ガス浄化触媒の暖機を促進して早期に排気ガス浄化触媒を活性化することができ、しかも、負荷変動時等におけるアイドル回転数を少なくとも燃料噴射時期を変化させることにより制御するので、排気温度の低下を最小とし、排気ガス浄化触媒に対する排気ガスの暖機作用をほとんど低下させないでアイドル回転数を速やかに制御することができる。   In the present invention, when the exhaust purification catalyst is not warmed up, the ignition timing is retarded from the basic advance value, so that the exhaust gas purification catalyst is warmed up by increasing the exhaust temperature at an early stage. The purification catalyst can be activated, and the idle speed at the time of load fluctuation or the like is controlled by changing at least the fuel injection timing, so that the exhaust temperature decrease is minimized, and the exhaust gas to the exhaust gas purification catalyst is reduced. The idling speed can be quickly controlled with almost no decrease in warm-up action.

本発明に係る筒内噴射式火花点火内燃機関の制御装置は、具体的には、燃料噴射時期を圧縮行程の範囲で変化させ、また、内燃機関の回転数検出手段で検出した実アイドル回転数が目標アイドル回転数を下回った場合は燃料噴射時期を遅角させ、実回転数が目標回転数を上回った場合は燃料噴射時期を進角させる。   Specifically, the control device for a direct injection spark ignition internal combustion engine according to the present invention changes the fuel injection timing in the range of the compression stroke, and also detects the actual idle speed detected by the speed detection means of the internal combustion engine. When the engine speed falls below the target idle speed, the fuel injection timing is retarded, and when the actual speed exceeds the target speed, the fuel injection timing is advanced.

また、本発明に係る筒内噴射式火花点火内燃機関の制御装置は、少なくとも燃料噴射時期と点火時期を変化させることを特徴としており、負荷変動等が大きく、燃料噴射時期を変化させるだけでは実アイドル回転数を目標アイドル回転数に制御することができないときには、点火時期をも変化させることにより実アイドル回転数を目標アイドル回転数に制御することができる。   In addition, the control device for a direct injection spark ignition internal combustion engine according to the present invention is characterized in that at least the fuel injection timing and the ignition timing are changed. When the idle speed cannot be controlled to the target idle speed, the actual idle speed can be controlled to the target idle speed by changing the ignition timing.

本発明に係る筒内噴射式火花点火内燃機関の制御装置は、具体的には、実アイドル回転数が目標アイドル回転数を下回った場合は点火時期を進角させ、実回転数が目標回転数を上回った場合は点火時期を遅角させ、実アイドル回転数と目標アイドル回転数の差に応じて燃料噴射時期と点火時期の変化量を決定して変化させる。   Specifically, the control device for a direct injection spark ignition internal combustion engine according to the present invention advances the ignition timing when the actual idle speed falls below the target idle speed, and the actual speed is the target speed. Is exceeded, the ignition timing is retarded, and the amount of change in the fuel injection timing and the ignition timing is determined and changed according to the difference between the actual idle speed and the target idle speed.

本発明に係る筒内噴射式火花点火内燃機関の制御装置は、具体的には、実アイドル回転数と目標アイドル回転数の差が小さい場合は燃料噴射時期の変化量を点火時期の変化量より大きくして変化させ、実アイドル回転数と目標アイドル回転数の差が大きい場合は点火時期の変化量を燃料噴射時期の変化量より大きくして変化させるものである。   More specifically, the control device for a direct injection spark ignition internal combustion engine according to the present invention is configured such that when the difference between the actual idle speed and the target idle speed is small, the amount of change in the fuel injection timing is greater than the amount of change in the ignition timing. When the difference between the actual idle speed and the target idle speed is large, the amount of change in the ignition timing is made larger than the amount of change in the fuel injection timing.

さらに、本発明に係る筒内噴射式火花点火内燃機関の制御装置は、燃焼室に直接燃料を噴射する燃料噴射弁と、排気ガス通路に排気ガス浄化触媒と、内燃機関の回転数検出手段と、吸入空気量計測手段と、アイドル状態を判別する手段と、排気ガス浄化触媒の暖機状態を判別する手段とを備え、前記内燃機関の回転数検出手段で検出した実アイドル回転数と目標アイドル回転数との差から目標吸入空気量を算出し、吸入空気量調節手段で吸入空気量を変化させ、前記制御装置は、前記アイドル状態を判別する手段が内燃機関がアイドル状態であることを判別し、かつ、前記排気ガス浄化触媒の暖機状態を判別する手段が、排気ガス浄化触媒が未暖機であると判断した場合は、点火時期を基本進角値より遅角させた値とし、前記吸入空気量調節手段によって吸入空気量を変化させるとともに、少なくとも燃料噴射時期を基本値から変化させることによりアイドル回転数を制御することを特徴としている。   Further, the control device for a direct injection spark ignition internal combustion engine according to the present invention includes a fuel injection valve that directly injects fuel into the combustion chamber, an exhaust gas purification catalyst in the exhaust gas passage, and a rotational speed detection means of the internal combustion engine. And an intake air amount measuring means, a means for determining an idle state, and a means for determining a warm-up state of the exhaust gas purifying catalyst, the actual idle speed detected by the rotational speed detection means of the internal combustion engine and the target idle speed The target intake air amount is calculated from the difference from the rotational speed, the intake air amount is changed by the intake air amount adjusting means, and the control device determines that the internal combustion engine is in an idle state by the means for determining the idle state And when the means for determining the warm-up state of the exhaust gas purification catalyst determines that the exhaust gas purification catalyst is not warmed up, the ignition timing is set to a value retarded from the basic advance value, Adjusting the intake air amount With changing the amount of intake air by the stage it is characterized by controlling the idle speed by changing from the basic value of at least the fuel injection timing.

本発明は、排気ガス浄化触媒が未暖機である場合には、点火時期を基本進角値より遅角させるので、排気温度を高温として排気ガス浄化触媒の暖機を促進して早期に排気ガス浄化触媒を活性化することができ、また、負荷変動時等におけるアイドル回転数を少なくとも燃料噴射時期を変化させることにより制御するので、吸入空気量の変化によるアイドル回転数制御の遅れを、燃料噴射時期を変化させることによるアイドル回転数の制御によってカバーすることができ、しかも、排気温度の低下を最小とし、排気ガス浄化触媒に対する排気ガスの暖機作用をほとんど低下させないでアイドル回転数を速やかに制御することができる。   In the present invention, when the exhaust gas purification catalyst is not warmed up, the ignition timing is retarded from the basic advance value. Therefore, the exhaust gas purification catalyst is warmed up at a high temperature to accelerate the exhaust gas early. The gas purification catalyst can be activated, and the idle speed at the time of load fluctuation or the like is controlled by changing at least the fuel injection timing. It can be covered by control of the idling speed by changing the injection timing, and the idling speed can be quickly increased with minimal decrease in exhaust temperature and almost no degradation of the exhaust gas warm-up action on the exhaust gas purification catalyst. Can be controlled.

さらに、本発明に係る筒内噴射式火花点火内燃機関の制御装置は、吸入空気量計測手段で計測した実吸入空気量と目標吸入空気量との差が小さくなるにつれて燃料噴射時期を基本値に戻すことを特徴としており、負荷変動等が再度生じた場合にも燃料噴射時期を変化させることによりアイドル回転数を速やかに制御することができる。   Furthermore, the control device for a direct injection spark ignition internal combustion engine according to the present invention sets the fuel injection timing to a basic value as the difference between the actual intake air amount measured by the intake air amount measuring means and the target intake air amount becomes smaller. It is characterized in that the idling speed can be quickly controlled by changing the fuel injection timing even when a load fluctuation or the like occurs again.

本発明に係る筒内噴射式火花点火内燃機関の制御装置は、具体的には、燃料噴射時期を圧縮行程の範囲で変化させており、実アイドル回転数が目標アイドル回転数を下回った場合は吸入空気量調節手段で吸入空気量を多くすると共に、燃料噴射時期を遅角させ、実回転数が目標回転数を上回った場合は吸入空気量調節手段で吸入空気量を少なくすると共に、燃料噴射時期を進角させる。   Specifically, the control device for a direct injection spark ignition internal combustion engine according to the present invention changes the fuel injection timing in the range of the compression stroke, and the actual idle speed falls below the target idle speed. The intake air amount adjustment means increases the intake air amount, retards the fuel injection timing, and if the actual rotation speed exceeds the target rotation speed, the intake air amount adjustment means decreases the intake air amount and fuel injection. Advance the time.

また、本発明に係る筒内噴射式火花点火内燃機関の制御装置は、吸入空気量調節手段によって吸入空気量を変化させるとともに、少なくとも燃料噴射時期と点火時期を変化させることを特徴としており、負荷変動等が大きく、燃料噴射時期を変化させるだけでは実アイドル回転数を目標アイドル回転数に制御することができないときには、点火時期をも変化させ、吸入空気量の変化によるアイドル回転数制御の遅れを、燃料噴射時期と点火時期とを変化させることによるアイドル回転数の制御によってカバーすることができる。   The control device for a cylinder injection spark ignition internal combustion engine according to the present invention is characterized in that the intake air amount is changed by the intake air amount adjusting means, and at least the fuel injection timing and the ignition timing are changed. When the actual idle speed cannot be controlled to the target idle speed simply by changing the fuel injection timing, the ignition timing is also changed, and the idle speed control delay due to the change in the intake air amount is reduced. Further, it can be covered by controlling the idling speed by changing the fuel injection timing and the ignition timing.

さらに、本発明に係る筒内噴射式火花点火内燃機関の制御装置は、目標吸入空気量と実吸入空気量の差が小さくなるにつれて点火時期を基本進角値より遅角させた値に戻すことを特徴としており、実吸入空気量が変更して目標トルクが得られるようになるにしたがって点火時期を基本進角値より遅角させた値に戻すので、排気温度を上昇させて触媒暖機を早めることができる。   Furthermore, the control device for a direct injection spark ignition internal combustion engine according to the present invention returns the ignition timing to a value retarded from the basic advance value as the difference between the target intake air amount and the actual intake air amount decreases. As the actual intake air amount changes and the target torque is obtained, the ignition timing is returned to a value retarded from the basic advance value, so the exhaust temperature is raised and the catalyst is warmed up. You can expedite.

本発明に係る筒内噴射式火花点火内燃機関の制御装置は、具体的には、実アイドル回転数が目標アイドル回転数を下回った場合は点火時期を進角させ、実回転数が目標回転数を上回った場合は点火時期を遅角させるものである。   Specifically, the control device for a direct injection spark ignition internal combustion engine according to the present invention advances the ignition timing when the actual idle speed falls below the target idle speed, and the actual speed is the target speed. If it exceeds, the ignition timing is retarded.

本発明に係る筒内噴射式火花点火内燃機関の制御装置は、実アイドル回転数と目標アイドル回転数との差に基づいて燃料噴射時期と点火時期の変化量を決定して変化させることを特徴としており、実アイドル回転数と目標アイドル回転数の差が小さい場合は燃料噴射時期の変化量を点火時期の変化量より多くして変化させ、実アイドル回転数と目標アイドル回転数の差が大きい場合は点火時期の変化量を燃料噴射時期の変化量をより少なくして変化させることを特徴としている。   A control device for a cylinder injection spark ignition internal combustion engine according to the present invention is characterized by determining and changing a change amount of a fuel injection timing and an ignition timing based on a difference between an actual idle speed and a target idle speed. If the difference between the actual idle speed and the target idle speed is small, the change amount of the fuel injection timing is changed to be larger than the change amount of the ignition timing, and the difference between the actual idle speed and the target idle speed is large. In this case, the change amount of the ignition timing is changed by decreasing the change amount of the fuel injection timing.

本発明は、点火時期の変化量よりも燃料噴射時期の変化量を優先してアイドル回転数を制御しており、排気温度の低下を少なくして触媒暖機を促進し、しかもアイドル回転数を速やかに制御することができる。   The present invention controls the idle speed by giving priority to the amount of change in the fuel injection timing over the amount of change in the ignition timing, and reduces catalyst temperature reduction to promote catalyst warm-up. It can be controlled quickly.

本発明は、排気ガス浄化触媒が未暖機である場合には、点火時期を基本進角値より遅角させるので、排気温度を高温とし、排気ガス浄化触媒の暖機を促進して早期に排気ガス浄化触媒を活性化することができ、しかも、負荷変動時等におけるアイドル回転数を少なくとも燃料噴射時期を変化させることにより制御するので、排気温度の低下を最小とし、排気ガス浄化触媒に対する排気ガスの暖機作用をほとんど低下させないでアイドル回転数を速やかに制御することができる。   In the present invention, when the exhaust gas purification catalyst is not warmed up, the ignition timing is retarded from the basic advance value. Therefore, the exhaust gas temperature is increased to promote warming up of the exhaust gas purification catalyst at an early stage. The exhaust gas purification catalyst can be activated, and the idle speed at the time of load fluctuation or the like is controlled by changing at least the fuel injection timing. It is possible to quickly control the idling speed without substantially reducing the gas warm-up action.

以下、本発明に係る筒内噴射式火花点火内燃機関の制御装置の実施形態を図面を用いて説明する。図1は、本発明に係る筒内噴射式火花点火内燃機関とその制御装置の基本構成を示している。図において、エンジン1には、ピストン2、吸気弁3、排気弁4が備えられる。吸気は、空気流量計(AFM)20を通過してスロットル弁19に入り、分岐部であるコレクタ15より吸気管10、吸気弁3を介してエンジン1の燃焼室21に供給される。燃料は、燃料噴射弁5から、エンジン1の燃焼室21に噴射供給され、点火コイル7、点火プラグ6で点火される。燃焼後の排気ガスは排気弁4を介して排気管11に排出される。排気管11には排気ガス浄化のための三元触媒12が備えられている。ECU(エンジンコントロールユニット)9には、エンジン1のクランク角度センサ16の信号、AFM20の空気量信号、排気ガス中の酸素濃度を検出する酸素センサ13の信号、アクセル開度センサ22のアクセル開度等の信号が入力される。ECU9は、アクセル開度センサ22の信号からエンジンへの要求トルクを算出するとともに、アイドル状態の判定等を行う。ECU9には、クランク角度センサ16の信号からエンジン回転数を演算する回転数検出手段と、水温センサ8から得られる内燃機関の水温とエンジン始動後の経過時間等から三元触媒12が暖機された状態であるかを判断する手段が備えられている。また、ECU9は、エンジン1に必要な吸入空気量を算出し、それに見合った開度信号をスロットル弁19に出力し、吸入空気量に応じた燃料量を算出して燃料噴射弁5に燃料噴射信号を出力し、点火プラグ6に点火信号を出力する。   Embodiments of a control device for a direct injection spark ignition internal combustion engine according to the present invention will be described below with reference to the drawings. FIG. 1 shows the basic configuration of a direct injection spark ignition internal combustion engine and its control device according to the present invention. In the figure, the engine 1 is provided with a piston 2, an intake valve 3, and an exhaust valve 4. The intake air passes through the air flow meter (AFM) 20 and enters the throttle valve 19, and is supplied to the combustion chamber 21 of the engine 1 through the intake pipe 10 and the intake valve 3 from the collector 15 which is a branching portion. The fuel is injected and supplied from the fuel injection valve 5 to the combustion chamber 21 of the engine 1 and ignited by the ignition coil 7 and the spark plug 6. The exhaust gas after combustion is discharged to the exhaust pipe 11 through the exhaust valve 4. The exhaust pipe 11 is provided with a three-way catalyst 12 for purifying exhaust gas. The ECU (engine control unit) 9 includes a signal from the crank angle sensor 16 of the engine 1, an air amount signal from the AFM 20, a signal from the oxygen sensor 13 for detecting the oxygen concentration in the exhaust gas, and an accelerator opening of the accelerator opening sensor 22. Etc. are input. The ECU 9 calculates the required torque to the engine from the signal of the accelerator opening sensor 22 and determines the idle state. In the ECU 9, the three-way catalyst 12 is warmed up based on the rotation speed detection means for calculating the engine rotation speed from the signal of the crank angle sensor 16, the water temperature of the internal combustion engine obtained from the water temperature sensor 8, the elapsed time after the engine start, and the like. Means are provided for determining whether or not the state is correct. Further, the ECU 9 calculates the intake air amount necessary for the engine 1, outputs an opening signal corresponding to the intake air amount to the throttle valve 19, calculates the fuel amount corresponding to the intake air amount, and injects the fuel into the fuel injection valve 5. A signal is output and an ignition signal is output to the spark plug 6.

三元触媒12は排気管11を通して排出される排気ガスの空燃比が理論空燃比近傍である場合、排気ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)を同時に浄化することができる。このためECU9は酸素センサ13の信号から排気空燃比を判定し、燃料噴射弁5から噴射される燃料量をフィードバック制御することで排気ガスの空燃比を理論空燃比近傍に保っている。しかしながら三元触媒12の浄化作用が有効となるのは温度が一定以上(例えば300℃以上)になってからであり、エンジン始動直後の三元触媒12が冷えた状態では排出ガスに含まれる物質は三元触媒12で浄化されずにそのまま排出されてしまう。   When the air-fuel ratio of the exhaust gas discharged through the exhaust pipe 11 is in the vicinity of the stoichiometric air-fuel ratio, the three-way catalyst 12 includes carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide (NOx) contained in the exhaust gas. Can be purified at the same time. For this reason, the ECU 9 determines the exhaust air-fuel ratio from the signal of the oxygen sensor 13 and feedback-controls the amount of fuel injected from the fuel injection valve 5, thereby maintaining the air-fuel ratio of the exhaust gas near the theoretical air-fuel ratio. However, the purification effect of the three-way catalyst 12 becomes effective after the temperature becomes a certain level or higher (for example, 300 ° C. or more), and the substances contained in the exhaust gas when the three-way catalyst 12 is cooled immediately after the engine is started. Is discharged without being purified by the three-way catalyst 12.

エンジン始動直後に三元触媒12が未活性であるとECU9が判定した場合、点火時期を通常よりも遅角させ、例えば膨張行程に設定し、排気温度を上昇させることで三元触媒12を暖機し、三元触媒12を早期に活性化するためのエンジン制御を行う。燃料を直接燃焼室21に噴射する燃料噴射弁5を備えた筒内直噴噴射式エンジンでは、点火プラグ6の周りに可燃混合気を偏在させることができるため、吸気管10で燃料噴射を行うエンジンよりも点火時期を遅角させて排気温度を上昇させることができる。   If the ECU 9 determines that the three-way catalyst 12 is inactive immediately after the engine is started, the ignition timing is retarded from normal, for example, set to an expansion stroke, and the exhaust temperature is raised to warm the three-way catalyst 12. The engine control for activating the three-way catalyst 12 at an early stage is performed. In the in-cylinder direct injection type engine provided with the fuel injection valve 5 that directly injects fuel into the combustion chamber 21, the combustible air-fuel mixture can be unevenly distributed around the spark plug 6, so that fuel is injected through the intake pipe 10. The exhaust temperature can be raised by retarding the ignition timing as compared with the engine.

一方、ECU9がアクセル開度センサ22からの信号でエンジンがアイドル状態にあると判定した場合、ECU9は、実アイドル回転数であるエンジン回転数を目標アイドル回転数である目標エンジン回転数に保つために必要な吸入空気量を演算し、スロットル弁19の開度を変化させる。スロットル弁19によって調節された吸入空気量は、コレクタ15、吸気管10を通して燃焼室21に導入されることで、エンジン負荷に対して必要な空気量が得られることなる。しかしながら、スロットル弁19によって吸入空気量を調節することによるエンジン回転数の制御では、エンジン回転数が目標エンジン回転数に到達するまでに時間がかかる。よって急な負荷変動に対してはスロットル弁19の調節と合わせて燃料の噴射時期を変化させることでエンジン出力を調節し、エンジン回転数を安定させている。負荷変動が大きく燃料の噴射時期を変化させるだけでは目標エンジン回転数にすることができない場合は、燃料の噴射時期に加え点火時期を変化させることでエンジン出力を調節し、エンジン回転数を安定させている。   On the other hand, when the ECU 9 determines that the engine is in an idle state based on a signal from the accelerator opening sensor 22, the ECU 9 keeps the engine speed that is the actual idle speed at the target engine speed that is the target idle speed. The amount of intake air necessary for the operation is calculated, and the opening of the throttle valve 19 is changed. The intake air amount adjusted by the throttle valve 19 is introduced into the combustion chamber 21 through the collector 15 and the intake pipe 10, so that an air amount necessary for the engine load can be obtained. However, in the control of the engine speed by adjusting the intake air amount by the throttle valve 19, it takes time until the engine speed reaches the target engine speed. Therefore, for sudden load fluctuations, the engine output is adjusted by changing the fuel injection timing together with the adjustment of the throttle valve 19 to stabilize the engine speed. If the target engine speed cannot be achieved simply by changing the fuel injection timing due to large load fluctuations, the engine output can be adjusted by changing the ignition timing in addition to the fuel injection timing to stabilize the engine speed. ing.

本発明の筒内噴射式火花点火内燃機関の制御装置において、アイドル制御を行うためのフローチャートを図2に示す。ステップ90でECU9が、アイドル状態を判別する手段であるアクセル開度センサ22からの信号に基づきエンジンがアイドル状態であるか判定し、アイドル状態であると判定した場合、ステップ91に進む。ステップ91では、三元触媒12が暖機された状態であるかを判断する手段が、三元触媒12が暖機された状態であるかを判断し、三元触媒12が暖機されていて暖機が必要ないと判断した場合は、ステップ93に移行して通常のアイドル制御を行い、暖機が必要と判断した場合は、ステップ92で触媒暖機アイドル制御を実施する。このときの燃焼方式は少なくとも圧縮行程に燃料噴射を行い、点火時期を膨張行程に設定する。   FIG. 2 shows a flowchart for performing idle control in the control apparatus for a direct injection spark ignition internal combustion engine of the present invention. In step 90, the ECU 9 determines whether or not the engine is in an idle state based on a signal from an accelerator opening degree sensor 22 that is a means for determining an idle state. In step 91, means for determining whether the three-way catalyst 12 is in a warmed-up state determines whether the three-way catalyst 12 is in a warmed-up state, and the three-way catalyst 12 is warmed up. When it is determined that the warm-up is not necessary, the routine proceeds to step 93 where normal idle control is performed. When it is determined that the warm-up is necessary, the catalyst warm-up idle control is performed at step 92. In this combustion method, fuel is injected at least in the compression stroke, and the ignition timing is set to the expansion stroke.

図3は、本発明の筒内噴射式火花点火内燃機関の制御装置における触媒暖機アイドル制御(図2におけるステップ91)のフローチャートを示す。ステップ101では、ECU9が実エンジン回転数と目標エンジン回転数との差を認識するか、あるいはエアコンやパワーステアリング等の補機による外部負荷を認識した場合、ステップ102に進んで回転数差、負荷変動分に応じた目標トルクを演算するとともに目標トルクに対応した目標空気量を演算し、スロットル弁19の開度を変更して吸入空気量を補正する。ステップ103では、AFM20より検知される吸入空気量が目標空気量と一致しているかを判断し、一致していない場合は、ステップ104に進む。ステップ104では、実エンジン回転数と目標エンジン回転数との差、又は負荷変動の大きさが基準値よりも大きいかを判断し、基準値よりも大きい場合には、ステップ105で燃料噴射時期の補正と、点火時期の補正によってエンジン回転数を制御することで空気応答の遅れを補う。また、ステップ104で、実エンジン回転数と目標エンジン回転数との差、又は負荷変動の大きさが基準値よりも小さい場合は、ステップ106に進んで噴射時期のみの補正を行ってエンジン回転数を制御することで空気応答の遅れを補う。   FIG. 3 shows a flowchart of the catalyst warm-up idle control (step 91 in FIG. 2) in the control apparatus for a direct injection spark ignition internal combustion engine of the present invention. In step 101, if the ECU 9 recognizes the difference between the actual engine speed and the target engine speed, or recognizes an external load by an auxiliary device such as an air conditioner or a power steering, the process proceeds to step 102, where the speed difference, load A target torque corresponding to the fluctuation is calculated, a target air amount corresponding to the target torque is calculated, and the opening degree of the throttle valve 19 is changed to correct the intake air amount. In step 103, it is determined whether the intake air amount detected by the AFM 20 matches the target air amount. If not, the process proceeds to step 104. In step 104, it is determined whether the difference between the actual engine speed and the target engine speed, or the magnitude of the load fluctuation is larger than the reference value. If it is larger than the reference value, the fuel injection timing is determined in step 105. The delay in the air response is compensated by controlling the engine speed by the correction and the correction of the ignition timing. If the difference between the actual engine speed and the target engine speed or the magnitude of the load fluctuation is smaller than the reference value in step 104, the routine proceeds to step 106, where only the injection timing is corrected and the engine speed is corrected. The delay of the air response is compensated by controlling.

図4に触媒暖機中の燃焼成立範囲における燃料の噴射時期、点火時期及びエンジンのトルクの大小との関係を示す。燃焼成立範囲は燃焼安定性や排気ガス排出成分の排出量等のエンジン性能を全て満足する領域である。触媒暖機中は排気温度をできるだけ高くする必要があるため、燃焼が成立する範囲内で余裕を持たせた上で、できるだけ点火時期を遅角させた基準点火時期FBが設定されている。今、エンジンが、基準点火時期FB、噴射時期Tで駆動されてトルク1を出力しているA点の燃焼状態であるとき、負荷変動等によりトルク2を出力することが必要になった場合、燃料噴射時期を噴射時期Tをから射時期Tに補正し(B点の燃焼状態)トルク2を出力させてエンジン回転数を制御する(噴射時期の補正方法は図4の矢印aに示す。)。すなわち、図3のステップ104で実エンジン回転数と目標エンジン回転数の差、あるいは負荷変動が基準値以下であると判定された場合であり、燃料噴射時期補正(ステップ106)を行う。この補正では排気温度が低くならないので、触媒暖機が促進される。 FIG. 4 shows the relationship between the fuel injection timing, ignition timing, and engine torque level in the combustion establishment range during catalyst warm-up. The combustion establishment range is a region that satisfies all engine performance such as combustion stability and exhaust gas emission components. Since it is necessary to make the exhaust gas temperature as high as possible while the catalyst is warming up, a reference ignition timing FB is set in which the ignition timing is retarded as much as possible with a margin within a range where combustion is established. Now, when the engine is, when the reference ignition timing FB, is driven by the injection timing T 1 is a combustion state of point A which outputs a torque 1, it becomes necessary to output the torque 2 due to load fluctuation or the like , timing morphism fuel injection timing from the injection timing T 1 is corrected to T 2 to output a torque 2 (combustion state of point B) by controlling the engine speed (correction method of the injection timing in the arrow a in FIG. 4 Show.) That is, it is a case where it is determined in step 104 of FIG. 3 that the difference between the actual engine speed and the target engine speed or the load fluctuation is equal to or less than the reference value, and the fuel injection timing correction (step 106) is performed. This correction does not lower the exhaust gas temperature, so the catalyst warm-up is promoted.

しかし、負荷変動等が大きくて、エンジン出力をトルク3まで出力することが必要になった場合には、噴射時期の補正だけでは必要なトルクを得ることができないので、点火時期を点火時期F1に補正するとともに、燃料の噴射時期を噴射時期Tとなるように補正し(C点の燃焼状態)、必要なトルク3が出力されるように制御する。すなわち、図3のステップ104で実エンジン回転数と目標エンジン回転数の差、あるいは負荷変動が基準値以上であると判定された場合であり、燃料噴射時期とあわせて点火時期補正(ステップ105)を行う。三元触媒12に対する排気ガスの暖機作用を悪化させないようにできるだけ高い排気温度を維持するために、同じトルクを出力できる噴射時期、点火時期の組み合わせが矢印b、cに示すように複数ある場合は、点火時期をできるだけ遅角できる矢印bの噴射時期、点火時期の組み合わせを選択する。 However, if the load fluctuation is large and it is necessary to output the engine output up to torque 3, the required torque cannot be obtained only by correcting the injection timing, so the ignition timing is set to the ignition timing F1. is corrected, (combustion state at point C) the fuel injection timing is corrected so that the injection timing T 3, is controlled so that the torque 3 required output. That is, it is a case where it is determined in step 104 of FIG. 3 that the difference between the actual engine speed and the target engine speed or the load fluctuation is greater than or equal to the reference value, and the ignition timing correction (step 105) together with the fuel injection timing I do. When there are a plurality of combinations of injection timings and ignition timings capable of outputting the same torque, as indicated by arrows b and c, in order to maintain the exhaust temperature as high as possible so as not to deteriorate the warm-up action of the exhaust gas with respect to the three-way catalyst 12 Selects a combination of the injection timing and the ignition timing indicated by the arrow b that can retard the ignition timing as much as possible.

実エンジン回転数と目標エンジン回転数の差、あるいは負荷変動が基準値をわずかに上回る場合は、燃料噴射時期の変化による制御を優先し、燃料噴射時期の変化量が点火時期の変化量より大きく変化させ、実アイドル回転数と目標アイドル回転数の差、あるいは負荷変動が基準値を大きく上回る場合は、点火時期の変化量が燃料噴射時期の変化量をより大きくして変化させることになる。   If the difference between the actual engine speed and the target engine speed or the load fluctuation slightly exceeds the reference value, priority will be given to control based on changes in the fuel injection timing, and the amount of change in the fuel injection timing will be greater than the amount of change in the ignition timing. When the difference is made and the difference between the actual idle speed and the target idle speed or the load fluctuation greatly exceeds the reference value, the change amount of the ignition timing is changed by making the change amount of the fuel injection timing larger.

また、実エンジン回転数が目標エンジン回転数より増加した場合、あるいは外部負荷が低下した場合も、実エンジン回転数が目標エンジン回転数より減少した場合、あるいは外部負荷が増加した場合と同様に燃料噴射時期の変化を優先して制御する。   Also, when the actual engine speed increases from the target engine speed or when the external load decreases, the fuel is the same as when the actual engine speed decreases from the target engine speed or the external load increases. Priority is given to changes in injection timing.

本実施形態では、実エンジン回転数と目標エンジン回転数の差、あるいは負荷変動が生じた場合に、燃料噴射時期の補正を優先してエンジン回転数を制御しているので、図8に示したように排気温度の変化を最小にし、三元触媒12の暖機を悪化させること無くアイドル状態のエンジン回転数を安定化させることができる。   In this embodiment, when the difference between the actual engine speed and the target engine speed or a load fluctuation occurs, the engine speed is controlled with priority given to the correction of the fuel injection timing. Thus, it is possible to minimize the change in the exhaust temperature and stabilize the engine speed in the idle state without deteriorating the warm-up of the three-way catalyst 12.

以上のように、吸入空気量の応答遅れがある間は点火時期をできるだけ進角させないように噴射時期、点火時期を変化させることでエンジン出力を調整し、アイドル回転数を安定化させるように制御する。図5に外部負荷が増加した場合のエンジントルク、空気量、噴射時期、点火時期の変化を(A)、(B)、(C)、(D)に示す。外部負荷が入力された場合、ECU9は、アイドル回転数を維持するために(A)の実線で示すように目標トルクを増加し、目標トルクが得られるように目標吸入空気量を(B)の実線のように算出してスロットル弁19の開度を開く。しかし、スロットル弁19によって燃焼室21に流入する吸入空気は遅れを伴うため、(B)の破線のような応答を示す。この空気量の応答遅れを補うため、(C)に示すように噴射時期を遅角させエンジントルクを(A)の波線に示すように速やかに目標トルクまで増加させ、実吸入空気量が目標吸入空気量に近づくにつれて燃料噴射時期を初期の噴射時期に戻すように制御する。点火時期は(D)に示すように、燃料噴射時期の変更だけで目標トルクを達成できる場合は実線aのように点火時期の進角を行わない。燃料噴射時期の変更だけで目標トルクを達成できない場合は破線bに示すように点火時期を進角するように制御する。この場合は前述したように点火時期をできるだけ遅角側に設定して目標トルクを達成させ、実吸入空気量が目標吸入空気量に近づくにつれて初期の点火時期に戻すように制御する。また噴射時期の変更だけで目標トルクが達成できる場合は点火時期の進角をやめて基準の点火時期に戻す。   As described above, while there is a response delay in the intake air amount, the engine output is adjusted by changing the injection timing and ignition timing so that the ignition timing is not advanced as much as possible, and control is performed to stabilize the idle speed. To do. FIG. 5 shows changes in engine torque, air amount, injection timing, and ignition timing when the external load increases, as shown in (A), (B), (C), and (D). When an external load is input, the ECU 9 increases the target torque as shown by the solid line in (A) in order to maintain the idle speed, and sets the target intake air amount in (B) so as to obtain the target torque. The opening degree of the throttle valve 19 is opened by calculation as indicated by the solid line. However, since the intake air flowing into the combustion chamber 21 by the throttle valve 19 is delayed, the response shown by the broken line in FIG. In order to compensate for the response delay of the air amount, the injection timing is retarded as shown in (C), the engine torque is quickly increased to the target torque as shown by the wavy line in (A), and the actual intake air amount becomes the target intake air. Control is performed so that the fuel injection timing is returned to the initial injection timing as the air amount approaches. As shown in (D), when the target torque can be achieved only by changing the fuel injection timing, the ignition timing is not advanced as shown by the solid line a. When the target torque cannot be achieved only by changing the fuel injection timing, the ignition timing is controlled to advance as shown by the broken line b. In this case, as described above, the ignition timing is set as late as possible to achieve the target torque, and control is performed so as to return to the initial ignition timing as the actual intake air amount approaches the target intake air amount. If the target torque can be achieved only by changing the injection timing, the ignition timing is advanced and the reference ignition timing is restored.

本実施形態では、以上の制御を行うことにより、図5(A)の実線で示す外部負荷の増加に対して、破線に示すエンジントルクを出力することができ、応答遅れを最小限にし、かつ、排気温度の低下を最小にして三元触媒12暖機を遅延させないで、触媒暖機アイドリング中のエンジン回転数を速やかに安定化することができる。   In the present embodiment, by performing the above control, the engine torque indicated by the broken line can be output with respect to the increase in the external load indicated by the solid line in FIG. 5A, minimizing the response delay, and The engine speed during catalyst warm-up idling can be quickly stabilized without minimizing the decrease in exhaust temperature and delaying the warm-up of the three-way catalyst 12.

以上、本発明の実施形態について詳述したが、本発明は、前記実施形態に限定されるものではない。また、本発明の特徴的な機能を損なわない限り、各構成要素は上記構成に限定されるものではない。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment. Moreover, each component is not limited to the said structure, unless the characteristic function of this invention is impaired.

本発明に係る内燃機関と制御装置が適用される筒内直接噴射式火花点火内燃機関の全体構成図。1 is an overall configuration diagram of an in-cylinder direct injection spark ignition internal combustion engine to which an internal combustion engine and a control device according to the present invention are applied. 発明に係る筒内噴射式火花点火内燃機関の制御装置におけるアイドル制御のフローチャート。The flowchart of the idle control in the control apparatus of the cylinder injection type spark ignition internal combustion engine which concerns on invention. 本発明に係る筒内噴射式火花点火内燃機関の制御装置における触媒暖機アイドル制御のフローチャート。The flowchart of the catalyst warm-up idle control in the control apparatus of the cylinder injection type spark ignition internal combustion engine which concerns on this invention. 本発明に係る筒内噴射式火花点火内燃機関の制御装置における触媒暖機燃焼時の噴射時期、点火時期に対するトルクのマップ。The map of the torque with respect to the injection timing at the time of catalyst warm-up combustion in the control apparatus of the cylinder injection type spark ignition internal combustion engine which concerns on this invention, and ignition timing. 本発明に係る筒内噴射式火花点火内燃機関の制御装置において、外部負荷増加時の目標トルクと実トルク、目標吸入空気量と実吸入空気量、噴射時期、点火時期の変化を示す図。The figure which shows the change of the target torque at the time of external load increase, the actual torque, the target intake air amount and the actual intake air amount, the injection timing, and the ignition timing in the control apparatus for the cylinder injection type spark ignition internal combustion engine according to the present invention. 本発明に関する筒内直接噴射式火花点火内燃機関における触媒暖機燃焼時の空燃比に対する排気温度と排気ガス成分の関係を示す図。The figure which shows the relationship between the exhaust gas temperature with respect to the air fuel ratio at the time of catalyst warm-up combustion in the cylinder direct injection type spark ignition internal combustion engine regarding this invention, and an exhaust gas component. 本発明に関する筒内直接噴射式火花点火内燃機関における触媒暖機燃焼時の点火時期に対する排気温度と図示平均有効圧の関係を示す図。The figure which shows the relationship between the exhaust temperature with respect to the ignition timing at the time of catalyst warm-up combustion, and the indicated mean effective pressure in the direct injection type spark ignition internal combustion engine which concerns on this invention. 本発明に関する筒内直接噴射式火花点火内燃機関における触媒暖機燃焼時の噴射時期に対する排気温度と図示平均有効圧を示す図。The figure which shows the exhaust temperature with respect to the injection timing at the time of catalyst warm-up combustion in the cylinder direct injection type spark ignition internal combustion engine which concerns on this invention, and the illustration average effective pressure.

符号の説明Explanation of symbols

1 エンジン
2 ピストン
3 吸気弁
4 排気弁
5 燃料噴射弁
6 点火プラグ
7 点火コイル
8 水温センサ
9 ECU(エンジンコントロールユニット)
10 吸気管
11 排気管
12 三元触媒
13 酸素センサ
14 EGR弁
15 コレクタ
16 クランク角センサ
18 EGR通路
19 スロットル弁
20 AFM
21 燃焼室
22 アクセル開度センサ
1 Engine 2 Piston 3 Intake Valve 4 Exhaust Valve 5 Fuel Injection Valve 6 Spark Plug 7 Ignition Coil 8 Water Temperature Sensor 9 ECU (Engine Control Unit)
10 Intake pipe 11 Exhaust pipe 12 Three-way catalyst 13 Oxygen sensor 14 EGR valve 15 Collector 16 Crank angle sensor 18 EGR passage 19 Throttle valve 20 AFM
21 Combustion chamber 22 Accelerator opening sensor

Claims (16)

燃焼室に直接燃料を噴射する燃料噴射弁と、排気ガス通路に排気ガス浄化触媒と、内燃機関の回転数検出手段と、排気ガス浄化触媒の暖機状態を判別する手段と、アイドル状態を判別する手段と、を備える筒内噴射式火花点火内燃機関の制御装置において、
前記制御装置は、前記アイドル状態を判別する手段が内燃機関がアイドル状態であることを判別し、かつ、前記排気ガス浄化触媒の暖機状態を判別する手段が、排気ガス浄化触媒が未暖機であると判断した場合は、点火時期を基本進角値より遅角させるとともに、少なくとも燃料噴射時期を変化させることによりアイドル回転数を制御することを特徴とする筒内噴射式火花点火内燃機関の制御装置。
A fuel injection valve that directly injects fuel into the combustion chamber, an exhaust gas purification catalyst in the exhaust gas passage, a rotational speed detection means for the internal combustion engine, a means for determining the warm-up state of the exhaust gas purification catalyst, and an idle state A control device for an in-cylinder injection spark ignition internal combustion engine comprising:
In the control device, the means for determining the idle state determines that the internal combustion engine is in an idle state, and the means for determining the warm-up state of the exhaust gas purification catalyst is that the exhaust gas purification catalyst is not warmed up. In the case of the in-cylinder spark-ignition internal combustion engine, the ignition timing is retarded from the basic advance value and at least the idle speed is controlled by changing the fuel injection timing. Control device.
前記制御装置は、燃料噴射時期を圧縮行程の範囲で変化させることを特徴とする請求項1に記載の筒内噴射式火花点火内燃機関の制御装置。   2. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the control device changes a fuel injection timing within a range of a compression stroke. 前記制御装置は、前記内燃機関の回転数検出手段で検出した実アイドル回転数が目標アイドル回転数を下回った場合は燃料噴射時期を遅角させ、実回転数が目標回転数を上回った場合は燃料噴射時期を進角させることを特徴とする請求項1または2に記載の筒内噴射式火花点火内燃機関の制御装置。   The control device retards the fuel injection timing when the actual idle speed detected by the engine speed detection means of the internal combustion engine falls below the target idle speed, and when the actual speed exceeds the target speed 3. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the fuel injection timing is advanced. 前記制御装置は、少なくとも燃料噴射時期と点火時期を変化させることを特徴とする請求項1から3のいずれかに記載の筒内噴射式火花点火内燃機関の制御装置。   4. The control device for a direct injection spark ignition internal combustion engine according to claim 1, wherein the control device changes at least a fuel injection timing and an ignition timing. 前記制御装置は、実アイドル回転数が目標アイドル回転数を下回った場合は点火時期を進角させ、実回転数が目標回転数を上回った場合は点火時期を遅角させることを特徴とする請求項4に記載の筒内噴射式火花点火内燃機関の制御装置。   The control device advances the ignition timing when the actual idle speed is lower than the target idle speed, and retards the ignition timing when the actual speed exceeds the target speed. Item 5. A control apparatus for a cylinder injection type spark ignition internal combustion engine according to Item 4. 前記制御装置は、実アイドル回転数と目標アイドル回転数の差に基づいて燃料噴射時期と点火時期の変化量を決定して変化させることを特徴とする請求項5に記載の筒内噴射式火花点火内燃機関の制御装置。   The in-cylinder injection spark according to claim 5, wherein the control device determines and changes a change amount of a fuel injection timing and an ignition timing based on a difference between an actual idle speed and a target idle speed. Control device for an ignition internal combustion engine. 前記制御装置は、実アイドル回転数と目標アイドル回転数の差が小さい場合は燃料噴射時期の変化量を点火時期の変化量より大きくして変化させ、実アイドル回転数と目標アイドル回転数の差が大きい場合は点火時期の変化量を燃料噴射時期の変化量をより大きくして変化させることを特徴とする請求項6に記載の筒内噴射式火花点火内燃機関の制御装置。   When the difference between the actual idle speed and the target idle speed is small, the control device changes the change amount of the fuel injection timing to be greater than the change amount of the ignition timing, and the difference between the actual idle speed and the target idle speed is changed. 7. The control device for a direct injection spark ignition internal combustion engine according to claim 6, wherein when the value is large, the change amount of the ignition timing is changed by increasing the change amount of the fuel injection timing. 燃焼室に直接燃料を噴射する燃料噴射弁と、排気ガス通路に排気ガス浄化触媒と、内燃機関の回転数検出手段と、吸入空気量計測手段と、アイドル状態を判別する手段と、排気ガス浄化触媒の暖機状態を判別する手段とを備え、前記内燃機関の回転数検出手段で検出した実アイドル回転数と目標アイドル回転数との差から目標吸入空気量を算出し、吸入空気量調節手段で吸入空気量を変化させる筒内噴射式火花点火内燃機関の制御装置であって、
前記制御装置は、前記アイドル状態を判別する手段が内燃機関がアイドル状態であることを判別し、かつ、前記排気ガス浄化触媒の暖機状態を判別する手段が、排気ガス浄化触媒が未暖機であると判断した場合は、点火時期を基本進角値より遅角させた値とし、前記吸入空気量調節手段によって吸入空気量を変化させるとともに、少なくとも燃料噴射時期を基本値から変化させることによりアイドル回転数を制御することを特徴とする筒内噴射式火花点火内燃機関の制御装置。
A fuel injection valve that directly injects fuel into the combustion chamber; an exhaust gas purification catalyst in the exhaust gas passage; an internal combustion engine speed detection means; an intake air amount measurement means; an idle state determination means; and an exhaust gas purification Means for determining a warm-up state of the catalyst, and calculates a target intake air amount from the difference between the actual idle speed detected by the engine speed detection means and the target idle speed, and adjusts the intake air amount A control device for an in-cylinder injection spark ignition internal combustion engine that changes the intake air amount at
In the control device, the means for determining the idle state determines that the internal combustion engine is in an idle state, and the means for determining the warm-up state of the exhaust gas purification catalyst is that the exhaust gas purification catalyst is not warmed up. If it is determined that the ignition timing is retarded from the basic advance value, the intake air amount is changed by the intake air amount adjusting means, and at least the fuel injection timing is changed from the basic value. A control apparatus for an in-cylinder injection spark ignition internal combustion engine, characterized by controlling an idling speed.
前記制御装置は、前記吸入空気量計測手段で計測した実吸入空気量と目標吸入空気量との差が小さくなるにつれて燃料噴射時期を基本値に戻すことを特徴とする請求項8に記載の筒内噴射式火花点火内燃機関の制御装置。   9. The cylinder according to claim 8, wherein the control device returns the fuel injection timing to a basic value as a difference between an actual intake air amount measured by the intake air amount measuring means and a target intake air amount becomes smaller. A control device for an internal injection spark ignition internal combustion engine. 前記制御装置は、燃料噴射時期を圧縮行程の範囲で変化させることを特徴とする請求項8または9に記載の筒内噴射式火花点火内燃機関の制御装置。   The control device for a direct injection spark ignition internal combustion engine according to claim 8 or 9, wherein the control device changes the fuel injection timing within a range of a compression stroke. 前記制御装置は、実アイドル回転数が目標アイドル回転数を下回った場合は吸入空気量調節手段で吸入空気量を多くすると共に、燃料噴射時期を遅角させ、実回転数が目標回転数を上回った場合は吸入空気量調節手段で吸入空気量を少なくすると共に、燃料噴射時期を進角させることを特徴とする請求項8から10のいずれかに記載の筒内噴射式火花点火内燃機関の制御装置。   When the actual idle speed falls below the target idle speed, the control device increases the intake air amount by the intake air amount adjusting means and retards the fuel injection timing so that the actual speed exceeds the target speed. 11. The control of a direct injection spark ignition internal combustion engine according to claim 8, wherein the intake air amount adjusting means reduces the intake air amount and advances the fuel injection timing. apparatus. 前記制御装置は、前記吸入空気量調節手段によって吸入空気量を変化させると共に、少なくとも燃料噴射時期と点火時期を変化させることを特徴とする請求項8から11のいずれかに記載の筒内噴射式火花点火内燃機関の制御装置。   The in-cylinder injection type according to any one of claims 8 to 11, wherein the control device changes the intake air amount by the intake air amount adjusting means and changes at least the fuel injection timing and the ignition timing. Control device for spark ignition internal combustion engine. 前記制御装置は、目標吸入空気量と実吸入空気量との差が小さくなるにつれて点火時期を基本進角値より遅角させた値に戻すことを特徴とする請求項12に記載の筒内噴射式火花点火内燃機関の制御装置。   The in-cylinder injection according to claim 12, wherein the control device returns the ignition timing to a value retarded from a basic advance value as the difference between the target intake air amount and the actual intake air amount decreases. -Type spark ignition internal combustion engine control device. 前記制御装置は、実アイドル回転数が目標アイドル回転数を下回った場合は点火時期を進角させ、実回転数が目標回転数を上回った場合は点火時期を遅角させることを特徴とする請求項12または13に記載の筒内噴射式火花点火内燃機関の制御装置。   The control device advances the ignition timing when the actual idle speed is lower than the target idle speed, and retards the ignition timing when the actual speed exceeds the target speed. Item 14. The control device for a cylinder injection type spark ignition internal combustion engine according to Item 12 or 13. 前記制御装置は、実アイドル回転数と目標アイドル回転数の差に基づいて燃料噴射時期と点火時期の変化量を決定して変化させることを特徴とする請求項14に記載の筒内噴射式火花点火内燃機関の制御装置。   The in-cylinder injection spark according to claim 14, wherein the control device determines and changes a change amount of a fuel injection timing and an ignition timing based on a difference between an actual idle speed and a target idle speed. Control device for an ignition internal combustion engine. 前記制御装置は、実アイドル回転数と目標アイドル回転数の差が小さい場合は燃料噴射時期の変化量を点火時期の変化量より多くして変化させ、実アイドル回転数と目標アイドル回転数の差が大きい場合は点火時期の変化量を燃料噴射時期の変化量をより少なくして変化させることを特徴とする請求項15に記載の筒内噴射式火花点火内燃機関の制御装置。   When the difference between the actual idle speed and the target idle speed is small, the control device changes the change amount of the fuel injection timing to be greater than the change amount of the ignition timing, and the difference between the actual idle speed and the target idle speed is changed. 16. The control device for a direct injection spark-ignition internal combustion engine according to claim 15, wherein when the value is large, the change amount of the ignition timing is changed by decreasing the change amount of the fuel injection timing.
JP2007015703A 2007-01-26 2007-01-26 In-cylinder injection spark ignition internal combustion engine control device Expired - Fee Related JP4943873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015703A JP4943873B2 (en) 2007-01-26 2007-01-26 In-cylinder injection spark ignition internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007015703A JP4943873B2 (en) 2007-01-26 2007-01-26 In-cylinder injection spark ignition internal combustion engine control device

Publications (2)

Publication Number Publication Date
JP2008180184A true JP2008180184A (en) 2008-08-07
JP4943873B2 JP4943873B2 (en) 2012-05-30

Family

ID=39724261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015703A Expired - Fee Related JP4943873B2 (en) 2007-01-26 2007-01-26 In-cylinder injection spark ignition internal combustion engine control device

Country Status (1)

Country Link
JP (1) JP4943873B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007159A (en) * 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd Method for controlling spark-ignition internal combustion engine
JP2011106343A (en) * 2009-11-17 2011-06-02 Toyota Motor Corp Control device of internal combustion engine
JP2017150421A (en) * 2016-02-26 2017-08-31 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
CN114278482A (en) * 2022-01-04 2022-04-05 潍柴动力股份有限公司 Control method and device for ignition energy compensation of engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122251A (en) * 1983-12-06 1985-06-29 Japan Electronic Control Syst Co Ltd Idle rotational speed control device for internal- combustion engine
JPS6368745A (en) * 1986-09-10 1988-03-28 Mazda Motor Corp Idle rotation frequency control device of engine
JPH09126010A (en) * 1995-11-02 1997-05-13 Mitsubishi Motors Corp Idling stabilization control system in-cylinder injection type internal combustion engine
JP2001336467A (en) * 2000-05-24 2001-12-07 Mitsubishi Motors Corp In-cylinder injection type internal combustion engine
JP2002180943A (en) * 2000-12-12 2002-06-26 Toyota Motor Corp Control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60122251A (en) * 1983-12-06 1985-06-29 Japan Electronic Control Syst Co Ltd Idle rotational speed control device for internal- combustion engine
JPS6368745A (en) * 1986-09-10 1988-03-28 Mazda Motor Corp Idle rotation frequency control device of engine
JPH09126010A (en) * 1995-11-02 1997-05-13 Mitsubishi Motors Corp Idling stabilization control system in-cylinder injection type internal combustion engine
JP2001336467A (en) * 2000-05-24 2001-12-07 Mitsubishi Motors Corp In-cylinder injection type internal combustion engine
JP2002180943A (en) * 2000-12-12 2002-06-26 Toyota Motor Corp Control device for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011007159A (en) * 2009-06-29 2011-01-13 Daihatsu Motor Co Ltd Method for controlling spark-ignition internal combustion engine
JP2011106343A (en) * 2009-11-17 2011-06-02 Toyota Motor Corp Control device of internal combustion engine
JP2017150421A (en) * 2016-02-26 2017-08-31 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
CN114278482A (en) * 2022-01-04 2022-04-05 潍柴动力股份有限公司 Control method and device for ignition energy compensation of engine
CN114278482B (en) * 2022-01-04 2024-02-20 潍柴动力股份有限公司 Control method and device for ignition energy compensation of engine

Also Published As

Publication number Publication date
JP4943873B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
KR100272024B1 (en) Exhaust temperature rising apparatus of cylinder in spray type internal combustion engine
US6708668B2 (en) Control system and method for direct-injection spark-ignition engine
JP2004218541A (en) Control device for internal combustion engine
US8150598B2 (en) Engine controller
JPH11336574A (en) Control device for internal combustion engine
JP2005120942A (en) Control device for direct injection spark ignition type internal combustion engine
JP4893499B2 (en) In-cylinder direct injection spark ignition internal combustion engine control device and control method
JP4438378B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP4943873B2 (en) In-cylinder injection spark ignition internal combustion engine control device
JP4378829B2 (en) Control device for internal combustion engine
JP4032859B2 (en) Control device for direct-injection spark ignition engine
JP5050941B2 (en) Engine air-fuel ratio control
JP2004076668A (en) Control unit for internal combustion engine
JP3743277B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP3731403B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2008274789A (en) Control system for direct injection engine
JP2008267294A (en) Control system of internal combustion engine
JP4788632B2 (en) Internal combustion engine control system
JP3149822B2 (en) Exhaust gas heating device for in-cylinder injection internal combustion engine
JP3812301B2 (en) Control device for direct-injection spark-ignition internal combustion engine
JP2007077842A (en) Control device for internal combustion engine
JP3489204B2 (en) Control device for internal combustion engine
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
JP4388258B2 (en) Control device for direct-injection spark ignition engine
JP3427682B2 (en) Exhaust control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Ref document number: 4943873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees