JP2010255421A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2010255421A
JP2010255421A JP2009102603A JP2009102603A JP2010255421A JP 2010255421 A JP2010255421 A JP 2010255421A JP 2009102603 A JP2009102603 A JP 2009102603A JP 2009102603 A JP2009102603 A JP 2009102603A JP 2010255421 A JP2010255421 A JP 2010255421A
Authority
JP
Japan
Prior art keywords
bearing
rotary compressor
compression chamber
sub
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009102603A
Other languages
Japanese (ja)
Inventor
Kenji Tonai
賢治 藤内
Hiroshi Shiizaki
啓 椎崎
Hideyuki Horibatake
秀幸 堀畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009102603A priority Critical patent/JP2010255421A/en
Publication of JP2010255421A publication Critical patent/JP2010255421A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems: since an HFC-based refrigerant as the substitute refrigerant of an HCFC-based refrigerant conventionally used in a compressor causes the inside of the compressor to become high in pressure during operation in comparison with the HCFC-based refrigerant and is inferior in oil lubricity, abnormal wear and seizure occur in a compression mechanism part, in particular, the inner peripheries of a main bearing and a sub bearing, and in order to solve this problem, such a method is employed that bearing ring-shaped grooves are formed in the end surfaces of the main baring and sub bearing on the side of a compression chamber to reduce a baring load; meanwhile, a sliding area of a piston with a shaft is reduced to increase bearing pressure, and abnormal wear occurs at the end surfaces of the main bearing and sub bearing on the side of the compression chamber. <P>SOLUTION: In this rotary compressor, the grooves 17 or holes distributed at less than 360° in a circumferential direction with respect to a bearing center are formed in the vicinity of an angle position with the bearing loads of the end surfaces of the main bearing and sub bearing on the side of the compression chamber maximized, and the bearing load is reduced while ensuring reliability of the end surfaces on the side of the compression chamber. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は空気調和機等に用いられるロータリー圧縮機に関するものであり、特に圧縮機構部の信頼性向上を図ったロータリー圧縮機に関するものである。   The present invention relates to a rotary compressor used in an air conditioner or the like, and more particularly to a rotary compressor that improves the reliability of a compression mechanism.

一般に、空気調和機や冷凍機等に用いられる圧縮機として、ロータリー圧縮機が知られている。ロータリー圧縮機は、密閉容器内に電動機部およびこの電動機部と連結される圧縮機構部および底部にオイルを収納し、前記圧縮機構部は複数の円筒状シリンダとその複数のシリンダを仕切っている中間仕切板と前記複数の円筒状シリンダの両端面に圧縮室を構成する主軸受と副軸受と前記圧縮室内で公転運動するピストンと前記ピストンに公転運動を与える前記電動機と結合しているシャフトと前記複数のシリンダの円筒状内周面をさらに複数の密閉空間に仕切るベーンとから成り、前記主軸受および副軸受の圧縮室側の端面には軸受負荷を低減する目的でリング形状の溝が形成されている(特許文献1参照)。   Generally, a rotary compressor is known as a compressor used for an air conditioner, a refrigerator, or the like. The rotary compressor stores oil in a sealed container and an electric motor part, a compression mechanism part connected to the electric motor part, and a bottom part, and the compression mechanism part partitions a plurality of cylindrical cylinders and the plurality of cylinders. A partition plate, a main bearing and a sub-bearing constituting a compression chamber on both end faces of the plurality of cylindrical cylinders, a piston revolving in the compression chamber, a shaft coupled to the motor for revolving the piston, and the shaft A ring-shaped groove is formed on the end surfaces of the main bearing and the sub-bearing on the compression chamber side for the purpose of reducing bearing load. (See Patent Document 1).

実開平01−036692号公報Japanese Utility Model Publication No. 01-036692

従来から圧縮機に使用されてきたHCFC系冷媒は塩素を含みオゾン層を破壊するといわれ、地球環境に悪影響を与えることから使用規制の動きが進んでいる。その代替冷媒として、塩素の含まないHFC系冷媒、例えばR−32、R−134aなどが挙げられる。しかしながらHFC系冷媒はHCFC系冷媒に比べ運転時に圧縮機内部が高圧になり、またオイル潤滑性に劣ることから、圧縮機構部、特に主軸受および副軸受けの内周において異常磨耗や焼き付きなどの問題につながっていた。その課題を解決するため、特許文献1のように主軸受および副軸受の圧縮室側の端面にリング形状の溝を形成し、軸受負荷を低減する方法が採られている。しかしながらその反面、ピストンやシャフトとの摺動面積が小さくなるため面圧が増加し、主軸受および副軸受の圧縮室側の端面の異常磨耗などの問題が発生しやすくなる。   HCFC-based refrigerants that have been used for compressors in the past are said to contain chlorine and destroy the ozone layer, and the use of the HCFC-based refrigerants has been moving forward because it has an adverse effect on the global environment. As an alternative refrigerant, an HFC refrigerant not containing chlorine, for example, R-32, R-134a, and the like can be given. However, the HFC refrigerant has a higher pressure inside the compressor during operation than the HCFC refrigerant, and is inferior in oil lubricity. Therefore, problems such as abnormal wear and seizure occur in the inner periphery of the compression mechanism, especially the main bearing and sub-bearing. It was connected to. In order to solve the problem, a method of reducing the bearing load by forming a ring-shaped groove on the end surfaces of the main bearing and the sub-bearing on the compression chamber side as disclosed in Patent Document 1. However, on the other hand, since the sliding area with the piston and the shaft becomes small, the surface pressure increases, and problems such as abnormal wear of the end surfaces of the main bearing and the sub bearing on the compression chamber side are likely to occur.

本発明は前記の課題を解決するもので、主軸受および副軸受の圧縮室側の端面に溝または穴を設けることで、上記圧縮機構部の信頼性向上を図れるようにしたロータリー圧縮機を提供することを目的とする。   The present invention solves the above-mentioned problems, and provides a rotary compressor capable of improving the reliability of the compression mechanism by providing grooves or holes in the end surfaces of the main bearing and the sub-bearing on the compression chamber side. The purpose is to do.

上記目的を達成するために、本発明は、密閉容器内に電動機部およびこの電動機部と連結される圧縮機構部および底部にオイルを収納し、前記圧縮機構部は複数の円筒状シリンダとその複数のシリンダを仕切っている中間仕切板と前記複数の円筒状シリンダの両端面に圧縮室を構成する主軸受と副軸受と前記圧縮室内で公転運動するピストンと前記ピストンに公転運動を与える前記電動機と結合しているシャフトと前記複数のシリンダの円筒状内周面をさらに複数の密閉空間に仕切るベーンを構成要素に持つロータリー圧縮機において、主軸受および副軸受の圧縮室側端面の軸受負荷が最も大きくなる角度位置付近に、軸受中心に対し円周方向に360度未満で分布する溝または穴を設けている。   In order to achieve the above-mentioned object, the present invention stores an oil in an electric motor part and a compression mechanism part connected to the electric motor part and a bottom part in a sealed container. The compression mechanism part includes a plurality of cylindrical cylinders and a plurality of cylinders. An intermediate partition plate that partitions the cylinder, a main bearing and a sub bearing that constitute a compression chamber on both end faces of the plurality of cylindrical cylinders, a piston that revolves in the compression chamber, and the electric motor that imparts a revolving motion to the piston, In a rotary compressor having as components the combined shaft and vanes that further divide the cylindrical inner peripheral surfaces of the plurality of cylinders into a plurality of sealed spaces, the bearing load on the compression chamber side end surfaces of the main bearing and the sub-bearing is the largest. Grooves or holes distributed at less than 360 degrees in the circumferential direction with respect to the bearing center are provided in the vicinity of the increasing angular position.

本発明によれば、軸受負荷が最大となる角度位置において軸受負荷を低減し、なおかつ
360度の溝に対しピストンやシャフトとの摺動面積が大きいため、信頼性の高いロータリー圧縮機が得られる。
According to the present invention, since the bearing load is reduced at the angular position where the bearing load is maximized and the sliding area with the piston and the shaft is large with respect to the groove of 360 degrees, a highly reliable rotary compressor can be obtained. .

本発明に係るロータリー圧縮機の断面図Sectional view of a rotary compressor according to the present invention 実施の形態1における主軸受を示す図The figure which shows the main bearing in Embodiment 1 実施の形態2における主軸受を示す図The figure which shows the main bearing in Embodiment 2. 実施の形態3における主軸受を示す図The figure which shows the main bearing in Embodiment 3.

以下、図1〜図4の図面を参照しながら本発明の実施例を説明する。本発明の実施例におけるロータリー圧縮機は、2段式ロータリー圧縮機を例に説明するが、これに限るものではなく、1段式ロータリー圧縮機、あるいは3段以上の多段式圧縮機でも適用可能であることは言うまでもない。   Embodiments of the present invention will be described below with reference to the drawings of FIGS. The rotary compressor in the embodiment of the present invention will be described by taking a two-stage rotary compressor as an example, but is not limited thereto, and can be applied to a one-stage rotary compressor or a multistage compressor having three or more stages. Needless to say.

(実施の形態1)
図1は、本発明に係るロータリー圧縮機の断面図である。図1における1は密閉容器で、この容器内には電動機部とその下側に圧縮機構部と電動機の回転力を圧縮機構部に伝えるシャフト9が収納されている。密閉容器1内には底部にオイル16が収納されている。電動機部は固定子14と回転子13から構成されている。圧縮機構部は2個の円筒状シリンダ5、7とそのシリンダ5、7を仕切っている中間仕切板6と前記円筒状シリンダ5、7の両端面に圧縮室を構成する主軸受4と副軸受8と前記圧縮室内で公転運動するピストン10と前記ピストン10に公転運動を与える前記電動機と結合しているシャフト9と前記圧縮機部から吐出されたガスの脈動による騒音を軽減する上部マフラー室2と下部マフラー室3と前記複数のシリンダ5、7の円筒状内周面とをさらに複数の密閉空間に仕切るベーン11から構成されている。本構成の場合、ピストン端面と摺動するのは、主軸受と中間仕切板と副軸受である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a rotary compressor according to the present invention. Reference numeral 1 in FIG. 1 denotes a sealed container, in which an electric motor part and a compression mechanism part and a shaft 9 for transmitting the rotational force of the electric motor to the compression mechanism part are housed. An oil 16 is stored in the closed container 1 at the bottom. The electric motor unit includes a stator 14 and a rotor 13. The compression mechanism includes two cylindrical cylinders 5 and 7, an intermediate partition plate 6 that partitions the cylinders 5 and 7, a main bearing 4 that constitutes a compression chamber on both end surfaces of the cylindrical cylinders 5 and 7, and a secondary bearing. 8, a piston 10 that revolves in the compression chamber, a shaft 9 that is coupled to the electric motor that revolves the piston 10, and an upper muffler chamber 2 that reduces noise caused by pulsation of gas discharged from the compressor section The lower muffler chamber 3 and the cylindrical inner peripheral surfaces of the plurality of cylinders 5 and 7 are further composed of a vane 11 that partitions the plurality of sealed spaces. In the case of this configuration, it is the main bearing, the intermediate partition plate, and the auxiliary bearing that slide with the piston end surface.

図2は、実施の形態1における主軸受の圧縮室側端面を示したものである。シャフトが1回転する間に軸受負荷が最大となる角度位置付近に、円周方向に360度未満のある一定角度範囲の溝17を有しており、この溝によって軸受内周が半径方向に変形することで軸受負荷を低減でき、かつ360度の溝を形成する場合に比べピストンやシャフトとの摺動面積が大きく面圧が小さいため端面の信頼性も確保することができる。なお本実施の形態は、副軸受においても適用することができる。
(実施の形態2)
図3は、実施の形態2における主軸受の圧縮室側端面を示したものである。このように、軸受負荷が最大となる角度位置付近に円形の穴18を設けることによって、圧縮室側端面の信頼性を確保したうえで軸受内周の信頼性を向上することができる。なお本実施の形態は、副軸受においても適用することができる。
(実施の形態3)
図4は、実施の形態3における主軸受の圧縮室側端面を示したものである。このように、軸受負荷が最大となる角度位置付近に多角形の穴19を設けることによって、圧縮室側端面の信頼性を確保したうえで軸受内周の信頼性を向上することができる。なお本実施の形態は、副軸受においても適用することができる。
(実施の形態4)
本構造を有するロータリー圧縮機は、塩素を含まないHFC冷媒について用いることが可能である。
(実施の形態5)
さらに近年は地球温暖化防止の観点から、二酸化炭素、ヘリウム、アンモニア等の自然冷媒を用いた圧縮機が開発されている。そのような自然冷媒を用いたロータリー圧縮機に
当発明を適用することも可能である。特に二酸化炭素はHFC系冷媒よりもさらに圧縮機構部が高圧になるため、本発明はより効果を発する。
(実施の形態6)
さらに地球温暖化防止の観点から、地球温暖化係数の低い次世代冷媒HFO−1234yfやその混合冷媒を用いたロータリー圧縮機にも当発明を適用することが可能である。(実施の形態7)
通常圧縮機には、使用する冷媒や圧縮機構部に用いられる材質によって様々な種類のオイルが使用されている。当発明は、圧縮機で主に用いられているナフテン油、パラフィン油、アルキルベンゼン油などの天然物あるいは天然物由来のオイル、およびポリエーテル系油、ポリオールエステル系油などの合成オイル、または上記天然物あるいは天然物由来のオイルと合成オイルの混合オイルなどにも適用することが可能である。
(実施の形態8)
また、機械的特性を上げるために、上記オイルに種々の添加剤を加えることがある。当発明は、ベンゾトリアゾールなどの銅不活性化剤、硫黄系極圧添加剤、ハロゲン系極圧添加剤、りん系極圧添加剤、有機金属化合物系極圧添加剤、およびこれらの組み合わせからなる極圧添加剤などを有効量配合したロータリー圧縮機にも適用することも可能である。
FIG. 2 shows the compression chamber side end face of the main bearing in the first embodiment. There is a groove 17 in a certain angle range of less than 360 degrees in the circumferential direction near the angular position where the bearing load becomes maximum during one rotation of the shaft, and the inner circumference of the bearing is deformed in the radial direction by this groove. By doing so, the bearing load can be reduced, and the reliability of the end face can be ensured because the sliding area with the piston and the shaft is large and the surface pressure is small as compared with the case of forming the groove of 360 degrees. Note that the present embodiment can also be applied to a secondary bearing.
(Embodiment 2)
FIG. 3 shows the compression chamber side end face of the main bearing in the second embodiment. Thus, by providing the circular hole 18 near the angular position where the bearing load is maximized, the reliability of the inner circumference of the bearing can be improved while ensuring the reliability of the end face on the compression chamber side. Note that the present embodiment can also be applied to a secondary bearing.
(Embodiment 3)
FIG. 4 shows the compression chamber side end face of the main bearing in the third embodiment. Thus, by providing the polygonal hole 19 near the angular position where the bearing load is maximized, the reliability of the inner circumference of the bearing can be improved while ensuring the reliability of the end face on the compression chamber side. Note that the present embodiment can also be applied to a secondary bearing.
(Embodiment 4)
The rotary compressor having this structure can be used for an HFC refrigerant not containing chlorine.
(Embodiment 5)
Furthermore, in recent years, compressors using natural refrigerants such as carbon dioxide, helium, and ammonia have been developed from the viewpoint of preventing global warming. The present invention can also be applied to a rotary compressor using such a natural refrigerant. In particular, since carbon dioxide has a higher pressure in the compression mechanism than HFC refrigerant, the present invention is more effective.
(Embodiment 6)
Furthermore, from the viewpoint of preventing global warming, it is possible to apply the present invention to a rotary compressor using a next-generation refrigerant HFO-1234yf having a low global warming coefficient or a mixed refrigerant thereof. (Embodiment 7)
Normally, various types of oil are used in the compressor depending on the refrigerant used and the material used for the compression mechanism. The present invention relates to natural products or oils derived from natural products such as naphthenic oil, paraffin oil and alkylbenzene oil, which are mainly used in compressors, and synthetic oils such as polyether oils and polyol ester oils, or the above natural oils. It is also possible to apply to mixed oils of oils derived from products or natural products and synthetic oils.
(Embodiment 8)
In order to improve mechanical properties, various additives may be added to the oil. The present invention comprises a copper deactivator such as benzotriazole, a sulfur-based extreme pressure additive, a halogen-based extreme pressure additive, a phosphorus-based extreme pressure additive, an organometallic compound-based extreme pressure additive, and combinations thereof. It can also be applied to a rotary compressor containing an effective amount of an extreme pressure additive or the like.

以上のように、本発明のロータリー圧縮機によれば、主軸受および副軸受の圧縮室側端面の信頼性を確保したうえで、軸受負荷が最大となる角度位置において軸受負荷を低減することで、信頼性の高いロータリー圧縮機が得られるので、空気調和機等のほかに、乾燥機、除湿機、給湯機などのヒートポンプ応用機器に広く適用することができる。   As described above, according to the rotary compressor of the present invention, by ensuring the reliability of the compression chamber side end faces of the main bearing and the sub-bearing, the bearing load can be reduced at the angular position where the bearing load becomes maximum. Since a highly reliable rotary compressor can be obtained, it can be widely applied to heat pump applications such as dryers, dehumidifiers, and water heaters in addition to air conditioners and the like.

1 密閉容器
2 上部マフラー室
3 下部マフラー室
4 主軸受
5 上シリンダ
6 中間仕切板
7 下シリンダ
8 副軸受
9 シャフト
10 ピストン
11 ベーン
12 オイルピックアップ
13 回転子
14 固定子
16 オイル
17 軸受端面の溝
18 軸受端面の円形穴
19 軸受端面の多角形穴
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Upper muffler chamber 3 Lower muffler chamber 4 Main bearing 5 Upper cylinder 6 Intermediate partition plate 7 Lower cylinder 8 Sub bearing 9 Shaft 10 Piston 11 Vane 12 Oil pickup 13 Rotor 14 Stator 16 Oil 17 Groove 18 of bearing end surface 18 Circular hole in bearing end face 19 Polygonal hole in bearing end face

Claims (9)

密閉容器内に電動機部およびこの電動機部と連結される圧縮機構部および底部にオイルを収納し、前記圧縮機構部は複数の円筒状シリンダとその複数のシリンダを仕切っている中間仕切板と前記複数の円筒状シリンダの両端面に圧縮室を構成する主軸受と副軸受と前記圧縮室内で公転運動するピストンと前記ピストンに公転運動を与える前記電動機と結合しているシャフトと前記複数のシリンダの円筒状内周面をさらに複数の密閉空間に仕切るベーンを構成要素に持つロータリー圧縮機で、前記主軸受および副軸受は圧縮室側端面に軸受中心に対し円周方向に360度未満で分布する溝を有することを特徴とするロータリー圧縮機。 Oil is stored in the motor unit and a compression mechanism unit connected to the motor unit and a bottom part in the hermetic container, and the compression mechanism unit includes a plurality of cylindrical cylinders, an intermediate partition plate that partitions the cylinders, and the plurality of cylinders A main bearing and a sub-bearing that constitute a compression chamber on both end faces of the cylindrical cylinder, a piston that revolves in the compression chamber, a shaft that is coupled to the electric motor that revolves the piston, and a cylinder of the plurality of cylinders A rotary compressor having vanes that divide the inner peripheral surface into a plurality of sealed spaces as constituent elements, wherein the main bearing and the sub-bearing are grooves distributed at less than 360 degrees in the circumferential direction with respect to the bearing center on the end surface of the compression chamber A rotary compressor characterized by comprising: 前記ロータリー圧縮機は、主軸受および副軸受が圧縮室側端面に一定深さの穴を有することを特徴とするロータリー圧縮機。 The rotary compressor is characterized in that the main bearing and the sub-bearing have holes of a certain depth on the end face on the compression chamber side. 上記主軸受および副軸受が有する穴は円形であることを特徴とする請求項2に記載のロータリー圧縮機。 The rotary compressor according to claim 2, wherein the holes of the main bearing and the auxiliary bearing are circular. 上記主軸受および副軸受が有する穴は多角形であることを特徴とする請求項2に記載のロータリー圧縮機。 The rotary compressor according to claim 2, wherein the holes of the main bearing and the sub bearing are polygonal. 塩素を含まないHFC等を冷媒に用いたことを特徴とする請求項1から4いずれか1項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 4, wherein HFC or the like not containing chlorine is used as a refrigerant. 二酸化炭素やアンモニアやヘリウム等の自然冷媒を冷媒に用いたことを特徴とする請求項1から4いずれか1項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 4, wherein a natural refrigerant such as carbon dioxide, ammonia, or helium is used as the refrigerant. HFO−1234yfやその混合冷媒を冷媒に用いたことを特徴とする請求項1から4いずれか1項に記載のロータリー圧縮機。 The rotary compressor according to any one of claims 1 to 4, wherein HFO-1234yf or a mixed refrigerant thereof is used as a refrigerant. 上記オイルに、ナフテン油、パラフィン油、アルキルベンゼン油などの天然物あるいは天然物由来のオイル、およびポリエーテル系油、ポリオールエステル系油などの合成オイル、または上記天然物あるいは天然物由来のオイルと合成オイルの混合オイルを使用した請求項1から7いずれか1項に記載のロータリー圧縮機。 Synthetic oils such as naphthenic oils, paraffinic oils, alkylbenzene oils and the like, and synthetic oils such as polyether oils and polyol ester oils, or oils derived from the natural products or natural products. The rotary compressor according to any one of claims 1 to 7, wherein a mixed oil of oil is used. 上記オイルに、ベンゾトリアゾールなどの銅不活性化剤、硫黄系極圧添加剤、ハロゲン系極圧添加剤、りん系極圧添加剤、有機金属化合物系極圧添加剤、およびこれらの組み合わせからなる極圧添加剤など、その他の公知の添加剤を有効量配合した請求項1から7いずれか1項に記載のロータリー圧縮機。 The oil comprises a copper deactivator such as benzotriazole, a sulfur-based extreme pressure additive, a halogen-based extreme pressure additive, a phosphorus-based extreme pressure additive, an organometallic compound-based extreme pressure additive, and combinations thereof. The rotary compressor according to any one of claims 1 to 7, wherein an effective amount of other known additives such as an extreme pressure additive is blended.
JP2009102603A 2009-04-21 2009-04-21 Rotary compressor Pending JP2010255421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009102603A JP2010255421A (en) 2009-04-21 2009-04-21 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009102603A JP2010255421A (en) 2009-04-21 2009-04-21 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2010255421A true JP2010255421A (en) 2010-11-11

Family

ID=43316612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102603A Pending JP2010255421A (en) 2009-04-21 2009-04-21 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2010255421A (en)

Similar Documents

Publication Publication Date Title
CN204082544U (en) Coolant compressor
US8939742B2 (en) Compressor with steel and cast iron sliding materials
JP5849233B2 (en) Rotary compressor
JP5339788B2 (en) Compressor and refrigeration cycle equipment
JP2010243148A (en) Refrigerating cycle device
JP2010255449A (en) Rotary compressor
JP2010121448A (en) Hermetic compressor
JP2021088991A (en) Hermetically sealed refrigerant compressor and refrigeration device using the same
JP2010255448A (en) Rotary compressor
JP2011252475A (en) Rotary compressor
JP2010031732A (en) Rotary compressor
JP2015105574A (en) Rotary compressor
JP2010031733A (en) Rotary compressor
JP2013213477A (en) Rotary compressor
JP2010255421A (en) Rotary compressor
TWI235202B (en) Refrigerant compressor
JP2012017690A (en) Rotary compressor
JP2010255481A (en) Rotary compressor
JPWO2018142505A1 (en) Compressor
JP2010116810A (en) Rotary compressor
EP2565459B1 (en) Rotary compressor
JP2021080926A (en) Hermetic refrigerant compressor and freezing device using the same
US20130183181A1 (en) Rotary compressor
EP2589810B1 (en) Rotary compressor
JP2008121484A (en) Refrigerant compressor