JP2013213477A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2013213477A
JP2013213477A JP2012085389A JP2012085389A JP2013213477A JP 2013213477 A JP2013213477 A JP 2013213477A JP 2012085389 A JP2012085389 A JP 2012085389A JP 2012085389 A JP2012085389 A JP 2012085389A JP 2013213477 A JP2013213477 A JP 2013213477A
Authority
JP
Japan
Prior art keywords
cylinder
vane
pressure chamber
roller
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012085389A
Other languages
Japanese (ja)
Inventor
Takushi Sasa
卓士 佐々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012085389A priority Critical patent/JP2013213477A/en
Publication of JP2013213477A publication Critical patent/JP2013213477A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-efficient rotary compressor that reduces a slide loss between vanes.SOLUTION: In a thin structure, notched grooves A24 and B25 are provided, respectively, in the vicinity of a low-pressure chamber 13a side cylinder 8 inner circumferential surface and a high-pressure chamber 13b side cylinder outer circumferential surface in a wall surface of a vane groove 9 provided in a cylinder. Accordingly, a slide loss generated by a rotation direction load transmitted from a roller 7 to a vane 10 due to rotation movement of a crankshaft 6 is alleviated, so that a compression mechanism part of a high-performance rotary compressor is obtained.

Description

本発明は、空気調和機、冷蔵庫、給湯機等に用いられるロータリー圧縮機の圧縮機構部の構造に関するものである。   The present invention relates to the structure of a compression mechanism portion of a rotary compressor used in an air conditioner, a refrigerator, a hot water heater and the like.

従来、この種のロータリー圧縮機の圧縮機構部は、クランク軸を介して駆動されるローラをシリンダ内に設け、同シリンダに設けたベーン溝部に往復摺動自在に収納したベーンを前記ローラに当接させて圧縮機構を成す構造となっている(例えば、特許文献1参照)。   Conventionally, a compression mechanism of this type of rotary compressor is provided with a roller driven through a crankshaft in a cylinder, and a vane accommodated in a vane groove provided in the cylinder so as to be slidable back and forth against the roller. The structure is such that a compression mechanism is formed in contact (see, for example, Patent Document 1).

図2は、従来のロータリー圧縮機の縦断面図で、図3は図2における圧縮機構部を拡大した横断面図である。   FIG. 2 is a longitudinal sectional view of a conventional rotary compressor, and FIG. 3 is an enlarged transverse sectional view of a compression mechanism portion in FIG.

図2及び図3に示すように、従来のロータリー圧縮機の圧縮機構部は、密閉容器1の内部に圧縮機構部2を駆動する電動機部3の固定子4が焼嵌固定され、この電動機部3の回転子5は圧縮機構部2を駆動するクランク軸6に焼嵌固定されている。クランク軸6は主軸6a、副軸6b、偏心軸6cより成り、圧縮機構部2の圧縮機構は、このクランク軸6の偏心軸6cを介して駆動されるローラ7と、ローラ7を収納する円筒状気筒を内蔵するシリンダ8と、ローラ7に当接して圧縮室を仕切りシリンダ8内に設けられたベーン溝部9を往復摺動自在としたベーン10、およびシリンダ8の両端面を密着シール固定すると共にクランク軸6の軸受機能を併せ持つ主軸受11、副軸受12により構成される。   As shown in FIGS. 2 and 3, in the compression mechanism portion of the conventional rotary compressor, the stator 4 of the electric motor unit 3 that drives the compression mechanism unit 2 is shrink-fitted and fixed inside the sealed container 1. 3 is fixed to the crankshaft 6 that drives the compression mechanism 2 by shrink fitting. The crankshaft 6 includes a main shaft 6a, a subshaft 6b, and an eccentric shaft 6c. The compression mechanism of the compression mechanism section 2 is a roller 7 that is driven via the eccentric shaft 6c of the crankshaft 6, and a cylinder that houses the roller 7. A cylinder 8 containing a cylindrical cylinder, a vane 10 that abuts against a roller 7 to partition a compression chamber and reciprocate a vane groove 9 provided in the cylinder 8, and both end faces of the cylinder 8 are fixedly sealed. The main bearing 11 and the sub-bearing 12 also have the bearing function of the crankshaft 6.

シリンダ8内に構成される圧縮室13は、ローラ7と常にバネ14によりローラ7に接触するよう押し付け荷重がかけられているベーン10とにより低圧室13aと高圧室13bに仕切られている。シリンダ8には吸入孔15と吐出孔16があり、吸入孔15は密閉容器1の外部に設けた吸入接続管17、アキュムレータ18を介して冷凍サイクルと連結しており、吐出孔16は吐出バルブ19、バルブストップ20、バルブ固定ボルト21が取り付けられていて、これらを介して密閉容器1内部に開放されている。また、密閉容器1下部には圧縮機構部2内を潤滑して油シールを行うための潤滑油23が封入されている。   The compression chamber 13 configured in the cylinder 8 is partitioned into a low-pressure chamber 13a and a high-pressure chamber 13b by the roller 7 and the vane 10 that is constantly pressed against the roller 7 by a spring 14. The cylinder 8 has a suction hole 15 and a discharge hole 16, and the suction hole 15 is connected to a refrigeration cycle via a suction connection pipe 17 and an accumulator 18 provided outside the sealed container 1, and the discharge hole 16 is a discharge valve. 19, a valve stop 20 and a valve fixing bolt 21 are attached to the inside of the sealed container 1 through these. In addition, a lubricating oil 23 for lubricating the inside of the compression mechanism 2 and performing an oil seal is sealed in the lower part of the sealed container 1.

以上のように構成されたロータリー圧縮機の圧縮機構部2の圧縮工程について説明する。低温低圧の冷媒ガスは、密閉容器1外部より吸入孔15に導かれ、シリンダ8内の圧縮室13に至る。圧縮室13に至った冷媒ガスは、電動機部3の回転子5の回転に伴うクランク軸6の回転運動によりローラ7を介し漸次圧縮されながら、吸入孔15から吐出孔16へ連続的に送られる。圧縮された冷媒ガスは、吐出孔16、吐出バルブ19を経て吐出される。吐出された高温高圧の冷媒ガスは、密閉容器1内部を満たし、吐出管22を介して密閉容器1の外部の冷凍サイクルに導かれる。   The compression process of the compression mechanism part 2 of the rotary compressor comprised as mentioned above is demonstrated. The low-temperature and low-pressure refrigerant gas is guided from the outside of the sealed container 1 to the suction hole 15 and reaches the compression chamber 13 in the cylinder 8. The refrigerant gas reaching the compression chamber 13 is continuously sent from the suction hole 15 to the discharge hole 16 while being gradually compressed through the roller 7 by the rotational motion of the crankshaft 6 accompanying the rotation of the rotor 5 of the motor unit 3. . The compressed refrigerant gas is discharged through the discharge hole 16 and the discharge valve 19. The discharged high-temperature and high-pressure refrigerant gas fills the inside of the sealed container 1 and is guided to the refrigeration cycle outside the sealed container 1 through the discharge pipe 22.

この圧縮工程においてベーン10には次の荷重が作用する。まず、側面荷重として高圧室13bと低圧室13aの差圧による荷重F1が作用し、又、ベーン10の摺動方向には、バネ14によるバネカ及び吐出ガス冷媒で満たされた密閉容器1の内圧力と、低圧室13aと高圧室13b内圧力の差圧による荷重F2が作用する。この結果、ベーン10はローラ7により反力F3を受けるとともに、ベーン10、ベーン溝部9の2つの接触点9a、9bにおいてそれぞれ反力F4、F5を受ける。ここで反力F4、F5は、荷重F1及び反力F3のベーン10の摺動方向に対して直角方向の分力F3aの合力によって発生する荷重である。したがって、ベーン10の往復摺動運動に伴い、荷重F4、F5の作用点
には、摩擦力F6、F7が作用する。この結果、ベーン10の摺動方向に対しては、荷重F2、F3の摺動方向の分力F3b、摩擦力F6、F7が釣り合うことになる。
The following load acts on the vane 10 in this compression process. First, a load F1 due to a differential pressure between the high-pressure chamber 13b and the low-pressure chamber 13a acts as a side load, and in the sliding direction of the vane 10, the inside of the sealed container 1 filled with the spring 14 by the spring 14 and the discharged gas refrigerant The load F2 due to the pressure and the pressure difference between the low pressure chamber 13a and the high pressure chamber 13b acts. As a result, the vane 10 receives the reaction force F3 by the roller 7 and also receives the reaction forces F4 and F5 at the two contact points 9a and 9b of the vane 10 and the vane groove portion 9, respectively. Here, the reaction forces F4 and F5 are loads generated by the resultant force of the component force F3a perpendicular to the sliding direction of the vane 10 of the load F1 and the reaction force F3. Therefore, with the reciprocating sliding movement of the vane 10, the frictional forces F6 and F7 act on the application points of the loads F4 and F5. As a result, the component force F3b and the frictional forces F6 and F7 in the sliding direction of the loads F2 and F3 are balanced against the sliding direction of the vane 10.

特開平2−215986号公報JP-A-2-215986

しかしながら、前記従来の構成では、ベーン10とシリンダ8に設けたベーン溝部9との接触摺動が金属同士の滑り摺動となるため摩擦係数が大きくなり、摩擦力F6、F7が大きいため、その結果、圧縮機構部2においてベーン溝部9での摺動損失増加により機械効率が低下してしまうという課題があった。   However, in the conventional configuration, the sliding contact between the vane 10 and the vane groove portion 9 provided in the cylinder 8 is a sliding slide between metals, so the friction coefficient increases, and the frictional forces F6 and F7 are large. As a result, there has been a problem that in the compression mechanism portion 2, mechanical efficiency is lowered due to an increase in sliding loss in the vane groove portion 9.

本発明は、前記従来の課題を解決するもので、前述の摺動損失を低減することにより、機械効率の高いロータリー圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a rotary compressor having high mechanical efficiency by reducing the above-described sliding loss.

前記従来の課題を解決するために、本発明のロータリー圧縮機は、シリンダに設けたベーン溝部の壁面内部の、低圧室側のシリンダ内周面近傍と高圧室側のシリンダ外周面近傍は、ベーンとベーン溝の接触点で発生する荷重を吸収するための切り込み溝を設けて薄肉構造としてある。   In order to solve the above-described conventional problems, the rotary compressor according to the present invention includes a vane in the vicinity of the inner peripheral surface of the low pressure chamber and the outer peripheral surface of the high pressure chamber inside the wall surface of the vane groove provided in the cylinder. And a notch groove for absorbing the load generated at the contact point between the vane groove and the thin wall structure.

これによって、圧縮工程においてベーンが往復摺動してベーン溝に荷重が加わった際に、ベーン溝での接触点近傍の部分が弾性変形し、接触摺動荷重を緩和して、圧縮機構部の機械効率を向上させることができる。   As a result, when the vane reciprocally slides in the compression process and a load is applied to the vane groove, the portion in the vicinity of the contact point in the vane groove is elastically deformed, the contact sliding load is relaxed, and the compression mechanism section Mechanical efficiency can be improved.

本発明によれば、機械効率を向上させたロータリー圧縮機を提供することが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the rotary compressor which improved the mechanical efficiency can be provided.

本発明の実施の形態1におけるロータリー圧縮機の圧縮機構部を示す横断面図1 is a cross-sectional view showing a compression mechanism portion of a rotary compressor in Embodiment 1 of the present invention 従来及び本発明のロータリー圧縮機の縦断面図Conventional and longitudinal sectional views of the rotary compressor of the present invention 従来のロータリー圧縮機の圧縮機構部を示す横断面図Cross section showing the compression mechanism of a conventional rotary compressor

第1の発明は、シリンダと、前記シリンダの両端面に固定された主軸受及び副軸受と、前記シリンダ内を旋回回転するローラと、前記ローラに旋回回転を与える電動機部と、前記ローラに当接し当該ローラの旋回回転に従って前記シリンダに設けられたベーン溝部を往復運動することにより、前記シリンダ内を低圧室と高圧室とに仕切るベーンとを有し、前記ベーン溝部の壁面内部に、前記低圧室側の前記シリンダの内周面の近傍と、前記高圧室側の前記シリンダの外周面側の近傍に切り込み溝を設けた構成としてあり、圧縮工程においてベーンが往復摺動してベーン溝に荷重が加わった際に、ベーン溝での接触点近傍の部分が弾性変形し、接触摺動荷重を緩和して、圧縮機構部の機械効率を向上させることができる。   According to a first aspect of the present invention, a cylinder, a main bearing and a sub-bearing fixed to both end faces of the cylinder, a roller that rotates in the cylinder, an electric motor unit that rotates and rotates the roller, and a contact with the roller are provided. The vane groove part provided in the cylinder is reciprocated in contact with the rotation of the roller in contact with each other, thereby having a vane that partitions the inside of the cylinder into a low pressure chamber and a high pressure chamber, and inside the wall surface of the vane groove part, the low pressure A slit is provided in the vicinity of the inner peripheral surface of the cylinder on the chamber side and in the vicinity of the outer peripheral surface side of the cylinder on the high pressure chamber side, and the vane slides back and forth in the compression process to load the vane groove. When is added, the portion near the contact point in the vane groove is elastically deformed, and the contact sliding load is relaxed, and the mechanical efficiency of the compression mechanism portion can be improved.

第2の発明は、第1の発明において、シリンダの内周面近傍に設けた切り込み溝を、前記シリンダの円筒状内径に対して軸方向に設けるとともに、前記シリンダに設けた吸入孔をシリンダ軸方向の矩形形状としたものであり、従来の円形状吸入孔と同等断面積以上の
吸入孔として圧縮開始位置をベーンとベーン溝寄りにでき、閉じ込み容積を拡大して、高能力とすることができる。
According to a second invention, in the first invention, a notch groove provided in the vicinity of the inner peripheral surface of the cylinder is provided in the axial direction with respect to the cylindrical inner diameter of the cylinder, and a suction hole provided in the cylinder is provided in the cylinder shaft. It has a rectangular shape in the direction, and the suction start position can be closer to the vane and the vane groove as a suction hole having a cross-sectional area equal to or larger than that of the conventional circular suction hole, and the confining volume is increased to increase the capacity. Can do.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。また、説明の重複を避けるため、従来例と同一部分については、同一符号を付して説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. Moreover, in order to avoid duplication of description, about the same part as a prior art example, the same code | symbol is attached | subjected and description is abbreviate | omitted.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるロータリー圧縮機の圧縮機構部の横断面図である。
(Embodiment 1)
FIG. 1 is a cross-sectional view of a compression mechanism portion of a rotary compressor according to a first embodiment of the present invention.

図1において、シリンダ8には従来と同様にベーン溝部9を有し、圧縮室13が、ローラ7とベーン10により、低圧室13a、高圧室13bに仕切られる。また、ベーン溝部9の壁面内部には、低圧室13a側のシリンダ8内周近傍と、高圧室13b側のシリンダ8外周近傍とに、切り込み溝A24,B25が設けられた薄肉構造となっている。   In FIG. 1, the cylinder 8 has a vane groove portion 9 as in the prior art, and a compression chamber 13 is partitioned by a roller 7 and a vane 10 into a low pressure chamber 13a and a high pressure chamber 13b. Further, in the wall surface of the vane groove portion 9, a thin-walled structure is provided in which cut grooves A24 and B25 are provided in the vicinity of the inner periphery of the cylinder 8 on the low pressure chamber 13a side and in the vicinity of the outer periphery of the cylinder 8 on the high pressure chamber 13b side. .

以上のように構成されたロータリー圧縮機の圧縮機構部について、以下その作用、効果を説明する。   The operation and effect of the compression mechanism portion of the rotary compressor configured as described above will be described below.

まず、従来と同様に、クランク軸6の回転に伴い冷凍サイクルより吸い込まれた冷媒は吸入孔15より圧縮室13内に至り、前記記載のように圧縮されて吐出孔16より密閉容器1内に吐出された後、吐出管22より、外部冷凍サイクルへ導かれる。この圧縮工程により、従来と同様にベーン10とシリンダ8のベーン溝部9との接触点9a、9bにおいて、反力F4、F5が作用する。   First, as in the conventional case, the refrigerant sucked from the refrigeration cycle with the rotation of the crankshaft 6 reaches the compression chamber 13 through the suction hole 15 and is compressed as described above into the sealed container 1 through the discharge hole 16. After being discharged, the discharge pipe 22 leads to the external refrigeration cycle. By this compression step, reaction forces F4 and F5 are applied at contact points 9a and 9b between the vane 10 and the vane groove portion 9 of the cylinder 8 as in the prior art.

しかし、従来と異なりベーン10の往復摺動運動に伴い切り込み溝A24,B25が弾性変形するため、ベーン溝部9との摩擦係数が金属同士の往復滑り摺動に比べて低下し、摩擦力F8、F9は従来の摩擦力F6、F7に比べて小さくすることができる。したがって、摺動損失の原因となっていたベーン溝部9の特に接触点9a、9bで発生する摩擦力を低減することが可能となり、その結果、摺動損失が少なく機械効率に優れた圧縮機構部を提供できる。   However, since the slits A24 and B25 are elastically deformed with the reciprocating sliding movement of the vane 10 unlike the conventional case, the friction coefficient with the vane groove portion 9 is lower than that of the reciprocating sliding sliding between the metals, and the friction force F8, F9 can be made smaller than the conventional frictional forces F6 and F7. Accordingly, it is possible to reduce the frictional force generated at the contact points 9a and 9b of the vane groove portion 9 which has caused the sliding loss, and as a result, the compression mechanism portion having less sliding loss and excellent mechanical efficiency. Can provide.

また、本実施の形態ではシリンダ8の内径近傍に設けた切り込み溝A24をシリンダ8の円筒状内径に対して軸方向に設けてあるため、従来主に断面が円形状であった吸入孔15を同等断面積以上で矩形形状とすることができ、そのため、同じアスペクト比で構成した圧縮室で、ローラ7により閉じ込み圧縮開始する位置をベーン10とベーン溝部9寄りにできるため、閉じ込み容積を拡大して、高能力することができる。   In the present embodiment, since the cut groove A24 provided in the vicinity of the inner diameter of the cylinder 8 is provided in the axial direction with respect to the cylindrical inner diameter of the cylinder 8, the suction hole 15 that has been mainly circular in cross section in the past is provided. A rectangular shape with an equivalent cross-sectional area or more can be formed. Therefore, in a compression chamber configured with the same aspect ratio, the position where the roller 7 starts closing and compressing can be closer to the vane 10 and the vane groove 9, so that the confining volume can be increased. Can expand and have high capacity.

以上のように、本発明にかかるロータリー圧縮機は、圧縮工程時にベーンからベーン溝に加わる荷重による摺動損失を低減できることから、圧縮機以外にも、例えば真空ポンプやオイルポンプ等のポンプ機器や膨張機等の用途、またベーンロータリー方式の圧縮機にも応用できる。   As described above, since the rotary compressor according to the present invention can reduce sliding loss due to the load applied from the vane to the vane groove during the compression process, in addition to the compressor, for example, a pump device such as a vacuum pump or an oil pump, It can also be applied to applications such as expanders and vane rotary type compressors.

1 密閉容器
2 圧縮機構部
3 電動機部
4 固定子
5 回転子
6 クランク軸
6a 主軸
6b 副軸
6c 偏心軸
7 ローラ
8 シリンダ
9 ベーン溝部
9a 接触点
9b 接触点
10 ベーン
11 主軸受
12 副軸受
13 圧縮室
13a 低圧室
13b 高圧室
14 バネ
15 吸入孔
16 吐出孔
17 吸入接続管
18 アキュムレータ
19 吐出バルブ
20 バルブストップ
21 バルブ固定ボルト
22 吐出管
23 潤滑油
24 切り込み溝A
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Compression mechanism part 3 Electric motor part 4 Stator 5 Rotor 6 Crankshaft 6a Main shaft 6b Subshaft 6c Eccentric shaft 7 Roller 8 Cylinder 9 Vane groove 9a Contact point 9b Contact point 10 Vane 11 Main bearing 12 Sub bearing 13 Compression Chamber 13a Low pressure chamber 13b High pressure chamber 14 Spring 15 Suction hole 16 Discharge hole 17 Suction connection pipe 18 Accumulator 19 Discharge valve 20 Valve stop 21 Valve fixing bolt 22 Discharge pipe 23 Lubricating oil 24 Cut groove A

Claims (2)

シリンダと、前記シリンダの両端面に固定された主軸受及び副軸受と、前記シリンダ内を旋回回転するローラと、前記ローラに旋回回転を与える電動機部と、前記ローラに当接し当該ローラの旋回回転に従って前記シリンダに設けられたベーン溝部を往復運動することにより、前記シリンダ内を低圧室と高圧室とに仕切るベーンとを有し、前記ベーン溝部の壁面内部に、前記低圧室側の前記シリンダの内周面の近傍と、前記高圧室側の前記シリンダの外周面側の近傍に切り込み溝を設けたロータリー圧縮機。 A cylinder, a main bearing and a sub-bearing fixed to both end faces of the cylinder, a roller that rotates in the cylinder, an electric motor unit that applies rotation to the roller, and a rotation of the roller in contact with the roller Reciprocating the vane groove portion provided in the cylinder according to the above, thereby having a vane that divides the inside of the cylinder into a low pressure chamber and a high pressure chamber, and inside the wall surface of the vane groove portion, the cylinder on the low pressure chamber side is provided. A rotary compressor provided with cut grooves in the vicinity of the inner peripheral surface and in the vicinity of the outer peripheral surface side of the cylinder on the high pressure chamber side. シリンダの内周面近傍に設けた切り込み溝を、前記シリンダの円筒状内径に対して軸方向に設けるとともに、前記シリンダに設けた吸入孔をシリンダ軸線方向の矩形形状とした請求項1記載のロータリー圧縮機。 The rotary according to claim 1, wherein a notch groove provided in the vicinity of the inner peripheral surface of the cylinder is provided in an axial direction with respect to a cylindrical inner diameter of the cylinder, and a suction hole provided in the cylinder is formed in a rectangular shape in the cylinder axial direction. Compressor.
JP2012085389A 2012-04-04 2012-04-04 Rotary compressor Pending JP2013213477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012085389A JP2013213477A (en) 2012-04-04 2012-04-04 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012085389A JP2013213477A (en) 2012-04-04 2012-04-04 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2013213477A true JP2013213477A (en) 2013-10-17

Family

ID=49586961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012085389A Pending JP2013213477A (en) 2012-04-04 2012-04-04 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2013213477A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275497A (en) * 2014-07-07 2016-01-27 珠海格力节能环保制冷技术研究中心有限公司 Expansion machine
CN107191380A (en) * 2017-07-28 2017-09-22 广东美芝制冷设备有限公司 Compression mechanism and the compressor with it
WO2020170361A1 (en) * 2019-02-20 2020-08-27 三菱電機株式会社 Rolling piston type compressor and refrigeration cycle device
CN113202763A (en) * 2021-05-31 2021-08-03 珠海格力电器股份有限公司 Expansion machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105275497A (en) * 2014-07-07 2016-01-27 珠海格力节能环保制冷技术研究中心有限公司 Expansion machine
CN107191380A (en) * 2017-07-28 2017-09-22 广东美芝制冷设备有限公司 Compression mechanism and the compressor with it
WO2020170361A1 (en) * 2019-02-20 2020-08-27 三菱電機株式会社 Rolling piston type compressor and refrigeration cycle device
CN113202763A (en) * 2021-05-31 2021-08-03 珠海格力电器股份有限公司 Expansion machine

Similar Documents

Publication Publication Date Title
JP4909597B2 (en) Hermetic rotary compressor and refrigeration cycle apparatus
JP4864572B2 (en) Rotary compressor and refrigeration cycle apparatus using the same
JP2005299653A (en) Rolling piston and rotary compressor gas leakage preventing device equipped therewith
KR20100084079A (en) Rotary compressor
KR20110072312A (en) Twin type rotary compressor
JP6454879B2 (en) Rotary compressor with two cylinders
EP2613053A2 (en) Rotary compressor with dual eccentric portion
JP2013213477A (en) Rotary compressor
JP5991958B2 (en) Rotary compressor
WO2017061014A1 (en) Rotary compressor
KR101510698B1 (en) rotary compressor
KR102495256B1 (en) Linear compressor
JP5766165B2 (en) Rotary compressor
KR101587170B1 (en) Rotary compressor
KR102201409B1 (en) A rotary compressor
CN208330731U (en) Rotary compressor
JP2010112173A (en) Rotary compressor
JP2010255448A (en) Rotary compressor
CN112855537B (en) Pump body subassembly, compressor and air conditioner
JP2013185496A (en) Rotary compressor
JP2014020209A (en) Two-stage compressor and two-stage compression system
KR101878670B1 (en) Rotary compressor
WO2016151769A1 (en) Hermetic rotary compressor
KR20100112488A (en) 2-stage rotary compressor
KR101711540B1 (en) Hermetic compressor