JP2010255395A - Expandable polystyrene resin particle for heat insulating material used for substrate material for roof, and heat insulating material for the substrate material for roof - Google Patents

Expandable polystyrene resin particle for heat insulating material used for substrate material for roof, and heat insulating material for the substrate material for roof Download PDF

Info

Publication number
JP2010255395A
JP2010255395A JP2009162700A JP2009162700A JP2010255395A JP 2010255395 A JP2010255395 A JP 2010255395A JP 2009162700 A JP2009162700 A JP 2009162700A JP 2009162700 A JP2009162700 A JP 2009162700A JP 2010255395 A JP2010255395 A JP 2010255395A
Authority
JP
Japan
Prior art keywords
flame retardant
polystyrene resin
polystyrene
particles
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009162700A
Other languages
Japanese (ja)
Inventor
Koshi Sakamoto
航士 坂本
Kazumi Yamada
一己 山田
Ryosuke Chiumi
良輔 地海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2009162700A priority Critical patent/JP2010255395A/en
Priority to KR1020117017868A priority patent/KR101356839B1/en
Priority to PCT/JP2010/055568 priority patent/WO2010113874A1/en
Priority to TW099109345A priority patent/TWI444414B/en
Priority to CN2010800148418A priority patent/CN102378780B/en
Priority to US13/257,300 priority patent/US9079342B2/en
Priority to EP10758645.5A priority patent/EP2415826A4/en
Publication of JP2010255395A publication Critical patent/JP2010255395A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expandable polystyrene resin particles having a heat resistance within ±0.5% of the dimensional change rate when heating at 90°C for 168 hours, having excellent thermal insulation property, and having excellent filling property into a cavity upon molding. <P>SOLUTION: A polystyrene expansion molded product is obtained by: dispersing polystyrene resin particles having 5-15% of a coefficient of variation (CV value) of the particle diameter of the polystyrene resin particles; supplying a flame-retardant solution obtained by dissolving 33-1,000 pts.wt. of a tetrabromocyclooctane, which is a powdery flame retardant, and 20-200 pts.wt. of a flame retardant aid, which has a 1-hour half-life temperature of 100-250°C with respect to 100 pts.wt. of a plasticizer, to the aqueous suspension before or during the infiltration of a blowing agent; prefoaming using the expandable polystyrene resin particles, wherein the flame retardant and flame retardant aid are impregnated in the polystyrene resin particles; and filling and foaming the prefoamed particles into a mold. Further, its mean bowstring length is 30-380 μm. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発泡性に優れ、屋根用下地材に用いる断熱材用発泡性ポリスチレン系樹脂粒子に関し、さらには例えば野地板等の下地材と屋根葺き材の間に敷設する屋根用下地材用断熱材に関するものである。   The present invention relates to an expandable polystyrene-based resin particle for heat insulating material that is excellent in foaming properties and used for a roof base material, and further, for example, heat insulation for a roof base material laid between a base material such as a field board and a roofing material. It relates to materials.

従来、屋根用下地材としては防水性、耐吸湿性、防湿性および断熱性等のほかに、直射日光などによる繰返しの高温を受ける状態での熱劣化を起さないこと(耐熱性)、釘やステープルを打った孔から漏水しないこと、また温度変化によって膨脹したり収縮しないこと(寸法安定性)が求められている。
屋根用下地材に使用される断熱材は、施工の過程で作業者がその上を歩行することが起こり得るので所要の強度が必要であることに加え、屋根板の上での作業であり、作業の安全性や簡便性の観点から、可能な限り軽量であることが望まれ、10〜200mm程度の厚みのスチレン系樹脂発泡成形体が断熱材として用いられることが多い。
Conventionally, as a base material for roofs, in addition to waterproofing, moisture absorption, moisture proofing and heat insulation, etc., it does not cause thermal degradation under repeated high temperatures due to direct sunlight (heat resistance), nails In addition, it is required that water does not leak from the holes where the staples are struck, and that they do not expand or contract due to temperature changes (dimensional stability).
The heat insulating material used for the roof base material is the work on the roof plate in addition to the required strength because the worker can walk on it during the construction process, From the viewpoints of work safety and simplicity, it is desired to be as light as possible, and a styrene resin foam molded body having a thickness of about 10 to 200 mm is often used as a heat insulating material.

特開平4−351646号公報JP-A-4-351646 特開2007−191518号公報JP 2007-191518 A

屋根構造の場合、夏期において直射日光を受けた屋根葺き材は80℃程度の高温になる場合があり、断熱材として配置されるポリスチレン発泡成形体も80℃程度まで上昇することが起こり得る。一般的なスチレン系樹脂発泡成形体では、80℃程度の高温環境下に長時間放置したときの寸法変化率が−1.5%程度あるいはそれ以上となる場合があり、その寸法変化に起因して合決り接合部にズレが生じ、断熱層を形成する発泡樹脂成形体同士の接合端面に隙間が生じる恐れがある。隙間を生じると、そこから雨水が浸入して、前記のように断熱層を形成する発泡樹脂成形体と防水層との間に雨水の滞留域が形成されて、断熱材の破壊を誘起する一因となる。一方、ブタンやペンタン等の有機化合物に替えて、発泡剤に炭酸ガスを用いた発泡性スチレン系樹脂粒子が提案されている(特許文献1)。これを加熱して得た予備発泡粒子を型内発泡させた成形品は、発泡剤に炭酸ガスを用いていることから残留ガス量は少なく、80℃前後の高温環境下に長時間放置した場合でも、寸法変化率を−0.8%程度に抑えることができる。しかし、−0.8%の寸法変化率では断熱材の収縮による雨水の浸入、それによる断熱材の破壊が生じるのを完全に回避することはできない。   In the case of the roof structure, the roofing material that has been exposed to direct sunlight in the summer may become as high as about 80 ° C., and the polystyrene foam molded body arranged as a heat insulating material may also rise to about 80 ° C. In general styrenic resin foam moldings, the dimensional change rate when left in a high temperature environment of about 80 ° C. for a long time may be about −1.5% or more. Thus, there is a possibility that a gap occurs in the joined portion, and a gap may be formed between the joined end surfaces of the foamed resin molded bodies forming the heat insulating layer. When a gap is formed, rainwater enters from there and a rainwater retention area is formed between the foamed resin molded body forming the heat insulation layer and the waterproof layer as described above, thereby inducing destruction of the heat insulation material. It becomes a cause. On the other hand, in place of an organic compound such as butane and pentane, expandable styrene resin particles using carbon dioxide gas as a foaming agent have been proposed (Patent Document 1). Molded products in which pre-expanded particles obtained by heating this product are foamed in the mold, since carbon dioxide is used as the foaming agent, the amount of residual gas is small, and when left in a high temperature environment of around 80 ° C for a long time However, the dimensional change rate can be suppressed to about -0.8%. However, at a dimensional change rate of -0.8%, it is not possible to completely avoid the intrusion of rainwater due to the shrinkage of the heat insulating material and the resulting destruction of the heat insulating material.

また特許文献2では、発泡ポリスチレン系樹脂粒子の製造方法として、懸濁重合法が記載されているが、懸濁重合による発泡ポリスチレン系樹脂粒子の製造方法は得られる発泡性ポリスチレン系樹脂粒子の粒度分布が広いため、成形する際に金型細部への予備発泡粒の充填性が悪く成形性が悪いという課題があった。   Patent Document 2 describes a suspension polymerization method as a method for producing expanded polystyrene resin particles, but the method for producing expanded polystyrene resin particles by suspension polymerization is the particle size of the obtained expandable polystyrene resin particles. Due to the wide distribution, there is a problem in that the pre-foamed grains are poorly filled into the mold details when molding and the moldability is poor.

本発明によれば、ポリスチレン系樹脂粒子径の変動係数(CV値)が5〜15%であるポリスチレン系樹脂粒子を水性懸濁液中に分散させた後、発泡剤を含浸させる前又は含浸中に、可塑剤100重量部に対して粉末状の難燃剤テトラブロモシクロオクタン33〜1000重量部、さらには可塑剤100重量部に対して1時間半減期温度が100℃〜250℃である難燃助剤20〜200重量部を溶解させてなる難燃剤溶解液を上記水性懸濁液中に供給して、上記ポリスチレン系樹脂粒子中に上記難燃剤及び難燃助剤を含浸させる屋根用下地材に用いられる断熱材用発泡性ポリスチレン系樹脂粒子である。そして、発泡性ポリスチレン系樹脂粒子を予備発泡させてなる予備発泡粒子を型内に充填して発泡させて得られた発泡成形体であって、平均弦長が30〜380μmである。   According to the present invention, after dispersing polystyrene resin particles having a coefficient of variation (CV value) of polystyrene resin particle diameter of 5 to 15% in an aqueous suspension, before or during impregnation with a foaming agent. In addition, a flame retardant tetrabromocyclooctane of 33 to 1000 parts by weight with respect to 100 parts by weight of the plasticizer, and a flame retardant having a one-hour half-life temperature of 100 ° C. to 250 ° C. with respect to 100 parts by weight of the plasticizer A base material for a roof in which a flame retardant solution obtained by dissolving 20 to 200 parts by weight of an auxiliary agent is supplied into the aqueous suspension, and the polystyrene resin particles are impregnated with the flame retardant and the flame retardant auxiliary agent. It is the expandable polystyrene resin particle for heat insulating materials used for. And it is a foaming molding obtained by filling the foam | expanded pre-expanded particle formed by pre-expanding an expandable polystyrene-type resin particle in a type | mold, Comprising: An average chord length is 30-380 micrometers.

特に、本発明による断熱屋根構造、すなわち屋根用下地材用断熱材は、野地板等の下地材と屋根葺き材との間に設置されるポリスチレン系発泡成形体であって、90℃で168時間加熱したとき、その加熱前と加熱後における寸法変化率が±0.5%以内であるポリスチレン系発泡成形体であることを特徴とする。また屋根用下地材用断熱材は、成形品の密度が0.018〜0.033g/cmであるポリスチレン系発泡成形体であって、その発泡体の平均弦長が30μm〜380μmであることを特徴とする。さらには、上記の範囲の寸法変化率を持つ屋根用下地材用断熱材、すなわちポリスチレン系発泡成形体は平均粒子径が0.3mm〜1.2mmである発泡性ポリスチレン系樹脂粒子であってポリスチレン系樹脂粒子径の変動係数(CV値)が5〜15%である発泡性ポリスチレン系樹脂粒子を予備発泡させ成形したものを用いることを特徴としている。 In particular, the heat insulating roof structure according to the present invention, that is, the heat insulating material for the base material for roofing, is a polystyrene-based foamed molding that is installed between a base material such as a base plate and a roofing material, and is 168 hours at 90 ° C. When heated, it is a polystyrene-based foamed molded article having a dimensional change rate within ± 0.5% before and after the heating. The heat insulating material for the base material for the roof is a polystyrene-based foamed molded article having a density of the molded article of 0.018 to 0.033 g / cm 2 , and the average chord length of the foamed body is 30 μm to 380 μm. It is characterized by. Furthermore, the heat insulating material for the base material for the roof having the dimensional change rate in the above range, that is, the polystyrene-based foam molded article is an expandable polystyrene-based resin particle having an average particle diameter of 0.3 mm to 1.2 mm, and polystyrene. It is characterized in that a foamed polystyrene resin particle having a coefficient of variation (CV value) of the resin particle diameter of 5 to 15% is pre-foamed and molded.

夏期において直射日光を受けた屋根葺き材は80℃程度の高温になる場合があり、断熱材として設置される本発明のポリスチレン系発泡成形体も80℃程度まで上昇することが起こり得る。しかしながら、本発明のポリスチレン系発泡成形体は90℃で168時間加熱した時の寸法変化率が±0.5%以内であるため、夏期の高温時においても、溶出したり反りや膨脹等の変形が生じるおそれがなく、温度安定性に優れ、また繰返し高温を受けても長期にわたり熱劣化を起さずに使用できる。
このため、通常の断熱屋根構造において課題となる断熱材が破壊することを抑制することが可能である。
さらには成形体の平均気泡径を制御することにより断熱性に優れた発泡成形体であるため、建物内部の断熱性・気密性を高める効果があるため、結果として居住空間内の冷暖房効果を有効に維持することが可能である。
また、上記ポリスチレン系発泡成形体は平均粒子径が0.3mmから1.2mmであり、ポリスチレン系樹脂粒子径の変動係数(CV値)が5〜15%と粒度のシャープな発泡性ポリスチレン系樹脂粒子を予備発泡・成形したものであるため、粒子の流動性が非常に良く成形時のキャビティ内への予備発泡粒の充填性が良く、曲面や凹凸や溝を有する複雑な形状の成形体を成形することが可能である。
The roofing material that has been exposed to direct sunlight in the summer may have a high temperature of about 80 ° C., and the polystyrene foam molded body of the present invention installed as a heat insulating material may also rise to about 80 ° C. However, since the polystyrene-based foamed molding of the present invention has a dimensional change rate within ± 0.5% when heated at 90 ° C. for 168 hours, it can be dissolved, deformed, warped or expanded even at high temperatures in summer. Is excellent in temperature stability and can be used without causing thermal deterioration over a long period of time even when subjected to repeated high temperatures.
For this reason, it is possible to suppress that the heat insulating material used as a subject in a normal heat insulation roof structure destroys.
Furthermore, because it is a foamed molded product with excellent heat insulation properties by controlling the average cell diameter of the molded product, it has the effect of improving the heat insulation and airtightness inside the building. As a result, the air conditioning effect in the living space is effective. Can be maintained.
The polystyrene-based foamed molded article has an average particle diameter of 0.3 mm to 1.2 mm, and a polystyrene-based resin particle diameter variation coefficient (CV value) of 5 to 15%, which is a foamable polystyrene resin having a sharp particle size. Since the particles are pre-foamed and molded, the fluidity of the particles is very good, the filling of the pre-foamed particles into the cavities during molding is good, and the molded products with complicated shapes with curved surfaces, irregularities and grooves It is possible to mold.

本発明の屋根用下地材に使用される発泡性ポリスチレン系樹脂粒子は例えば以下のようなものが挙げられるが、この限りではない。   Examples of the expandable polystyrene resin particles used in the base material for roof according to the present invention include the following, but are not limited thereto.

ポリスチレン系樹脂粒子径の変動係数(CV値)が5〜15%であるポリスチレン系樹脂粒子を水性懸濁液中に分散させた後、発泡剤を含浸させる前又は含浸中に、可塑剤100重量部に粉末難燃剤を33〜1000重量部溶解させるとともに可塑剤100重量部に対して1時間半減期温度が100℃〜250℃である難燃助剤20〜200重量部を可塑剤に溶解させてなる難燃剤溶解液を上記水性懸濁液中に供給して、上記ポリスチレン系樹脂粒子中に上記難燃剤及び難燃助剤を含浸させて発泡性ポリスチレン系樹脂粒子であって、上記難燃剤は、テトラブロモシクロオクタン98.5〜99.7重量部、シリカ微粉末を0.3〜1.5重量部含有していることを特徴とする。   After dispersing polystyrene resin particles having a coefficient of variation (CV value) of polystyrene resin particle diameter of 5 to 15% in an aqueous suspension, before or during impregnation with a foaming agent, 100 weights of plasticizer 33 to 1000 parts by weight of a powder flame retardant is dissolved in part, and 20 to 200 parts by weight of a flame retardant aid having a one-hour half-life temperature of 100 ° C. to 250 ° C. per 100 parts by weight of the plasticizer is dissolved in the plasticizer. The flame retardant solution is supplied into the aqueous suspension, and the polystyrene resin particles are impregnated with the flame retardant and the flame retardant aid, and are expandable polystyrene resin particles, the flame retardant Contains 98.5 to 99.7 parts by weight of tetrabromocyclooctane and 0.3 to 1.5 parts by weight of silica fine powder.

ここで、難燃剤テトラブロモシクロオクタンを粉末状で添加すると、製造工程中の反応器の底部に難燃剤の凝集物が発生する課題があった。   Here, when the flame retardant tetrabromocyclooctane was added in the form of powder, there was a problem that an aggregate of the flame retardant was generated at the bottom of the reactor during the production process.

本発明におけるポリスチレン系樹脂粒子は、公知の方法で製造されたものを用いることができ、例えば、(1)水性媒体、スチレン系単量体及び重合開始剤をオートクレーブ内に供給し、オートクレーブ内において加熱、攪拌しながらスチレン系単量体を懸濁重合させてポリスチレン系樹脂粒子を製造する懸濁重合法、(2)水性媒体及びポリスチレン系樹脂種粒子をオートクレーブ内に供給し、ポリスチレン系樹脂種粒子を水性媒体中に分散させた後、オートクレーブ内を加熱、攪拌しながらスチレン系単量体を連続的に或いは断続的に供給して、ポリスチレン系樹脂種粒子にスチレン系単量体を吸収させつつ重合開始剤の存在下にて重合させてポリスチレン系樹脂粒子を製造するシード重合法などが挙げられる。なお、ポリスチレン系樹脂種粒子は、上記(1)の懸濁重合法により製造し分級すればよい。
ここで、本発明におけるポリスチレン系樹脂としては、例えば、スチレン、α−メチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレンなどのスチレン系単量体の単独重合体又はこれらの共重合体などが挙げられる。
As the polystyrene resin particles in the present invention, those produced by a known method can be used. For example, (1) an aqueous medium, a styrene monomer and a polymerization initiator are supplied into the autoclave, Suspension polymerization method for producing polystyrene resin particles by suspension polymerization of styrene monomer with heating and stirring, (2) Supplying aqueous medium and polystyrene resin seed particles into autoclave, polystyrene resin seeds After dispersing the particles in an aqueous medium, the styrene monomer is continuously or intermittently supplied while heating and stirring in the autoclave so that the polystyrene resin seed particles absorb the styrene monomer. Examples thereof include a seed polymerization method in which polystyrene resin particles are produced by polymerization in the presence of a polymerization initiator. The polystyrene-based resin seed particles may be produced and classified by the suspension polymerization method of (1) above.
Here, as the polystyrene resin in the present invention, for example, a homopolymer of a styrene monomer such as styrene, α-methylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, bromostyrene, or the like These copolymers are mentioned.

更に、上記ポリスチレン系樹脂としては、上記スチレン系単量体を主成分とする、上記スチレン系単量体と、このスチレン系単量体と共重合可能なビニル単量体との共重合体であってもよく、このようなビニル単量体としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレートなどのアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレートなどの二官能性単量体などが挙げられる。   Further, the polystyrene-based resin is a copolymer of the styrene-based monomer having the styrene-based monomer as a main component and a vinyl monomer copolymerizable with the styrene-based monomer. Such vinyl monomers may include, for example, alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, (meth ) In addition to acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate, and ethyl fumarate, difunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate are exemplified.

そして、ポリスチレン系樹脂粒子の平均粒子径は、発泡性ポリスチレン系樹脂粒子を用いて型内発泡成形を行う場合に、発泡性ポリスチレン系樹脂粒子を予備発泡させて得られる予備発泡粒子のキャビティ内への充填性の観点から、0.3〜2.0mmが好ましく、0.3〜1.4mmがより好ましい。さらに、屋根用下地材に使用される断熱材の場合は0.3〜1.2mmが好ましい。粒子の平均粒子径が2.0mmを超えると、キャビティ内への予備発泡粒の充填性が悪化するため、充填不良が起こり金型の細部に発泡粒が充填できないため発泡性体を得られない問題があった。一方、粒子の平均粒子径が0.3mm未満であると、成形体の強度が不足し、施工時に成形体が割れるなどの問題があった。   The average particle diameter of the polystyrene-based resin particles is within the cavity of the pre-expanded particles obtained by pre-expanding the expandable polystyrene-based resin particles when in-mold foam molding is performed using the expandable polystyrene-based resin particles. From the viewpoint of the filling property, 0.3 to 2.0 mm is preferable, and 0.3 to 1.4 mm is more preferable. Furthermore, in the case of the heat insulating material used for the base material for roofs, 0.3-1.2 mm is preferable. If the average particle diameter of the particles exceeds 2.0 mm, the filling property of the pre-foamed particles in the cavity deteriorates, so that the filling failure occurs and the foam particles cannot be filled in the details of the mold, so that a foamable body cannot be obtained. There was a problem. On the other hand, when the average particle diameter of the particles is less than 0.3 mm, the strength of the molded body is insufficient, and there is a problem that the molded body breaks during construction.

本発明のポリスチレン系樹脂粒子径の変動係数(CV値)は5〜15%が好ましく、5.5〜12%がより好ましい。さらには6〜9%が好ましい。CV値が20%を上回ると、ポリスチレン系樹脂粒子の予備発泡体のキャビティ内への充填性が悪化するため、金型の細部に発泡粒が充填できないため、発泡体を得られない問題があった。また、CV値が3%を下回ると、製造時に多くの工程が必要となり、製造コストが高くなるので好ましくない。   The coefficient of variation (CV value) of the polystyrene resin particle diameter of the present invention is preferably 5 to 15%, more preferably 5.5 to 12%. Furthermore, 6 to 9% is preferable. When the CV value exceeds 20%, the filling property of the polystyrene-based resin particles into the cavity of the pre-foamed body deteriorates, and the foam particles cannot be filled into the details of the mold. It was. On the other hand, if the CV value is less than 3%, many steps are required at the time of production, and the production cost increases, which is not preferable.

更に、ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂のスチレン換算重量平均分子量は、小さいと、発泡性ポリスチレン系樹脂粒子を発泡させて得られるポリスチレン系樹脂発泡成形体の機械的強度が低下することがある一方、大きいと、発泡性ポリスチレン系樹脂粒子の発泡性が低下し、高発泡倍率のポリスチレン系樹脂発泡成形体を得ることができない虞れがあるので、15万〜50万が好ましく、20万〜40万がより好ましい。   Furthermore, if the polystyrene-based weight average molecular weight of the polystyrene-based resin constituting the polystyrene-based resin particles is small, the mechanical strength of the polystyrene-based resin foam molded article obtained by foaming the expandable polystyrene-based resin particles may decrease. On the other hand, if it is large, the foamability of the expandable polystyrene resin particles is lowered, and there is a possibility that a polystyrene resin foam molded article having a high expansion ratio cannot be obtained. ~ 400,000 is more preferable.

なお、上記懸濁重合法及びシード重合法において用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシベンゾエート、ジt−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、イソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシ−3,3,5トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、ジクミルパーオキサイドなどの有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリルなどのアゾ化合物などが挙げられ、これらは単独で用いられても二種以上が併用されてもよい。
そして、水性媒体中にポリスチレン系樹脂粒子を分散させてなる水性懸濁液は、上記懸濁重合法又はシード重合法による重合後の反応液を水性懸濁液として用いても、或いは、上記懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を反応液から分離し、このポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成してもよい。なお、水性媒体としては、特に限定されず、例えば、水、アルコールなどが挙げられ、水が好ましい。
The polymerization initiator used in the suspension polymerization method and the seed polymerization method is not particularly limited. For example, benzoyl peroxide, lauryl peroxide, t-butyl peroxybenzoate, di-t-butyl peroxide, t -Butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexanoate, t-butyl peroxy-2-ethylhexyl monocarbonate, isopropyl carbonate, t-butyl peroxyacetate, 2,2-bis (t-butylperoxy) butane, t-butylperoxy-3,3,5 trimethylhexanoate, di-t-butylperoxyhexahydroterephthalate, 2,5-dimethyl-2,5 -Bis (benzoylperoxy) hex And organic peroxides such as dicumyl peroxide and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile. These may be used alone or in combination of two or more. Good.
The aqueous suspension in which polystyrene resin particles are dispersed in an aqueous medium may be obtained by using the reaction liquid after polymerization by the suspension polymerization method or the seed polymerization method as an aqueous suspension, or the suspension described above. The polystyrene resin particles obtained by the turbid polymerization method or the seed polymerization method may be separated from the reaction solution, and the polystyrene resin particles may be suspended in a separately prepared aqueous medium to form an aqueous suspension. In addition, it does not specifically limit as an aqueous medium, For example, water, alcohol, etc. are mentioned, Water is preferable.

又、上記懸濁重合法又はシード重合法において、スチレン系単量体を重合させる際に、スチレン系単量体の液滴又はポリスチレン系樹脂種粒子の分散性を安定させるために懸濁安定剤を用いてもよく、このような懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドンなどの水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウムなどの難水溶性無機塩などが挙げられ、難水溶性無機塩を用いる場合には、アニオン界面活性剤が通常、併用される。   In the suspension polymerization method or seed polymerization method, a suspension stabilizer is used to stabilize the dispersibility of the styrene monomer droplets or polystyrene resin seed particles when the styrene monomer is polymerized. Examples of such a suspension stabilizer include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone, and poorly water-soluble inorganic salts such as calcium triphosphate and magnesium pyrophosphate. In the case of using a poorly water-soluble inorganic salt, an anionic surfactant is usually used in combination.

上記アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩などが挙げられ、アルキルベンゼンスルホン酸塩が好ましい。   Examples of the anionic surfactant include alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalene sulfonate. And alkylbenzene sulfonates are preferred.

そして、本発明の発泡性ポリスチレン系樹脂粒子の製造方法では、上記水性懸濁液中に分散させたポリスチレン系樹脂粒子中に発泡剤を公知の要領で含浸させる。このような発泡剤としては、沸点がポリスチレン系樹脂の軟化点以下であって、常圧でガス状もしくは液状の有機化合物が適しており、例えば、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、n−ヘキサン、石油エーテルなどの炭化水素、アセトン、メチルエチルケトンなどのケトン類、メタノール、エタノール、イソプロピルアルコールなどのアルコール類、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテルなどの低沸点のエーテル化合物、炭酸ガス、窒素、アンモニアなどの無機ガスなどが挙げられ、沸点が−45〜40℃の炭化水素が好ましく、プロパン、n−ブタン、イソブタン、n−ペンタン、イソペンタンがより好ましい。なお、発泡剤は、単独で用いられても二種以上が併用されてもよい。   And in the manufacturing method of the expandable polystyrene resin particle of this invention, a foaming agent is impregnated in the well-known manner in the polystyrene resin particle disperse | distributed in the said aqueous suspension. As such a foaming agent, a boiling point is not higher than the softening point of the polystyrene-based resin, and a gaseous or liquid organic compound at normal pressure is suitable. For example, propane, n-butane, isobutane, n-pentane, Hydrocarbons such as isopentane, neopentane, cyclopentane, cyclopentadiene, n-hexane, petroleum ether, ketones such as acetone and methyl ethyl ketone, alcohols such as methanol, ethanol, isopropyl alcohol, dimethyl ether, diethyl ether, dipropyl ether, methyl Examples thereof include low boiling point ether compounds such as ethyl ether, inorganic gases such as carbon dioxide, nitrogen and ammonia, and hydrocarbons having a boiling point of −45 to 40 ° C. are preferred, propane, n-butane, isobutane, n-pentane, Isopentane is more preferred Arbitrariness. In addition, a foaming agent may be used independently or 2 or more types may be used together.

本発明の発泡性ポリスチレン系樹脂粒子は、水性懸濁液中に分散させたポリスチレン系樹脂粒子に発泡剤を含浸させる前に或いは含浸中に、可塑剤に粉末難燃剤テトラブロモシクロオクタン、難燃助剤を溶解させてなる難燃剤溶解液を上記水性懸濁液中に供給して、ポリスチレン系樹脂粒子に難燃剤及び難燃助剤を含浸させる。なお、含浸は加圧下にてするのが好ましい。なお、水性媒体は、ポリスチレン系樹脂粒子を分散させている水性懸濁液と相溶性を有するものであれば、特に限定されず、例えば、水、アルコールなどが挙げられ、水が好ましい。   The expandable polystyrene resin particles of the present invention are obtained by adding a powder flame retardant tetrabromocyclooctane, a flame retardant to a plasticizer before or during impregnation with a polystyrene resin particle dispersed in an aqueous suspension. A flame retardant solution obtained by dissolving the auxiliary agent is supplied into the aqueous suspension, and the polystyrene resin particles are impregnated with the flame retardant and the flame retardant auxiliary agent. The impregnation is preferably performed under pressure. The aqueous medium is not particularly limited as long as it is compatible with the aqueous suspension in which the polystyrene resin particles are dispersed. Examples thereof include water and alcohol, and water is preferable.

上記粉末状難燃剤テトラブロモシクロオクタンは、分散性を向上するためにシリカ微粉末を添加している。すなわち上記粉末状難燃剤はシリカ微粉末によって予備分散されているテトラブロモシクロオクタンであることが望ましい。テトラブロモシクロオクタンへのシリカ微粉末の添加方法としては、ヘンシェルミキサーなどの混合機内で一定時間混合させることが好ましい。
また、上記粉末難燃剤テトラブロモシクロオクタンに添加されるシリカ微粉末としては、比表面積が170〜330m2/gであれば親水性又は疎水性のどちらでもよく、比表面積は200m2/gが最も好ましい。なお、比表面積が170m2/g未満であると、テトラブロモシクロオクタンの分散性の向上をすることができず、結果としてテトラブロモシクロオクタンが二次凝集した。また、比表面積が330m2/gより大きいと、シリカ微粉末の飛散量が多くなり、製造上のハンドリング性が悪化する問題があった。
また、テトラブロモシクロオクタンへのシリカ微粉末の添加量は、テトラブロモシクロオクタン98.5〜99.7重量部に対して、シリカ微粉末を0.3〜1.5重量部が好ましく、更には0.5重量部が最も好ましい。0.3重量部未満であると、テトラブロモシクロオクタンの分散性を向上することができず、結果としてテトラブロモシクロオクタンが二次凝集した。また、1.5重量部より多いと、シリカ微粉末の飛散量が多くなり、製造上のハンドリング性が悪化する問題があった。
The powdery flame retardant tetrabromocyclooctane is added with fine silica powder in order to improve dispersibility. That is, the powdery flame retardant is desirably tetrabromocyclooctane predispersed with fine silica powder. As a method for adding the fine silica powder to tetrabromocyclooctane, it is preferable to mix for a certain time in a mixer such as a Henschel mixer.
As the fine silica powder to be added to the powder flame retardant tetrabromo cyclooctane, specific surface area of 170~330m 2 / g in the case if may be either hydrophilic or hydrophobic, and a specific surface area of 200 meters 2 / g is Most preferred. When the specific surface area was less than 170 m 2 / g, the dispersibility of tetrabromocyclooctane could not be improved, resulting in secondary aggregation of tetrabromocyclooctane. On the other hand, when the specific surface area is larger than 330 m 2 / g, there is a problem that the amount of silica fine powder scattered increases and the handling property in production deteriorates.
The amount of silica fine powder added to tetrabromocyclooctane is preferably 0.3 to 1.5 parts by weight of silica fine powder relative to 98.5 to 99.7 parts by weight of tetrabromocyclooctane, Is most preferably 0.5 parts by weight. If it is less than 0.3 part by weight, the dispersibility of tetrabromocyclooctane could not be improved, and as a result, tetrabromocyclooctane secondary aggregated. On the other hand, when the amount is more than 1.5 parts by weight, there is a problem that the amount of silica fine powder scattered increases and the handling property in production deteriorates.

更に上記難燃剤に難燃助剤を併用することによって発泡性樹脂粒子に更に優れた難燃性を付与することができる。このような難燃助剤としては特に限定されず、例えば、ジクミルパーオキサイドなどが挙げられ、1時間半減期温度が100℃〜250℃であるものが好ましい。そして、発泡性樹脂粒子中における難燃助剤の含有量は、少ないと、発泡性樹脂粒子の難燃性が低下することがある一方、多くても、発泡性樹脂粒子の難燃性に変化がないことが多いので、可塑剤100重量部に対して20〜200重量部、すなわち発泡性ポリスチレン系樹脂100重量部に対して0.2〜2.0重量部が好ましく、0.2〜1.5重量部がより好ましい。   Furthermore, by using a flame retardant aid in combination with the above flame retardant, it is possible to impart further excellent flame retardancy to the expandable resin particles. Such a flame retardant aid is not particularly limited, and examples thereof include dicumyl peroxide, and those having a one-hour half-life temperature of 100 ° C. to 250 ° C. are preferable. And, if the content of the flame retardant aid in the expandable resin particles is small, the flame retardancy of the expandable resin particles may decrease, but at most, it changes to the flame retardancy of the expandable resin particles. 20 to 200 parts by weight with respect to 100 parts by weight of the plasticizer, that is, 0.2 to 2.0 parts by weight with respect to 100 parts by weight of the expandable polystyrene resin is preferable. More preferably, 5 parts by weight.

上記難燃剤溶解液は、可塑剤に粉末状難燃剤及び難燃助剤を溶解させてなる。このような可塑剤としては、難燃剤を溶解させることができれば、特に限定されず、例えば、アジピン酸エステル類ではアジピン酸ジイソブチル、アジピン酸ジイソノニル、フタル酸エステル類ではフタル酸ジオクチル、フタル酸ジブチル、セバシン酸エステル類ではセバシン酸ジブチル、炭化水素系ではスチレン、トルエン、エチルベンゼン、シクロヘキサンなどが挙げられ、特にスチレン、トルエンが好ましい。
そして、難燃剤溶解液中における粉末状難燃剤の含有量は、少ないと使用しなければならない難燃剤溶解液の量が多くなり、ポリスチレン系樹脂粒子中への難燃剤の含浸が低下する一方、多いと、難燃剤が可塑剤に溶解し難くなるので、可塑剤100重量部に対して33〜1000重量部に限定され、100〜550重量部が好ましい。
更に、水性懸濁液中に難燃剤溶解液を供給するにあたって、得られる発泡性ポリスチレン系樹脂粒子中における難燃剤の含有量が、難燃剤を含浸させるポリスチレン系樹脂粒子100重量部に対して、好ましくは0.3〜2.0重量部となるように、より好ましくは0.5〜1.5重量部となるように調整することが好ましい。これは、発泡性ポリスチレン系樹脂粒子における難燃剤の含有量が少ないと、得られる熱可塑性ポリスチレン系樹脂発泡成形体の自消性が悪化することがあるからである。
可塑剤中に含有される粉末状難燃剤テトラブロモシクロオクタンはシリカ微粉末により安定的に分散されていることから、可塑剤中に均一に分散されている。さらに可塑剤は液状であって水性懸濁液中に均一に且つ安定的に分散することから、この可塑剤中に均一に分散している粉末状難燃剤も水性懸濁液中に均一に且つ安定的に分散させることができ、よって、水性懸濁液中に分散させた各ポリスチレン系樹脂粒子中に難燃剤を均一に且つ優れた含浸効率にて含浸させることが可能である。
粉末状難燃剤及び難燃助剤を可塑剤に溶解させる要領としては、特に限定されず、例えば、可塑剤を所定温度に加熱した上で、この可塑剤を攪拌しながら可塑剤中に粉末状難燃剤を添加する方法などが挙げられる。
なお、水性媒体は、ポリスチレン系樹脂粒子を分散させている水性懸濁液と相溶性を有するものであれば、特に限定されず、例えば、水、アルコールなどが挙げられるが、ポリスチレン系樹脂粒子を分散させてなる水性懸濁液の水性媒体と同一のものが好ましい。
そして、難燃剤溶解液を分散させる水性媒体の量は、少ないと、難燃剤溶解液を水性媒体中に安定的に分散させることができないことがある一方、多いと、ポリスチレン系樹脂中への難燃剤の含浸効率が低下することがあるので、難燃剤溶解液中の可塑剤100重量部に対して100〜3000重量部に限定され、200〜2000重量部が好ましい。
The flame retardant solution is prepared by dissolving a powdery flame retardant and a flame retardant aid in a plasticizer. Such a plasticizer is not particularly limited as long as it can dissolve the flame retardant. For example, diisobutyl adipate, diisononyl adipate, dioctyl phthalate, dibutyl phthalate, Examples of sebacic acid esters include dibutyl sebacate, and examples of hydrocarbons include styrene, toluene, ethylbenzene, and cyclohexane, with styrene and toluene being particularly preferred.
And the content of the powdered flame retardant in the flame retardant solution increases the amount of the flame retardant solution that must be used if it is small, while the impregnation of the flame retardant into the polystyrene resin particles decreases, If the amount is too large, the flame retardant becomes difficult to dissolve in the plasticizer, so the amount is limited to 33 to 1000 parts by weight and preferably 100 to 550 parts by weight with respect to 100 parts by weight of the plasticizer.
Furthermore, when supplying the flame retardant solution in the aqueous suspension, the content of the flame retardant in the obtained expandable polystyrene resin particles is 100 parts by weight of the polystyrene resin particles impregnated with the flame retardant. It is preferable to adjust so that it may preferably become 0.3-2.0 weight part, More preferably, it may become 0.5-1.5 weight part. This is because when the content of the flame retardant in the expandable polystyrene resin particles is small, the self-extinguishing property of the obtained thermoplastic polystyrene resin foam molded article may be deteriorated.
Since the powdery flame retardant tetrabromocyclooctane contained in the plasticizer is stably dispersed by the fine silica powder, it is uniformly dispersed in the plasticizer. Further, since the plasticizer is liquid and is uniformly and stably dispersed in the aqueous suspension, the powdered flame retardant dispersed uniformly in the plasticizer is also uniformly dispersed in the aqueous suspension. It is possible to stably disperse, and thus it is possible to impregnate the flame retardant uniformly and with excellent impregnation efficiency in each polystyrene resin particle dispersed in the aqueous suspension.
The procedure for dissolving the powdered flame retardant and the flame retardant aid in the plasticizer is not particularly limited. For example, after the plasticizer is heated to a predetermined temperature, the plasticizer is stirred and powdered in the plasticizer. Examples include a method of adding a flame retardant.
The aqueous medium is not particularly limited as long as it is compatible with the aqueous suspension in which the polystyrene resin particles are dispersed, and examples thereof include water, alcohol, and the like. The same aqueous medium as the aqueous suspension to be dispersed is preferable.
If the amount of the aqueous medium in which the flame retardant solution is dispersed is small, the flame retardant solution may not be stably dispersed in the aqueous medium. Since the impregnation efficiency of the flame retardant may be lowered, the amount is limited to 100 to 3000 parts by weight and preferably 200 to 2000 parts by weight with respect to 100 parts by weight of the plasticizer in the flame retardant solution.

又、難燃剤溶解液を水性媒体中に分散させる場合、水性媒体中に、難燃剤溶解液と水性媒体との間における界面エネルギーを低下させて、難燃剤溶解液を難燃剤溶解液中により安定的に分散させるために界面活性剤を含有させてもよい。
このような界面活性剤としては、特に限定されないが、例えば、ラウリル硫酸ナトリウムなどのアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウムなどのアルキルベンゼンスルホン酸塩、オレイン酸ナトリウムなどの高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩などのアニオン界面活性剤;アルキルアンモニウム酢酸塩類、アルキルジメチルベンジルアンモニウム塩類、アルキルトリメチルアンモニウム塩類、ジアルキルジメチルアンモニウム塩類、アルキルピリジニウム塩類、オキシアルキレンアルキルアミン類、ポリオキシアルキレンアルキルアミン類などのカチオン界面活性剤;脂肪酸ジエタノールアミド類、シリコーン系界面活性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレン・ポリオキシプロピレングリコール類、ポリエーテル変性シリコーン類などのノニオン界面活性剤などが挙げられ、アニオン界面活性剤が好ましく、アルキルベンゼンスルホン酸塩がより好ましい。なお、界面活性剤は、単独で用いられても二種以上が併用されてもよい。
そして、界面活性剤の使用量は、少ないと、水性媒体中における難燃剤溶解液の分散性が向上しない一方、多いと、界面活性剤に起因した泡立ちが過剰になり、生産上のトラブルが発生する虞れがあるので、難燃剤溶解液中の可塑剤100重量部に対して0.005〜10重量部が好ましく、更には0.05〜5重量部が好ましい。
In addition, when the flame retardant solution is dispersed in an aqueous medium, the interfacial energy between the flame retardant solution and the aqueous medium is reduced in the aqueous medium to make the flame retardant solution more stable in the flame retardant solution. A surfactant may be contained in order to be dispersed.
Examples of such surfactants include, but are not limited to, alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, higher fatty acid salts such as sodium oleate, β-tetrahydroxy Anionic surfactants such as naphthalene sulfonates; alkyl ammonium acetates, alkyl dimethyl benzyl ammonium salts, alkyl trimethyl ammonium salts, dialkyl dimethyl ammonium salts, alkyl pyridinium salts, oxyalkylene alkyl amines, polyoxyalkylene alkyl amines, etc. Cationic surfactants; fatty acid diethanolamides, silicone surfactants, polyoxyethylene alkyl ethers, polyoxyethylene alkyl alkyls Vinyl ether, and polyoxyethylene-polyoxypropylene glycol, include such nonionic surfactants such as polyether-modified silicones, preferably anionic surfactants, alkylbenzenesulfonate is preferable. In addition, surfactant may be used independently or 2 or more types may be used together.
When the amount of the surfactant used is small, the dispersibility of the flame retardant solution in the aqueous medium is not improved. On the other hand, when the amount is large, foaming due to the surfactant becomes excessive, causing production trouble. Therefore, the amount is preferably 0.005 to 10 parts by weight, more preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of the plasticizer in the flame retardant solution.

又、難燃剤溶解液を水性媒体中に分散させる場合、水性媒体中に難水溶性無機塩を含有させることが好ましく、このような難水溶性無機塩としては、例えば、第三リン酸カルシウム、ハイドロキシアパタイト、ピロリン酸マグネシウム、ピロリン酸カルシウム、リン酸カルシウム、リン酸マグネシウム、炭酸マグネシウムなどが挙げられ、ピロリン酸マグネシウムが好ましい。
そして、難水溶性無機塩の使用量は、少ないと、水性媒体中における難燃剤溶解液の分散性が低下することがある一方、多いと、難燃剤溶解液を分散させてなる分散液の粘性が上昇して、難燃剤溶解液が水性媒体中に均一に分散させることができないので、難燃剤溶解液中の可塑剤100重量部に対して10〜500重量部が好ましく、更には20〜200重量部が好ましい。
難燃剤溶解液を水性媒体中に分散させる要領としては、粉末状難燃剤及び難燃助剤が全て可塑剤に溶解した状態で、可塑剤が水性媒体中に分散しておればよく、例えば、水性媒体中に必要に応じて界面活性剤や難水溶性無機塩を添加して所定温度に加熱した上で、粉末状難燃剤、難燃助剤及び可塑剤を添加して攪拌し、粉末状難燃剤を可塑剤に溶解させて難燃剤溶解液を形成させると同時に難燃剤溶解液を水性媒体中に分散させる方法、水性媒体中に必要に応じて界面活性剤や難水溶性無機塩を添加して所定温度に加熱する一方、粉末状難燃剤を可塑剤に溶解させて難燃剤溶解液を作製し、この難燃剤溶解液を上記水性媒体中に供給して攪拌して分散させる方法などが挙げられる。
Further, when the flame retardant solution is dispersed in an aqueous medium, it is preferable to contain a hardly water-soluble inorganic salt in the aqueous medium. Examples of such a hardly water-soluble inorganic salt include tricalcium phosphate, hydroxyapatite, and the like. , Magnesium pyrophosphate, calcium pyrophosphate, calcium phosphate, magnesium phosphate, magnesium carbonate and the like, and magnesium pyrophosphate is preferred.
If the amount of the hardly water-soluble inorganic salt used is small, the dispersibility of the flame retardant solution in an aqueous medium may be reduced. On the other hand, if the amount is large, the viscosity of the dispersion obtained by dispersing the flame retardant solution may be reduced. And the flame retardant solution cannot be uniformly dispersed in the aqueous medium. Therefore, the amount is preferably 10 to 500 parts by weight, more preferably 20 to 200 parts per 100 parts by weight of the plasticizer in the flame retardant solution. Part by weight is preferred.
As a procedure for dispersing the flame retardant solution in the aqueous medium, the plasticizer may be dispersed in the aqueous medium in a state in which the powdered flame retardant and the flame retardant aid are all dissolved in the plasticizer. A surfactant or a hardly water-soluble inorganic salt is added to the aqueous medium as necessary and heated to a predetermined temperature, and then a powdered flame retardant, a flame retardant aid and a plasticizer are added and stirred to form a powder. A method of dissolving a flame retardant in a plasticizer to form a flame retardant solution and simultaneously dispersing the flame retardant solution in an aqueous medium, and adding a surfactant or a hardly water-soluble inorganic salt to the aqueous medium as needed Then, while heating to a predetermined temperature, a powdered flame retardant is dissolved in a plasticizer to prepare a flame retardant solution, and this flame retardant solution is fed into the aqueous medium and dispersed by stirring. Can be mentioned.

この難燃剤溶解液又は該難燃剤溶解液を水性媒体に分散させてなる難燃剤溶解液の分散体を、ポリスチレン系樹脂粒子を分散させている水性懸濁液中に添加する時期は、発泡剤の含浸前あるいは含浸途中のいずれであってもよく、又、難燃剤溶解液若しくは該難燃剤溶解液の分散体の水性懸濁液への添加は、難燃剤溶解液又は該難燃剤溶解液の分散体を全量、一度に添加してもよいし、難燃剤溶解液又は該難燃剤溶解液の分散体を複数回に分けて添加してもよいし、或いは、難燃剤溶解液又は該難燃剤溶解液の分散体を少量づつ連続的に添加してもよい。
そして、水性懸濁液中に分散させたポリスチレン系樹脂粒子中に発泡剤、難燃剤及び難燃助剤を含浸させて発泡性ポリスチレン系樹脂粒子を製造した後、この発泡性ポリスチレン系樹脂粒子を水性懸濁液中から取り出して、必要に応じて、発泡性ポリスチレン系樹脂粒子に洗浄処理、乾燥処理を施せばよい。
The flame retardant solution or a dispersion of the flame retardant solution obtained by dispersing the flame retardant solution in an aqueous medium is added to the aqueous suspension in which the polystyrene resin particles are dispersed. The flame retardant solution or the dispersion of the flame retardant solution may be added to the aqueous suspension of the flame retardant solution or the flame retardant solution. The total amount of the dispersion may be added all at once, the flame retardant solution or the dispersion of the flame retardant solution may be added in several portions, or the flame retardant solution or the flame retardant You may add the dispersion of a solution continuously little by little.
Then, after the polystyrene resin particles dispersed in the aqueous suspension are impregnated with a foaming agent, a flame retardant, and a flame retardant aid, the expandable polystyrene resin particles are manufactured, and then the expandable polystyrene resin particles are used. The aqueous suspension may be taken out, and the expandable polystyrene resin particles may be washed and dried as necessary.

なお、発泡性ポリスチレン系樹脂粒子には、難燃剤以外に、物性を損なわない範囲内において、気泡調整剤、充填剤、滑剤、着色剤、溶剤などの添加剤を必要に応じて添加することができ、これら添加剤を発泡性ポリスチレン系樹脂粒子に添加する場合には、ポリスチレン系樹脂粒子を分散させた水性懸濁液中に添加剤を添加するか、又は、難燃剤溶解液若しくは該難燃剤溶解液の分散体中に添加剤を添加すればよい。   In addition to the flame retardant, the foamable polystyrene resin particles may be added with additives such as a bubble adjusting agent, a filler, a lubricant, a colorant, and a solvent as needed within a range that does not impair the physical properties. When these additives are added to the expandable polystyrene resin particles, the additives are added to the aqueous suspension in which the polystyrene resin particles are dispersed, or the flame retardant solution or the flame retardant is added. An additive may be added to the dispersion of the solution.

次に、上記発泡性ポリスチレン系樹脂粒子を用いてポリスチレン系樹脂発泡成形体の製造要領について説明する。発泡性ポリスチレン系樹脂粒子を用いてポリスチレン系樹脂発泡成形体を製造する要領としては、公知の方法を採用することができ、具体的には、発泡性ポリスチレン系樹脂粒子を加熱して予備発泡させて、嵩密度0.01〜0.05g/cm3程度のポリスチレン系樹脂予備発泡粒子とし、このポリスチレン系樹脂予備発泡粒子を金型のキャビティ内に充填して加熱、発泡させることによってポリスチレン系樹脂発泡成形体を得ることができる。 Next, the manufacturing point of a polystyrene-type resin foam molding using the said expandable polystyrene-type resin particle is demonstrated. As a procedure for producing a polystyrene resin foam molded article using the expandable polystyrene resin particles, a known method can be employed. Specifically, the expandable polystyrene resin particles are heated and pre-expanded. The polystyrene resin pre-expanded particles having a bulk density of about 0.01 to 0.05 g / cm 3 are filled into the mold cavity, heated, and foamed to form a polystyrene resin. A foamed molded product can be obtained.

又、発泡体の平均弦長は、30〜380μmが好ましく、40〜350μmがより好ましい。さらに、屋根用下地材の断熱材に使用される場合には、50μm〜330μmが好ましい。これは、発泡成形体の気泡の平均弦長が小さいと、発泡成形体中における気泡壁の数、即ち、気泡壁の表面積が多くなり過ぎて各気泡壁の厚さが薄くなり、気泡壁の数は多くなって熱の遮断回数は多くなるものの、気泡壁による熱の遮断効果の低下度合いの方が大きくなってしまい、結果として、発泡成形体の収縮が大きくなってしまう。一方、発泡成形体の平均弦長が大きいと、発泡成形体の厚み方向における全体の気泡数が減少し、その結果、発泡成形体の強度が低下してしまうからである。   The average chord length of the foam is preferably 30 to 380 μm, more preferably 40 to 350 μm. Furthermore, when used for the heat insulating material of the base material for roofs, 50 micrometers-330 micrometers are preferable. This is because when the average chord length of bubbles in the foamed molded product is small, the number of the bubble walls in the foamed molded product, that is, the surface area of the cell walls increases too much, and the thickness of each cell wall becomes thin. Although the number increases and the number of times of heat blocking increases, the degree of decrease in the heat blocking effect by the cell walls increases, and as a result, shrinkage of the foamed molded body increases. On the other hand, when the average chord length of the foamed molded product is large, the total number of bubbles in the thickness direction of the foamed molded product decreases, and as a result, the strength of the foamed molded product decreases.

上記熱ポリスチレン系樹脂発泡成形体の密度は、低いと、ポリスチレン系樹脂発泡成形体の独立気泡率が低下して、ポリスチレン系樹脂発泡成形体の断熱性や機械的強度が低下することがある一方、高いと、型内発泡成形における一サイクルに要する時間が長くなり、ポリスチレン系樹脂発泡成形体の生産効率が低下することがあるので、0.01〜0.05g/cm3が好ましい。さらに、屋根用下地材に用いられる場合には0.018〜0.033g/cm3が好ましい。   On the other hand, if the density of the above-mentioned hot polystyrene resin foam molded article is low, the closed cell ratio of the polystyrene resin foam molded article may be lowered, and the heat insulation and mechanical strength of the polystyrene resin foam molded article may be lowered. If it is high, the time required for one cycle in the in-mold foam molding becomes long, and the production efficiency of the polystyrene-based resin foam molded article may be lowered, so 0.01 to 0.05 g / cm 3 is preferable. Furthermore, 0.018 to 0.033 g / cm <3> is preferable when used for a roof base material.

以下、実施例及び比較例により本発明を説明するが、本発明はこれに限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this.

(実施例1)
内容積100リットルの攪拌機付オートクレーブに、第三リン酸カルシウム(大平化学社製)120g、ドデシルベンゼンスルホン酸ナトリウム2.4g、ベンゾイルパーオキサイド(純度75重量%)160g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート30g、イオン交換水40kg及びスチレン単量体40kgを供給して攪拌羽を100rpmの回転速度にて回転させて撹拌して水性懸濁液を形成した。
次に、攪拌羽を100rpmの回転速度で回転させて水性懸濁液を攪拌しながら、オートクレーブ内の温度を90℃まで昇温して90℃にて6時間に亘って保持し、更に、オートクレーブ内の温度を120℃まで昇温し、120℃で2時間に亘って保持することによって、スチレン単量体を懸濁重合した。
しかる後、オートクレーブ内の温度を25℃まで冷却してオートクレーブ内からポリスチレン粒子を取り出して洗浄、脱水を複数回に亘って繰り返し行い、乾燥工程を経た後、ポリスチレン粒子を分級して、粒子径が0.2〜0.8mmで且つ重量平均分子量が24万のポリスチレン粒子を得た。
Example 1
In an autoclave with a stirrer having an internal volume of 100 liters, 120 g of tribasic calcium phosphate (manufactured by Ohira Chemical Co., Ltd.), 2.4 g of sodium dodecylbenzenesulfonate, 160 g of benzoyl peroxide (purity 75% by weight), t-butylperoxy-2-ethylhexyl 30 g of monocarbonate, 40 kg of ion-exchanged water and 40 kg of styrene monomer were supplied, and the stirring blade was rotated at a rotational speed of 100 rpm and stirred to form an aqueous suspension.
Next, while stirring the aqueous suspension by rotating the stirring blade at a rotation speed of 100 rpm, the temperature in the autoclave is raised to 90 ° C. and held at 90 ° C. for 6 hours. The temperature inside was raised to 120 ° C. and maintained at 120 ° C. for 2 hours, whereby the styrene monomer was subjected to suspension polymerization.
Thereafter, the temperature in the autoclave is cooled to 25 ° C., the polystyrene particles are taken out from the autoclave, washed and dehydrated repeatedly, and after passing through a drying step, the polystyrene particles are classified, and the particle size is reduced. Polystyrene particles having 0.2 to 0.8 mm and a weight average molecular weight of 240,000 were obtained.

次に、別の100リットルの攪拌機付オートクレーブにイオン交換水35kg、ドデシルベンゼンスルホン酸ナトリウム4g、ピロリン酸マグネシウム200gを供給した後、オートクレーブ内に上記ポリスチレン粒子8000gを種粒子として供給して攪拌して水中に均一に分散させた。
上記とは別に、イオン交換水5kgにドデシルベンゼンスルホン酸ナトリウム3gを溶解させてなる分散剤を作成する一方、スチレン1994g、α―メチルスチレン500g及びジビニルベンゼン6gに、重合開始剤である2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン(10時間半減期温度:100℃)100g及びジクミルパーオキサイド(10時間半減期温度:116℃)100gを溶解させてスチレン系単量体溶液を作成し、このスチレン系単量体溶液を上記分散液に添加してホモミキサーを用いて攪拌して乳濁化させて乳濁液を得た。
そして、オートクレーブ内を80℃に加熱、保持した上でオートクレーブ内に上記乳濁液を添加し、ポリスチレン種粒子中にスチレン、α―メチルスチレン、ジビニルベンゼン及び重合開始剤が円滑に吸収されるように30分間に亘って保持し、しかる後、オートクレーブ内を80℃から118℃まで1℃/分の昇温速度で昇温した。118℃に到達した時点よりオートクレーブ内にスチレン22000g及びα―メチルスチレン7500gを480分かけて連続的に滴下し、次に、スチレン単量体の滴下が終了してから60分後に、1℃/分の昇温速度で140℃まで昇温して120分間に亘って保持してシード重合によりポリスチレン粒子を得た。又、スチレン、α―メチルスチレン及びジビニルベンゼンは全て重合に用いられていた。
Next, 35 kg of ion-exchanged water, 4 g of sodium dodecylbenzenesulfonate, and 200 g of magnesium pyrophosphate were supplied to another 100 liter autoclave with a stirrer, and then 8000 g of the polystyrene particles were supplied as seed particles into the autoclave and stirred. Dispersed uniformly in water.
Separately from the above, a dispersant is prepared by dissolving 3 g of sodium dodecylbenzenesulfonate in 5 kg of ion-exchanged water, while the polymerization initiator is added to 1994 g of styrene, 500 g of α-methylstyrene and 6 g of divinylbenzene. -Styrene monomer by dissolving 100 g of dimethyl-2,5-di (benzoylperoxy) hexane (10-hour half-life temperature: 100 ° C.) and 100 g of dicumyl peroxide (10-hour half-life temperature: 116 ° C.) A solution was prepared, and this styrenic monomer solution was added to the dispersion and stirred using a homomixer to make an emulsion, thereby obtaining an emulsion.
Then, after heating and maintaining the autoclave at 80 ° C., the above emulsion is added to the autoclave so that styrene, α-methylstyrene, divinylbenzene and a polymerization initiator are smoothly absorbed in the polystyrene seed particles. The autoclave was heated from 80 ° C. to 118 ° C. at a rate of 1 ° C./min. When the temperature reached 118 ° C., 22,000 g of styrene and 7500 g of α-methylstyrene were continuously dropped into the autoclave over 480 minutes, and then 60 ° C. after completion of dropping of the styrene monomer, The temperature was raised to 140 ° C. at a temperature raising rate of 1 minute and held for 120 minutes to obtain polystyrene particles by seed polymerization. Styrene, α-methylstyrene and divinylbenzene were all used for the polymerization.

又、難燃剤テトラブロモシクロオクタン(第一工業製薬社製 商品名「ピロガードFR−200」)440gに流動化剤としてシリカ(日本アエロジル社製 商品名「AEROSIL200」)を2.24g加えて乾式混合し(例えばヘンシェルミキサー)難燃剤Aを作成した。
さらにイオン交換水2kgにドデシルベンゼンスルホン酸ナトリウム6g及び複分解法で得られたピロリン酸マグネシウム112gを供給して攪拌した上で50℃に加熱、保持しつつ、上記イオン交換水中に可塑剤としてトルエン240g、難燃剤A440g及び難燃助剤ジクミルパーオキサイド140gを加え、ホモミキサー(特殊機化工業社製 T.K.ホモミクサーMARKII fmodel)を用いて7000rpmで30分間に亘って攪拌して、難燃剤A及び難燃助剤を中に全て溶解させて難燃剤溶解液を形成すると同時に、この難燃剤溶解液をイオン交換水中に分散させて難燃剤溶解液の分散体を形成した。
次にオートクレーブ内を1℃/分の降温速度にて50℃まで冷却した上で、上記難燃剤溶液をオートクレーブ内に供給した。
そして、オートクレーブ内に難燃剤溶液を供給してから30分経過後にオートクレーブを密閉し、しかる後、発泡剤としてブタン(イソブタン/ノルマルブタン(重量比)=30/70)3600gと、ペンタン(イソペンタン/ノルマルペンタン(重量比)=20/80) 1600gとを窒素加圧によってオートクレーブ内に30分間で圧入し、オートクレーブ内を表1の「発泡剤含浸温度」に示した温度まで昇温させその温度で4時間保持した。
しかる後、オートクレーブ内を25℃まで冷却し、オートクレーブ内から発泡性ポリスチレン粒子を取り出して洗浄、脱水を複数回に亘って繰り返し行い、乾燥工程を経た後、難燃性発泡性ポリスチレン粒子を分級して粒子径が0.80〜1.2mm、平均粒子径が1.0mmの熱可塑性発泡性ポリスチレン粒子を得た。なお、難燃剤溶解液は全てポリスチレン粒子に含浸されていた。
この発泡性ポリスチレン粒子を用いて予備発泡させた予備発泡粒子を型内に充填して発泡させて得られた発泡成形体を作成したところ、そのキャビティ内への充填性が良好であった。また得られた発泡成形体はその発泡粒子同士の融着部分に凹凸が見られず、難燃剤の均一吸収が起こっていた。また得られた発泡成形体の平均弦長を測定したところ、難燃剤の使用量が適度であることから、気泡の密化は見られなかった。さらに得られた発泡成形体は、断熱性能が優れているとともに、90℃で168時間加熱したとき、その加熱前と加熱後における加熱寸法変化率が±0.5%以内であって、耐熱性が優れていた。
Further, 2.24 g of silica (trade name “AEROSIL200” manufactured by Nippon Aerosil Co., Ltd.) as a fluidizing agent is added to 440 g of the flame retardant tetrabromocyclooctane (trade name “Pyroguard FR-200” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) and dry-mixed. A flame retardant A was prepared (for example, Henschel mixer).
Further, 6 g of sodium dodecylbenzenesulfonate and 112 g of magnesium pyrophosphate obtained by the metathesis method were supplied to 2 kg of ion-exchanged water, stirred and heated and maintained at 50 ° C., while 240 g of toluene as a plasticizer was added to the ion-exchanged water. In addition, 440 g of flame retardant A and 140 g of flame retardant auxiliary dicumyl peroxide were added, and the mixture was stirred for 30 minutes at 7000 rpm using a homomixer (TK homomixer MARKII fmodel manufactured by Tokushu Kika Kogyo Co., Ltd.). A and a flame retardant assistant were all dissolved therein to form a flame retardant solution, and at the same time, this flame retardant solution was dispersed in ion-exchanged water to form a flame retardant solution dispersion.
Next, after the inside of the autoclave was cooled to 50 ° C. at a temperature lowering rate of 1 ° C./min, the flame retardant solution was supplied into the autoclave.
The autoclave was sealed 30 minutes after supplying the flame retardant solution in the autoclave, and then 3600 g of butane (isobutane / normal butane (weight ratio) = 30/70) and pentane (isopentane / Normal pentane (weight ratio) = 20/80) 1600 g was pressed into the autoclave for 30 minutes by nitrogen pressurization, and the temperature inside the autoclave was raised to the temperature shown in “Foaming agent impregnation temperature” in Table 1 at that temperature. Hold for 4 hours.
Thereafter, the inside of the autoclave is cooled to 25 ° C., the expandable polystyrene particles are taken out from the autoclave, washed and dehydrated repeatedly, and after passing through a drying step, the flame retardant expandable polystyrene particles are classified. Thus, thermoplastic foamable polystyrene particles having a particle diameter of 0.80 to 1.2 mm and an average particle diameter of 1.0 mm were obtained. All flame retardant solution was impregnated with polystyrene particles.
When the foamed molded article obtained by filling the foamed pre-expanded particles, which were pre-expanded using the expandable polystyrene particles, into a mold was prepared, the filling property into the cavity was good. Further, the obtained foamed molded article had no unevenness in the fused part between the foamed particles, and the flame retardant was uniformly absorbed. Further, when the average chord length of the obtained foamed molded article was measured, the amount of the flame retardant used was moderate, and thus no bubble densification was observed. Further, the obtained foamed molded article has excellent heat insulation performance, and when heated at 90 ° C. for 168 hours, the heating dimensional change before and after the heating is within ± 0.5%, and is heat resistant. Was excellent.

(実施例2)
難燃剤Aを440gの代わりに360gとしたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。
この発泡性ポリスチレン粒子を用いて予備発泡させた予備発泡粒子を型内に充填して発泡させて得られた発泡成形体を作成したところ、そのキャビティ内への充填性が良好であった。また得られた発泡成形体はその発泡粒子同士の融着部分に凹凸が見られず、難燃剤の均一吸収が起こっていた。また得られた発泡成形体の平均弦長を測定したところ、難燃剤の使用量が適度であることから、気泡の密化は見られなかった。さらに得られた発泡成形体は、断熱性能が優れているとともに、90℃で168時間加熱したとき、その加熱前と加熱後における加熱寸法変化率が±0.5%以内であって、耐熱性が優れていた。
(Example 2)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the flame retardant A was changed to 360 g instead of 440 g.
When the foamed molded article obtained by filling the foamed pre-expanded particles, which were pre-expanded using the expandable polystyrene particles, into a mold was prepared, the filling property into the cavity was good. Further, the obtained foamed molded article had no unevenness in the fused part between the foamed particles, and the flame retardant was uniformly absorbed. Further, when the average chord length of the obtained foamed molded article was measured, the amount of the flame retardant used was moderate, and thus no bubble densification was observed. Further, the obtained foamed molded article has excellent heat insulation performance, and when heated at 90 ° C. for 168 hours, the heating dimensional change before and after the heating is within ± 0.5%, and is heat resistant. Was excellent.

(実施例3)
難燃剤Aを440gの代わりに679gとしたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。
この発泡性ポリスチレン粒子を用いて予備発泡させた予備発泡粒子を型内に充填して発泡させて得られた発泡成形体を作成したところ、そのキャビティ内への充填性が良好であった。また得られた発泡成形体はその発泡粒子同士の融着部分に凹凸が見られず、難燃剤の均一吸収が起こっていた。また得られた発泡成形体の平均弦長を測定したところ、難燃剤の使用量が適度であることから、気泡の密化は見られなかった。さらに得られた発泡成形体は、断熱性能が優れているとともに、90℃で168時間加熱したとき、その加熱前と加熱後における加熱寸法変化率が±0.5%以内であって、耐熱性が優れていた。
(Example 3)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the flame retardant A was changed to 679 g instead of 440 g.
When the foamed molded article obtained by filling the foamed pre-expanded particles, which were pre-expanded using the expandable polystyrene particles, into a mold was prepared, the filling property into the cavity was good. Further, the obtained foamed molded article had no unevenness in the fused part between the foamed particles, and the flame retardant was uniformly absorbed. Further, when the average chord length of the obtained foamed molded article was measured, the amount of the flame retardant used was moderate, and thus no bubble densification was observed. Further, the obtained foamed molded article has excellent heat insulation performance, and when heated at 90 ° C. for 168 hours, the heating dimensional change before and after the heating is within ± 0.5%, and is heat resistant. Was excellent.

(実施例4)
発泡剤含浸温度を95℃の代わりに93℃としたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。
この発泡性ポリスチレン粒子を用いて予備発泡させた予備発泡粒子を型内に充填して発泡させて得られた発泡成形体を作成したところ、そのキャビティ内への充填性が良好であった。また得られた発泡成形体はその発泡粒子同士の融着部分に凹凸が見られず、難燃剤の均一吸収が起こっていた。また得られた発泡成形体の平均弦長を測定したところ、難燃剤の使用量が適度であることから、気泡の密化は見られなかった。さらに得られた発泡成形体は、断熱性能が優れているとともに、90℃で168時間加熱したとき、その加熱前と加熱後における加熱寸法変化率が±0.5%以内であって、耐熱性が優れていた。
Example 4
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the blowing agent impregnation temperature was 93 ° C. instead of 95 ° C.
When the foamed molded article obtained by filling the foamed pre-expanded particles, which were pre-expanded using the expandable polystyrene particles, into a mold was prepared, the filling property into the cavity was good. Further, the obtained foamed molded article had no unevenness in the fused part between the foamed particles, and the flame retardant was uniformly absorbed. Further, when the average chord length of the obtained foamed molded article was measured, the amount of the flame retardant used was moderate, and thus no bubble densification was observed. Further, the obtained foamed molded article has excellent heat insulation performance, and when heated at 90 ° C. for 168 hours, the heating dimensional change before and after the heating is within ± 0.5%, and is heat resistant. Was excellent.

(実施例5)
発泡剤含浸温度を95℃の代わりに98℃としたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。
この発泡性ポリスチレン粒子を用いて予備発泡させた予備発泡粒子を型内に充填して発泡させて得られた発泡成形体を作成したところ、そのキャビティ内への充填性が良好であった。また得られた発泡成形体はその発泡粒子同士の融着部分に凹凸が見られず、難燃剤の均一吸収が起こっていた。また得られた発泡成形体の平均弦長を測定したところ、難燃剤の使用量が適度であることから、気泡の密化は見られなかった。さらに得られた発泡成形体は、断熱性能が優れているとともに、90℃で168時間加熱したとき、その加熱前と加熱後における加熱寸法変化率が±0.5%以内であって、耐熱性が優れていた。
(Example 5)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the foaming agent impregnation temperature was 98 ° C instead of 95 ° C.
When the foamed molded article obtained by filling the foamed pre-expanded particles, which were pre-expanded using the expandable polystyrene particles, into a mold was prepared, the filling property into the cavity was good. Further, the obtained foamed molded article had no unevenness in the fused part between the foamed particles, and the flame retardant was uniformly absorbed. Further, when the average chord length of the obtained foamed molded article was measured, the amount of the flame retardant used was moderate, and thus no bubble densification was observed. Further, the obtained foamed molded article has excellent heat insulation performance, and when heated at 90 ° C. for 168 hours, the heating dimensional change before and after the heating is within ± 0.5%, and is heat resistant. Was excellent.

(実施例6)
CV値が9.31%の発泡性ポリスチレン樹脂粒子を使用した以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。
この発泡性ポリスチレン粒子を用いて予備発泡させた予備発泡粒子を型内に充填して発泡させて得られた発泡成形体を作成したところ、そのキャビティ内への充填性が良好であった。また得られた発泡成形体はその発泡粒子同士の融着部分に凹凸が見られず、難燃剤の均一吸収が起こっていた。また得られた発泡成形体の平均弦長を測定したところ、難燃剤の使用量が適度であることから、気泡の密化は見られなかった。さらに得られた発泡成形体は、断熱性能が優れているとともに、90℃で168時間加熱したとき、その加熱前と加熱後における加熱寸法変化率が±0.5%以内であって、耐熱性が優れていた。
(Example 6)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that expandable polystyrene resin particles having a CV value of 9.31% were used.
When the foamed molded article obtained by filling the foamed pre-expanded particles, which were pre-expanded using the expandable polystyrene particles, into a mold was prepared, the filling property into the cavity was good. Further, the obtained foamed molded article had no unevenness in the fused part between the foamed particles, and the flame retardant was uniformly absorbed. Further, when the average chord length of the obtained foamed molded article was measured, the amount of the flame retardant used was moderate, and thus no bubble densification was observed. Further, the obtained foamed molded article has excellent heat insulation performance, and when heated at 90 ° C. for 168 hours, the heating dimensional change before and after the heating is within ± 0.5%, and is heat resistant. Was excellent.

(実施例7)
CV値が6.09%の発泡性ポリスチレン樹脂粒子を使用した以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。
この発泡性ポリスチレン粒子を用いて予備発泡させた予備発泡粒子を型内に充填して発泡させて得られた発泡成形体を作成したところ、そのキャビティ内への充填性が良好であった。また得られた発泡成形体はその発泡粒子同士の融着部分に凹凸が見られず、難燃剤の均一吸収が起こっていた。また得られた発泡成形体の平均弦長を測定したところ、難燃剤の使用量が適度であることから、気泡の密化は見られなかった。さらに得られた発泡成形体は、断熱性能が優れているとともに、90℃で168時間加熱したとき、その加熱前と加熱後における加熱寸法変化率が±0.5%以内であって、耐熱性が優れていた。
(Example 7)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that expandable polystyrene resin particles having a CV value of 6.09% were used.
When the foamed molded article obtained by filling the foamed pre-expanded particles, which were pre-expanded using the expandable polystyrene particles, into a mold was prepared, the filling property into the cavity was good. Further, the obtained foamed molded article had no unevenness in the fused part between the foamed particles, and the flame retardant was uniformly absorbed. Further, when the average chord length of the obtained foamed molded article was measured, the amount of the flame retardant used was moderate, and thus no bubble densification was observed. Further, the obtained foamed molded article has excellent heat insulation performance, and when heated at 90 ° C. for 168 hours, the heating dimensional change before and after the heating is within ± 0.5%, and is heat resistant. Was excellent.

(比較例1)
CV値が20.80%の発泡性ポリスチレン樹脂粒子を使用したところ、成形時の予備発泡粒のキャビティ内への充填性が悪く、発泡成形体を得ることができなかった。
(Comparative Example 1)
When expandable polystyrene resin particles having a CV value of 20.80% were used, the filling property of the pre-expanded particles in the cavity during molding was poor, and a foamed molded article could not be obtained.

(比較例2)
難燃剤Aを440gの代わりに80gとしたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。そのため、難燃剤の不均一吸収が起こり、発泡性成形体の発泡粒子同士の融着部分に凹凸が見られた。
(Comparative Example 2)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the flame retardant A was changed to 80 g instead of 440 g. For this reason, non-uniform absorption of the flame retardant occurred, and irregularities were observed in the fused part between the foamed particles of the foamable molded article.

(比較例3)
難燃剤Aを440gの代わりに1200gとしたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。得られた発泡成形体の平均弦長を測定したところ難燃剤の使用量が多いため気泡の密化が見られた。そのため、発泡性成形体の発泡粒子同士の融着部分に凹凸が見られた。
(Comparative Example 3)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the flame retardant A was changed to 1200 g instead of 440 g. When the average chord length of the obtained foamed molded product was measured, the amount of the flame retardant used was large, and the cells were denser. Therefore, unevenness was observed in the fused part between the foamed particles of the foamable molded article.

(比較例4)
発泡剤含浸温度を100℃の代わりに80℃としたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。得られた発泡成形体の平均弦長を測定したところ480μmとなり断熱性能が悪かった。
(Comparative Example 4)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the blowing agent impregnation temperature was 80 ° C. instead of 100 ° C. When the average chord length of the obtained foamed molded product was measured, it was 480 μm and the heat insulation performance was poor.

(比較例5)
発泡剤含浸温度を100℃の代わりに110℃としたこと以外は実施例1と同様にして発泡性ポリスチレン粒子を得た。得られた発泡成形体の平均弦長を測定したところ25μmとなり断熱性能が悪かった。
(Comparative Example 5)
Expandable polystyrene particles were obtained in the same manner as in Example 1 except that the blowing agent impregnation temperature was 110 ° C. instead of 100 ° C. When the average chord length of the obtained foamed molded product was measured, it was 25 μm and the heat insulation performance was poor.

(平均粒子径の測定方法)
試料約50〜100gをロータップ型篩振とう機((株)飯田製作所製)を用いて、ふるい目開き4.00mm、目開き3.35mm、目開き2.80mm、目開き2.36mm、目開き2.00mm、目開き1.70mm、目開き1.40mm、目開き1.18mm、目開き1.00mm、目開き0.85mm、目開き0.71mm、目開き0.60mm、目開き0.50mm、目開き0.425mm、目開き0.355mm、目開き0.300mm、目開き0.250mm、目開き0.212mm、目開き0.180mmのJIS標準ふるいで10分間分級し、ふるい網上の試料重量を測定し、その結果から得られた累積重量分布曲線を元にして累積重量が50%となる粒子径(メディアン径)を平均粒子径と称する。
(ポリスチレン系樹脂粒子径の変動係数(CV値)の測定方法)
ポリスチレン系樹脂粒子径の変動係数(CV値)は、粒子径の標準偏差(δ)および平均粒子径(x)を次の式に代入することにより算出される値である。
CV値(%)=(δ/x)×100
(Measurement method of average particle size)
About 50 to 100 g of a sample was screened using a low-tap type sieve shaker (manufactured by Iida Seisakusho Co., Ltd.) with a sieve opening of 4.00 mm, an opening of 3.35 mm, an opening of 2.80 mm, an opening of 2.36 mm, Aperture 2.00 mm, Aperture 1.70 mm, Aperture 1.40 mm, Aperture 1.18 mm, Aperture 1.00 mm, Aperture 0.85 mm, Aperture 0.71 mm, Aperture 0.60 mm, Aperture 0 .Classified with a JIS standard sieve of 50 mm, aperture 0.425 mm, aperture 0.355 mm, aperture 0.300 mm, aperture 0.250 mm, aperture 0.212 mm, aperture 0.180 mm for 10 minutes. The particle diameter (median diameter) at which the cumulative weight is 50% based on the cumulative weight distribution curve obtained by measuring the above sample weight is referred to as the average particle diameter.
(Measurement method of coefficient of variation (CV value) of polystyrene resin particle diameter)
The variation coefficient (CV value) of the polystyrene resin particle diameter is a value calculated by substituting the standard deviation (δ) of the particle diameter and the average particle diameter (x) into the following formula.
CV value (%) = (δ / x) × 100

(シリカ比表面積の測定方法)
本発明に使用されるシリカ微粉末の比表面積の測定方法は全てBET法に基づく。
(Method for measuring the specific surface area of silica)
All methods for measuring the specific surface area of the silica fine powder used in the present invention are based on the BET method.

(難燃剤Aのブロッキング評価)
難燃剤100gをポリエチレン袋に入れて50mm直径円筒に詰め、1.1kgの錘を乗せ40℃オーブンに1ヶ月保管した後、取り出して状態を観察し評価した。
×・・・非常に硬い状態で難燃剤が固まっており、握っても崩れきらない。
△・・・硬い状態では難燃剤が固まってはいるが、手で握ると崩れる。
○・・・締まり感はあるが固まりはなく、さらさらの状態である。
得られた発泡性ポリスチレン粒子について、予備発泡性、発泡成形性、燃焼性、並びに、発泡成形体の気泡の平均弦長を下記の要領で測定し、その結果を表1に示した。
(Blocking evaluation of flame retardant A)
100 g of flame retardant was put in a polyethylene bag, packed in a 50 mm diameter cylinder, loaded with a 1.1 kg weight and stored in an oven at 40 ° C. for 1 month, then taken out and observed for evaluation.
× ・ ・ ・ The flame retardant is solid in a very hard state, and does not collapse even when gripped.
Δ: Although the flame retardant is hardened in a hard state, it collapses when held by hand.
○: There is a tightness but no solidity, and it is in a smooth state.
The obtained expandable polystyrene particles were measured for pre-expandability, foam moldability, combustibility, and the average chord length of bubbles in the foam molded product in the following manner. The results are shown in Table 1.

(予備発泡性)
得られた発泡性ポリスチレン粒子40000g、並びに、表面処理剤としてポリエチレングリコール20g、ステアリン酸亜鉛60g、12−ヒドロキシステアリン酸トリグリセライド(川研ファインケミカル社製 商品名「K−3ワックス500」)40g及びステアリン酸モノグリセライド(理研ビタミン社製 商品名「リケマールS−100P」)20gをタンブラーミキサーに供給し、30分間に亘って撹拌して発泡性ポリスチレン粒子の表面に表面処理剤を被覆した。
次に、発泡性ポリスチレン粒子を15℃の保冷庫にて48時間に亘って保管した後、攪拌機付き予備発泡機に発泡性ポリスチレン粒子500gを供給して水蒸気を用いて加熱することによって予備発泡させ、嵩倍数50倍の予備発泡粒子を得た。
(Pre-foaming property)
40000 g of the obtained expandable polystyrene particles, 20 g of polyethylene glycol as a surface treating agent, 60 g of zinc stearate, 12 g of hydroxyglyceride stearate (trade name “K-3 Wax 500” manufactured by Kawaken Fine Chemical Co., Ltd.) and stearic acid 20 g of monoglyceride (trade name “Riquemar S-100P” manufactured by Riken Vitamin Co., Ltd.) was supplied to a tumbler mixer and stirred for 30 minutes to coat the surface treatment agent on the surface of the expandable polystyrene particles.
Next, after the expandable polystyrene particles are stored in a 15 ° C. cool box for 48 hours, 500 g of expandable polystyrene particles are supplied to a pre-foaming machine equipped with a stirrer and heated using water vapor to be pre-expanded. Thus, pre-expanded particles having a bulk ratio of 50 times were obtained.

(発泡成形性)
上記ポリスチレン予備発泡粒子を発泡成形機(積水工機社製 商品名「ACE−3SP」)の金型内に充填し、水蒸気を用いて二次発泡させることによって、縦300mm×横400mm×高さ30mmの直方体形状の発泡成形体を得た。
(Foam moldability)
The polystyrene pre-expanded particles are filled into a mold of a foam molding machine (trade name “ACE-3SP” manufactured by Sekisui Koki Co., Ltd.) and subjected to secondary foaming using water vapor, so that the length is 300 mm × width 400 mm × height. A 30 mm rectangular solid foam molded product was obtained.

(発泡成形体の外観評価)
発泡成形体の外観を目視観察し下記の基準に基づいて評価をした。
○・・・発泡粒子同士の融着部分が平滑であった。
×・・・発泡粒子同士の融着部分に凹凸が発生していた。
(Appearance evaluation of foam molding)
The appearance of the foamed molded product was visually observed and evaluated based on the following criteria.
○: The fused part between the expanded particles was smooth.
X: Concavities and convexities were generated in the fused part between the expanded particles.

(燃焼性試験)
得られたポリスチレン発泡成形体から縦200mm×横25mm×高さ10mmの直方体形状の試験片5個をバーチカルカッターにて切り出し、60℃オーブンで1日間養生後、JIS A9511−2006の測定方法Aに準じて測定を行い、5個の試験片の平均値を求め、消炎時間とし、下記基準に基づいて総合的に評価し、その結果を自消性として表1、2に示した。なお、上記JIS規格では消炎時間が3秒以内である必要があり、2秒以内であれば好ましく、1秒以内であればより好ましい。
×・・・消炎時間が3秒を超えているか、又は、試験片の1個でも残じんがあるか若しくは燃焼限界指示線を超えて燃焼する。
○・・・消炎時間が3秒以内であり、5個のサンプル全てにおいて、残じんがなく燃焼限界指示線を超えて燃焼しない。
◎・・・消炎時間が1秒以内であり、5個のサンプル全てにおいて、残じんがなく燃焼限界指示線を超えて燃焼しない。
(Flammability test)
Five test pieces having a rectangular parallelepiped shape having a length of 200 mm, a width of 25 mm, and a height of 10 mm were cut out from the obtained polystyrene foam molded article with a vertical cutter, and after curing in a 60 ° C. oven for 1 day, the measurement method A of JIS A9511-2006 was applied. Measurements were carried out in accordance with the above, and the average value of five test pieces was obtained and used as the flame extinction time, and comprehensively evaluated based on the following criteria. The results are shown in Tables 1 and 2 as self-extinguishing properties. In the JIS standard, the flame extinguishing time needs to be within 3 seconds, preferably within 2 seconds, and more preferably within 1 second.
X: The flame extinguishing time exceeds 3 seconds, or even one of the test pieces has residue or burns beyond the flammability limit indicating line.
○: The flame extinguishing time is within 3 seconds, and all five samples have no residue and do not burn beyond the combustion limit indicator line.
◎ ・ ・ ・ Extinguishing time is less than 1 second, and all five samples have no residue and do not burn beyond the combustion limit indicator line.

(平均弦長)
発泡成形体の平均弦長は、ASTM D2842−69の試験方法に準拠して測定されたものをいう。具体的には、発泡成形体を略二等分となるように切断し、切断面を走査型電子顕微鏡(日立製作所社製 商品名「S−3000N」)を用いて100倍に拡大して撮影する。撮影した画像をA4用紙に印刷し、任意の箇所に長さ60mmの直線を一本描く。この直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出する。
平均弦長t=60/(気泡数×写真の倍率)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することもなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。更に、撮影した画像の任意の5箇所において上述と同様の要領で平均弦長を算出し、これらの平均弦長の相加平均値を発泡成形体の平均弦長とする。
(Average string length)
The average chord length of the foam molded article refers to that measured in accordance with the test method of ASTM D2842-69. Specifically, the foamed molded body is cut into approximately equal halves, and the cut surface is photographed at a magnification of 100 times using a scanning electron microscope (trade name “S-3000N” manufactured by Hitachi, Ltd.). To do. The photographed image is printed on A4 paper, and a straight line with a length of 60 mm is drawn at an arbitrary position. From the number of bubbles existing on this straight line, the average chord length (t) of the bubbles is calculated by the following equation.
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, if the straight line would make point contact with the bubble as much as possible, this bubble was included in the number of bubbles, and both ends of the straight line were positioned within the bubble without penetrating the bubble. In the case of the state, the bubble in which both ends of the straight line are located is included in the bubble number. Further, the average chord length is calculated in the same manner as described above at any five locations in the photographed image, and the arithmetic mean value of these average chord lengths is taken as the average chord length of the foam molded article.

(熱伝導率)
発泡成形体から、縦200mm×横200mm×高さ10〜25mmの直方体形状の試験片を切り出した。
英弘精機産業社から商品名「HC−074/200」にて市販されている測定装置を用い、測定装置の低音板を試験片の平均温度より15℃低く且つ高温板を試験片の平均温度よりも15℃高く設定した上で、試験片の熱伝導率をJIS A 1412−2:1999「熱絶縁材の熱抵抗及び熱伝導率の測定方法−第2部:熱流計法(HFM法)」記載の方法に準拠して測定した。なお、試験片の平均温度は0、20、30℃の3点とした。得られた熱伝導率に基づいて、横軸を温度、縦軸を熱伝導率とした回帰直線を描き、試験片の23℃における熱伝導率を算出した。
なお、米国標準規格技術研究所の押出法ポリスチレン標準板(NIST−SRM1453)の熱伝導率を上記と同等の要領で測定した。そして、押出法ポリスチレン標準板の熱伝導率及び公称値(23℃算出値)を用いて測定装置の補正を下記式によって行い、補正後の値を試験片の熱伝導率とした。
熱伝導率λ(W/m・K)
=試験片23℃での熱伝導率×押出法ポリスチレン標準板の公称値(23℃算出値)
/押出法ポリスチレン標準板の23℃での熱伝導率
(Thermal conductivity)
A rectangular parallelepiped test piece having a length of 200 mm, a width of 200 mm, and a height of 10 to 25 mm was cut out from the foam molded article.
Using a measuring device commercially available from EKO SEIKI under the trade name “HC-074 / 200”, the low sound plate of the measuring device is 15 ° C. lower than the average temperature of the test piece and the high temperature plate is lower than the average temperature of the test piece. Is set 15 ° C. higher, and the thermal conductivity of the test piece is JIS A 1412-2: 1999 “Method of measuring thermal resistance and thermal conductivity of thermal insulation material—Part 2: Heat flow meter method (HFM method)” The measurement was performed according to the described method. In addition, the average temperature of the test piece was 3 points | pieces, 0, 20, and 30 degreeC. Based on the obtained thermal conductivity, a regression line was drawn with the horizontal axis representing temperature and the vertical axis representing thermal conductivity, and the thermal conductivity of the test piece at 23 ° C. was calculated.
The thermal conductivity of an extruded polystyrene standard plate (NIST-SRM1453) from the National Institute of Standards and Technology was measured in the same manner as described above. And the correction | amendment of a measuring apparatus was performed by the following formula using the thermal conductivity and nominal value (23 degreeC calculated value) of an extrusion method polystyrene standard board, and the value after correction | amendment was made into the thermal conductivity of a test piece.
Thermal conductivity λ (W / m · K)
= Thermal conductivity at 23 ° C of test piece x Nominal value of extruded polystyrene standard plate (calculated value at 23 ° C)
/ Thermal conductivity of extruded polystyrene standard plate at 23 ° C

(耐熱性)
発泡成形体から、縦120mm×横120mm×高さ30mmの直方体形状の試験片を切り出し、この試験片について90℃にて168時間に亘って放置した後の加熱寸法変化率をJIS K6767:1999(高温時の寸法安定性:B法)に準拠して測定した。なお加熱寸法変化率が±0.5%以内の場合を「○」とし、加熱寸法変化率が−0.5%を下回るか或いは0.5%を上回っている場合を「×」とした。
(Heat-resistant)
A test piece having a rectangular parallelepiped shape having a length of 120 mm, a width of 120 mm, and a height of 30 mm was cut out from the foamed molded product, and the dimensional change rate of heating after leaving the test piece at 90 ° C. for 168 hours was measured according to JIS K6767: 1999 ( Measured according to dimensional stability at high temperature: method B). In addition, the case where the heating dimensional change rate was within ± 0.5% was indicated as “◯”, and the case where the heating dimensional change rate was below −0.5% or above 0.5% was indicated as “X”.

(Br量)
成形品中に含有されるBr量の測定は、蛍光X線分析装置(リガク社製RIX−2100)を使用してオーダー分析法(薄膜法)により測定する。即ちポリスチレン発泡体を2〜3g200℃〜230℃にて熱プレスして厚み0.1mm〜1mm、長さ5cm、幅5cmのフィルムを作製する。フィルムの重量を測定後、坪量を算出し、バランス成分をC8H8にし、Br量をX線強度よりオーダー分析法にて算出する。
(Br amount)
The amount of Br contained in the molded product is measured by an order analysis method (thin film method) using a fluorescent X-ray analyzer (RIX-2100 manufactured by Rigaku Corporation). That is, a polystyrene foam is hot pressed at 2 to 3 g at 200 ° C. to 230 ° C. to produce a film having a thickness of 0.1 mm to 1 mm, a length of 5 cm, and a width of 5 cm. After measuring the weight of the film, the basis weight is calculated, the balance component is C8H8, and the Br amount is calculated from the X-ray intensity by the order analysis method.

Figure 2010255395
Figure 2010255395

Figure 2010255395
Figure 2010255395

Claims (6)

ポリスチレン系樹脂粒子径の変動係数(CV値)が5〜15%であるポリスチレン系樹脂粒子を水性懸濁液中に分散させた後、発泡剤を含浸させる前又は含浸中に、可塑剤100重量部に対して粉末状の難燃剤テトラブロモシクロオクタン33〜1000重量部、さらには可塑剤100重量部に対して1時間半減期温度が100℃〜250℃である難燃助剤20〜200重量部を可塑剤に溶解させてなる難燃剤溶解液を上記水性懸濁液中に供給して、上記ポリスチレン系樹脂粒子中に上記難燃剤及び難燃助剤を含浸させることを特徴とする屋根用下地材に用いられる断熱材用発泡性ポリスチレン系樹脂粒子。   After dispersing polystyrene resin particles having a coefficient of variation (CV value) of polystyrene resin particle diameter of 5 to 15% in an aqueous suspension, before or during impregnation with a foaming agent, 100 weights of plasticizer Flame retardant auxiliary agent having a powdery flame retardant tetrabromocyclooctane of 33 to 1000 parts by weight, and further a plasticizer of 100 parts by weight with a 1 hour half-life temperature of 100 ° C. to 250 ° C. For roofs, wherein a flame retardant solution in which a part is dissolved in a plasticizer is supplied into the aqueous suspension, and the polystyrene resin particles are impregnated with the flame retardant and a flame retardant aid. Expandable polystyrene resin particles for heat insulating materials used for base materials. 請求項1記載の粉末状難燃剤テトラブロモシクロオクタンは98.5〜99.7重量部に対して、シリカ微粉末が0.3〜1.5重量部を含有していることを特徴とする請求項1記載の
屋根用下地材に用いられる断熱材用発泡性ポリスチレン系樹脂粒子。
The powdery flame retardant tetrabromocyclooctane according to claim 1, wherein the fine silica powder contains 0.3 to 1.5 parts by weight with respect to 98.5 to 99.7 parts by weight. The expandable polystyrene resin particle for heat insulating materials used for the base material for roofs of Claim 1.
難燃剤溶解液が可塑剤100重量部に対して100〜3000重量部の水性媒体中に分散されており、上記水性媒体中に界面活性剤0.005〜10重量部が含有されていることを特徴とする請求項1に記載の
屋根用下地材に用いられる断熱材用発泡性ポリスチレン系樹脂粒子。
The flame retardant solution is dispersed in 100 to 3000 parts by weight of an aqueous medium with respect to 100 parts by weight of the plasticizer, and 0.005 to 10 parts by weight of a surfactant is contained in the aqueous medium. The expandable polystyrene-type resin particle for heat insulating materials used for the base material for roofs of Claim 1 characterized by the above-mentioned.
請求項1〜3記載の屋根用下地材に用いられる断熱材用発泡性ポリスチレン系樹脂粒子を予備発泡させてなることを特徴とする
屋根用下地材に用いられる断熱材用予備発泡粒子。
A pre-expanded particle for a heat insulating material used for a base material for a roof, wherein the expandable polystyrene resin particles for a heat insulating material used for the base material for a roof according to claim 1 are pre-expanded.
請求項4記載の予備発泡粒子を型内に充填して発泡させて得られた発泡成形体であって平均弦長が30〜380μmであることを特徴とする
屋根用下地材用断熱材。
A heat insulating material for a base material for a roof, which is a foam-molded product obtained by filling the foamed pre-expanded particles according to claim 4 into foam and having an average chord length of 30 to 380 µm.
請求項4記載の予備発泡粒子を型内に充填して発泡させて得られたポリスチレン系発泡成形体であって、
ポリスチレン系発泡成形体の密度が0.018〜0.033g/cm3であり、
その発泡成形体の平均弦長が30〜380μmであり、
ポリスチレン系発泡成形体は平均粒子径が0.3mm〜1.2mmのポリスチレン系樹脂粒子である屋根用下地材用断熱材。
A polystyrene-based foam molded article obtained by filling the pre-expanded particles according to claim 4 into a mold and foaming,
The density of the polystyrene-based foamed molded product is 0.018 to 0.033 g / cm3,
The foamed molded article has an average chord length of 30 to 380 μm,
The polystyrene-based foam molded article is a heat insulating material for a base material for a roof, which is a polystyrene-based resin particle having an average particle diameter of 0.3 mm to 1.2 mm.
JP2009162700A 2009-03-30 2009-07-09 Expandable polystyrene resin particle for heat insulating material used for substrate material for roof, and heat insulating material for the substrate material for roof Pending JP2010255395A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009162700A JP2010255395A (en) 2009-03-30 2009-07-09 Expandable polystyrene resin particle for heat insulating material used for substrate material for roof, and heat insulating material for the substrate material for roof
KR1020117017868A KR101356839B1 (en) 2009-03-30 2010-03-29 Expandable polystyrene resin particles and method for producing the same
PCT/JP2010/055568 WO2010113874A1 (en) 2009-03-30 2010-03-29 Expandable polystyrene resin particles and process for producing same
TW099109345A TWI444414B (en) 2009-03-30 2010-03-29 Expandable polystyrene resin particle and method for producing same
CN2010800148418A CN102378780B (en) 2009-03-30 2010-03-29 Expandable polystyrene resin particles and process for producing same
US13/257,300 US9079342B2 (en) 2009-03-30 2010-03-29 Expandable polystyrene resin particles and method for producing the same
EP10758645.5A EP2415826A4 (en) 2009-03-30 2010-03-29 Expandable polystyrene resin particles and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009083158 2009-03-30
JP2009162700A JP2010255395A (en) 2009-03-30 2009-07-09 Expandable polystyrene resin particle for heat insulating material used for substrate material for roof, and heat insulating material for the substrate material for roof

Publications (1)

Publication Number Publication Date
JP2010255395A true JP2010255395A (en) 2010-11-11

Family

ID=43316593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162700A Pending JP2010255395A (en) 2009-03-30 2009-07-09 Expandable polystyrene resin particle for heat insulating material used for substrate material for roof, and heat insulating material for the substrate material for roof

Country Status (1)

Country Link
JP (1) JP2010255395A (en)

Similar Documents

Publication Publication Date Title
JP5080226B2 (en) Expandable resin particles, method for producing the same, and foam molded article
JP4316305B2 (en) Method for producing styrene resin foam containing graphite powder
WO2010113874A1 (en) Expandable polystyrene resin particles and process for producing same
JP6473675B2 (en) Styrenic resin foamable particles and method for producing the same, foamed particles, foamed molded article and use thereof
JP5388194B2 (en) Expandable polystyrene resin particles and method for producing the same
JP5558038B2 (en) Expandable polystyrene resin particles and method for producing the same
JP2013075941A (en) Foamable polystyrenic resin particle, production method thereof, foamed particle and foamed molding
JP2017132970A (en) Styrenic resin foamable particle, foamed particle and foamed molding
JP2011012103A (en) Expandable polystyrenic resin particle for heat insulating material used as roof ground material and heat insulating material for roof ground material
JP2011012104A (en) Underfloor heat insulating material for housing
JP2011026511A (en) Flame-retardant foamable polystyrene-based resin particle, method for producing the same, preliminarily-foamed particle of flame-retardant polystyrene-based resin and expansion molding of flame-retardant polystyrene-based resin
JP6407113B2 (en) Styrenic resin foam molding, method for producing the same, and use thereof
JP2012077149A (en) Expandable resin, method for producing the same, pre-expanded particle, and expansion molded body
JP2010255395A (en) Expandable polystyrene resin particle for heat insulating material used for substrate material for roof, and heat insulating material for the substrate material for roof
JP5377917B2 (en) Flame retardant expandable polystyrene resin particles
JP2011012116A (en) Expandable polystyrenic resin particle for heat insulating material used for hot water storage tank of heat pump water heater and heat insulating material for hot water storage tank of heat pump water heater
JP2010254940A (en) Expandable polystyrene resin particle for heat insulating material to be used in hot water storage tank of heat pump system water heater, and heat insulating material for hot water tank of heat pump system water heater
JP2011016933A (en) Expandable polystyrene-based resin particle for heat insulator, usable for interior material of automobile, and heat insulator for automobile interior material
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP2010254939A (en) Expandable polystyrene resin particle for heat insulating material to be used under floor of house, and heat insulating material under floor of house
JP5810007B2 (en) Styrenic resin particles, method for producing the same, expandable particles, expanded particles and expanded molded article
JP5592731B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body
JP2013181291A (en) Building material and manufacturing method thereof
JP2011016934A (en) Member for soil-banking
JP2011012117A (en) Expandable polystyrenic resin particles for heat insulating material used for automobile interior material and heat insulating material for automobile interior material