JP2010254655A - Delta-valerolactones and method for producing the same - Google Patents

Delta-valerolactones and method for producing the same Download PDF

Info

Publication number
JP2010254655A
JP2010254655A JP2009110064A JP2009110064A JP2010254655A JP 2010254655 A JP2010254655 A JP 2010254655A JP 2009110064 A JP2009110064 A JP 2009110064A JP 2009110064 A JP2009110064 A JP 2009110064A JP 2010254655 A JP2010254655 A JP 2010254655A
Authority
JP
Japan
Prior art keywords
carbon
compound
bonds
alkyl group
hydrogen atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009110064A
Other languages
Japanese (ja)
Inventor
Hirosuke Yamamoto
裕輔 山本
Hiroaki Takashima
宏明 高島
Kohei Mase
浩平 間瀬
Tomokuni Abe
友邦 阿部
Toshihisa Shimo
俊久 下
Junko Shigehara
淳孝 重原
Yoshihiro Katayama
義博 片山
Eiji Masai
英司 政井
Seishi Ohara
誠資 大原
Masaya Nakamura
雅哉 中村
Yuichiro Otsuka
祐一郎 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Forestry and Forest Products Research Institute
Nagaoka University of Technology NUC
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Toyota Industries Corp
Forestry and Forest Products Research Institute
Nagaoka University of Technology NUC
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Forestry and Forest Products Research Institute, Nagaoka University of Technology NUC, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Toyota Industries Corp
Priority to JP2009110064A priority Critical patent/JP2010254655A/en
Publication of JP2010254655A publication Critical patent/JP2010254655A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To readily and safely produce new δ-valerolactones. <P>SOLUTION: The δ-valerolactones are compounds represented by formula (I) [wherein R is a hydrogen atom or 1C-6C alkyl group; bonds X-Y, Y-Z and Z-W each represents a carbon-carbon single bond or carbon-carbon double bond, provided that at least one of bonds X-Y, Y-Z and Z-W is not a carbon-carbon double bond]. A method for producing the same is also provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、δ-バレロラクトン類、及び2-ピロン-4,6-ジカルボン酸からのその製造法に関する。   The present invention relates to δ-valerolactones and their production from 2-pyrone-4,6-dicarboxylic acid.

δ-バレロラクトン類は、医薬、農薬、化粧品又は食品添加物の中間体として有用であり、またエレクトロニクス関連におけるレジスト素材原料としても有用である。   The δ-valerolactones are useful as intermediates for pharmaceuticals, agricultural chemicals, cosmetics or food additives, and are also useful as resist material raw materials in electronics.

δ-バレロラクトンの製造法としては、例えば、1,5-ペンタンジオールからの環化脱水素反応により製造する方法が知られている(特許文献1)。また、特定のエポキシアルコールをコバルト化合物の存在下に、一酸化炭素と反応させる方法も知られている(特許文献2)。しかしながら、特許文献1の方法では、1,5-ペンタンジオールの環化反応の際に環化物の他に直鎖物も生成し、環化物の回収率が低くなるという問題がある。溶液濃度を下げると、環化物は生成し易くなるが、依然として環化物の回収率は低い。一方、溶液濃度を上げると、1,5-ペンタンジオールのほとんどは直鎖物になってしまう。また、特許文献2の方法では、高収率でδ-バレロラクトン誘導体を得るためには、反応系にアゾール類を更に添加する必要があり、この添加されたアゾール類は除去されることなく、そのまま目的物の反応液に含まれる。
更に、多価アルコールの存在下に、ヒドロキシカルボン酸エステルを分子内エステル化させることにより、比較的大環状のラクトンを製造する方法も報告されているが(特許文献3)、反応物のエステルは1置換体又は2置換体に制限され、3置換以上のエステルでは大部分がマトリックスを形成してしまい、環化しない。
As a method for producing δ-valerolactone, for example, a method of producing δ-valerolactone by cyclization dehydrogenation from 1,5-pentanediol is known (Patent Document 1). A method of reacting a specific epoxy alcohol with carbon monoxide in the presence of a cobalt compound is also known (Patent Document 2). However, the method of Patent Document 1 has a problem that, in the cyclization reaction of 1,5-pentanediol, a linear product is generated in addition to the cyclized product, and the recovery rate of the cyclized product is lowered. When the solution concentration is lowered, cyclized products are likely to be formed, but the recovery rate of cyclized products is still low. On the other hand, when the solution concentration is increased, most of 1,5-pentanediol becomes a linear product. Further, in the method of Patent Document 2, in order to obtain a δ-valerolactone derivative with high yield, it is necessary to further add an azole to the reaction system, and the added azole is not removed, It is contained in the target reaction solution as it is.
Furthermore, a method for producing a relatively macrocyclic lactone by intramolecular esterification of a hydroxycarboxylic acid ester in the presence of a polyhydric alcohol has been reported (Patent Document 3). It is limited to mono- or di-substituted compounds, and most of esters having three or more substitutions form a matrix and do not cyclize.

一方、本発明者らは、代表的なバイオマス資源であるリグニンからバイオリアクターにより2-ピロン-4,6-ジカルボン酸(2-pyron-4,6-dicarboxylic acid)(以下「PDC」と略す)を効率的に得る方法を確立してきた(特許文献4)。現在、このPDCは、その2官能性を利用して、生分解性のポリエステル、ポリアミド等のポリマーへの応用が検討されている。   On the other hand, the present inventors use 2-pyron-4,6-dicarboxylic acid (hereinafter abbreviated as “PDC”) from lignin, which is a representative biomass resource, using a bioreactor. Has been established (Patent Document 4). Currently, application of this PDC to polymers such as biodegradable polyesters and polyamides has been studied by utilizing the bifunctionality.

特開2004−331626号公報JP 2004-331626 A

特開2006−50318号公報JP 2006-50318 A

特開2004−339115号公報JP 2004-339115 A

特開2005−278549号公報JP 2005-278549 A

従って、本発明は、PDCから新規なδ-バレロラクトン類を収率良く簡便に製造する方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for easily producing a novel δ-valerolactone from PDC with good yield.

本発明者らは、上記課題を解決するべく鋭意検討した結果、水素ガスを使用することなく、PDC又はその誘導体をギ酸又はその塩及び水素化触媒の存在下に還元することにより、新規なδ-バレロラクトン類が収率良く、簡便かつ安全に得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have reduced the PDC or a derivative thereof in the presence of formic acid or a salt thereof and a hydrogenation catalyst without using hydrogen gas, thereby producing a novel δ. -It has been found that valerolactones can be obtained easily and safely in good yield, and the present invention has been completed.

すなわち、(1)本発明は、下記一般式(I):   That is, (1) the present invention provides the following general formula (I):

Figure 2010254655
Figure 2010254655

[式中、Rは、水素原子又はC1〜C6のアルキル基を示し、結合X−Y、Y−Z及びZ−Wは各々、炭素−炭素単結合又は炭素−炭素二重結合を示す。但し、結合X−Y、Y−Z及びZ−Wは同時に炭素−炭素二重結合でない。]
で表される化合物を提供する。
(2)本発明は、下記一般式:
[Wherein, R represents a hydrogen atom or an alkyl group of C 1 -C 6, coupled X-Y, Y-Z and Z-W are each carbon - shows a carbon double bond - carbon single bond or carbon . However, the bonds X—Y, Y—Z and Z—W are not simultaneously carbon-carbon double bonds. ]
The compound represented by these is provided.
(2) The present invention has the following general formula:

Figure 2010254655
Figure 2010254655

[式中、Rは、水素原子又はC1〜C6のアルキル基を示す。]
で表される化合物である、(1)記載の化合物を提供する。
(3)本発明は、下記一般式:
[Wherein, R represents a hydrogen atom or an alkyl group of C 1 -C 6. ]
The compound of (1) which is a compound represented by these is provided.
(3) The present invention has the following general formula:

Figure 2010254655
Figure 2010254655

[式中、Rは、水素原子又はC1〜C6のアルキル基を示す。]
のいずれかで表される化合物である、(1)記載の化合物を提供する。
[Wherein, R represents a hydrogen atom or an alkyl group of C 1 -C 6. ]
A compound according to (1), which is a compound represented by any one of:

(4)本発明は、前記Rがメチル基である、(1)〜(3)のいずれか1記載の化合物を提供する。
(5)本発明は、2-ピロン-4,6-ジカルボン酸(2-pyron-4,6-dicarboxylic acid)又はそのエステルをギ酸又はその塩及び水素化触媒の存在下に還元することを特徴とする、下記一般式(I):
(4) The present invention provides the compound according to any one of (1) to (3), wherein R is a methyl group.
(5) The present invention is characterized in that 2-pyron-4,6-dicarboxylic acid or an ester thereof is reduced in the presence of formic acid or a salt thereof and a hydrogenation catalyst. The following general formula (I):

Figure 2010254655
Figure 2010254655

[式中、Rは、水素原子又はC1〜C6のアルキル基を示し、結合X−Y、Y−Z及びZ−Wは各々、炭素−炭素単結合又は炭素−炭素二重結合を示す。但し、結合X−Y、Y−Z及びZ−Wは同時に炭素−炭素二重結合でない。]
で表される化合物の製造方法を提供する。
[Wherein, R represents a hydrogen atom or an alkyl group of C 1 -C 6, coupled X-Y, Y-Z and Z-W are each carbon - shows a carbon double bond - carbon single bond or carbon . However, the bonds X—Y, Y—Z and Z—W are not simultaneously carbon-carbon double bonds. ]
The manufacturing method of the compound represented by these is provided.

本発明によれば、新規なδ-バレロラクトン類を収率良く、簡便かつ安全に製造することができる。   According to the present invention, novel δ-valerolactones can be easily and safely produced with good yield.

本発明の新規なδ-バレロラクトン類は、前記式(I)で表される化合物である。式(I)におけるRは、炭素数1〜6の直鎖状、分岐状又は環状のアルキル基を意味する。具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、シクロペンチルメチル基等を挙げることができる。式(I)で表されるエステルとしては、例えば、PDCのビス-メチルエステル、ビス-エチルエステル、ビス-n-プロピルエステル等が挙げられる。   The novel δ-valerolactones of the present invention are compounds represented by the formula (I). R in the formula (I) means a linear, branched or cyclic alkyl group having 1 to 6 carbon atoms. Specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, cyclopropyl group, cyclobutyl Group, cyclopentyl group, cyclohexyl group, cyclopropylmethyl group, cyclopentylmethyl group and the like. Examples of the ester represented by the formula (I) include bis-methyl ester, bis-ethyl ester, and bis-n-propyl ester of PDC.

式(I)で表されるδ-バレロラクトン類としては、具体的には、下記式:   Specific examples of the δ-valerolactone represented by the formula (I) include the following formula:

Figure 2010254655
Figure 2010254655

[式中、Rは、水素原子又は前記のC1〜C6のアルキル基を示す。]
で表される飽和ラクトンが挙げられる。
[Wherein, R represents a hydrogen atom or the aforementioned C 1 to C 6 alkyl group. ]
The saturated lactone represented by these is mentioned.

また、式(I)で表されるδ-バレロラクトン類としては、具体的には、下記式:   Further, as the δ-valerolactone represented by the formula (I), specifically, the following formula:

Figure 2010254655
Figure 2010254655

[式中、Rは、水素原子又は前記のC1〜C6のアルキル基を示す。]
で表されるいずれかの不飽和ラクトンが挙げられる。
[Wherein, R represents a hydrogen atom or the aforementioned C 1 to C 6 alkyl group. ]
Any unsaturated lactone represented by the formula:

式(I)で表されるδ-バレロラクトン類は、PDC又はそのエステル(1)を水素源及び水素化触媒の存在下に還元することによって得られる。   The δ-valerolactone represented by the formula (I) can be obtained by reducing PDC or its ester (1) in the presence of a hydrogen source and a hydrogenation catalyst.

Figure 2010254655
Figure 2010254655

[式中、Rは、水素原子又は前記のC1〜C6のアルキル基を示し、結合X−Y、Y−Z及びZ−Wは各々、炭素−炭素単結合又は炭素−炭素二重結合を示す。但し、結合X−Y、Y−Z及びZ−Wは同時に炭素−炭素二重結合でない。] [Wherein, R represents a hydrogen atom or the above-mentioned C 1 -C 6 alkyl group, and the bond X—Y, Y—Z and Z—W are each a carbon-carbon single bond or a carbon-carbon double bond. Indicates. However, the bonds X—Y, Y—Z and Z—W are not simultaneously carbon-carbon double bonds. ]

PDCは、例えば、特開2005−278549号公報に記載の方法により、バニリン、シリンガアルデヒド、バニリン酸、シリンガ酸もしくはプロトカテク酸のようなリグニン等の植物由来の低分子化合物、又はその混合物から容易に得ることができる。具体的には、PDCを生産するための多段階反応を触媒する4種類の酵素(ベンズアルデヒドデヒドロゲナーゼ、ディメチラーゼ、プロトカテク酸4,5-ジオキシゲナーゼ、4-カルボキシ-2-ヒドロキシムコン酸-6-セミアルデヒドデヒドロゲナーゼ)をコードする遺伝子を含む組換えベクターを、微生物(例えば、シュードモナス・プチダ(Pseudomonas putida)PpY1100))などの宿主に導入して形質転換体を作製し、次いで、該形質転換体を上記の化合物又は混合物の存在下に培養することにより得られる。 PDC can be easily obtained from a plant-derived low molecular weight compound such as lignin such as vanillin, syringaldehyde, vanillic acid, syringic acid or protocatechuic acid, or a mixture thereof by the method described in JP-A-2005-278549. Can get to. Specifically, four types of enzymes (benzaldehyde dehydrogenase, dimethylase, protocatechuic acid 4,5-dioxygenase, 4-carboxy-2-hydroxymuconic acid-6-semiconductor) that catalyze the multistep reaction for producing PDC. A recombinant vector containing a gene encoding an aldehyde dehydrogenase) is introduced into a host such as a microorganism (for example, Pseudomonas putida PpY1100)) to produce a transformant. It is obtained by culturing in the presence of a compound or a mixture of

PDCのエステルは、例えば、WO 99/54376に記載されているように、塩酸、硫酸、p-トルエンスルホン酸等の酸の存在下に、PDCと、アルコール類(例えば、メタノール、エタノール、n-プロピルアルコール)、ポリアルキレングリコール(例えば、エチレングリコール、プロピレングリコール)、ポリアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド)等とを必要に応じて加温しながら反応させることによって得られる。   For example, as described in WO 99/54376, an ester of PDC can be synthesized by using PDC and alcohols (for example, methanol, ethanol, n-type) in the presence of an acid such as hydrochloric acid, sulfuric acid, and p-toluenesulfonic acid. Propyl alcohol), polyalkylene glycol (for example, ethylene glycol, propylene glycol), polyalkylene oxide (for example, ethylene oxide, propylene oxide), and the like are obtained by reacting with heating as necessary.

水素源としては、比較的安全であり、かつ逐次的な添加が可能なことから、ギ酸、又はその塩、例えば、ギ酸アンモニウム塩、ギ酸アルカリ金属塩等を使用する。ギ酸アルカリ金属塩としては、具体的には、ギ酸ナトリウム、ギ酸カリウム等が挙げられる。なお、水素源として、水素ガス;水素化ホウ素ナトリウム;シリルヒドリド;シクロヘキサジエン、メチルシクロへキサン、デカヒドロナフタレン等の炭化水素類を使用することもできる。水素源の使用量は、化合物(1)に対して通常1モル倍以上であり、その上限は特にない。   As the hydrogen source, formic acid or a salt thereof such as ammonium formate or alkali metal formate is used because it is relatively safe and can be added sequentially. Specific examples of the alkali metal formate include sodium formate and potassium formate. In addition, hydrocarbons, such as hydrogen gas; sodium borohydride; silyl hydride; cyclohexadiene, methylcyclohexane, decahydronaphthalene, can also be used as a hydrogen source. The usage-amount of a hydrogen source is 1 mol times or more normally with respect to a compound (1), and there is no upper limit in particular.

水素化触媒としては、例えば、パラジウム触媒、ニッケル触媒、白金触媒、ルテニウム触媒、レニウム触媒、銅触媒、ロジウム触媒又はこれらの混合触媒等が挙げられ、これらの中でも反応性及び経済性の点から、パラジウム触媒、ニッケル触媒、白金触媒又はルテニウム触媒が好ましい。パラジウム触媒としては、例えば、パラジウムカーボン、パラジウムアルミナ、パラジウムシリカ、パラジウムシリカアルミナ、ゼオライト担持パラジウム等が挙げられる。パラジウム触媒は、乾燥品又は含水品のいずれも使用できるが、工業製法上の安全性の点から、含水品を用いるのが望ましい。ニッケル触媒としては、例えば、ニッケル珪藻土、スポンジニッケル、ニッケルアルミナ、ニッケルシリカ、ニッケルカーボン等が挙げられる。白金触媒としては、例えば、白金シリカ、白金シリカアルミナ、ゼオライト担持白金等が挙げられる。ルテニウム触媒としては、例えば、ルテニウムカーボン、ルテニウムアルミナ、ルテニウムシリカ、ルテニウムシリカアルミナ、ゼオライト担持ルテニウム等が挙げられる。かかる水素化触媒の使用量は、金属換算で、化合物(1)に対して、通常、0.01〜1重量倍である。   Examples of the hydrogenation catalyst include a palladium catalyst, a nickel catalyst, a platinum catalyst, a ruthenium catalyst, a rhenium catalyst, a copper catalyst, a rhodium catalyst, or a mixed catalyst thereof. Among these, from the viewpoint of reactivity and economy, Palladium catalyst, nickel catalyst, platinum catalyst or ruthenium catalyst is preferred. Examples of the palladium catalyst include palladium carbon, palladium alumina, palladium silica, palladium silica alumina, and zeolite-supported palladium. As the palladium catalyst, either a dried product or a hydrated product can be used, but it is desirable to use a hydrated product from the viewpoint of safety in the industrial production process. Examples of the nickel catalyst include nickel diatomaceous earth, sponge nickel, nickel alumina, nickel silica, nickel carbon, and the like. Examples of the platinum catalyst include platinum silica, platinum silica alumina, zeolite-supported platinum, and the like. Examples of the ruthenium catalyst include ruthenium carbon, ruthenium alumina, ruthenium silica, ruthenium silica alumina, and zeolite-supported ruthenium. The usage-amount of this hydrogenation catalyst is 0.01-1 weight times normally with respect to a compound (1) in metal conversion.

還元反応は、0℃〜室温の温度で数時間〜数日間程度行えばよい。水素源としてギ酸を用いる場合には基本的に反応溶媒を必要としないが、以下の反応溶媒を更に加えてもよい。反応溶媒としては、例えば、ペンタン、ヘキサン、ヘプタン、オクタンなどの脂肪族炭化水素系溶媒;ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒;メタノール、エタノール、プロパノール、イソプロパノール、ブタノールなどの低級アルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテルなどのエーテル系溶媒;アセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル系溶媒;塩化メチレン、クロロホルム、四塩化炭素、ジクロロエタン、トリクロロエタンなどのハロゲン化炭化水素系溶媒;ジメチルスルホキシド;1,3-プロパンジオール、1,4-ブタンジオール等のジオール系溶媒;又はこれらの混合溶媒を使用することができる。溶媒の使用量は、化合物(1)に対し、通常1〜200重量倍の範囲が好ましい。   The reduction reaction may be performed at a temperature of 0 ° C. to room temperature for several hours to several days. When formic acid is used as the hydrogen source, basically no reaction solvent is required, but the following reaction solvent may be further added. Examples of the reaction solvent include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, and octane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; lower alcohols such as methanol, ethanol, propanol, isopropanol, and butanol. Solvents: ether solvents such as diethyl ether, tetrahydrofuran, diisopropyl ether; nitrile solvents such as acetonitrile, propionitrile, benzonitrile; halogenated hydrocarbon solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, trichloroethane Dimethyl sulfoxide; diol solvents such as 1,3-propanediol and 1,4-butanediol; or a mixed solvent thereof can be used. The amount of the solvent used is usually preferably in the range of 1 to 200 times by weight with respect to the compound (1).

このようにして得られた本発明のδ-バレロラクトン類は、通常の有機化合物の単離・精製に用いられる方法により単離・精製することができる。例えば、反応混合物を濃縮、冷却し、再結晶により精製することができる。また、反応液をそのまま濃縮し、得られる粗生成物を必要に応じて蒸留、クロマトグラフィーなどの手段により精製することができる。   The δ-valerolactones of the present invention thus obtained can be isolated and purified by a method used for usual isolation and purification of organic compounds. For example, the reaction mixture can be concentrated, cooled and purified by recrystallization. In addition, the reaction solution can be concentrated as it is, and the resulting crude product can be purified by means such as distillation or chromatography, if necessary.

本発明のδ-バレロラクトン類は、例えば、エレクトロニクス関連におけるレジスト素材原料、生分解性の繊維やプラスチックの材料として有用なポリマーの合成原料、電池等の電解質、架橋剤、香料などとして使用できる。   The δ-valerolactone of the present invention can be used, for example, as a resist material raw material in electronics, a polymer synthetic raw material useful as a biodegradable fiber or plastic material, an electrolyte of a battery, a crosslinking agent, a fragrance, and the like.

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples at all.

参照例1
100 mlナスフラスコに、WO 99/54376に記載の方法によって製造した2H-ピラン-4,6-ジカルボキシレート(以下、DMePDC)(4.8 g,22.9 mmmol)及びブタンジオール(20 mL)を加え、脱気と窒素導入を3回繰り返し、系内を窒素雰囲気下にした。ここに、Pd/C(0.48 g)を添加し、再び脱気と窒素導入を3回繰り返した。系内を減圧後、水素ガスを導入し、激しく攪拌して水素添加反応を開始した。薄層クロマトグラフィー(TLC)により原料の濃度低下と新たなスポットの出現を適宜確認しながら、1日反応させた。反応物をろ過、Pd/Cを除去し、ろ液中のブタノールをエバポレーターで除去し、粗生成物(5.4 g)を得た。粗生成物をシリカゲルカラムクロマトグラフィー(展開液:クロロホルム/酢酸エチル(7/3)にて精製し、化合物(A1)を得た。この化合物は、各種スペクトルの測定により、下記式:
Reference example 1
To a 100 ml eggplant flask, 2H-pyran-4,6-dicarboxylate (hereinafter, DMePDC) (4.8 g, 22.9 mmmol) and butanediol (20 mL) produced by the method described in WO 99/54376 were added, Deaeration and nitrogen introduction were repeated three times to bring the system into a nitrogen atmosphere. Pd / C (0.48 g) was added thereto, and degassing and nitrogen introduction were repeated three times. After reducing the pressure in the system, hydrogen gas was introduced and stirred vigorously to initiate the hydrogenation reaction. The reaction was carried out for 1 day while appropriately confirming the decrease in the raw material concentration and the appearance of new spots by thin layer chromatography (TLC). The reaction product was filtered to remove Pd / C, and butanol in the filtrate was removed by an evaporator to obtain a crude product (5.4 g). The crude product was purified by silica gel column chromatography (developing solution: chloroform / ethyl acetate (7/3) to obtain a compound (A1).

Figure 2010254655
Figure 2010254655

で表されるジメチルテトラヒドロ-2H-ピロン-4,6-カルボキシレートであることが判明した。
1H-NMR (300 MHz, CDCl3)δ(ppm):2.39-2.41(q), 2.55-2.68(m), 2.68-2.81(m), 2.81-2.94(d), 2.98-3.11(m), 3.72(s), 3.82(s), 4.97(d)。
13C-NMR (300 MHz, CDCl3)δ(ppm):31.5(ピラン環CH2), 33.8(ピラン環CH2), 34.0(ピラン環CH), 51.8(CH3), 52.6(CH3), 73.7(ピラン環CH), 170.2(ピラン環アシル), 170.7(カルボニル), 176.9(カルボニル)。
GC-MS:m/z = 185, 171, 157,143,125。
IR(ν(cm-1)):2959(-CH), 2858(-CH2-), 1750(カルボン酸のC=O), 1733(ラクトンのC=O), 1444(-CH), 1062(C-O)。
It was found to be dimethyltetrahydro-2H-pyrone-4,6-carboxylate represented by:
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 2.39-2.41 (q), 2.55-2.68 (m), 2.68-2.81 (m), 2.81-2.94 (d), 2.98-3.11 (m) , 3.72 (s), 3.82 (s), 4.97 (d).
13 C-NMR (300 MHz, CDCl 3 ) δ (ppm): 31.5 (pyran ring CH 2 ), 33.8 (pyran ring CH 2 ), 34.0 (pyran ring CH), 51.8 (CH 3 ), 52.6 (CH 3 ) , 73.7 (pyran ring CH), 170.2 (pyran ring acyl), 170.7 (carbonyl), 176.9 (carbonyl).
GC-MS: m / z = 185, 171, 157, 143, 125.
IR (ν (cm -1 )): 2959 (-CH), 2858 (-CH 2- ), 1750 (C = O of carboxylic acid), 1733 (C = O of lactone), 1444 (-CH), 1062 (CO).

実施例1
100 mlナスフラスコに、ギ酸(8 ml)、WO 99/54376に記載の方法によって製造した2H-ピラン-4,6-ジカルボキシレート(以下、DMePDC)(2.5 g,11.9 mmmol)を加え、攪拌し、懸濁液を調製した。次いで、ナスフラスコ内を脱気、窒素ガス置換した後、Pd/C(1.2 g)を添加し、ギ酸が沸騰しない程度に減圧しながら、攪拌し、水素添加反応を開始した。薄層クロマトグラフィー(TLC)により原料の濃度低下を適宜確認しながら、ギ酸の添加、脱気及び窒素置換を行い、5日間反応させた。反応物をろ過、Pd/Cを除去し、ろ液中のギ酸をエバポレーターで除去し、粗生成物(2.5 g)を得た。粗生成物をシリカゲルカラムクロマトグラフィー(展開液:クロロホルム/酢酸エチル(7/3)にて精製し、水素添加物(1.5 g)を得た。
水素添加物(混合物)のIRスペクトルの測定結果を以下に示す。
IR(ν(cm-1)):3010(アルケンC-H),2959(-CH), 2857(-CH2-), 1753(カルボン酸のC=O), 1731(ラクトンのC=O), 1646(C=C),1444(-CH), 1062(C-O)。
Example 1
Formic acid (8 ml) and 2H-pyran-4,6-dicarboxylate (hereinafter referred to as DMePDC) (2.5 g, 11.9 mmmol) produced by the method described in WO 99/54376 were added to a 100 ml eggplant flask and stirred. And a suspension was prepared. Next, after the inside of the eggplant flask was deaerated and replaced with nitrogen gas, Pd / C (1.2 g) was added and stirred while reducing the pressure so that the formic acid did not boil, and the hydrogenation reaction was started. The formic acid was added, degassed, and purged with nitrogen while appropriately checking the decrease in the concentration of the raw material by thin layer chromatography (TLC), and reacted for 5 days. The reaction product was filtered to remove Pd / C, and the formic acid in the filtrate was removed by an evaporator to obtain a crude product (2.5 g). The crude product was purified by silica gel column chromatography (developing solution: chloroform / ethyl acetate (7/3)) to obtain a hydrogenated product (1.5 g).
The measurement results of the IR spectrum of the hydrogenated product (mixture) are shown below.
IR (ν (cm −1 )): 3010 (alkene CH), 2959 (—CH), 2857 (—CH 2 —), 1753 (carboxylic acid C═O), 1731 (lactone C═O), 1646 (C = C), 1444 (-CH), 1062 (CO).

また、各種スペクトルの測定により、化合物(A1')、及び下記式で表される化合物(B1)、(C1)及び(D1)の生成を確認した。化合物(A1')、(B1)、(C1)、(D1)に由来する1H-NMRのピークの積分強度比から、各化合物の収量は、化合物(A1'):約37%、化合物(B1):約41%;化合物(C1):約15%;化合物(D1):約8%であった。 Moreover, the production | generation of compound (A1 ') and the compound (B1), (C1), and (D1) represented by a following formula was confirmed by measurement of various spectra. From the integrated intensity ratio of 1 H-NMR peaks derived from the compounds (A1 ′), (B1), (C1), and (D1), the yield of each compound was as follows: Compound (A1 ′): about 37% B1): about 41%; compound (C1): about 15%; compound (D1): about 8%.

化合物(A1')ジメチルテトラヒドロ-2H-ピロン-4,6-カルボキシレート:
化合物(A1')の1H-NMR、13C-NMR、GC-MS及びIRの各種スペクトルの測定結果は、化合物(A1)のそれらとよい一致を示し、化合物(A1')は、参照例1の化合物(A1)と同一の化合物であることが判った。
Compound (A1 ′) Dimethyltetrahydro-2H-pyrone-4,6-carboxylate:
The measurement results of 1 H-NMR, 13 C-NMR, GC-MS, and IR spectra of compound (A1 ′) show good agreement with those of compound (A1). Compound (A1 ′) is a reference example. It was found to be the same compound as Compound 1 (A1).

化合物(B1)ジメチル 3,4-ジヒドロ-2H-ピロン-4,6-ジカルボキシレート:Compound (B1) Dimethyl 3,4-dihydro-2H-pyrone-4,6-dicarboxylate:

Figure 2010254655
Figure 2010254655

1H-NMR (300 MHz, CDCl3)δ(ppm):2.40-2.55(m), 2.65-2.81(m), 3.71-3.72(t), 3.72-3.74(s), 3.80-3.84(s), 6.43。
13C-NMR (300 MHz, CDCl3)δ(ppm):34.2(ピラン環CH2), 34.9(ピラン環CH).53.0(CH3), 53.2(CH3), 125.1(ピラン環CH), 142.3(ピラン環C),161.7(カルボニル),169.0(ピラン環アシル),170.41(カルボニル)。
GC-MS:m/z = 183, 155,123。
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 2.40-2.55 (m), 2.65-2.81 (m), 3.71-3.72 (t), 3.72-3.74 (s), 3.80-3.84 (s) , 6.43.
13 C-NMR (300 MHz, CDCl 3 ) δ (ppm): 34.2 (pyran ring CH 2 ), 34.9 (pyran ring CH). 53.0 (CH 3 ), 53.2 (CH 3 ), 125.1 (pyran ring CH), 142.3 (pyran ring C), 161.7 (carbonyl), 169.0 (pyran ring acyl), 170.41 (carbonyl).
GC-MS: m / z = 183, 155, 123.

化合物(C1)ジメチル 5,6-ジヒドロ-2H-ピロン-4,6-ジカルボキシレート:Compound (C1) Dimethyl 5,6-dihydro-2H-pyrone-4,6-dicarboxylate:

Figure 2010254655
Figure 2010254655

1H-NMR (300 MHz, CDCl3)δ(ppm):2.54-2.58(m), 2.68-2.71(m), 3.72-3.74(s), 3.81-3.84(s), 4.90(t), 6.79。
13C-NMR (300 MHz, CDCl3)δ(ppm):25.9(ピラン環CH2),52.1(CH3), 53.2(CH3), 74.2(ピラン環CH),126.0(ピラン環CH), 136.6(ピラン環C),164.4(ピラン環アシル),169.1(カルボニル),171.1(カルボニル)。
GC-MS:m/z = 183, 155,123。
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 2.54-2.58 (m), 2.68-2.71 (m), 3.72-3.74 (s), 3.81-3.84 (s), 4.90 (t), 6.79 .
13 C-NMR (300 MHz, CDCl 3 ) δ (ppm): 25.9 (pyran ring CH 2 ), 52.1 (CH 3 ), 53.2 (CH 3 ), 74.2 (pyran ring CH), 126.0 (pyran ring CH), 136.6 (pyran ring C), 164.4 (pyran ring acyl), 169.1 (carbonyl), 171.1 (carbonyl).
GC-MS: m / z = 183, 155, 123.

化合物(D1)ジメチル 3,6-ジヒドロ-2H-ピロン-4,6-ジカルボキシレート:Compound (D1) Dimethyl 3,6-dihydro-2H-pyrone-4,6-dicarboxylate:

Figure 2010254655
Figure 2010254655

1H-NMR (300 MHz, CDCl3)δ(ppm):2.87(q), 3.69-3.73(s), 3.81-3.84(s), 5.15(t), 7.17。
13C-NMR (300 MHz, CDCl3)δ(ppm):31.8(ピラン環CH2), 53.1(CH3), 74.2(ピラン環CH),136.6(ピラン環C),139.2(ピラン環C),169.0(カルボニル),170.4(ピラン環アシル),173.3(カルボニル)。
GC-MS:m/z = 183, 155,123。
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 2.87 (q), 3.69-3.73 (s), 3.81-3.84 (s), 5.15 (t), 7.17.
13 C-NMR (300 MHz, CDCl 3 ) δ (ppm): 31.8 (pyran ring CH 2 ), 53.1 (CH 3 ), 74.2 (pyran ring CH), 136.6 (pyran ring C), 139.2 (pyran ring C) 169.0 (carbonyl), 170.4 (pyran ring acyl), 173.3 (carbonyl).
GC-MS: m / z = 183, 155, 123.

Claims (5)

下記一般式(I):
Figure 2010254655
[式中、Rは、水素原子又はC1〜C6のアルキル基を示し、結合X−Y、Y−Z及びZ−Wは各々、炭素−炭素単結合又は炭素−炭素二重結合を示す。但し、結合X−Y、Y−Z及びZ−Wは同時に炭素−炭素二重結合でない。]
で表される化合物。
The following general formula (I):
Figure 2010254655
[Wherein, R represents a hydrogen atom or an alkyl group of C 1 -C 6, coupled X-Y, Y-Z and Z-W are each carbon - shows a carbon double bond - carbon single bond or carbon . However, the bonds X—Y, Y—Z and Z—W are not simultaneously carbon-carbon double bonds. ]
A compound represented by
下記一般式:
Figure 2010254655
[式中、Rは、水素原子又はC1〜C6のアルキル基を示す。]
で表される化合物である、請求項1記載の化合物。
The following general formula:
Figure 2010254655
[Wherein, R represents a hydrogen atom or an alkyl group of C 1 -C 6. ]
The compound of Claim 1 which is a compound represented by these.
下記一般式:
Figure 2010254655
[式中、Rは、水素原子又はC1〜C6のアルキル基を示す。]
のいずれかで表される化合物である、請求項1記載の化合物。
The following general formula:
Figure 2010254655
[Wherein, R represents a hydrogen atom or an alkyl group of C 1 -C 6. ]
The compound of Claim 1 which is a compound represented by either.
前記Rがメチル基である、請求項1〜3のいずれか1項記載の化合物。   The compound according to any one of claims 1 to 3, wherein R is a methyl group. 2-ピロン-4,6-ジカルボン酸(2-pyron-4,6-dicarboxylic acid)又はそのエステルをギ酸又はその塩及び水素化触媒の存在下に還元することを特徴とする、下記一般式(I):
Figure 2010254655
[式中、Rは、水素原子又はC1〜C6のアルキル基を示し、結合X−Y、Y−Z及びZ−Wは各々、炭素−炭素単結合又は炭素−炭素二重結合を示す。但し、結合X−Y、Y−Z及びZ−Wは同時に炭素−炭素二重結合でない。]
で表される化合物の製造方法。
2-pyron-4,6-dicarboxylic acid (2-pyron-4,6-dicarboxylic acid) or an ester thereof is reduced in the presence of formic acid or a salt thereof and a hydrogenation catalyst. I):
Figure 2010254655
[Wherein, R represents a hydrogen atom or a C 1 to C 6 alkyl group, and the bonds XY, YZ, and ZW each represent a carbon-carbon single bond or a carbon-carbon double bond. . However, the bonds X—Y, Y—Z and Z—W are not simultaneously carbon-carbon double bonds. ]
The manufacturing method of the compound represented by these.
JP2009110064A 2009-04-28 2009-04-28 Delta-valerolactones and method for producing the same Withdrawn JP2010254655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009110064A JP2010254655A (en) 2009-04-28 2009-04-28 Delta-valerolactones and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009110064A JP2010254655A (en) 2009-04-28 2009-04-28 Delta-valerolactones and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010254655A true JP2010254655A (en) 2010-11-11

Family

ID=43316005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009110064A Withdrawn JP2010254655A (en) 2009-04-28 2009-04-28 Delta-valerolactones and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010254655A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028000A (en) * 2019-09-03 2021-03-11 한국화학연구원 Purification of 2-pyrone-4,6-dicarboxylic acid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210028000A (en) * 2019-09-03 2021-03-11 한국화학연구원 Purification of 2-pyrone-4,6-dicarboxylic acid
KR102267703B1 (en) * 2019-09-03 2021-06-21 한국화학연구원 Purification of 2-pyrone-4,6-dicarboxylic acid

Similar Documents

Publication Publication Date Title
EP1828095B1 (en) A process for the hydrogenation of a lactone or of a carboxylic acid or an ester having a gamma-carbonyl group
US9834491B2 (en) Method for producing bio-based homoserine lactone and bio-based organic acid from O-acyl homoserine produced by microorganisms
US20170044123A1 (en) Synthesis of r-glucosides, sugar alcohols, reduced sugar alcohols, and furan derivatives of reduced sugar alcohols
US10519124B2 (en) Synthesis of R-glucosides, sugar alcohols, reduced sugar alcohols, and furan derivatives of reduced sugar alcohols
Shimizu et al. Palladium-catalyzed reactions of alkenyloxiranes with carbon monoxide
JP2010254655A (en) Delta-valerolactones and method for producing the same
KR101713710B1 (en) Novel synthetic process of adipic acid
KR102082545B1 (en) Control of color-body formation in isohexide esterification
Kido et al. Carbocyclic construction by the [2, 3] sigmatropic rearrangement of cyclic sulfonium ylides. A new entry for the stereoselective synthesis of substituted cyclohexanones
JP3850637B2 (en) Production method of macrocyclic lactone
US3278557A (en) Lactones from keto esters
EP3237372B1 (en) Method for producing omega-hydroxy fatty acid ester and precursor compound thereof
CN1060166C (en) Process for producing DL-tocopherols and intermediates therefor
CA2841089A1 (en) Production of optically pure propane-1,2-diol
JP2017501138A (en) Improved glycol acylation process
US20170121258A1 (en) Synthesis of r-glucosides, sugar alcohols, reduced sugar alcohols, and furan derivatives of reduced sugar alcohols
JP2005035974A (en) Method for producing 1,6-hexanediol
JP2009137876A (en) Method for producing carbonyl group-containing compound and large cyclic ketone
EP3083636B1 (en) Enhanced regio-selectivity in glycol acylation
EP3150710A1 (en) Method for preparing biobased homoserine lactone hydrochloride and biobased organic acid from microorganism-derived o-acyl homoserine
JPH06503328A (en) Preparation method of α-alkyl lactone
EP3452459A1 (en) New adipate-type compounds and a process of preparing it
JPS6388154A (en) Production of omega-hydroxy fatty acid
JP2010254932A (en) Polyester and method for producing the same
KR970027065A (en) Method for preparing 3-methyltetrahydrofuran

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130325