JP2010254511A - Basic metallic silicon powder, method for producing the same and highly heat-conductive resin composition - Google Patents

Basic metallic silicon powder, method for producing the same and highly heat-conductive resin composition Download PDF

Info

Publication number
JP2010254511A
JP2010254511A JP2009105556A JP2009105556A JP2010254511A JP 2010254511 A JP2010254511 A JP 2010254511A JP 2009105556 A JP2009105556 A JP 2009105556A JP 2009105556 A JP2009105556 A JP 2009105556A JP 2010254511 A JP2010254511 A JP 2010254511A
Authority
JP
Japan
Prior art keywords
silicon powder
metal silicon
basic
metallic silicon
basic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009105556A
Other languages
Japanese (ja)
Other versions
JP5483922B2 (en
Inventor
Tomio Inoue
富男 井上
Takeshi Yanagihara
武 楊原
Takeshi Sato
剛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2009105556A priority Critical patent/JP5483922B2/en
Publication of JP2010254511A publication Critical patent/JP2010254511A/en
Application granted granted Critical
Publication of JP5483922B2 publication Critical patent/JP5483922B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a basic metallic silicon powder which are excellent in the operability in powder handling such as transportation and classification. <P>SOLUTION: The basic metallic silicon powders have metallic silicon powders and a basic substance contacting with the surfaces of the metallic silicon powders so as to have a basic equivalent of 0.1 μmol or more and 10 μmol or less per 1 m<SP>2</SP>of surface area. It is considered that an effect by a mutual action between silica and the basic substance basing on the existence of a minimal oxide (silica) layer on the surfaces of the metallic silicon powders is obtained, that is supported by that an effect by enhancing powder handling is little even when the basic substance is contacted just after the metallic silicon powders are produced by pulverizing pure metallic silicon, that is, it is considered to be enough to react with the basic substance even if the oxide layer existing on the surfaces of the metallic silicon powders is in a trace amount. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、塩基性金属シリコン粉体及びその製造方法並びに高熱伝導性樹脂組成物に関する。   The present invention relates to a basic metal silicon powder, a method for producing the same, and a high thermal conductive resin composition.

電子部品の封止、固定や、機械部品の固定などを行う際に、樹脂組成物を用いて行う場合がある。その場合に、高い熱伝導性を付与するために、金属微粉末を混合した樹脂組成物を採用することがある。この場合に混合する金属微粉末としては金属シリコンなどが例示でき、その粒径はμmオーダーである。   When sealing or fixing an electronic component or fixing a mechanical component, the resin composition may be used. In that case, in order to provide high thermal conductivity, a resin composition in which metal fine powder is mixed may be employed. In this case, the metal fine powder to be mixed can be exemplified by metal silicon and the particle size is on the order of μm.

特開2004−161900号公報JP 2004-161900 A

このように微細な金属シリコン粉体を樹脂中に混合する場合、その取り扱いが問題にとなる。金属シリコン粉体に限らず、微細な粉末は凝集等が進行することにより、何も対策を取らないとその取扱性は良いとは云えない。   When such a fine metal silicon powder is mixed in a resin, the handling becomes a problem. Not only metal silicon powder but also fine powder is agglomerated and the like, and it cannot be said that its handling is good unless any measures are taken.

同様の問題はシリカ微粒子においても存在した。シリカ微粒子は樹脂中に混合して樹脂組成物とすることにより熱的安定性などの物理的特性の向上が期待できる。特許文献1には表面を塩基性物質にて処理したシリカ粉体が開示されている。   Similar problems existed in silica fine particles. Improvement of physical properties such as thermal stability can be expected by mixing silica fine particles in a resin to obtain a resin composition. Patent Document 1 discloses a silica powder whose surface is treated with a basic substance.

本発明は上記実情に鑑み完成したものであり、粉体の輸送、分級などの粉体操作の操作性に優れた金属シリコン粉体である塩基性金属シリコン粉体及びその製造方法並びに高熱伝導性樹脂組成物を提供することを解決すべき課題とする。   The present invention has been completed in view of the above circumstances, and a basic metal silicon powder, which is a metal silicon powder excellent in operability of powder operations such as powder transportation and classification, a method for producing the same, and high thermal conductivity Providing a resin composition is a problem to be solved.

特許文献1に記載の方法ではシリカ微粒子の表面に存在する酸素原子(及びケイ素原子)と塩基性物質とが相互作用することで、その表面に塩基性物質を安定的に付着させることが可能になるものと考えられる。つまり、塩基性物質が安定的に存在することで静電反発などにより粉体同士が反発し合い、結果、粉体の凝集などが効果的に抑制されている。従って、表面に酸素原子が実質的に存在しないと見なすことができる金属シリコン粉体などにおいては特許文献1の方法を適用しても効果がないものと思われた。   In the method described in Patent Document 1, oxygen atoms (and silicon atoms) present on the surface of silica fine particles interact with the basic substance, so that the basic substance can be stably attached to the surface. It is considered to be. In other words, the stable presence of the basic substance causes the powders to repel each other due to electrostatic repulsion, and as a result, aggregation of the powder is effectively suppressed. Therefore, it seems that there is no effect even if the method of Patent Document 1 is applied to metal silicon powder that can be regarded as having substantially no oxygen atoms on the surface.

ところが、本発明者らは上記課題を解決する目的で鋭意検討を行った結果、特許文献1と同様の方法により金属シリコン粉体についても粉体操作の向上が認められるという予期せぬ効果を偶然に発見した。この理由について推察するに金属シリコン粉体表面において僅かに酸化物(シリカ)層が存在することで特許文献1と同様の効果が得られるものと思われる。このことは純粋な金属シリコンを破砕して金属シリコン粉体を製造した直後に塩基性物質を接触させても粉体の操作性向上効果が低いことからも裏付けられる。つまり、金属シリコン粉体表面に存在する痕跡程度の酸化物層であっても塩基性物質と反応するには充分であると考えられる。本発明はこれらの知見に基づき完成したものである。   However, as a result of intensive investigations aimed at solving the above-mentioned problems, the present inventors have unexpectedly achieved an unexpected effect that improvement in powder operation is recognized for metal silicon powder by the same method as in Patent Document 1. I found it. Inferring this reason, it is considered that the same effect as in Patent Document 1 can be obtained by the presence of a slight oxide (silica) layer on the surface of the metal silicon powder. This is supported by the fact that the effect of improving the operability of the powder is low even if a basic substance is brought into contact immediately after the metal silicon powder is produced by crushing pure metal silicon. That is, it is considered that even a trace oxide layer present on the surface of the metal silicon powder is sufficient to react with the basic substance. The present invention has been completed based on these findings.

すなわち、上記課題を解決する請求項1に係る塩基性金属シリコン粉体の特徴は、金属シリコン粉体と、
表面積1m当たり0.1μmol以上10μmol以下の塩基当量となるように前記金属シリコン粉体の表面に接触させた塩基性物質とを有することにある。
That is, the characteristics of the basic metal silicon powder according to claim 1 for solving the above-described problems are:
And having a basic substance brought into contact with the surface of the metal silicon powder so as to have a base equivalent of 0.1 μmol or more and 10 μmol or less per 1 m 2 of surface area.

上記課題を解決する請求項2に係る塩基性金属シリコン粉体の特徴は、請求項1において、前記塩基性物質が、アミノ基若しくはイミノ基をもつ化合物、又はアンモニアであることにある。   A feature of the basic metal silicon powder according to claim 2 that solves the above problem is that, in claim 1, the basic substance is a compound having an amino group or an imino group, or ammonia.

上記課題を解決する請求項3に係る塩基性金属シリコン粉体の特徴は、請求項1又は2において、前記塩基性物質がシラザン類であることにある。   A feature of the basic metal silicon powder according to claim 3 for solving the above-mentioned problem is that in claim 1 or 2, the basic substance is a silazane.

上記課題を解決する請求項4に係る塩基性金属シリコン粉体の特徴は、請求項3において、前記塩基性物質がヘキサメチルジシラザンであることにある。   A feature of the basic metal silicon powder according to claim 4 for solving the above-mentioned problem is that, in claim 3, the basic substance is hexamethyldisilazane.

上記課題を解決する請求項5に係る塩基性金属シリコン粉体の特徴は、請求項3又は4において、全体の質量を基準として10質量%の量を純水中に懸濁させ、10分間で撹拌した後に、固形物の質量を基準として90%以上が浮遊していることにある。ここで、撹拌は震とう機(Yamato製、型番:Shaker SA300)にて行う。   The basic metal silicon powder according to claim 5 that solves the above problem is characterized in that, in claim 3 or 4, an amount of 10% by mass based on the total mass is suspended in pure water for 10 minutes. After stirring, 90% or more is floating based on the mass of the solid matter. Here, stirring is performed with a shaker (manufactured by Yamato, model number: Shaker SA300).

上記課題を解決する請求項6に係る塩基性金属シリコン粉体の特徴は、請求項1〜5の何れか1項において、前記金属シリコン粉体は破砕により製造されたことにある。   A feature of the basic metal silicon powder according to claim 6 for solving the above-mentioned problem is that, in any one of claims 1 to 5, the metal silicon powder is manufactured by crushing.

上記課題を解決する請求項7に係る塩基性金属シリコン粉体の特徴は、請求項1〜6の何れか1項において、前記金属シリコン粉体の体積平均粒径は1μm〜30μmであることにある。   The feature of the basic metal silicon powder according to claim 7 for solving the above problem is that, in any one of claims 1 to 6, the volume average particle size of the metal silicon powder is 1 μm to 30 μm. is there.

上記課題を解決する請求項8に係る塩基性金属シリコン粉体の特徴は、請求項1〜7の何れか1項において、粒径が45μm以上である粗粒を実質的に含まないことにある。   The feature of the basic metal silicon powder according to claim 8 that solves the above-mentioned problem is that, in any one of claims 1 to 7, substantially no coarse particles having a particle size of 45 μm or more are contained. .

上記課題を解決する請求項9に係る塩基性金属シリコン粉体の製造方法の特徴は、金属シリコン粉体に対し、表面積1m当たり0.1μmol以上10μmol以下の塩基当量となるように前記金属シリコン粉体の表面に塩基性物質を接触させる表面処理工程を有することにある。 The basic metal silicon powder production method according to claim 9 for solving the above-mentioned problems is characterized in that the metal silicon powder has a base equivalent of 0.1 μmol or more and 10 μmol or less per 1 m 2 of surface area. The object is to have a surface treatment step of bringing a basic substance into contact with the powder surface.

上記課題を解決する請求項10に係る高熱伝導性樹脂組成物の特徴は、請求項1〜8の何れか1項に記載の塩基性金属シリコン粉体と、
前記塩基性金属シリコン粉体を分散する有機樹脂と、を有することにある。
The characteristic of the high thermal conductive resin composition according to claim 10 that solves the above problem is that the basic metal silicon powder according to any one of claims 1 to 8,
And an organic resin in which the basic metal silicon powder is dispersed.

請求項1〜8に係る塩基性金属シリコン粉体によれば、流動性に優れ、分級、運搬などの粉体操作性に優れており、且つ、バルク特性は金属シリコンそのものであるため、高い熱伝導性、高い電気伝導性などの金属シリコン粉体本来の性能が損なわれていないとの効果を生じる。特に請求項2〜4に係る塩基性金属シリコン粉体に用いた塩基性物質を採用することによりその効果は更に向上する。また、請求項5に係る塩基性金属シリコン粉体のような性状をもつことで更に高い性能が発揮できる。また、請求項8に係る塩基性金属シリコン粉体のように粗粒を実質的に含まないことで、浸透性などの性能を高く保持することができる。   According to the basic metal silicon powder according to claims 1 to 8, the fluidity is excellent, the powder operability such as classification and transportation is excellent, and the bulk property is metal silicon itself, so that high heat The effect that the original performance of metal silicon powder such as conductivity and high electrical conductivity is not impaired is produced. In particular, the effect is further improved by employing the basic substance used in the basic metal silicon powder according to claims 2 to 4. Further, by having properties such as the basic metal silicon powder according to claim 5, higher performance can be exhibited. Further, by not containing coarse particles substantially like the basic metal silicon powder according to claim 8, it is possible to maintain high performance such as permeability.

請求項9に係る塩基性金属シリコン粉体の製造方法によれば、請求項1〜8に記載の塩基性金属シリコン粉体を効果的に製造することが可能になる。   According to the manufacturing method of the basic metal silicon powder according to the ninth aspect, the basic metal silicon powder according to the first to eighth aspects can be effectively manufactured.

請求項10に係る樹脂組成物は、上述した本発明の塩基性金属シリコン粉体を充填していることから高密度で塩基性金属シリコン粉体が充填されており、熱伝導性に優れた樹脂組成物を提供可能である。   Since the resin composition according to claim 10 is filled with the basic metal silicon powder of the present invention described above, the resin is filled with the basic metal silicon powder at a high density and has excellent thermal conductivity. A composition can be provided.

実施例における目開き45μmの篩の透過率のHMDS接触量依存性について示したグラフである。It is the graph shown about the HMDS contact amount dependence of the transmittance | permeability of the sieve of 45 micrometers of openings in an Example.

本発明の塩基性金属シリコン粉体及びその製造方法について実施形態に基づき以下詳細に説明を行う。本実施形態の塩基性金属シリコン粉体は金属シリコンからなる粉体の表面に塩基性物質が反応乃至付着しているものである。その大部分は金属シリコンであるため、用途としては純粋な金属シリコン粉体と概ね同様である。例えば、樹脂中に分散させることにより樹脂組成物としたり、燃焼によりシリカ微粒子を製造するための原料として用いることができる。本実施形態の塩基性金属シリコン粉体の粒径としては特に限定しないが、本実施形態の塩基性金属シリコン粉体は分級操作の操作性に優れるため、望みの粒度分布を容易に達成可能である。例えば、体積平均粒径が1μm〜30μmであることが望ましい。また、45μm以上の粗粒を実質的に含まないことが望ましい。   The basic metal silicon powder of the present invention and the production method thereof will be described in detail below based on the embodiments. The basic metal silicon powder of the present embodiment is one in which a basic substance reacts or adheres to the surface of a powder made of metal silicon. Since most of it is metallic silicon, its application is almost the same as that of pure metallic silicon powder. For example, it can be used as a raw material for producing silica fine particles by combustion by dispersing in a resin or by combustion. The particle diameter of the basic metal silicon powder of the present embodiment is not particularly limited, but the basic metal silicon powder of the present embodiment is excellent in operability of classification operation, so that the desired particle size distribution can be easily achieved. is there. For example, the volume average particle diameter is desirably 1 μm to 30 μm. Moreover, it is desirable that the coarse particle | grains of 45 micrometers or more are not included substantially.

金属シリコン粉体としては特に限定されない。例えば、形態を問わない金属シリコンを粉砕することで製造したり、熔融した金属シリコンからアトマイズ法にて製造したりできる。金属シリコン粉体の粒径は製造される塩基性金属シリコン粉体の粒径と高い相関をもつため、本実施形態の塩基性金属シリコン粉体に必要な粒径が得られるようにその粒度分布が調整される。粒度分布の調整は粉体の製造条件を変更するほか、得られた粉体を分級することにより行うことができる。また、金属シリコン粉体の段階では分級などにより粒度分布の調整を行わず、塩基性金属シリコン粉体とした後に分級操作を行うこともできる。また金属シリコン粉体の純度としては塩基性金属シリコン粉体が使用される目的に応じて決定できる。塩基性金属シリコン粉体における金属シリコンが高純度であることが要求される場合には金属シリコン粉体の純度も高純度の物を採用し、それ程の純度は必要ない場合には金属シリコン粉体の純度もその程度に応じて採用される。   The metal silicon powder is not particularly limited. For example, it can manufacture by grind | pulverizing the metallic silicon regardless of a form, or can manufacture it by the atomizing method from the molten metallic silicon. Since the particle size of the metal silicon powder has a high correlation with the particle size of the basic metal silicon powder to be produced, the particle size distribution is obtained so that the necessary particle size is obtained for the basic metal silicon powder of this embodiment. Is adjusted. The particle size distribution can be adjusted by changing the powder production conditions and classifying the obtained powder. Further, at the stage of the metal silicon powder, the particle size distribution is not adjusted by classification or the like, and the classification operation can be performed after the basic metal silicon powder is formed. The purity of the metal silicon powder can be determined according to the purpose for which the basic metal silicon powder is used. If the metal silicon in the basic metal silicon powder is required to have high purity, the metal silicon powder should be of high purity, and if not so pure, the metal silicon powder The purity of is also adopted according to the degree.

塩基性物質としては塩基性を示すものであれば特に限定しない。ここで、塩基性を示すとは金属シリコン粉体をシラザン類で処理した場合において、処理された金属シリコン粉体の抽出水のpH値が、用いられる純水または純水とエタノールやイソプロピルアルコール等のアルコール類との混合溶媒のpH と比べて少なくとも0 . 1 以上高いことが好ましい。これにより、金属シリコン粉体が適量に塩基性化されたことが確認できる。ここで、粉体抽出水のP H測定方法は次の通りである。粉体を3.5 g 秤量しプラスチック製容器に入れる。35 ml の脱イオン水を入れて、浸透機で30分間抽出させる。遠心分離機で固液分離させて、上澄みの水のpHを測定する。具体的な塩基性物質としてはアミノ基若しくはイミノ基をもつ化合物であるか、又はアンモニアである。例えば、シラザン類(ヘキサメチルジシラザン(HMDS)、ヘキサフェニルジシラザンなど)が挙げられる。   The basic substance is not particularly limited as long as it shows basicity. Here, to show basicity, when the metal silicon powder is treated with silazanes, the pH value of the extracted water of the treated metal silicon powder is pure water or pure water and ethanol, isopropyl alcohol, etc. Compared to the pH of the mixed solvent with alcohols of at least 0. It is preferably 1 or higher. Thereby, it can confirm that metal silicon powder was basified to appropriate quantity. Here, the pH measurement method of the powdered extracted water is as follows. Weigh 3.5 g of powder and place in a plastic container. Add 35 ml of deionized water and extract with an infiltration machine for 30 minutes. Solid-liquid separation is performed with a centrifuge, and the pH of the supernatant water is measured. A specific basic substance is a compound having an amino group or an imino group, or ammonia. For example, silazanes (hexamethyldisilazane (HMDS), hexaphenyldisilazane, etc.) can be mentioned.

塩基性物質を金属シリコン粉体の表面に接触させる量としては金属シリコン粉体の表面積1m当たり0.1μmol以上10μmol以下の塩基当量となるようにする。好ましくは金属シリコン粉体の表面積1mあたり、0.5μmol以上、0.5μmol超、1μmol以上とする。上限としては特に限定しないが、15μmol以下、15μmol未満、10μmol以下、10μmol未満、5μmol以下、5μmol未満が挙げられる。 A basic substance to make the surface area 1 m 2 per 0.1μmol more 10μmol following base equivalent of the metal silicon powder as the amount of contacting the surface of the metal silicon powder. Preferably, it is 0.5 μmol or more, more than 0.5 μmol, or 1 μmol or more per 1 m 2 of the surface area of the metal silicon powder. Although it does not specifically limit as an upper limit, 15 micromol or less, less than 15 micromol, 10 micromol or less, less than 10 micromol, 5 micromol or less, and less than 5 micromol are mentioned.

ここで、塩基当量とは処理量(質量%:金属シリコン粉体の質量を基準とする)/{処理剤の分子量(g/mol)×比表面積(m/g)}にて定義される値である。そして、金属シリコン粉体の表面積は窒素を用いたBET法にて測定した値である。 Here, the base equivalent is defined as treatment amount (mass%: based on the mass of metal silicon powder) / {molecular weight of treatment agent (g / mol) × specific surface area (m 2 / g)}. Value. The surface area of the metal silicon powder is a value measured by the BET method using nitrogen.

処理剤を処理する方法としては、金属シリコン粉体の表面に接触させる方法としては塩基性物質をそのまま接触させる乾式処理法や、何らかの溶媒に塩基性物質を溶解させて溶液とした後、その溶液を接触させる湿式処理法、また、金属シリコン粉体からなる被処理粉体を処理容器に収容し、該被処理粉体を攪拌しながら気化させた処理剤と反応させる気相反応法を用いることも可能であり、塩基性物質としてHMDSを採用する場合には気相反応法を採用することができる。金属シリコン粉体表面に塩基性物質を接触させた後、余分な塩基性物質は除去することもできる。例えば、塩基性物質が溶解可能な溶媒(水など)中に浸漬し撹拌することで除去可能である。この場合、結合状態が弱い場合にその塩基性物質は除去されることも考えられる。
・次に本発明の樹脂組成物について以下詳細に説明を行う。本実施形態の樹脂組成物は上述の塩基性金属シリコン粉体とその塩基性金属シリコン粉体を分散する有機樹脂とを有する。塩基性金属シリコン粉体を含有させる割合としては特に限定しないが、樹脂組成物が硬化した状態で塩基性金属シリコン粉体間で接触(点接触)する量を添加することが望ましい。つまり、塩基性金属シリコン粉体間で接触することにより、熱伝導性が向上できる。
As a method of treating the treating agent, as a method of contacting the surface of the metal silicon powder, a dry treatment method in which a basic substance is brought into contact as it is, or a solution obtained by dissolving a basic substance in some solvent to obtain a solution, A wet processing method in which the powder to be processed is brought into contact, or a powder to be processed made of metal silicon powder is contained in a processing container, and the powder to be processed is reacted with a processing agent vaporized while stirring. In the case where HMDS is adopted as the basic substance, a gas phase reaction method can be adopted. After the basic substance is brought into contact with the surface of the metal silicon powder, the excess basic substance can be removed. For example, it can be removed by immersing and stirring in a solvent (such as water) in which the basic substance can be dissolved. In this case, the basic substance may be removed when the binding state is weak.
Next, the resin composition of the present invention will be described in detail below. The resin composition of the present embodiment has the above basic metal silicon powder and an organic resin in which the basic metal silicon powder is dispersed. The ratio of containing the basic metal silicon powder is not particularly limited, but it is desirable to add an amount that makes contact (point contact) between the basic metal silicon powders in a state where the resin composition is cured. That is, the thermal conductivity can be improved by contacting between the basic metal silicon powders.

有機樹脂としては特に限定されないが、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリル・アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム・スチレン)樹脂等の、熱硬化性樹脂、熱可塑性樹脂、各種エンジニアリングプラスチックが例示される。有機樹脂としては特に化学反応などにより硬化する硬化性樹脂であること望ましい。   The organic resin is not particularly limited, but epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyimide, polyamideimide, polyetherimide and other polyamides, polybutylene terephthalate, polyethylene terephthalate, etc. Polyester, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile, acrylic rubber, styrene) resin, AES (acrylonitrile, ethylene, propylene, diene rubber, Examples thereof include thermosetting resins such as (styrene) resin, thermoplastic resins, and various engineering plastics. The organic resin is particularly preferably a curable resin that is cured by a chemical reaction or the like.

エポキシ樹脂としては特に限定されず、1分子中にエポキシ基を2個以上有するモノマー、オリゴマー、及びポリマー全般が用いられる。例えば、ビフェニル型エポキシ樹脂、スチルベン型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、ジシクロペンタジエン変性フェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、トリアジン核含有エポキシ樹脂等が例示される。これらは単独でも混合して用いてもよい。無機充填材はエポキシ樹脂組成物中に高充填されることが好ましいため、エポキシ樹脂組成物の流動性を良好に維持するには低粘度樹脂が好ましい。   The epoxy resin is not particularly limited, and monomers, oligomers, and polymers generally having two or more epoxy groups in one molecule are used. For example, biphenyl type epoxy resin, stilbene type epoxy resin, bisphenol type epoxy resin, triphenol methane type epoxy resin, alkyl modified triphenol methane type epoxy resin, dicyclopentadiene modified phenol type epoxy resin, naphthol type epoxy resin, triazine core containing An epoxy resin etc. are illustrated. These may be used alone or in combination. Since the inorganic filler is preferably highly filled in the epoxy resin composition, a low-viscosity resin is preferable in order to maintain good fluidity of the epoxy resin composition.

フェノール樹脂としては特に限定されず、1分子中にフェノール性水酸基を2個以上有するモノマー、オリゴマー、及びポリマー全般を言う。例えば、ジシクロペンタジエン変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、テルペン変性フェノール樹脂、トリフェノールメタン型樹脂等が例示される。これらは単独でも混合して用いてもよい。無機充填材はエポキシ樹脂組成物中に高充填されるのが好ましいため、エポキシ樹脂組成物の流動性を良好に維持するには低粘度樹脂が好ましい。   It does not specifically limit as a phenol resin, The monomer, oligomer, and polymer generally which have two or more phenolic hydroxyl groups in 1 molecule are said. For example, dicyclopentadiene modified phenol resin, phenol aralkyl resin, naphthol aralkyl resin, terpene modified phenol resin, triphenolmethane type resin and the like are exemplified. These may be used alone or in combination. Since the inorganic filler is preferably highly filled in the epoxy resin composition, a low-viscosity resin is preferred in order to maintain good fluidity of the epoxy resin composition.

(試験1)
体積平均粒径21.5μm、比表面積0.91m/g(BET:N)の金属シリコン粉体を用意した。この粉末は金属シリコンを粉砕することにより用意した。粉砕後、1日間放置して用いた。
(Test 1)
A metal silicon powder having a volume average particle diameter of 21.5 μm and a specific surface area of 0.91 m 2 / g (BET: N 2 ) was prepared. This powder was prepared by grinding metal silicon. After pulverization, it was used for 1 day.

この金属シリコン粉体を乾燥後、塩基性物質としてのHMDSを表1に示す量で接触させて試験例の塩基性金属シリコン粉体とした。その後、それぞれの試料について50g秤量し、目開き45μmの篩を通過させて篩を通過した粉体の質量割合を測定した。篩の通過は振動を与えながら試験試料を篩に供給した後、5分間保持することで行った。結果を図1及び表1に示す。   After drying this metal silicon powder, HMDS as a basic substance was brought into contact with the amount shown in Table 1 to obtain a basic metal silicon powder of a test example. Thereafter, 50 g of each sample was weighed, passed through a sieve having an opening of 45 μm, and the mass ratio of the powder that passed through the sieve was measured. The passage of the sieve was performed by supplying the test sample to the sieve while applying vibration and holding it for 5 minutes. The results are shown in FIG.

Figure 2010254511
Figure 2010254511

図1及び表1から明らかなように、何も処理していない金属シリコン粉体は全体の質量の25%しか篩を通過できなかったのに対し、HMDSを表面に接触させた試料ではそれよりも多い量が篩を通過することができた。これは金属シリコン粉体間の相互作用により粉体の凝集が抑制されて流動性が向上したものと考えられる。   As is clear from FIG. 1 and Table 1, untreated metal silicon powder was able to pass only 25% of the total mass through the sieve, whereas in the sample with HMDS in contact with the surface, A larger amount could pass through the sieve. This is considered that the fluidity is improved by suppressing the aggregation of the powder due to the interaction between the metal silicon powders.

HMDSの添加は0.5μmol/mでも充分な効果を発揮するが、1.0μmol/m以上添加することで更なる効果の発現が認められた。なお、3μmol/mを超えてHMDSを添加すると徐々に効果が低下していくが、その理由はHMDSの量に応じて粒子間の静電反発が大きくなったためであると考えられる。しかしながら、今回実験を行った15μmol/mであっても何も処理していない場合よりも篩の透過性が向上することは明らかであった。 The addition of HMDS exhibits a sufficient effect even at 0.5 μmol / m 2 , but further effects were observed when 1.0 μmol / m 2 or more was added. In addition, when HMDS is added exceeding 3 μmol / m 2 , the effect gradually decreases. It is considered that the electrostatic repulsion between particles is increased according to the amount of HMDS. However, it was clear that the permeability of the sieve was improved more than the case where nothing was treated even at 15 μmol / m 2 in this experiment.

Claims (10)

金属シリコン粉体と、
表面積1m当たり0.1μmol以上10μmol以下の塩基当量となるように前記金属シリコン粉体の表面に接触させた塩基性物質とを有することを特徴とする塩基性金属シリコン粉体。
Metal silicon powder,
A basic metal silicon powder comprising a basic substance brought into contact with the surface of the metal silicon powder so as to have a base equivalent of 0.1 μmol or more and 10 μmol or less per 1 m 2 of surface area.
前記塩基性物質が、アミノ基若しくはイミノ基をもつ化合物、又はアンモニアである請求項1に記載の塩基性金属シリコン粉体。   The basic metal silicon powder according to claim 1, wherein the basic substance is a compound having an amino group or an imino group, or ammonia. 前記塩基性物質がシラザン類である請求項1又は2に記載の塩基性金属シリコン粉体。   The basic metal silicon powder according to claim 1 or 2, wherein the basic substance is a silazane. 前記塩基性物質がヘキサメチルジシラザンである請求項3に記載の塩基性金属シリコン粉体。   The basic metal silicon powder according to claim 3, wherein the basic substance is hexamethyldisilazane. 全体の質量を基準として10質量%の量を純水中に懸濁させ、10分間撹拌した後に、固形物の質量を基準として90%以上が浮遊している請求項3又は4に記載の塩基性金属シリコン粉体。   The base according to claim 3 or 4, wherein 10% by mass based on the total mass is suspended in pure water and stirred for 10 minutes, and then 90% or more is suspended based on the mass of solid matter. Metallic silicon powder. 前記金属シリコン粉体は破砕により製造された請求項1〜5に記載の塩基性金属シリコン粉体。   The basic metal silicon powder according to claim 1, wherein the metal silicon powder is produced by crushing. 前記金属シリコン粉体の体積平均粒径は1μm〜30μmである請求項1〜6の何れか1項に記載の塩基性金属シリコン粉体。   The basic metal silicon powder according to any one of claims 1 to 6, wherein the volume average particle size of the metal silicon powder is 1 µm to 30 µm. 粒径が45μm以上である粗粒を実質的に含まない請求項1〜7の何れか1項に記載の塩基性金属シリコン粉体。   The basic metal silicon powder according to any one of claims 1 to 7, which does not substantially contain coarse particles having a particle diameter of 45 µm or more. 金属シリコン粉体に対し、表面積1m当たり0.1μmol以上10μmol以下の塩基当量となるように前記金属シリコン粉体の表面に塩基性物質を接触させる表面処理工程を有することを特徴とする塩基性金属シリコン粉体の製造方法。 A basic treatment characterized by having a surface treatment step of bringing a basic substance into contact with the surface of the metal silicon powder so as to have a base equivalent of 0.1 μmol or more and 10 μmol or less per 1 m 2 of surface area of the metal silicon powder. Manufacturing method of metal silicon powder. 請求項1〜8の何れか1項に記載の塩基性金属シリコン粉体と、
前記塩基性金属シリコン粉体を分散する有機樹脂と、を有することを特徴とする好熱伝導性樹脂組成物。
The basic metal silicon powder according to any one of claims 1 to 8,
And an organic resin in which the basic metal silicon powder is dispersed.
JP2009105556A 2009-04-23 2009-04-23 Basic metal silicon powder, method for producing the same, and high thermal conductive resin composition Active JP5483922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009105556A JP5483922B2 (en) 2009-04-23 2009-04-23 Basic metal silicon powder, method for producing the same, and high thermal conductive resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009105556A JP5483922B2 (en) 2009-04-23 2009-04-23 Basic metal silicon powder, method for producing the same, and high thermal conductive resin composition

Publications (2)

Publication Number Publication Date
JP2010254511A true JP2010254511A (en) 2010-11-11
JP5483922B2 JP5483922B2 (en) 2014-05-07

Family

ID=43315897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009105556A Active JP5483922B2 (en) 2009-04-23 2009-04-23 Basic metal silicon powder, method for producing the same, and high thermal conductive resin composition

Country Status (1)

Country Link
JP (1) JP5483922B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166929A (en) * 2013-02-28 2014-09-11 Shin Etsu Chem Co Ltd Metallic silicon powder and resin composition using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280813A (en) * 1991-03-07 1992-10-06 Fuji Davison Chem Ltd Production of spherical silica having controlled hydrophilic nature
JPH11240709A (en) * 1998-02-27 1999-09-07 Taiheiyo Cement Corp Metallic silicon powder
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
JP2007173516A (en) * 2005-12-22 2007-07-05 Kagawa Univ Silicon fine particles, manufacturing method thereof, solar battery using the same and manufacturing method thereof
JP2007204522A (en) * 2006-01-31 2007-08-16 Konica Minolta Holdings Inc Composite resin sheet and substrate for image display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04280813A (en) * 1991-03-07 1992-10-06 Fuji Davison Chem Ltd Production of spherical silica having controlled hydrophilic nature
JPH11240709A (en) * 1998-02-27 1999-09-07 Taiheiyo Cement Corp Metallic silicon powder
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
JP2007173516A (en) * 2005-12-22 2007-07-05 Kagawa Univ Silicon fine particles, manufacturing method thereof, solar battery using the same and manufacturing method thereof
JP2007204522A (en) * 2006-01-31 2007-08-16 Konica Minolta Holdings Inc Composite resin sheet and substrate for image display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014166929A (en) * 2013-02-28 2014-09-11 Shin Etsu Chem Co Ltd Metallic silicon powder and resin composition using the same

Also Published As

Publication number Publication date
JP5483922B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
US9598558B2 (en) Nanodiamond containing composite and a method for producing the same
US10125289B2 (en) Composition for interlayer filler of layered semiconductor device, layered semiconductor device, and process for producing layered semiconductor device
KR20160117472A (en) Agglomerated boron nitride particles, production method for agglomerated boron nitride particles, resin composition including agglomerated boron nitride particles, moulded body, and sheet
Yung et al. Effect of the filler size and content on the thermomechanical properties of particulate aluminum nitride filled epoxy composites
CN108475552B (en) Composites for high frequency electromagnetic interference (EMI) applications
Kim et al. Magnetic filler alignment of paramagnetic Fe3O4 coated SiC/epoxy composite for thermal conductivity improvement
JP7175586B2 (en) Boron nitride particle aggregate, method for producing the same, composition, and resin sheet
Jiang et al. Effects of particle size distribution of silica on properties of PTFE/SiO2 composites
Kirchberg et al. Nanocomposites based on technical polymers and sterically functionalized soft magnetic magnetite nanoparticles: synthesis, processing, and characterization
JP4276423B2 (en) Basic silica powder, method for producing the same, and resin composition
JP2015127364A (en) Nanodiamond containing composite and method for producing the same
JP5803348B2 (en) Polymer nanocomposite resin composition
TW202231574A (en) Hydrophobic aluminum nitride powder and method for producing the same
Ma et al. Preparation of modified hexagonal boron nitride by ball-milling and enhanced thermal conductivity of epoxy resin
Mohd Hirmizi et al. Electrical and Thermal Behavior of Copper‐Epoxy Nanocomposites Prepared via Aqueous to Organic Phase Transfer Technique
He et al. Functionalization of boron nitride nanoparticles and their utilization in epoxy composites with enhanced thermal conductivity
KR102648718B1 (en) High heat dissipation composition and manufacturing method thereof
JP5483922B2 (en) Basic metal silicon powder, method for producing the same, and high thermal conductive resin composition
Soltani et al. Effect of carbon black silanization on isothermal curing kinetics of epoxy nanocomposites
US20220289940A1 (en) Thermal conductive filler and preparation method thereof
JP2005171206A (en) Powdery mixture for blending with resin, and resin composition
Sipaut et al. The effect of surface modification of silica nanoparticles on the morphological and mechanical properties of bismaleimide/diamine matrices
JP2016193825A (en) Granule and method for producing the same
JP7257384B2 (en) Powder composed of organic-inorganic composite particles
KR20200121850A (en) BNNT thermal management material for high power systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5483922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250