JP2010253437A - Method for treating organic wastewater and chemical used for the method for treating the same - Google Patents
Method for treating organic wastewater and chemical used for the method for treating the same Download PDFInfo
- Publication number
- JP2010253437A JP2010253437A JP2009109307A JP2009109307A JP2010253437A JP 2010253437 A JP2010253437 A JP 2010253437A JP 2009109307 A JP2009109307 A JP 2009109307A JP 2009109307 A JP2009109307 A JP 2009109307A JP 2010253437 A JP2010253437 A JP 2010253437A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- organic
- waste
- treatment
- sludge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 79
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000126 substance Substances 0.000 title claims description 15
- 238000011282 treatment Methods 0.000 claims abstract description 81
- 239000010802 sludge Substances 0.000 claims abstract description 70
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000010815 organic waste Substances 0.000 claims abstract description 27
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000010794 food waste Substances 0.000 claims abstract description 5
- 239000010801 sewage sludge Substances 0.000 claims description 14
- 238000004065 wastewater treatment Methods 0.000 claims description 10
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 239000011574 phosphorus Substances 0.000 claims description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 239000002699 waste material Substances 0.000 claims description 8
- 235000013305 food Nutrition 0.000 claims description 6
- 244000144972 livestock Species 0.000 claims description 5
- 238000004043 dyeing Methods 0.000 claims description 4
- 239000010842 industrial wastewater Substances 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- 238000004064 recycling Methods 0.000 claims description 3
- 239000002154 agricultural waste Substances 0.000 claims description 2
- 238000005238 degreasing Methods 0.000 claims description 2
- -1 dredging Substances 0.000 claims description 2
- 210000003608 fece Anatomy 0.000 claims description 2
- 239000010871 livestock manure Substances 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000010893 paper waste Substances 0.000 claims description 2
- 239000012450 pharmaceutical intermediate Substances 0.000 claims description 2
- 244000144977 poultry Species 0.000 claims description 2
- 238000009991 scouring Methods 0.000 claims description 2
- 238000004381 surface treatment Methods 0.000 claims description 2
- 239000004753 textile Substances 0.000 claims description 2
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 230000006872 improvement Effects 0.000 abstract description 13
- 230000000052 comparative effect Effects 0.000 description 20
- 238000004062 sedimentation Methods 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000005273 aeration Methods 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 244000005700 microbiome Species 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000002957 persistent organic pollutant Substances 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 235000015097 nutrients Nutrition 0.000 description 4
- 239000011591 potassium Substances 0.000 description 4
- 229910052700 potassium Inorganic materials 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 3
- 235000013361 beverage Nutrition 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011701 zinc Substances 0.000 description 3
- 229910052725 zinc Inorganic materials 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 235000013527 bean curd Nutrition 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 235000008429 bread Nutrition 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 235000013365 dairy product Nutrition 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013611 frozen food Nutrition 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 235000012149 noodles Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Activated Sludge Processes (AREA)
Abstract
Description
本発明は、有機性汚濁成分を含む被処理水(以下、有機性排水又は原水とも呼ぶ)の生物処理方法に関し、より具体的には、有機性廃棄物の焼却灰を有効利用できると同時に、種々の有機性排水に対して、生物処理後の処理水の水質改善、汚泥沈降性の改善、処理の安定化、余剰汚泥の脱水性の改善等を達成できる生物処理方法に関する。 The present invention relates to a biological treatment method of water to be treated containing an organic pollutant component (hereinafter also referred to as organic wastewater or raw water), more specifically, incineration ash of organic waste can be used effectively, The present invention relates to a biological treatment method capable of achieving improvements in the quality of treated water after biological treatment, improvement in sludge settling, stabilization of treatment, improvement in dewaterability of excess sludge, and the like for various organic wastewater.
製紙排水、化学工場排水、染色排水、食品製造排水等の工場排水には、有機汚濁成分が多く含まれているが、これらの排水(有機性排水と呼ぶ)の処理は、一般的に、微生物によって有機汚濁成分を分解する生物処理によって行われている。生物処理方式としては、活性汚泥法、接触酸化法、固定床生物処理法、流動担体活性汚泥法、嫌気性消化(メタン発酵法)等が挙げられる。これらの生物処理方式は、いずれも微生物の生命活動を利用するものであるため、種々の検討がなされているものの、その処理効率を高めることは難しく、更なる検討が必要である。それと同時に、生物処理に特有の下記の課題があった。下水処理や工場排水処理等に広く採用されている活性汚泥法を例にとって説明すると、該方法で分解したBODのうちの50〜70%は微生物の維持エネルギーとして消費されるが、残りの30〜50%は菌体の増殖に使用されるため、汚泥量は次第に増加する。処理に必要となる量以上に増加した汚泥は固液分離し、余剰汚泥として取り除く必要があるので、生物処理で生じる大量の余剰汚泥の処理が常に問題となる。二次廃棄物として生ずる余剰汚泥の量は、近年ますます多くなり、種々の減容化の方法が試みられているものの、現状では、経済的な方法で余剰汚泥を完全になくすことは困難である。一方、余剰汚泥を廃棄処理する際には2次汚染の問題もあり、大量の余剰汚泥の処理の問題は深刻である。また、近年、環境保全に対する認識が高まり、その重要性が注目されており、生物処理後における処理水質の更なる改善、その安定性の確保も重要な課題となっている。 Industrial wastewater such as papermaking wastewater, chemical factory wastewater, dyeing wastewater, and food manufacturing wastewater contains a lot of organic pollutants, but the treatment of these wastewater (called organic wastewater) is generally microbial. Is carried out by biological treatment to decompose organic pollutant components. Examples of biological treatment methods include activated sludge method, catalytic oxidation method, fixed bed biological treatment method, fluid carrier activated sludge method, anaerobic digestion (methane fermentation method) and the like. These biological treatment methods all utilize the biological activities of microorganisms, and thus various studies have been made, but it is difficult to increase the treatment efficiency, and further studies are required. At the same time, there were the following problems specific to biological treatment. For example, an activated sludge method widely used in sewage treatment, factory wastewater treatment, etc., 50 to 70% of the BOD decomposed by the method is consumed as microbial maintenance energy, but the remaining 30 to 30%. Since 50% is used for the growth of bacterial cells, the amount of sludge gradually increases. Since the sludge increased beyond the amount required for the treatment needs to be solid-liquid separated and removed as excess sludge, the treatment of a large amount of excess sludge generated in biological treatment is always a problem. The amount of surplus sludge generated as secondary waste has been increasing in recent years, and various volume reduction methods have been tried. However, at present, it is difficult to completely eliminate surplus sludge by an economical method. is there. On the other hand, when surplus sludge is disposed of, there is a problem of secondary pollution, and a large amount of surplus sludge is serious. In recent years, awareness of environmental conservation has increased, and its importance has attracted attention. Further improvement of treated water quality after biological treatment and ensuring its stability are also important issues.
余剰汚泥の処理としては、汚泥を脱水処理した後、そのまま或いは焼却後、埋立て等される場合が多い。これに対し、大量に生じる余剰汚泥の焼却灰を有効利用するための方法の検討は種々になされている。例えば、下水汚泥処理設備で発生する下水汚泥焼却灰を造粒成型後、成型物を乾燥焼成して骨材とすることや(例えば、特許文献1参照)、汚泥焼却灰等の焼却灰に、活性汚泥処理等の有機性汚泥を混合させて土壌改良材とすること(例えば、特許文献2参照)等、焼却灰を種々の製品原料として利用することについて提案されている。 As the treatment of excess sludge, after sludge is dehydrated, it is often landfilled as it is or after incineration. On the other hand, various methods for effectively using the incineration ash of excess sludge generated in large quantities have been studied. For example, after granulating and molding the sewage sludge incineration ash generated in the sewage sludge treatment facility, the molded product is dried and fired to form an aggregate (for example, see Patent Document 1), incineration ash such as sludge incineration ash, It has been proposed to use incinerated ash as various product raw materials, such as mixing organic sludge such as activated sludge treatment to make a soil improvement material (see, for example, Patent Document 2).
一方、近年における産業や生活の発展に伴い、生活の中で生じる厨芥や食品残渣、或いは、農業、畜産、水産、林産等からの有機性廃棄物は多量に、集中的に発生するようになってきており、これらを処理した後に生じる大量の焼却灰の廃棄処理も問題になっている。これに対し、その溶融生成物を排水処理の際に使用する微生物の付着担体とする、といった方法で利用することが提案されている(例えば、特許文献3参照)。 On the other hand, along with the development of industry and life in recent years, large amounts of organic waste from agriculture, livestock, fisheries, forestry, etc. have been generated in a concentrated manner. The disposal of a large amount of incinerated ash generated after processing these materials has also become a problem. On the other hand, it has been proposed to use the melted product as a microorganism adhesion carrier used in wastewater treatment (see, for example, Patent Document 3).
したがって、本発明の目的は、有機性排水の生物処理における処理水の更なる水質改善、発生する汚泥の沈降性の改善、処理の安定性の確保、余剰汚泥の脱水性の改善を実現できる生物処理方法を提供することである。本発明の別の目的は、より経済的でより良好な有機性排水の生物処理方法の実現と、余剰汚泥や食品残渣といった有機性廃棄物の焼却灰の有効な利用の途を提供することで、これらの有機性廃棄物の処理にも資することである。 Therefore, an object of the present invention is to provide a biological material that can further improve the quality of treated water in biological treatment of organic wastewater, improve the sedimentation of generated sludge, ensure the stability of treatment, and improve the dewaterability of excess sludge. It is to provide a processing method. Another object of the present invention is to provide a more economical and better biological treatment method for organic wastewater and to provide an effective use of incineration ash of organic waste such as excess sludge and food residues. It also contributes to the treatment of these organic wastes.
上記の目的は、下記の本発明によって達成される。すなわち、本発明は、有機性廃棄物を焼却処分して得られた焼却灰を利用して有機性排水を生物処理する有機性排水の処理方法であって、有機性排水に上記焼却灰を添加したものを原水とするか、生物反応槽に上記焼却灰を添加するか、或いは、返送汚泥に上記焼却灰を添加するか、の少なくともいずれかの焼却灰の添加工程を有することを特徴とする有機性排水の処理方法を提供する。さらに、本発明は、該有機性排水の処理方法に使用する薬剤であって、有機性廃棄物を焼却して得られた焼却灰を主成分としてなることを特徴とする排水処理用薬剤を提供する。 The above object is achieved by the present invention described below. That is, the present invention is an organic wastewater treatment method for biologically treating organic wastewater using incineration ash obtained by incineration of organic waste, and the incineration ash is added to the organic wastewater. It is characterized by having an incineration ash addition step of at least one of using the raw water as raw water, adding the incineration ash to a biological reaction tank, or adding the incineration ash to return sludge Provide a method for treating organic wastewater. Furthermore, the present invention provides a chemical for wastewater treatment, which is a chemical used in the method for treating organic wastewater, comprising incinerated ash obtained by incineration of organic waste as a main component. To do.
本発明によれば、有機性排水の生物処理における処理水質の更なる改善、発生する汚泥の沈降性の改善、処理の安定性の確保、余剰汚泥の脱水性の改善を実現できる生物処理方法が提供される。本発明によれば、より経済的でより良好な有機性排水の生物処理方法が実現されると同時に、有機性廃棄物の焼却灰の有効な利用の途が提供される。 According to the present invention, there is provided a biological treatment method capable of realizing further improvement of treated water quality in biological treatment of organic wastewater, improvement of settling property of generated sludge, ensuring treatment stability, and improvement of dewatering property of excess sludge. Provided. ADVANTAGE OF THE INVENTION According to this invention, the more economical and better biological treatment method of organic waste water is implement | achieved, and the way of the effective utilization of the incineration ash of organic waste is provided.
本発明の好ましい実施の形態を挙げて本発明を詳細に説明する。本発明者らは、上記従来技術の問題点を解決すべく鋭意検討の結果、有機性排水の生物処理の際に、有機性廃棄物を焼却処分して得られた焼却灰を処理のいずれかの段階で添加することで、発生する汚泥の沈降性が向上し、固液分離が良好な状態で行われると同時に、処理水の水質が改善されることを見出した。具体的には、下記の少なくともいずれかの段階で焼却灰を添加することが有効であることを見出した。すなわち、少なくとも、有機性排水に上記焼却灰を添加したものを原水とする、或いは、生物反応槽に上記焼却灰を添加する、或いは、返送汚泥に上記焼却灰を添加する、のいずれかの構成とする。勿論、これらを組み合わせて焼却灰を添加するようにしてもよい。本発明者らは、上記のように構成することで、処理の安定性が確保され、良好な生物処理を持続して行えるようになることを確認した。さらに、余剰汚泥の脱水性が向上することもわかった。余剰汚泥の脱水性の向上は、結果として、乾燥後、焼却する余剰汚泥の処理の経済性向上に繋がる。 The present invention will be described in detail with reference to preferred embodiments of the present invention. As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors have either treated incineration ash obtained by incineration of organic waste during the biological treatment of organic wastewater. It was found that by adding at this stage, the sedimentation property of the generated sludge is improved, the solid-liquid separation is performed in a good state, and at the same time, the quality of the treated water is improved. Specifically, it has been found that it is effective to add incineration ash in at least one of the following stages. In other words, at least the incineration ash added to the organic waste water is used as raw water, the incineration ash is added to the biological reaction tank, or the incineration ash is added to the return sludge. And Of course, you may make it add incineration ash combining these. The inventors of the present invention have confirmed that, by configuring as described above, the stability of the treatment is ensured and good biological treatment can be performed continuously. It was also found that the dewaterability of excess sludge was improved. Improvement of the dewaterability of excess sludge results in an improvement in the economic efficiency of the treatment of excess sludge that is incinerated after drying.
有機性廃棄物を焼却処分して得られた焼却灰を処理のいずれかの段階で添加して有機性排水の生物処理に利用することで上記した優れた効果が得られる理由について、本発明者らは下記のように考えている。本発明者らは、検討過程において、例えば、製紙排水、化学工場排水、染色排水、食品製造排水等の各種の工場排水を生物処理する場合、これらの排水に含まれる有機汚濁成分ならびに無機成分のバランスは、必ずしも生物処理に適した状態のものではないことを確認した。すなわち、無機成分について言えば、窒素、リンといった微生物体の主要構成元素となるものが排水中に不足している場合があるが、その場合には、明らかに生物処理効率が劣ったものになる。このため、このような窒素或いはリンが不足する排水に対しては、通常、人為的に、窒素及びリンを添加することで不足分を補って処理が行われている。本発明者らの更なる検討によれば、上記にかぎらず、ナトリウム、カリウム、カルシウム、マグネシウム、塩化物イオン、イオウ、或いは、鉄、亜鉛、銅、アルミ等の、生物体を構成するに必要な元素を殆ど含まないか、偏った組成の排水がある。しかし、このような成分については、生物処理に対する影響を特に考慮していないのが現状である。本発明者らは、生物処理の効率向上のためには、これらの成分の存在も無視できないものであるとして、この点も含めて詳細な検討を行い、本発明に至ったものである。 Regarding the reason why the above-described excellent effect can be obtained by adding incineration ash obtained by incineration of organic waste at any stage of treatment and using it for biological treatment of organic wastewater, the present inventor Think as follows. In the examination process, for example, when biologically treating various factory effluents such as paper effluents, chemical factory effluents, dyeing effluents, food manufacturing effluents, etc., organic pollutants and inorganic components contained in these effluents It was confirmed that the balance was not necessarily in a state suitable for biological treatment. That is, when it comes to inorganic components, the main constituent elements of microorganisms such as nitrogen and phosphorus may be deficient in the wastewater, but in that case, the biological treatment efficiency is clearly inferior. . For this reason, such waste water lacking nitrogen or phosphorus is usually treated artificially by adding nitrogen and phosphorus to compensate for the shortage. According to further studies by the present inventors, not only the above, but also necessary to constitute a living organism such as sodium, potassium, calcium, magnesium, chloride ion, sulfur, or iron, zinc, copper, aluminum, etc. There is a wastewater with a rare composition or a biased composition. However, at present, such components are not particularly considered for the effects on biological treatment. In order to improve the efficiency of biological treatment, the present inventors have considered that the presence of these components is not negligible, and have conducted detailed studies including this point, and have reached the present invention.
本発明者らは、まず、経験上、無機成分の少ないと考えられる排水処理で発生する活性汚泥では、沈降性並びに脱水性が悪く、また、処理水質の安定を確保するのに苦労することが多い場合があることに着目した。汚泥の沈降性が悪化する原因としては、糸状性細菌が異常増殖する場合と、活性汚泥の粘性が増加する場合が考えられる。従来より、栄養分の不足する排水では、上記した現象が頻繁に生じることがあった。 First of all, the inventors of the present invention have experience that activated sludge generated in wastewater treatment that is considered to have a small amount of inorganic components has poor sedimentation and dehydration properties, and may have difficulty in ensuring the stability of the treated water. We focused on the fact that there are many cases. Possible causes of the deterioration of sludge sedimentation include the case where filamentous bacteria grow abnormally and the case where the viscosity of activated sludge increases. Conventionally, the above-mentioned phenomenon has frequently occurred in wastewater with insufficient nutrients.
糸状性細菌は、糸状体を形成するため体表面積が広く、この結果として、低濃度な栄養分の吸収速度が速くなると考えられている。本発明者らは、栄養分である有機成分の吸収はもとより、上記に挙げたような無機成分についても、同様の傾向があると推察している。すなわち、無機/有機を問わず栄養分の不足する条件では、フロック形成型のバクテリアよりも糸状性細菌の増殖速度が速くなると考えられる。そして、結果として、例えば、活性汚泥法にあっては、活性汚泥中の糸状性細菌が優占種となり、糸状性細菌の異常増殖が発生し、このことが汚泥の沈降不良の一因となっていると考えられる。 Filamentous bacteria form a filamentous body and have a large body surface area. As a result, it is thought that the absorption rate of low-concentration nutrients is increased. The present inventors presume that there is a similar tendency not only for absorption of organic components as nutrients but also for inorganic components as listed above. That is, it is considered that the growth rate of filamentous bacteria is faster than that of floc-forming bacteria under the condition of lacking nutrients regardless of inorganic / organic. As a result, for example, in the activated sludge method, filamentous bacteria in the activated sludge become the dominant species, and abnormal growth of the filamentous bacteria occurs, which contributes to poor sedimentation of the sludge. It is thought that.
一方、活性汚泥の粘性の増加もはっきりしたメカニズムは不明であるが、下記に述べるように、この場合も処理対象の排水(原水)の栄養バランスが原因していると考えられる。バクテリアは一般的に、貧栄養状態におくと、菌体を守るために体外ポリマーを活発に産生することが知られている。このことから、原水の無機栄養バランスが崩れ或いは不足することが、活性汚泥の粘性増加の原因となっていると考えられる。 On the other hand, the clear mechanism of the increase in the viscosity of activated sludge is unknown, but as described below, it is thought that this is also due to the nutritional balance of the wastewater (raw water) to be treated. Bacteria are generally known to actively produce extracorporeal polymers to protect bacterial cells when placed in an oligotrophic state. From this, it is considered that the mineral nutrition balance of the raw water is lost or insufficient, which causes an increase in the viscosity of the activated sludge.
本発明者らは、上記知見に基づき、安価で入手し易く、しかも、排水に添加することで、性状が異なる各種有機性排水中の有機汚濁成分並びに無機成分のバランスを生物処理に適したものにできる材料があれば非常に有用であると考え、種々の検討を行った。具体的には、生物処理の効率向上の立場から、様々なものについて、添加材料として有効か否かの検討を行った。その結果、有機性廃棄物の焼却灰が、本発明の目的を達成するための最適な材料であることを見出して本発明に至った。本発明者らの検討によれば、下水汚泥、産業排水の生物処理から発生する余剰汚泥、厨芥、食品残渣、農業廃棄物、家畜・家禽糞尿、畜産廃棄物、水産廃棄物、林産廃棄物等の有機性廃棄物の焼却灰であれば、いずれも本発明の効果を得ることができる。また、上記した中でも特に、下水汚泥の焼却灰、産業排水の生物処理装置から発生する余剰汚泥の焼却灰を用いれば、本発明の効果がより顕著に得られる。 Based on the above knowledge, the present inventors are inexpensive and easy to obtain, and are suitable for biological treatment by adding to the wastewater the balance between organic pollutant components and inorganic components in various organic wastewaters having different properties. We thought that it would be very useful if there was a material that could be made, and conducted various studies. Specifically, from the standpoint of improving the efficiency of biological treatment, we examined whether various materials are effective as additive materials. As a result, the incineration ash of organic waste was found to be an optimum material for achieving the object of the present invention, and the present invention was achieved. According to the study by the present inventors, sewage sludge, surplus sludge generated from biological treatment of industrial wastewater, dredging, food residues, agricultural waste, livestock / poultry manure, livestock waste, aquatic waste, forest waste, etc. Any organic waste incineration ash can achieve the effects of the present invention. In particular, the effects of the present invention can be obtained more significantly by using incineration ash of sewage sludge and incineration ash of surplus sludge generated from biological wastewater treatment equipment.
下記に示した通り、生物処理に使用する活性汚泥微生物等においては、排水処理微生物の体を構成する無機成分が極めてバランスよく含有されており、本発明の目的達成に好適である。表−1に、下水汚泥焼却灰の組成の分析例を示したが、リンは勿論、微生物の生命維持に必要と考えられる微量成分がバランスよく含有されている。本発明者らの検討によれば、焼却灰100g中に、酸化物換算で、少なくとも5gのリン分を含むものが好ましい。その他の成分として、少なくとも、カリウム、カルシウム、ナトリウム、マグネシウム、マンガン、鉄、亜鉛、銅等を含有するもの、特に、カリウム、カルシウム及びマグネシウムを含むものが好ましい。有機性廃棄物の焼却灰中には、これらの成分がバランスよく含有されているのでいずれのものも好ましく使用できるが、特に、下水汚泥、産業排水の生物処理から発生する余剰汚泥、食品残渣等の有機性廃棄物の焼却灰を用いることが好ましい。カリウム、カルシウム、ナトリウム、マグネシウムについては、焼却灰100g中に、酸化物換算で、少なくとも1g以上含まれていることが好ましい。また、マンガン、鉄、亜鉛、銅については、焼却灰100g中に、酸化物換算で、少なくとも0.1g以上含まれていることが好ましい。 As shown below, in activated sludge microorganisms used for biological treatment, inorganic components constituting the body of wastewater treatment microorganisms are contained in a very balanced manner, which is suitable for achieving the object of the present invention. Table 1 shows an analysis example of the composition of sewage sludge incineration ash, but it contains not only phosphorus but also trace components that are considered necessary for maintaining the life of microorganisms in a well-balanced manner. According to the study by the present inventors, it is preferable that 100 g of incinerated ash contains at least 5 g of phosphorus in terms of oxide. As other components, those containing at least potassium, calcium, sodium, magnesium, manganese, iron, zinc, copper and the like, particularly those containing potassium, calcium and magnesium are preferred. Since these components are contained in a well-balanced manner in the incineration ash of organic waste, any of them can be preferably used, but in particular, sewage sludge, surplus sludge generated from biological treatment of industrial wastewater, food residues, etc. It is preferable to use incineration ash of organic waste. About potassium, calcium, sodium, and magnesium, it is preferable that at least 1 g or more is contained in 100 g of incinerated ash in terms of oxide. Moreover, about manganese, iron, zinc, and copper, it is preferable that at least 0.1g or more is contained in 100g of incineration ash in conversion of an oxide.
本発明は、有機性廃棄物の焼却灰を生物処理のいずれかの段階で添加し、該焼却灰を生物処理に利用することを特徴とする。本発明においては、上記のような焼却灰を使用する場合に、特に、焼却灰の粉砕や、粒度調整や、有機物の抽出等の前処理をする必要はなく、そのまま使用することができる。換言すれば、本発明によって、極めて低コストの有機性廃棄物の利用方法の提供が可能になったと言える。ただし、有機性廃棄物の焼却灰を得る際に、有機性廃棄物の形態によっては、その取り扱い性や、輸送性等に劣る場合があるので、その場合には必要に応じて、例えば、大粒径の夾雑物の篩い分けや、水分の乾燥操作等を実施すればよい。 The present invention is characterized in that incineration ash of organic waste is added at any stage of biological treatment, and the incinerated ash is used for biological treatment. In the present invention, when using the incinerated ash as described above, it is not particularly necessary to perform pretreatment such as pulverization of the incinerated ash, particle size adjustment, or extraction of organic substances, and they can be used as they are. In other words, it can be said that the present invention has made it possible to provide a method for using organic waste at a very low cost. However, when incineration ash of organic waste is obtained, depending on the form of organic waste, its handling property, transportability, etc. may be inferior. What is necessary is just to carry out the sieving of the foreign substance of a particle size, the drying operation of a water | moisture content, etc.
本発明で使用する生物処理方式は、活性汚泥法に限らず、微生物の生命活動を利用する、接触酸化法、固定床生物処理法、流動担体活性汚泥法或いは嫌気性消化(メタン発酵法)等、いずれでもよい。 The biological treatment method used in the present invention is not limited to the activated sludge method, but uses a biological activity of microorganisms, such as a catalytic oxidation method, a fixed bed biological treatment method, a fluidized carrier activated sludge method, or an anaerobic digestion (methane fermentation method). Any of them may be used.
本発明の効果が認められる、本発明の生物処理方法を適用可能な有機性排水としては、生物処理が可能なあらゆる有機性排水が挙げられる。特に、紙パルプ製造工場排水、古紙再生工場排水、石油化学工業排水、有機合成化学工場排水、油脂化学排水、製薬・医薬中間体製造排水、繊維工業排水、染色排水、精練排水、金属表面処理・脱脂排水、食品製造排水、製紙排水或いは化学工場排水が挙げられる。これらの中でも特に、菓子・パン製造排水、酒類製造排水、飲料製造排水、乳製品製造排水、麺類製造排水、豆腐製造排水、惣菜・冷凍食品製造排水等の食品製造排水に適用した場合に、より高い効果が得られる。 Examples of organic wastewater to which the effect of the present invention is applicable and to which the biological treatment method of the present invention can be applied include all organic wastewater capable of biological treatment. Especially, pulp and paper factory wastewater, wastepaper recycling factory wastewater, petrochemical industry wastewater, organic synthetic chemical factory wastewater, fat and oil chemical wastewater, pharmaceutical and pharmaceutical intermediate wastewater, textile industry wastewater, dyeing wastewater, scouring wastewater, metal surface treatment Degreasing wastewater, food production wastewater, papermaking wastewater or chemical factory wastewater. Among these, especially when applied to food production effluents such as confectionery / bread effluent, liquor effluent, beverage effluent, dairy effluent, noodle effluent, tofu effluent, prepared food / frozen food effluent, etc. High effect is obtained.
上記したような有機性排水への有機性廃棄物の焼却灰の添加量は、処理対象の有機性排水によっても異なるが、排水量に対して2〜1,000mg/lを継続的に添加し、これを原水として処理することが効果的である。しかし、これに限らず、例えば、沈降不良の発生時や、処理水質の悪化時に、これらを改善する目的で、一時的に添加することも有効である。この場合における添加量としては、例えば、一度に、排水量に対して100〜3,000mg/l程度を添加することが有効である。 The amount of incineration ash of organic waste to the organic wastewater as described above varies depending on the organic wastewater to be treated, but continuously adds 2 to 1,000 mg / l to the wastewater amount, It is effective to treat this as raw water. However, the present invention is not limited to this, and it is also effective to add temporarily for the purpose of improving these when, for example, sedimentation failure occurs or the quality of treated water deteriorates. In this case, for example, it is effective to add about 100 to 3,000 mg / l with respect to the amount of drainage at a time.
次に、本発明の実施例及び比較例を挙げて本発明を更に詳細に説明する。
<実施例1、2及び比較例1>
曝気槽容量5L、沈殿槽容量3Lの活性汚泥試験装置を3系列用意し、古紙再生排水の沈殿処理水を、各系列とも20L/日通水で連続的に処理を行った。その際、下水活性汚泥を種汚泥として、各曝気槽中に2,000mg/lとなるように添加して処理試験を開始した。試験に用いた古紙再生排水の沈殿処理水の平均水質は、pH=6.7、SS=25mg/l、COD=130mg/l、BOD=180mg/lであった。
Next, the present invention will be described in more detail with reference to examples and comparative examples of the present invention.
<Examples 1 and 2 and Comparative Example 1>
Three series of activated sludge test devices with an aeration tank capacity of 5 L and a sedimentation tank capacity of 3 L were prepared, and the wastewater recycling wastewater was treated with 20 L / day water continuously for each series. At that time, the treatment test was started by adding sewage activated sludge as seed sludge to each aeration tank so as to be 2,000 mg / l. The average water quality of the precipitation-treated water of the used paper recycled wastewater used in the test was pH = 6.7, SS = 25 mg / l, COD = 130 mg / l, BOD = 180 mg / l.
上記のうちの1系列を、下水汚泥焼却灰を処理排水量に対し10mg/lになるよう連続的に添加し、これを原水として処理を行い、実施例1とした。また、別の1系列を、間伐材や木の枝等を焼却した林産廃棄物焼却灰を処理排水量に対し10mg/lになるように連続的に添加し、これを原水として処理を行い、実施例2とした。残りの1系列には焼却灰を添加せず、そのまま処理を行い、比較例1とした。そして、いずれの系列についても2ヶ月間処理を継続した。2ヶ月後の時点で得られた処理水の水質を表−2に示した。 One series of the above was continuously added as sewage sludge incineration ash to 10 mg / l with respect to the amount of treated wastewater, and this was treated as raw water to give Example 1. In addition, another series is continuously added to forest waste incinerated ash from incineration of thinned wood, tree branches, etc. so that the treated wastewater becomes 10 mg / l, and this is treated as raw water. Example 2 was adopted. The remaining one series was treated as it was without adding incineration ash, and Comparative Example 1 was obtained. And processing was continued for 2 months about any series. The water quality of the treated water obtained after 2 months is shown in Table-2.
表−2に示したように、各処理水の、pH、SS及びBODについては、実施例1及び2と比較例1とで、測定結果に大きな差は認められなかった。しかし、各処理水のCODについては、実施例1の処理では18mg/l、実施例2の処理では19mg/lであったのに対し、比較例1の処理では39mg/lとなり、実施例による処理の方が約20mg/l良好な結果となり、有意差があることを確認した。また、活性汚泥の沈降指標であるSVIについても、実施例1の処理では120、実施例2の処理では110といずれも良好な沈降性を示したが、比較例の処理では330と沈降不良状態となることを確認した。さらに、曝気槽内の活性汚泥と原水との混合液の粘度を回転式粘度計で測定したところ、実施例1及び2の処理では3cpであったのに対し、比較例1の処理では8cpであり、比較例の活性汚泥混合液の粘度が高い値を示し、明らかに有意差があることが確認できた。実施例と比較例における沈降指標SVIの違いは、この活性汚泥の粘度の差に起因しているものと考えられる。なお、曝気槽中の活性汚泥混合液のMLSS濃度は、実施例1及び2並びに比較例1とも5,000mg/lに濃度調整した後に測定した。 As shown in Table 2, with respect to the pH, SS, and BOD of each treated water, there was no significant difference in measurement results between Examples 1 and 2 and Comparative Example 1. However, the COD of each treated water was 18 mg / l in the treatment of Example 1 and 19 mg / l in the treatment of Example 2, whereas it was 39 mg / l in the treatment of Comparative Example 1, which depends on the example. The result of treatment was about 20 mg / l better and it was confirmed that there was a significant difference. In addition, SVI, which is a sedimentation index of activated sludge, showed good sedimentation properties of 120 in the treatment of Example 1 and 110 in the treatment of Example 2, but 330 and poor sedimentation state in the treatment of the comparative example. It was confirmed that Furthermore, when the viscosity of the mixed liquid of activated sludge and raw water in the aeration tank was measured with a rotary viscometer, it was 3 cp in the treatments of Examples 1 and 2, whereas it was 8 cp in the treatment of Comparative Example 1. Yes, the viscosity of the activated sludge mixed solution of the comparative example showed a high value, and it was confirmed that there was a clear significant difference. The difference in the sedimentation index SVI between the example and the comparative example is considered to be caused by the difference in the viscosity of the activated sludge. The MLSS concentration of the activated sludge mixed solution in the aeration tank was measured after adjusting the concentration to 5,000 mg / l in both Examples 1 and 2 and Comparative Example 1.
<実施例3及び比較例2>
実施例1等で使用したと同じ活性汚泥試験装置を2系列用意し、処理対象を飲料製造工場排水として同様の試験を行った。実施例3及び比較例2では、曝気槽に、種汚泥として下水処理活性汚泥を4,000mg/lとなるように添加して処理を行った。試験に用いた飲料製造工場排水の平均水質は、pH=6.2、SS=250mg/l、COD=880mg/l、BOD=1,750mg/lであった。
<Example 3 and Comparative Example 2>
Two series of the same activated sludge test apparatus as used in Example 1 and the like were prepared, and the same test was performed with the treatment target being drainage from a beverage manufacturing factory. In Example 3 and Comparative Example 2, sewage treatment activated sludge was added to the aeration tank as seed sludge so as to be 4,000 mg / l. The average water quality of the beverage factory waste water used for the test was pH = 6.2, SS = 250 mg / l, COD = 880 mg / l, BOD = 1,750 mg / l.
処理に際しては比較例2となる系列では、尿素を窒素として原水BODの5%、リン酸をリンとして原水BODの1%を連続的に添加した。一方、実施例3となる系列では、尿素を窒素として原水BODの5%を連続的に添加したのみで、リンの添加は行わず、代わりに、酒類製造工場排水処理設備から発生する活性汚泥の余剰汚泥の焼却灰を排水量に対して50mg/lずつ連続添加しながら処理を行った。そして、処理開始から50日後の時点で得られた処理水の水質並びに汚泥性状を表−3に示した。 At the time of treatment, in the series of Comparative Example 2, 5% of raw water BOD was continuously added with urea as nitrogen, and 1% of raw water BOD was continuously added with phosphoric acid as phosphorus. On the other hand, in the series of Example 3, only 5% of raw water BOD was continuously added using urea as nitrogen, and phosphorus was not added. Instead, activated sludge generated from the wastewater treatment facility of liquor manufacturing plant was used. The incineration ash of excess sludge was processed while continuously adding 50 mg / l to the amount of waste water. And the water quality and sludge property of the treated water obtained at the time of 50 days after the start of treatment are shown in Table-3.
表−3より、処理水質では、SSとBODについては実施例3と比較例2で大きな差は認められなかった。しかし、各処理水のCODについては、実施例3の処理では22mg/lであったのに対し、比較例2の処理では29mg/lであり、実施例3の処理の方が7mg/l低かった。このように、実施例と比較例とでは、処理によって得られた処理水の性状に明らかな有意差があり、実施例の処理の方が良好な結果が得られた。また、汚泥の沈降指標のSVIでは、実施例3の処理では80と良好な沈降性を示したのに対し、比較例2の処理では620と極めて沈降性の悪い状態であり、水処理の継続が困難な状況であった。曝気槽内の状態について観察したところ、比較例2の活性汚泥中には多量の糸状性細菌が認められ、この糸状性細菌の異常発生が沈降性悪化の原因と考えられる。
さらに、ろ布圧搾型の脱水試験装置で、実施例3及び比較例2の処理で使用した処理後の各沈殿槽内の活性汚泥を脱水処理し、脱水ケーキの含水率を測定した。その結果、実施例3では82%、比較例2では86%であり、汚泥の脱水性の改善効果も確認することができた。
From Table-3, in process water quality, a big difference was not recognized by Example 3 and the comparative example 2 about SS and BOD. However, the COD of each treated water was 22 mg / l in the treatment of Example 3, whereas it was 29 mg / l in the treatment of Comparative Example 2, and the treatment of Example 3 was 7 mg / l lower. It was. Thus, there was a clear significant difference in the properties of the treated water obtained by the treatment between the example and the comparative example, and better results were obtained with the treatment of the example. Further, in the SVI of the sludge sedimentation index, the treatment of Example 3 showed a good sedimentation value of 80, whereas the treatment of Comparative Example 2 was in a very poor sedimentation state of 620, and the water treatment was continued. It was a difficult situation. When the state in the aeration tank was observed, a large amount of filamentous bacteria was observed in the activated sludge of Comparative Example 2, and this abnormal occurrence of filamentous bacteria is considered to be the cause of the deterioration of sedimentation.
Furthermore, the activated sludge in each settling tank after the treatment used in the treatment of Example 3 and Comparative Example 2 was dehydrated with a filter cloth compression type dehydration test apparatus, and the moisture content of the dehydrated cake was measured. As a result, it was 82% in Example 3 and 86% in Comparative Example 2, and the effect of improving the dewaterability of sludge could be confirmed.
<実施例4>
実施例1において、原水に下水汚泥焼却灰を添加せずに、曝気槽内に下水汚泥焼却灰を添加した以外は、実施例1と同様にして生物処理を行った。下水汚泥焼却灰の添加量は、曝気槽内における焼却灰の量が、処理排水量に対して10mg/lになるようにした。その結果、実施例1と同様に良好な処理がされることを確認した。
<Example 4>
In Example 1, biological treatment was performed in the same manner as in Example 1 except that sewage sludge incineration ash was not added to the raw water, but sewage sludge incineration ash was added to the aeration tank. The amount of sewage sludge incineration ash added was such that the amount of incineration ash in the aeration tank was 10 mg / l with respect to the amount of treated wastewater. As a result, it was confirmed that good treatment was performed as in Example 1.
<実施例5>
実施例1において、原水に下水汚泥焼却灰を添加せずに、曝気槽内への返送汚泥に下水汚泥焼却灰を添加した以外は、実施例1と同様にして生物処理を行った。下水汚泥焼却灰の添加量は、返送汚泥が戻される曝気槽内における焼却灰の量が、処理排水量に対して10mg/lになるようにした。その結果、実施例1と同様に良好な処理がされることを確認した。
<Example 5>
In Example 1, the biological treatment was performed in the same manner as in Example 1 except that the sewage sludge incinerated ash was not added to the raw water, but the sewage sludge incinerated ash was added to the returned sludge into the aeration tank. The amount of sewage sludge incinerated ash added was such that the amount of incinerated ash in the aeration tank to which the returned sludge was returned was 10 mg / l with respect to the amount of treated wastewater. As a result, it was confirmed that good treatment was performed as in Example 1.
本発明の活用例としては、種々の性状を有する各種の有機性排水に適用可能であり、より経済的でより良好な有機性排水の処理の実現と、有機性廃棄物の焼却灰の有効利用とを同時達成できる有機性排水の生物処理方法が挙げられる。 As an application example of the present invention, it can be applied to various organic wastewaters having various properties, realize more economical and better treatment of organic wastewater, and effectively use incineration ash of organic waste Can be achieved at the same time.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009109307A JP5767773B2 (en) | 2009-04-28 | 2009-04-28 | Organic wastewater treatment method and chemicals used in the treatment method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009109307A JP5767773B2 (en) | 2009-04-28 | 2009-04-28 | Organic wastewater treatment method and chemicals used in the treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010253437A true JP2010253437A (en) | 2010-11-11 |
JP5767773B2 JP5767773B2 (en) | 2015-08-19 |
Family
ID=43314995
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009109307A Active JP5767773B2 (en) | 2009-04-28 | 2009-04-28 | Organic wastewater treatment method and chemicals used in the treatment method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5767773B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011050910A (en) * | 2009-09-03 | 2011-03-17 | Sumitomo Heavy Industries Environment Co Ltd | Method and apparatus for biological wastewater treatment |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4957663A (en) * | 1972-10-03 | 1974-06-04 | ||
JPS505868B1 (en) * | 1970-02-18 | 1975-03-07 | ||
JPS52151258A (en) * | 1976-06-10 | 1977-12-15 | Suido Kiko Kk | Treating of sewage biophysically |
JPS6078695A (en) * | 1983-10-07 | 1985-05-04 | Kanzaki Paper Mfg Co Ltd | Activated sludge treating method |
JPH08243345A (en) * | 1995-03-14 | 1996-09-24 | Mitsubishi Heavy Ind Ltd | Treatment of malodorous gas |
JPH0975747A (en) * | 1995-09-11 | 1997-03-25 | Okaya Electric Ind Co Ltd | Method for caking photocatalyst |
JP2001200252A (en) * | 2000-01-18 | 2001-07-24 | Natl Res Inst Of Agricultural Engineering | Soil hardener composition and production method therefor |
-
2009
- 2009-04-28 JP JP2009109307A patent/JP5767773B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS505868B1 (en) * | 1970-02-18 | 1975-03-07 | ||
JPS4957663A (en) * | 1972-10-03 | 1974-06-04 | ||
JPS52151258A (en) * | 1976-06-10 | 1977-12-15 | Suido Kiko Kk | Treating of sewage biophysically |
JPS6078695A (en) * | 1983-10-07 | 1985-05-04 | Kanzaki Paper Mfg Co Ltd | Activated sludge treating method |
JPH08243345A (en) * | 1995-03-14 | 1996-09-24 | Mitsubishi Heavy Ind Ltd | Treatment of malodorous gas |
JPH0975747A (en) * | 1995-09-11 | 1997-03-25 | Okaya Electric Ind Co Ltd | Method for caking photocatalyst |
JP2001200252A (en) * | 2000-01-18 | 2001-07-24 | Natl Res Inst Of Agricultural Engineering | Soil hardener composition and production method therefor |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011050910A (en) * | 2009-09-03 | 2011-03-17 | Sumitomo Heavy Industries Environment Co Ltd | Method and apparatus for biological wastewater treatment |
Also Published As
Publication number | Publication date |
---|---|
JP5767773B2 (en) | 2015-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vijayaraghavan et al. | Aerobic treatment of palm oil mill effluent | |
Shabir et al. | Treatment technologies for olive mill wastewater with impacts on plants | |
Zorpas et al. | Combination of Fenton oxidation and composting for the treatment of the olive solid residue and the olive mile wastewater from the olive oil industry in Cyprus | |
US20020030012A1 (en) | Comprehensive waste treatment system and related methods for animal feeding operations to effectively recover waste solids for beneficial re-use and for treatment of wastewater for nutrient removal and recycle, re-use or discharge | |
US10144044B2 (en) | Treatment of trade effluent from food waste disposal systems | |
US7892310B2 (en) | Biowaste treatment | |
CN104961306A (en) | Treatment method cattle farm culture wastewater | |
US11155484B2 (en) | Systems and methods for treating wastewater and providing class A sludge | |
Rifi et al. | Sequencing batch reactor efficiency to reduce pollutant in olive oil mill wastewater mixed with urban wastewater | |
KR102361968B1 (en) | The wastewater treatment method using compound microorganisms | |
Matsumoto et al. | Treatment of wastewater from dairy plants using Anaerobic Sequencing Batch Reactor (ASBR) following by Aerobic Sequencing Batch Reactor (SBR) aiming the removal of organic matter and nitrification | |
Singh et al. | Treatment and recycling of wastewater from sugar mill | |
CN104355488A (en) | Domestic sewage treatment method and domestic sewage treatment device | |
CA2967712A1 (en) | Treatment of trade effluent from food waste disposal systems | |
JP5767773B2 (en) | Organic wastewater treatment method and chemicals used in the treatment method | |
Freedman et al. | Chemical and biological flocculation of purple sulphur bacteria in anaerobic lagoon effluent | |
JP3059945B2 (en) | Improvement method of purification treatment equipment | |
JPH10249374A (en) | Method for purifying waste water | |
KR20170045707A (en) | A treatment method of concentrated waste water oder using soilmicrobes population | |
Patil et al. | An Innovative and Effective Industrial Wastewater Treatments: A Brief History and Present Scenario | |
Jaouad et al. | Soluble microbial products and performances assessment during OMW biological treatment by an activated sludge pilot | |
Jusoh et al. | Agro-based wastewater profile by biological treatment of pond treatment system in Kulai, Johor | |
JP2000279979A (en) | Wastewater treatment | |
JPH0566199B2 (en) | ||
Bhuvanendran et al. | Remediation and management techniques for industrial dairy wastewater and sludge: a review |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120313 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130313 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150127 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5767773 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |