JP2010253405A - Apparatus and method for generating electrolytic fine bubble water for beverages - Google Patents

Apparatus and method for generating electrolytic fine bubble water for beverages Download PDF

Info

Publication number
JP2010253405A
JP2010253405A JP2009107342A JP2009107342A JP2010253405A JP 2010253405 A JP2010253405 A JP 2010253405A JP 2009107342 A JP2009107342 A JP 2009107342A JP 2009107342 A JP2009107342 A JP 2009107342A JP 2010253405 A JP2010253405 A JP 2010253405A
Authority
JP
Japan
Prior art keywords
water
electrolytic
generator
microbubbles
microbubble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009107342A
Other languages
Japanese (ja)
Inventor
Harumichi Hirose
治道 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Original Assignee
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp filed Critical Shibaura Mechatronics Corp
Priority to JP2009107342A priority Critical patent/JP2010253405A/en
Publication of JP2010253405A publication Critical patent/JP2010253405A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and method for generating electrolytic fine bubble water for beverages at a low cost, capable of surely mixing fine bubbles such as microbubbles into electrolytic ion water and making the water mild in taste further. <P>SOLUTION: The apparatus 10 for generating electrolytic fine bubble water for beverages generates water L including fine bubbles for beverages, and includes an electrolytic ion water generator 11 for generating the electrolytic ion water through the water L for the beverages and a fine bubble generator 20 connected to the electrolytic ion water generator 11, for reducing the pressure of the electrolytic ion water, releasing the pressure and including the fine bubbles into the electrolytic ion water. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、飲料用電解微小気泡水発生装置および飲料用電解微小気泡水発生方法に関し、特に微小気泡を電位分離してイオンを核として微小気泡の消滅を抑制して飲料用の水の味をまろやかにする飲料用電解微小気泡水発生装置および飲料用電解微小気泡水発生方法に関する。   The present invention relates to an electrolytic microbubble water generator for beverages and an electrolytic microbubble water generation method for beverages, and in particular, the potential of beverage water is controlled by potential separation of microbubbles to suppress the disappearance of microbubbles using ions as nuclei. The present invention relates to an electrolytic microbubble water generator for beverage and a method for generating electrolytic microbubble water for beverage.

電解イオン水生成器では、ケースと電解槽との隙間を流れる浄水を積極的に利用し、必要に応じて第1の電解室で生成されたイオン水に混合、あるいは第2の電解室で生成されたイオン水に混合することができる。この電解イオン水生成器は、炊事のように水量を必要とする場合の使い勝手と、飲用のように美味しさを追求する場合とを選択することで、必要な時に美味しいアルカリイオン水を得ることができることが開示されている(特許文献1を参照)。   In the electrolytic ionic water generator, the purified water flowing through the gap between the case and the electrolytic cell is actively used, mixed with the ionic water generated in the first electrolysis chamber as necessary, or generated in the second electrolysis chamber. Can be mixed with the ionized water. This electrolytic ionic water generator can obtain delicious alkaline ionized water when needed by selecting the convenience when water is required like cooking and the case of pursuing deliciousness like drinking. It is disclosed that it can be performed (see Patent Document 1).

特開2003―71446号公報JP 2003-71446 A

しかし、上記の電解イオン水生成器の構造は複雑であり高価である。また、家庭用やペットショップ用として美容と健康の目的でマイクロバブル発生装置が市販されているが、飲料用としても効果が高いことはあまり知られていない。   However, the structure of the electrolytic ionic water generator is complicated and expensive. Microbubble generators are commercially available for beauty and health purposes for home use and pet shops, but it is not well known that they are highly effective for beverage use.

本発明は、上記に鑑みてなされたものであり、その目的は、電解イオン水内にマイクロバブルのような微小気泡を確実に混合させてさらに水の味をまろやかにすることができる安価な飲料用電解微小気泡水発生装置および飲料用電解微小気泡水発生方法を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide an inexpensive beverage that can surely mix microbubbles such as microbubbles in electrolytic ionic water to further smooth the taste of water. It is providing the electrolytic microbubble water generator for beverages, and the electrolytic microbubble water generation method for drinks.

本発明の飲料用電解微小気泡水発生装置は、飲料用の微小気泡を含む水を発生させる飲料用電解微小気泡水発生装置であって、飲料用の前記水を通して電解イオン水を生成する電解イオン水生成器と、前記電解イオン水生成器に接続されており、前記電解イオン水を減圧させ圧力開放して前記電解イオン水に前記微小気泡を含ませる微小気泡生成器と、を備えることを特徴とする。   An electrolytic microbubble water generator for beverages of the present invention is an electrolytic microbubble water generator for beverages that generates water containing microbubbles for beverages, and generates electrolytic ionic water through the water for beverages. A water generator, and a microbubble generator connected to the electrolytic ionic water generator and depressurizing the electrolytic ionic water to release the pressure so as to include the microbubbles in the electrolytic ionic water. And

本発明の飲料用電解微小気泡水発生方法は、飲料用の微小気泡を含む水を発生させる飲料用電解微小気泡水発生方法であって、電解イオン水生成器に飲料用の前記水を通して電解イオン水を生成して、前記電解イオン水生成器に接続された微小気泡生成器により、前記電解イオン水を減圧させ圧力開放して前記電解イオン水に前記微小気泡を含ませることを特徴とする。   The method for generating electrolytic microbubble water for beverages according to the present invention is a method for generating electrolytic microbubble water for beverages that generates water containing microbubbles for beverages, wherein electrolytic ions are passed through the water for beverages through an electrolytic ion water generator. Water is generated, and the electrolytic ionic water is decompressed by a microbubble generator connected to the electrolytic ionic water generator to release the pressure, so that the electrolytic ionic water includes the microbubbles.

本発明によれば、電解イオン水内にマイクロバブルのような微小気泡を確実に混合させてさらに水の味をまろやかにすることができる安価な飲料用電解微小気泡水発生装置および飲料用電解微小気泡水発生方法を提供することができる。   Advantageous Effects of Invention According to the present invention, an inexpensive beverage electrolytic microbubble water generator and beverage electrolytic microparticle that can surely mix microbubbles, such as microbubbles, in electrolytic ionic water to further mitigate the taste of water. A bubble water generation method can be provided.

本発明の飲料用電解微小気泡水発生装置の好ましい実施の形態を示す図である。It is a figure which shows preferable embodiment of the electrolytic microbubble water generator for drinks of this invention. 図1に示すアスピレータの構造例を示す断面図である。It is sectional drawing which shows the structural example of the aspirator shown in FIG. 微小気泡が消滅するまでの過程等を示す図である。It is a figure which shows the process until a micro bubble disappears. 残留している微小気泡の個数の時間推移と、粒径分布の相関例を示す図である。It is a figure which shows the example of a correlation with the time transition of the number of remaining microbubbles, and a particle size distribution. 本発明の別の実施形態を示す図である。It is a figure which shows another embodiment of this invention.

本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の飲料用電解微小気泡水発生装置の好ましい実施の形態を示している。   FIG. 1 shows a preferred embodiment of the electrolytic microbubble water generator for beverages of the present invention.

図1に示す飲料用電解微小気泡水発生装置10は、電解イオン水生成器11と、微小気泡生成器20を備えている。この微小気泡生成器20は、一例としてアスピレータである。   The beverage electrolytic microbubble water generator 10 shown in FIG. 1 includes an electrolytic ionic water generator 11 and a microbubble generator 20. The microbubble generator 20 is an aspirator as an example.

電解イオン水生成器11は、水Lを通過させて「おいしい水」を生成する市販の装置であり、水Lは例えば地下からくみ上げた水や水道水である。電解イオン水生成器11では、陽極と陰極に直流電流を印加して水に直流電流を流すと、陽イオンは陰極に引き寄せられ、陰イオンは陽極に引き寄せられる。また、電極の表面において接触している水が電気分解され、陰極側では水酸化イオン(OH−)、陽イオンおよび溶存水素(H2)等が多くなりアルカリイオン水が生成され、陽極側では水素イオン(H+)、陰イオンおよび溶存酸素(O2)等が多くなり、酸性水が生成される。   The electrolytic ionic water generator 11 is a commercially available device that passes water L to generate “delicious water”, and the water L is, for example, water pumped up from the underground or tap water. In the electrolytic ion water generator 11, when a direct current is applied to the anode and the cathode and a direct current is passed through the water, the positive ions are attracted to the cathode and the negative ions are attracted to the anode. Further, water in contact with the surface of the electrode is electrolyzed, hydroxide ions (OH-), cations and dissolved hydrogen (H2) are increased on the cathode side, and alkali ion water is generated, and hydrogen is generated on the anode side. The amount of ions (H +), anions, dissolved oxygen (O2), etc. increases, and acidic water is generated.

図1に示すように、電解イオン水生成器11の入口部12は、例えば水道水を供給する蛇口13に対して直接あるいは配管14を介して着脱可能に接続されている。電解イオン水生成器11の出口部15は、微小気泡生成器20の入口部19に対して直接あるいは配管22を介して着脱可能に接続されている。   As shown in FIG. 1, the inlet 12 of the electrolytic ionic water generator 11 is detachably connected to a faucet 13 for supplying tap water, for example, directly or via a pipe 14. The outlet portion 15 of the electrolytic ion water generator 11 is detachably connected to the inlet portion 19 of the microbubble generator 20 directly or via a pipe 22.

図1に示す微小気泡生成器20は、水道水のような水Lを電解イオン水生成器11に通すことで得られる「おいしい水」を、さらに味をまろやかにするための装置である。   The microbubble generator 20 shown in FIG. 1 is an apparatus for further smoothing the taste of “delicious water” obtained by passing water L such as tap water through the electrolytic ion water generator 11.

図2は、図1に示す微小気泡生成器20の構造例を示す断面図である。   FIG. 2 is a cross-sectional view showing a structural example of the microbubble generator 20 shown in FIG.

図2に示すように、微小気泡生成器20は、例えば金属やプラスチック等で作られている筒状の部材であり、水Lを通すことで、微小気泡を水Lに混合することで含ませる微小気泡発生器として使用することができる。微小気泡生成器20は、第1筒状部分21と第2筒状部分22を有しており、第1筒状部分21と第2筒状部分22は、軸方向CLに沿って直列に連続して形成されている。   As shown in FIG. 2, the microbubble generator 20 is a cylindrical member made of, for example, metal, plastic, or the like, and is included by mixing the microbubbles with the water L through the water L. It can be used as a microbubble generator. The microbubble generator 20 has a first cylindrical portion 21 and a second cylindrical portion 22, and the first cylindrical portion 21 and the second cylindrical portion 22 are continuously connected in series along the axial direction CL. Is formed.

図2に示すように、第1筒状部分21は、内部に水通過部23を有しており、水通過部23には先細り部材24が固定されている。先細り部材24は、水の流れ方向Tに沿って少しずつ細くなっていくように先細りに形成されている。先細り部材24は水の流出口26を有しており、先細り部材24の中には、中心軸CLに沿って水の旋回流を形成する部材25が固定されている。先細り部材24の水の流出口26の内径D1は、第1筒状部材21の入口部19の内径D2よりも小さく設定されている。   As shown in FIG. 2, the first cylindrical portion 21 has a water passage portion 23 inside, and a tapered member 24 is fixed to the water passage portion 23. The taper member 24 is formed to be tapered so as to become gradually smaller along the water flow direction T. The taper member 24 has a water outlet 26, and a member 25 that forms a swirling flow of water along the central axis CL is fixed in the taper member 24. An inner diameter D1 of the water outlet 26 of the tapered member 24 is set smaller than an inner diameter D2 of the inlet portion 19 of the first tubular member 21.

また、図2に示すように、第2筒状部材22は、水の流入口27と出口部28を有しており、第2筒状部材22の内径は、水の流入口27と出口部28に向けて水の流れ方向Tに沿って少しずつ大きくなっている。第2筒状部材22の最も小さい水の流入口27の内径D3は、先細り部材24の水の流出口26の内径D1と同じであり、第2筒状部材22の最も大きい出口部28の内径D4は、第2筒状部材22の内径D3よりも大きく設定されている。   As shown in FIG. 2, the second cylindrical member 22 has a water inlet 27 and an outlet portion 28, and the inner diameter of the second cylindrical member 22 is the water inlet 27 and outlet portion. It gradually increases along the water flow direction T toward 28. The inner diameter D3 of the smallest water inlet 27 of the second cylindrical member 22 is the same as the inner diameter D1 of the water outlet 26 of the tapered member 24, and the inner diameter of the largest outlet portion 28 of the second cylindrical member 22 is. D4 is set larger than the inner diameter D3 of the second cylindrical member 22.

これにより、図1に示すように、電解イオン水生成器11の出口部15から出た水Lが、微小気泡生成器20の第1筒状部分21の入口部19に水の流れ方向Tに沿って流入すると、水Lは水の旋回流を形成する部材25を通ることで旋回流となる。この水Lの旋回流の中心では真空状態にあり、そこで水Lに溶けている空気および流入した空気が微小気泡となって先細り部材24の水の流出口26と水の流入口27を通過することで、多数の微小気泡Hが水Lに混合される。この場合に、電解イオン水生成器11に接続された微小気泡生成器20は、電解イオン水を減圧させ圧力開放して電解イオン水に微小気泡を生成することができる。従って、多数の微小気泡Hを含む水Lが、出口部28から例えばコップ30に排出できるようになっている。   As a result, as shown in FIG. 1, the water L that has exited from the outlet portion 15 of the electrolytic ionic water generator 11 enters the inlet portion 19 of the first cylindrical portion 21 of the microbubble generator 20 in the water flow direction T. When flowing in, the water L turns into a swirl flow by passing through the member 25 that forms a swirl flow of water. The center of the swirling flow of the water L is in a vacuum state, and the air dissolved in the water L and the inflowed air become microbubbles and pass through the water outlet 26 and the water inlet 27 of the tapered member 24. Thus, a large number of microbubbles H are mixed with the water L. In this case, the microbubble generator 20 connected to the electrolytic ionic water generator 11 can generate a microbubble in the electrolytic ionic water by decompressing the electrolytic ionic water and releasing the pressure. Accordingly, the water L containing a large number of microbubbles H can be discharged from the outlet portion 28 to, for example, the cup 30.

次に、上述した飲料用電解微小気泡水発生装置10を用いた飲料用電解微小気泡水発生方法について、図1と図2を参照して説明する。   Next, a method for generating electrolytic microbubble water for beverages using the above-described electrolytic microbubble water generator for beverages 10 will be described with reference to FIGS. 1 and 2.

使用者が図1に示す蛇口13を開いて、水Lを電解イオン水生成器11の入口部12に配管14を介して供給すると、水Lは電気分解されて電解イオン水生成器11内で「おいしい水」が生成される。   When the user opens the faucet 13 shown in FIG. 1 and supplies water L to the inlet portion 12 of the electrolytic ionic water generator 11 through the pipe 14, the water L is electrolyzed and is generated in the electrolytic ionic water generator 11. “Delicious water” is produced.

次に、電解イオン水生成器11の出口部15から出た「おいしい水」である水Lが、図2に示す後段の微小気泡生成器20の第1筒状部分21の入口部19に水の流れ方向Tに沿って流入すると、「おいしい水」である水Lは、水の旋回流を形成する部材25を通ることで旋回流となり、水に溶けている空気および流入した空気が微小気泡となって先細り部材24の水の流出口26と水の流入口27を通過して出口部28に向かって圧力開放され、多数の微小気泡Hが水Lに混合される。このため、微小気泡を含む水Lが、出口部28から例えばコップ30に排出できる。   Next, the water L, which is “delicious water” that has exited from the outlet portion 15 of the electrolytic ion water generator 11, enters the inlet portion 19 of the first cylindrical portion 21 of the microbubble generator 20 in the subsequent stage shown in FIG. When the water L flows in along the flow direction T of the water, the water L, which is “delicious water”, passes through the member 25 that forms the swirling flow of water, and turns into a swirling flow. Thus, the pressure is released toward the outlet portion 28 through the water outlet 26 and the water inlet 27 of the taper member 24, and a large number of microbubbles H are mixed with the water L. For this reason, the water L containing microbubbles can be discharged from the outlet portion 28 to, for example, the cup 30.

これにより、電解イオン水生成器11で生成された「おいしい水」である水Lは、微小気泡生成器20を通すことでさらに味をまろやかにすることができる。微小気泡生成器20で生成された微小気泡Hは、好ましくはマイクロバブルやナノバブルであり、微小気泡Hはその周りに電解質が存在することで、この電解質がイオンの核となって水道水中に長時間存在することができることが各研究で明らかになっている。例えばマイクロバブルのような微小気泡を水Lに含ませることで、微小気泡Hは浸透性を高くする性質をもつことから、微小気泡を含む水Lは、飲んだときに喉越しが心地良い。   Thereby, the water L, which is “delicious water” generated by the electrolytic ion water generator 11, can be further mellowed by passing through the microbubble generator 20. The microbubbles H generated by the microbubble generator 20 are preferably microbubbles or nanobubbles, and the microbubbles H have an electrolyte around them, and this electrolyte becomes a core of ions and is long in tap water. Studies have shown that time can exist. For example, since microbubbles H have a property of increasing permeability by including microbubbles such as microbubbles in the water L, the water L containing microbubbles is comfortable over the throat when swallowed.

飲料用電解微小気泡水発生装置10で得られたマイクロバブル、マイクロナノバブル、ナノバブルのような微小気泡を含む水は、例えば紅茶のパック等に使用すると、紅茶の溶け出しが向上し、米とぎや炊飯を行うと非常にご飯の味が良くなることが実験で証明できている。アルカリイオン水とマイクロバブルのような微小気泡を含む水は、飲料用として効果が高く、酸性イオン水とマイクロバブルのような微小気泡を含む水は、アトピー等の皮膚病治療に有効である。   Water containing microbubbles, such as microbubbles, micronanobubbles and nanobubbles, obtained with the electrolytic microbubble water generator 10 for beverages, for example, when used in a tea pack, improves the dissolution of black tea, Experiments have shown that cooking rice makes the rice taste much better. Water containing microbubbles such as alkaline ionized water and microbubbles is highly effective for beverages, and water containing microbubbles such as acidic ionized water and microbubbles is effective for treating skin diseases such as atopy.

図3(A)は、微小気泡Hが消滅するまでの過程を示しており、内部が低圧力の微小気泡Hは表面積を小さくしようとして、内部が高圧力になり、微小気泡Hの内部の気体は水中に溶け出す。このように内部の気体が水中に溶け出すのは、この気体の溶解度は圧力に比例(ヘンリーの法則)しているからである。そして、微小気泡Hの内部の圧力を維持しようとして微小気泡Hの粒径が小さくなって消滅する。   FIG. 3 (A) shows the process until the microbubbles H disappear. The microbubbles H having a low pressure inside are trying to reduce the surface area, the pressure inside becomes high, and the gas inside the microbubbles H is shown. Dissolves in water. The reason why the internal gas is dissolved in water is that the solubility of this gas is proportional to the pressure (Henry's law). Then, the particle diameter of the microbubbles H becomes smaller and disappears in an attempt to maintain the pressure inside the microbubbles H.

このように通常では微小気泡Hが短時間で消滅するが、この微小気泡Hが短寿命である欠点を解決するために、水溶液中の電気伝導度が300μS/cm以上となるように電解質を混入することにより、微小気泡Hの短寿命を解決できる。   As described above, the microbubbles H usually disappear in a short time, but in order to solve the disadvantage that the microbubbles H have a short life, an electrolyte is mixed so that the electric conductivity in the aqueous solution is 300 μS / cm or more. By doing so, the short life of the microbubbles H can be solved.

図3(B)に示すように、微小気泡Hの内部はマイナス電位であり外部はプラス電位である。微小気泡Hには、縮小する力Gが加わるが、電解質を混入することで、微小気泡Hの反対面に存在する同符号のイオン同士には静電的な反発力Kが作用する。微小気泡Hの粒径が500nm以下では、縮小する力Gと静電気的な反発力Kが釣り合うことから、微小気泡Hの粒径が小さくなりにくく、微細粒子の寿命を伸ばすことができる。   As shown in FIG. 3B, the inside of the microbubble H has a negative potential and the outside has a positive potential. Although the shrinking force G is applied to the microbubbles H, an electrostatic repulsive force K acts between ions of the same sign existing on the opposite surface of the microbubbles H by mixing the electrolyte. When the particle size of the microbubbles H is 500 nm or less, the shrinking force G and the electrostatic repulsive force K are balanced, so that the particle size of the microbubbles H is not easily reduced, and the life of the microparticles can be extended.

このように、本発明の実施の形態では、電解イオン生成器により電気分解されてきちんと電位分離したイオンを核として、例えばナノバブルのような微小気泡の消滅を保護して、水中の微小気泡を長期間保有させる効果がある。   As described above, according to the embodiment of the present invention, ions that have been electrolyzed by an electrolytic ion generator and have been properly potential-separated are used as nuclei to protect the disappearance of microbubbles, such as nanobubbles, and lengthen microbubbles in water. There is an effect to hold for a period.

図4は、一例として水中に残留している微小気泡(ナノバブル)の個数の時間推移と、粒径分布の相関例を示している。   FIG. 4 shows, as an example, a correlation between the time transition of the number of microbubbles (nanobubbles) remaining in water and the particle size distribution.

図4では、微小気泡の一例であるナノバブルについて、粒径が100〜200nmの微小気泡の総数と、粒径が200〜300nmの微小気泡の総数と、粒径が300〜400nmの微小気泡の総数と、粒径が400〜500nmの微小気泡の総数を示している。図4では、微小気泡の粒径分布を100nm毎に区切って経過日数の残留個数の推移をグラフ化している。   In FIG. 4, for nanobubbles that are examples of microbubbles, the total number of microbubbles having a particle size of 100 to 200 nm, the total number of microbubbles having a particle size of 200 to 300 nm, and the total number of microbubbles having a particle size of 300 to 400 nm. And the total number of microbubbles having a particle size of 400 to 500 nm. In FIG. 4, the particle size distribution of the microbubbles is divided every 100 nm, and the transition of the remaining number of elapsed days is graphed.

図4によれば、いずれの粒径の微小気泡であっても、電気分解により電位分離したイオンを核として微小粒子の消滅を抑制して微細粒子を保護しており、微小気泡の減少率は、少なくとも2週間〜3週間の日数経過ではやや低下はしているがほぼ維持しており、微小気泡が3週経過しても水中に残留していることが分かる。このため、図4に示す粒径の微小気泡を含む水については、比較的長期間液性の維持が期待できる。   According to FIG. 4, the microbubbles of any particle size protect the fine particles by suppressing the disappearance of the fine particles with the ions separated by the potential by electrolysis as the nucleus. It can be seen that the number of days is at least 2 weeks to 3 weeks, but it is slightly decreased, but is almost maintained, and microbubbles remain in water even after 3 weeks. For this reason, about the water containing the microbubble of the particle size shown in FIG.

これに対して、従来のように水中に残留している微小気泡には電気分解して電位分離したイオンを核として入れていない場合には、微小気泡が生成後3時間以上経過した時点で微小気泡は消滅してしまい、微小気泡の個数を測定することができないほどに短時間で微小気泡の濃度が下がってしまう。   On the other hand, in the case where the microbubbles remaining in the water as in the prior art do not contain ions that have been electrolyzed and separated by electric potential as nuclei, the microbubbles are microscopic when 3 hours or more have passed after the microbubbles are generated. The bubbles disappear, and the concentration of the microbubbles decreases in such a short time that the number of microbubbles cannot be measured.

図5は、本発明の別の実施形態を示している。   FIG. 5 shows another embodiment of the present invention.

図5に示すのは、微小気泡生成器の別の構造例であり、微小気泡生成器20Bの構造は、図2に示す微小気泡生成器20の構造とほぼ同じであるが、導入空気量調整弁40が設けられていることが異なる。導入空気量調整弁40は、吸気用管路41と、吸気用管路41内に配置された球体42を有している。この球体42が吸気用管路41内で移動することで、空気を流入させたり、空気の流入を止めて、微小気泡生成器20Bに流入する水道水の量に応じて導入空気量を最適に調整することができる。   FIG. 5 shows another structure example of the microbubble generator. The structure of the microbubble generator 20B is substantially the same as the structure of the microbubble generator 20 shown in FIG. The difference is that a valve 40 is provided. The introduced air amount adjustment valve 40 includes an intake pipe 41 and a sphere 42 disposed in the intake pipe 41. By moving the spherical body 42 in the intake pipe 41, air is introduced or stopped, and the amount of introduced air is optimized according to the amount of tap water flowing into the microbubble generator 20B. Can be adjusted.

本発明の飲料用電解微小気泡水発生装置は、飲料用の微小気泡を含む水を発生させる飲料用電解微小気泡水発生装置であって、飲料用の前記水を通して電解イオン水を生成する電解イオン水生成器と、前記電解イオン水生成器に接続されており、前記電解イオン水に微小気泡を含ませる微小気泡生成器と、を備える。これにより、安価でありながら電解イオン水内にマイクロバブル、マイクロナノバブル、ナノバブルのような微小気泡を確実に混合させてさらに水の味をまろやかにすることができる。詳細には、電気分解により電位分離したイオンを核として微小粒子の消滅を抑制して微細粒子を保護しており、微小気泡の減少率は、少なくとも2週間〜3週間の日数経過ではほとんど下がっておらず、微小気泡が3週経過しても水中に残留していることが分かる。このため、粒径の微小気泡を含む水については、比較的長期間液性の維持が期待でき、水の味をまろやかにできる。   An electrolytic microbubble water generator for beverages of the present invention is an electrolytic microbubble water generator for beverages that generates water containing microbubbles for beverages, and generates electrolytic ionic water through the water for beverages. A water generator; and a microbubble generator connected to the electrolytic ionic water generator and including microbubbles in the electrolytic ionic water. Thereby, although it is cheap, microbubbles, such as a micro bubble, a micro nano bubble, and a nano bubble, can be reliably mixed in electrolytic ion water, and the taste of water can be further mellowed. More specifically, the microparticles are protected by suppressing the disappearance of the microparticles using ions separated by potential by electrolysis as the nucleus, and the decrease rate of the microbubbles is almost lowered in the course of days of at least 2 to 3 weeks. It can be seen that the microbubbles remain in the water even after 3 weeks. For this reason, water containing microbubbles having a particle size can be expected to maintain liquidity for a relatively long period of time, and the taste of water can be mellow.

本発明の飲料用電解微小気泡水発生方法では、微小気泡生成器の吸気口には、前記電解イオン水の流入量に応じて導入空気量を調整する導入空気量調整弁が配置されている。これにより、空気を流入させたり、空気の流入を止めて、微小気泡生成器に流入する水道水の量に応じて導入空気量を最適に調整することができる。   In the method for generating electrolytic microbubble water for beverages of the present invention, an introduction air amount adjustment valve that adjusts the introduction air amount in accordance with the inflow amount of the electrolytic ion water is disposed at the inlet of the microbubble generator. Thereby, the amount of introduced air can be optimally adjusted in accordance with the amount of tap water flowing into the microbubble generator by stopping the inflow of air.

本発明の飲料用電解微小気泡水発生方法は、飲料用の微小気泡を含む水を発生させる飲料用電解微小気泡水発生方法であって、電解イオン水生成器に飲料用の前記水を通して電解イオン水を生成して、前記電解イオン水生成器に接続された微小気泡生成器により、前記電解イオン水に微小気泡を含ませる。これにより、安価でありながら電解イオン水内にマイクロバブルのような微小気泡を確実に混合させてさらに水の味をまろやかにすることができる。詳細には、電気分解により電位分離したイオンを核として微小粒子の消滅を抑制して微細粒子を保護しており、微小気泡の減少率は、少なくとも2週間〜3週間の日数経過ではほとんど下がっておらず、微小気泡が3週経過しても水中に残留していることが分かる。このため、粒径の微小気泡を含む水については、比較的長期間液性の維持が期待でき、水の味をまろやかにできる。   The method for generating electrolytic microbubble water for beverages according to the present invention is a method for generating electrolytic microbubble water for beverages that generates water containing microbubbles for beverages, wherein electrolytic ions are passed through the water for beverages through an electrolytic ion water generator. Water is generated, and microbubbles are included in the electrolytic ionic water by the microbubble generator connected to the electrolytic ionic water generator. Thereby, although it is cheap, microbubbles, such as a microbubble, can be reliably mixed in electrolytic ion water, and the taste of water can be further mellowed. More specifically, the microparticles are protected by suppressing the disappearance of the microparticles using ions separated by potential by electrolysis as the nucleus, and the decrease rate of the microbubbles is almost lowered in the course of days of at least 2 to 3 weeks. It can be seen that the microbubbles remain in the water even after 3 weeks. For this reason, water containing microbubbles having a particle size can be expected to maintain liquidity for a relatively long period of time, and the taste of water can be mellow.

本発明は上記実施の形態に限定されない。本発明では、電解イオン水生成器に対して微小気泡生成器を接続することで、電解イオン水とナノバブル、マイクロナノバブル、ナノバブルのような微小気泡の両方の特徴を生かしており、安価に構成できる。   The present invention is not limited to the above embodiment. In the present invention, by connecting the microbubble generator to the electrolytic ionic water generator, the characteristics of both electrolytic ionic water and microbubbles such as nanobubbles, micronanobubbles, and nanobubbles are utilized, and can be configured at low cost. .

ここで、微小気泡は、マイクロバブル(MB)やマイクロナノバブル(MNB)、ナノバブル(NB)などの概念を含む微細気泡である。例えば、マイクロバブルは10μm〜数十μmの直径を有する気泡であり、マイクロナノバブルは数百nm〜10μmの直径を有する気泡であり、ナノバブルは数百nm以下の直径を有する気泡である。本発明では、特にナノバブルを用いるのが最適である。飲み水は、水道水に限らず、例えば井戸水や天然のミネラル水等でも良い。微小気泡生成器は、アスピレータに限定されない。   Here, the microbubbles are microbubbles including concepts such as microbubbles (MB), micronanobubbles (MNB), and nanobubbles (NB). For example, microbubbles are bubbles having a diameter of 10 μm to several tens of μm, micronano bubbles are bubbles having a diameter of several hundred nm to 10 μm, and nanobubbles are bubbles having a diameter of several hundred nm or less. In the present invention, it is particularly optimal to use nanobubbles. Drinking water is not limited to tap water, and may be well water or natural mineral water, for example. The microbubble generator is not limited to an aspirator.

本発明は上記実施の形態に限定されない。さらに、本発明の実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。例えば、本発明の実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよい。   The present invention is not limited to the above embodiment. Furthermore, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiments of the present invention. For example, you may delete some components from all the components shown by embodiment of this invention. Furthermore, you may combine the component covering different embodiment suitably.

10 飲料用電解微小気泡水発生装置
11 電解イオン水生成器
12 入口部
13 蛇口
15 出口部
20 微小気泡生成器
21 第1筒状部分
22 第2筒状部分
L 水
H 微小気泡
DESCRIPTION OF SYMBOLS 10 Beverage electrolysis microbubble water generator 11 Electrolytic ionic water generator 12 Inlet part 13 Faucet 15 Outlet part 20 Microbubble generator 21 First cylindrical part 22 Second cylindrical part L Water H Microbubble

Claims (4)

飲料用の微小気泡を含む水を発生させる飲料用電解微小気泡水発生装置であって、
飲料用の前記水を通して電解イオン水を生成する電解イオン水生成器と、
前記電解イオン水生成器に接続されており、前記電解イオン水を減圧させ圧力開放して前記電解イオン水に前記微小気泡を含ませる微小気泡生成器と、
を備えることを特徴とする飲料用電解微小気泡水発生装置。
An electrolysis microbubble water generator for beverages that generates water containing microbubbles for beverages,
An electrolytic ionic water generator for generating electrolytic ionic water through the water for beverages;
A microbubble generator connected to the electrolytic ionic water generator, depressurizing the electrolytic ionic water and releasing the pressure to contain the microbubbles in the electrolytic ionic water;
An electrolytic microbubble water generator for beverages, comprising:
前記微小気泡生成器はアスピレータであることを特徴とする請求項1に記載の飲料用電解微小気泡水発生装置。   The apparatus for generating electrolytic microbubble water for beverage according to claim 1, wherein the microbubble generator is an aspirator. 前記アスピレータの吸気口には、前記電解イオン水の流入量に応じて導入空気量を調整する導入空気量調整弁が配置されていることを特徴とする請求項2に記載の飲料用電解微小気泡水発生装置。   3. The electrolytic microbubble for beverage according to claim 2, wherein an intake air amount adjustment valve that adjusts an introduction air amount in accordance with an inflow amount of the electrolytic ion water is disposed at an intake port of the aspirator. Water generator. 飲料用の微小気泡を含む水を発生させる飲料用電解微小気泡水発生方法であって、
電解イオン水生成器に飲料用の前記水を通して電解イオン水を生成して、
前記電解イオン水生成器に接続された微小気泡生成器により、前記電解イオン水を減圧させ圧力開放して前記電解イオン水に前記微小気泡を含ませることを特徴とする飲料用電解微小気泡水発生方法。
A method for generating electrolytic microbubble water for beverages that generates water containing microbubbles for beverages,
Producing electrolytic ionic water through the water for drinking through an electrolytic ionic water generator,
Electrolytic microbubble water generation for beverages characterized in that the electrolytic ionic water is decompressed by a microbubble generator connected to the electrolytic ionic water generator and the pressure is released to include the microbubbles in the electrolytic ionic water. Method.
JP2009107342A 2009-04-27 2009-04-27 Apparatus and method for generating electrolytic fine bubble water for beverages Pending JP2010253405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009107342A JP2010253405A (en) 2009-04-27 2009-04-27 Apparatus and method for generating electrolytic fine bubble water for beverages

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009107342A JP2010253405A (en) 2009-04-27 2009-04-27 Apparatus and method for generating electrolytic fine bubble water for beverages

Publications (1)

Publication Number Publication Date
JP2010253405A true JP2010253405A (en) 2010-11-11

Family

ID=43314965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009107342A Pending JP2010253405A (en) 2009-04-27 2009-04-27 Apparatus and method for generating electrolytic fine bubble water for beverages

Country Status (1)

Country Link
JP (1) JP2010253405A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118337A1 (en) * 2010-03-25 2011-09-29 シャープ株式会社 Filter-element cleaning device and water filter provided therewith
WO2012073435A1 (en) * 2010-12-01 2012-06-07 株式会社G.P.P. Bubble generator
JP2013029001A (en) * 2011-07-29 2013-02-07 Kyokado Kk Liquefaction prevention method
JP2017023893A (en) * 2015-07-16 2017-02-02 株式会社スイソサム Hydrogen water supply device
WO2017155014A1 (en) * 2016-03-11 2017-09-14 日立マクセル株式会社 Electrolyzed water generating device
JP6467550B1 (en) * 2018-09-13 2019-02-13 株式会社エヌティシィー Tap water supply system for tap water containing hydrogen
US12082574B2 (en) 2018-05-31 2024-09-10 Aichi Medical University Biomaterial preservation composition having a microbubble with oxygen gas in liquid, method for preserving biomaterial in the biomaterial preservation composition, method for preserving biomaterial in the biomaterial preservation composition, method for producing biomaterial using the biomaterial preservation composition, transplantation material using the biomaterial preservation composition and method of transplantation using the biomaterial preservation composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118337A1 (en) * 2010-03-25 2011-09-29 シャープ株式会社 Filter-element cleaning device and water filter provided therewith
JP2011200787A (en) * 2010-03-25 2011-10-13 Sharp Corp Filter medium cleaning device and water purifier equipped with the same
WO2012073435A1 (en) * 2010-12-01 2012-06-07 株式会社G.P.P. Bubble generator
JP2013029001A (en) * 2011-07-29 2013-02-07 Kyokado Kk Liquefaction prevention method
JP2017023893A (en) * 2015-07-16 2017-02-02 株式会社スイソサム Hydrogen water supply device
WO2017155014A1 (en) * 2016-03-11 2017-09-14 日立マクセル株式会社 Electrolyzed water generating device
US12082574B2 (en) 2018-05-31 2024-09-10 Aichi Medical University Biomaterial preservation composition having a microbubble with oxygen gas in liquid, method for preserving biomaterial in the biomaterial preservation composition, method for preserving biomaterial in the biomaterial preservation composition, method for producing biomaterial using the biomaterial preservation composition, transplantation material using the biomaterial preservation composition and method of transplantation using the biomaterial preservation composition
JP6467550B1 (en) * 2018-09-13 2019-02-13 株式会社エヌティシィー Tap water supply system for tap water containing hydrogen
JP2020040043A (en) * 2018-09-13 2020-03-19 株式会社エヌティシィー Tap water supply system for tap water containing hydrogen

Similar Documents

Publication Publication Date Title
JP2010253405A (en) Apparatus and method for generating electrolytic fine bubble water for beverages
JP5294370B2 (en) Method for producing water containing reactive species and water containing reactive species
KR101370129B1 (en) Hydrogen abundant water making apparatus with function to adjust dissolved hydrogen
KR20160062674A (en) Hydrogen water purifier having hydrogen water creating module
JP5691023B1 (en) Hydrogen water production equipment
JP2013119043A (en) Microbubble generating device and water treating apparatus using the same
JP4921333B2 (en) Method for producing carbon dioxide nanobubble water
KR101608475B1 (en) apparatus for manufacturing hydrogen water of high density
KR20180087656A (en) Nano-bubble hydrogen water generator
JP4022251B1 (en) Reduced water generator
JP2005245817A (en) Production method of nano-bubble
JP2012040448A (en) Microbubble generator
KR101697571B1 (en) Apparatus for manufacturing hydrogen water
JP2015205225A (en) Reducing water production apparatus and reducing water
US20140353145A1 (en) Apparatus for producing dissolved hydrogen water and providing sterilization
JP2010115594A (en) Fine bubble generation method, fine bubble generator, and reduced water
JP2010142760A (en) Oxygen-hydrogen water production method and device therefor
WO2007049377A1 (en) Functional water producing device and functional water producing method
KR101409649B1 (en) System for manufacturing hydrogen cosmetic
JP2009254951A (en) Fine bubble generator having open air introducing function
JP2007117853A (en) Fine bubble generator
JP2013158676A (en) Method for producing saturated gas-containing nano-bubble water
KR20080078334A (en) Manufacturing apparatus of oxygen water
KR101379348B1 (en) A complexed ion-purifier
JP2011152485A (en) Charged particulate water-containing fine bubble generator