JP2010252566A - Charge/discharge control circuit and power supply device - Google Patents

Charge/discharge control circuit and power supply device Download PDF

Info

Publication number
JP2010252566A
JP2010252566A JP2009100715A JP2009100715A JP2010252566A JP 2010252566 A JP2010252566 A JP 2010252566A JP 2009100715 A JP2009100715 A JP 2009100715A JP 2009100715 A JP2009100715 A JP 2009100715A JP 2010252566 A JP2010252566 A JP 2010252566A
Authority
JP
Japan
Prior art keywords
battery
abnormality
voltage
unit
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009100715A
Other languages
Japanese (ja)
Other versions
JP5449840B2 (en
Inventor
Mutsuhiko Takeda
睦彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009100715A priority Critical patent/JP5449840B2/en
Publication of JP2010252566A publication Critical patent/JP2010252566A/en
Application granted granted Critical
Publication of JP5449840B2 publication Critical patent/JP5449840B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charge/discharge control circuit for reducing a rush current generated when a secondary battery once separated from a parallel circuit of the secondary battery is connected in parallel again. <P>SOLUTION: The charge/discharge control circuit includes: a cut-off release part 54 for turning on a switching part connected in series to a curt-off target battery of which the abnormality is solved when a difference voltage Vd between a cut-off battery voltage Verr which is a terminal voltage of the cut-off target battery of which the abnormality is solved, and a connection battery voltage Vn which is the terminal voltage of the secondary battery except the cut-off target battery is less than a voltage difference threshold Von; and a cut-off release preparation part 55 for executing preparation treatment by which the switching part connected in series to the cut-off target battery of which the abnormality is solved is tuned on/off in a pulse shape when the abnormality of the cut-off target battery is solved and the difference between the cut-off battery voltage Verr and the connection battery voltage Vn exceeds the voltage difference threshold Von. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、二次電池の充放電を制御する充放電制御回路、及びこれを用いた電源装置に関する。   The present invention relates to a charge / discharge control circuit for controlling charge / discharge of a secondary battery, and a power supply device using the same.

近年、二次電池を用いた蓄電装置は、太陽電池や発電装置と組み合わされ、電源システムとして広く利用されている。発電装置は、風力や水力といった自然エネルギーや内燃機関等の人工的な動力によって駆動される。このような蓄電装置を組み合わせた電源システムは、余剰な電力を蓄電装置に蓄積し、負荷装置が必要な時に蓄電装置から電力を供給することによって、エネルギー効率の向上を図っている。   In recent years, power storage devices using secondary batteries have been widely used as power supply systems in combination with solar cells and power generation devices. The power generation device is driven by natural energy such as wind power or hydraulic power or artificial power such as an internal combustion engine. A power supply system that combines such power storage devices is designed to improve energy efficiency by storing surplus power in the power storage device and supplying power from the power storage device when a load device is required.

このようなシステムの一例としては、太陽光発電システムが挙げられる。太陽光発電システムは、太陽光による発電量が、負荷装置の電力消費量に比べて大きい場合には、余剰電力で蓄電装置に充電を行う。逆に、発電量が負荷装置の消費電力より小さい場合には、不足の電力を補うために蓄電装置から出力して、負荷装置を駆動する。   An example of such a system is a solar power generation system. The solar power generation system charges the power storage device with surplus power when the amount of power generated by sunlight is larger than the power consumption of the load device. On the contrary, when the power generation amount is smaller than the power consumption of the load device, the load device is driven by outputting from the power storage device in order to compensate for the insufficient power.

このように、太陽光発電システムにおいては、従来利用されていなかった余剰電力を蓄電装置に蓄積できるため、蓄電装置を用いない電源システムに比べて、エネルギー効率を高めることができる。   Thus, in the photovoltaic power generation system, surplus power that has not been used in the past can be stored in the power storage device, so that energy efficiency can be improved compared to a power supply system that does not use the power storage device.

このような電源システムにおいては、蓄電装置が満充電になってしまうと余剰電力を充電できなくなって、損失が生じる。そこで、余剰電力を効率よく蓄電装置に充電するため、二次電池の充電状態(以下、SOC:State Of Charge)が100%とならないように、充電制御が行われている。また、必要なときに負荷装置を駆動できるように、SOCが0(ゼロ)%とならないようにも充電制御が行われている。具体的には、通常、蓄電装置においては、SOCが20%〜80%の範囲で推移するように充電制御が行われている。   In such a power supply system, when the power storage device is fully charged, surplus power cannot be charged and a loss occurs. Therefore, in order to efficiently charge the power storage device with surplus power, charge control is performed so that the state of charge of the secondary battery (hereinafter referred to as SOC: State Of Charge) does not become 100%. In addition, charging control is performed so that the SOC does not become 0 (zero)% so that the load device can be driven when necessary. Specifically, in the power storage device, charging control is normally performed so that the SOC changes in the range of 20% to 80%.

また、エンジンとモータとを用いたハイブリット自動車(HEV;Hybrid Electric Vehicle)もこのような原理を利用している。HEVは、走行に必要な動力に対してエンジンからの出力が大きい場合には、余剰のエンジン出力で発電機を駆動し、蓄電装置を充電する。また、HEVは、車両の制動や減速時には、モータを発電機として利用することによって蓄電装置を充電する。   A hybrid electric vehicle (HEV) using an engine and a motor also uses such a principle. When the output from the engine is large relative to the power required for traveling, the HEV drives the generator with the surplus engine output and charges the power storage device. In addition, the HEV charges the power storage device by using the motor as a generator during braking or deceleration of the vehicle.

さらに、夜間電力を有効活用するために用いられる負荷平準化電源や、プラグインハイブリット車も最近注目されている。   In addition, load leveling power sources and plug-in hybrid vehicles that are used to effectively use nighttime power have recently attracted attention.

負荷平準化電源は、電力消費が少なく、電力料金が安い夜間に蓄電装置に電力を貯蔵し、電力消費がピークとなる日中に、貯蔵した電力を活用するシステムである。電力の消費量を平滑化することにより、電力の発電量を一定にし、電力設備の効率的運用や設備投資の削減に貢献することを目的としている。   The load leveling power source is a system that stores power in a power storage device at night when the power consumption is low and the power rate is low, and uses the stored power during the day when the power consumption peaks. The purpose is to make the power generation amount constant by smoothing the power consumption, and to contribute to the efficient operation of power facilities and the reduction of capital investment.

また、プラグインハイブリット車は夜間電力を活用し、燃費が悪い市街地走行時には蓄電装置から電力を供給するEV走行を主体とし、長距離走行時には、エンジンとモータを活用したHEV走行を行うことにより、トータルのCOの排出量を削減することを目的としている。 Plug-in hybrid vehicles use electric power at night, mainly EV driving to supply power from the power storage device when driving in urban areas with poor fuel efficiency, and by HEV driving using the engine and motor during long distance driving, The aim is to reduce the total CO 2 emissions.

ところで、電源装置に搭載される蓄電装置は、所定の出力電圧、容量を得るために、複数の二次電池(単電池等)を直列や並列に接続することによって構成されている。このように、二次電池を複数並列に接続した蓄電装置において、二次電池の異常や劣化を検知した場合、異常や劣化が生じた二次電池を蓄電装置から切り離す必要がある。   By the way, a power storage device mounted on a power supply device is configured by connecting a plurality of secondary batteries (single cells or the like) in series or in parallel in order to obtain a predetermined output voltage and capacity. Thus, in a power storage device in which a plurality of secondary batteries are connected in parallel, when abnormality or deterioration of the secondary battery is detected, it is necessary to disconnect the secondary battery in which the abnormality or deterioration has occurred from the power storage device.

また、複数の二次電池を並列に接続した蓄電装置では、二次電池の異常や劣化の状態には各素子間でのバラツキがあるため、劣化の進行が進んでいるものや異常のあるものだけを切り離し、異常が解消した場合には、切り離した二次電池を再び接続するように、制御を行っている(例えば、特許文献1参照。)。   In addition, in a power storage device in which a plurality of secondary batteries are connected in parallel, there are variations in the state of abnormality or deterioration of the secondary battery among the elements, so that deterioration is progressing or abnormal. When the abnormality is resolved, the control is performed so that the disconnected secondary battery is connected again (see, for example, Patent Document 1).

しかしながら、一旦切り離した二次電池を、再び他の二次電池と並列接続する際に、他の二次電池との間における端子電圧の差が大きいと、当該二次電池を並列接続した瞬間に、二次電池に突入電流が流れて二次電池を劣化させたり、あるいはこれらの二次電池から負荷へ供給される電圧が変動したりする不都合がある。   However, when a secondary battery once disconnected is connected in parallel to another secondary battery again, if the difference in terminal voltage between the secondary battery and the other secondary battery is large, the secondary battery will be instantly connected in parallel. There is an inconvenience that an inrush current flows through the secondary battery to deteriorate the secondary battery, or the voltage supplied from these secondary batteries to the load fluctuates.

そこで、特許文献1には、一旦切り離した二次電池を再び他の二次電池と並列接続する前に、電流制限用の抵抗を介して他の二次電池と接続することで、突入電流を制限しつつ、他の二次電池との間における端子電圧の差を解消させ、その後に当該切り離された二次電池を他の二次電池と並列接続することで、突入電流を低減している。   Therefore, in Patent Document 1, before the secondary battery once disconnected is connected in parallel with another secondary battery again, it is connected to the other secondary battery via a current limiting resistor to thereby reduce the inrush current. While limiting, the terminal voltage difference with other secondary batteries is eliminated, and then the disconnected secondary battery is connected in parallel with other secondary batteries to reduce inrush current. .

特開2007−259612号公報JP 2007-259612 A

しかしながら、特許文献1に記載の構成では、一旦切り離された二次電池を、再び他の二次電池と並列接続する際に生じるおそれのある突入電流を低減するために、電流制限用の抵抗や、この抵抗の接続を開閉するためのスイッチング素子等が必要となり、コストの増大や装置の大型化を招くという、不都合があった。   However, in the configuration described in Patent Document 1, in order to reduce the inrush current that may occur when the secondary battery that has been once disconnected is connected in parallel with another secondary battery, Therefore, a switching element or the like for opening and closing the connection of the resistor is required, which causes inconveniences that increase the cost and increase the size of the apparatus.

本発明の目的は、複数の二次電池が並列接続された並列回路から、一旦切り離された二次電池を再び並列接続する際に生じるおそれのある突入電流を低減するために電流制限用の抵抗を用いることなく、このような突入電流を低減することができる充放電制御回路、及び電源装置を提供することである。   An object of the present invention is to provide a current limiting resistor in order to reduce an inrush current that may occur when a secondary battery that has been once disconnected is connected in parallel again from a parallel circuit in which a plurality of secondary batteries are connected in parallel. It is an object of the present invention to provide a charge / discharge control circuit and a power supply device that can reduce such an inrush current without using a power source.

本発明に係る充放電制御回路は、並列接続される複数の二次電池とそれぞれが直列に接続される複数のスイッチング部と、前記各二次電池の端子電圧を検出する端子電圧検出部と、前記各二次電池の異常の有無を判定する異常判定部と、前記異常判定部によって、前記各二次電池のうちいずれかが異常有りと判定された場合、当該異常有りと判定された二次電池を切り離し対象電池とし、当該切り離し対象電池と直列接続されたスイッチング部をオフさせる切り離し制御部と、前記切り離し対象電池の異常が解消したか否かを判定する異常解消判定部と、前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ当該異常が解消した切り離し対象電池において前記端子電圧検出部によって検出された端子電圧である切り離し電池電圧と、前記切り離し対象電池以外の二次電池において前記端子電圧検出部によって検出された端子電圧である接続電池電圧との差が、予め設定された電圧差閾値に満たない場合、当該異常が解消した切り離し対象電池と直列接続されたスイッチング部をオンさせる切り離し解除部と、前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ前記切り離し電池電圧と前記接続電池電圧との差が、前記電圧差閾値を超える場合、当該異常が解消した切り離し対象電池と直列接続されたスイッチング部をパルス状にオンオフさせる準備処理を実行する切り離し解除準備部とを備える。   A charge / discharge control circuit according to the present invention includes a plurality of secondary batteries connected in parallel and a plurality of switching units each connected in series, a terminal voltage detection unit that detects a terminal voltage of each of the secondary batteries, An abnormality determination unit that determines whether or not each secondary battery is abnormal, and a secondary battery that is determined to be abnormal when any of the secondary batteries is determined to be abnormal by the abnormality determination unit. A separation control unit that turns off a switching unit connected in series with the separation target battery, an abnormality elimination determination unit that determines whether or not the abnormality of the separation target battery has been eliminated, and the abnormality elimination It is determined that the abnormality of the separation target battery has been resolved by the determination unit, and is the terminal voltage detected by the terminal voltage detection unit in the separation target battery in which the abnormality has been resolved. If the difference between the disconnected battery voltage and the connected battery voltage, which is the terminal voltage detected by the terminal voltage detection unit in the secondary battery other than the separation target battery, is less than the preset voltage difference threshold, the abnormality The disconnection release unit that turns on the switching unit connected in series with the separation target battery that has been resolved, and the abnormality elimination determination unit determines that the abnormality of the separation target battery has been resolved, and the separation battery voltage and the connection battery voltage A separation release preparation unit that executes a preparation process for turning on and off the switching unit connected in series with the separation target battery in which the abnormality has been eliminated when the difference exceeds the voltage difference threshold value.

この構成によれば、スイッチング部と二次電池との直列回路が複数並列接続され、各二次電池を各スイッチング部によって個別に他の二次電池から切り離したり接続したりすることが可能である。そして、各二次電池のうちいずれかに異常が生じると、切り離し制御部によって、異常が生じた二次電池が切り離し対象電池とされ、当該切り離し対象電池と直列接続されたスイッチング部がオフされて切り離される。   According to this configuration, a plurality of series circuits of the switching unit and the secondary battery are connected in parallel, and each secondary battery can be individually disconnected from or connected to another secondary battery by each switching unit. . If any of the secondary batteries has an abnormality, the separation control unit turns the abnormality secondary battery into a separation target battery, and turns off the switching unit connected in series with the separation target battery. Disconnected.

そして、切り離し対象電池の異常が解消した場合において、当該異常が解消した切り離し対象電池の端子電圧である切り離し電池電圧と、切り離し対象電池以外の二次電池の端子電圧である接続電池電圧との差が、予め設定された電圧差閾値に満たない小さな値であるために切り離し対象電池を他の二次電池と接続しても大きな突入電流が流れないと考えられるときに、切り離し解除部によって、当該切り離し対象電池と直列接続されたスイッチング部がオンされるので、電流制限用の抵抗を用いることなく、当該電圧差による突入電流を低減することができる。   Then, when the abnormality of the separation target battery is resolved, the difference between the separation battery voltage that is the terminal voltage of the separation target battery in which the abnormality is resolved and the connection battery voltage that is the terminal voltage of the secondary battery other than the separation target battery. However, when it is considered that a large inrush current does not flow even when the separation target battery is connected to another secondary battery because it is a small value that does not satisfy the preset voltage difference threshold, the separation release unit Since the switching unit connected in series with the separation target battery is turned on, inrush current due to the voltage difference can be reduced without using a current limiting resistor.

さらに、切り離し対象電池の異常が解消した場合において、当該切り離し電池電圧と他の二次電池の端子電圧との電圧差が、電圧差閾値を超える大きな値であるために、当該切り離し電池電圧と他の二次電池とをそのまま接続すると、大きな突入電流が流れて不都合が生じるおそれがある場合、切り離し解除準備部によって、当該異常が解消した切り離し対象電池と直列接続されたスイッチング部がパルス状にオンオフされる。これにより、当該電圧差により切り離し対象電池に流れる電流の時間平均量が低減され、当該切り離し対象電池の放電電流又は充電電流が、当該電圧差を減少させる方向に少しずつ流れる。そして、この電圧差が電圧差閾値を下回ると、切り離し解除部によって、当該切り離し対象電池と直列接続されたスイッチング部がオンされて切り離しが解除されるので、電流制限用の抵抗を用いることなく、当該電圧差による突入電流を低減することができる。   Further, when the abnormality of the separation target battery is resolved, the voltage difference between the separation battery voltage and the terminal voltage of the other secondary battery is a large value that exceeds the voltage difference threshold value. If there is a possibility that a large inrush current will flow and inconvenience may occur if the secondary battery is connected as it is, the switching unit connected in series with the separation target battery whose abnormality has been resolved is turned on and off in pulses by the separation release preparation unit Is done. Thereby, the time average amount of the current flowing through the separation target battery due to the voltage difference is reduced, and the discharge current or the charging current of the separation target battery flows little by little in the direction of decreasing the voltage difference. And, when this voltage difference falls below the voltage difference threshold, the switching unit connected in series with the separation target battery is turned on by the separation release unit and the separation is released, so without using a current limiting resistor, Inrush current due to the voltage difference can be reduced.

また、前記複数の二次電池の蓄電電荷量を検出する蓄電電荷量検出部と、前記蓄電電荷量検出部によって検出される各二次電池の蓄電電荷量に基づき、前記切り離し対象電池を除く残余の二次電池の蓄電電荷量の合計を残蓄電量として取得する残蓄電量取得部と、前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ前記切り離し電池電圧と前記接続電池電圧との差が、前記電圧差閾値を超える場合において、前記残蓄電量取得部によって取得された残蓄電量が予め設定された蓄電量閾値を超えるとき、前記切り離し解除準備部による前記準備処理を許可し、前記残蓄電量取得部によって取得された残蓄電量が前記蓄電量閾値に満たないとき、前記切り離し解除準備部による前記準備処理を禁止して前記異常が解消した切り離し対象電池と直列接続されたスイッチング部をオフさせる残蓄電量管理部とをさらに備えることが好ましい。   A storage charge amount detection unit that detects a storage charge amount of the plurality of secondary batteries; and a remaining charge that excludes the separation target battery based on the storage charge amount of each secondary battery detected by the storage charge amount detection unit. A remaining storage amount acquisition unit that acquires the total amount of stored charge of the secondary battery as a remaining storage amount, and the abnormality elimination determination unit determines that the abnormality of the separation target battery has been resolved, and the separation battery voltage and the In the case where the difference from the connected battery voltage exceeds the voltage difference threshold, when the remaining power storage amount acquired by the remaining power storage amount acquisition unit exceeds a preset power storage amount threshold, the preparation by the disconnection release preparation unit Permitting processing, and when the remaining power storage amount acquired by the remaining power storage amount acquisition unit is less than the power storage amount threshold, the preparation processing by the disconnection release preparation unit is prohibited and the abnormality It is preferable to further comprising a residual electricity quantity management unit to turn off the disconnecting target cell connected in series with a switching unit which solves.

この構成によれば、残蓄電量取得部によって、切り離し対象電池を除く残余の二次電池の蓄電電荷量の合計、すなわち外部に対して放電可能な蓄電電荷量が、残蓄電量として取得される。また、この残蓄電量が予め設定された蓄電量閾値を超える場合、すなわち残蓄電量に余裕がある場合、残蓄電量管理部によって、切り離し解除準備部による前記準備処理が許可される。一方、この残蓄電量が蓄電量閾値に満たない場合、残蓄電量管理部によって、切り離し解除準備部による準備処理が禁止されて前記異常が解消した切り離し対象電池と直列接続されたスイッチング部がオフされる。   According to this configuration, the remaining storage amount acquisition unit acquires the total stored charge amount of the remaining secondary batteries excluding the separation target battery, that is, the stored charge amount that can be discharged to the outside as the remaining storage amount. . Further, when the remaining power storage amount exceeds a preset power storage amount threshold value, that is, when there is a margin in the remaining power storage amount, the remaining power storage amount management unit permits the preparation processing by the disconnection release preparation unit. On the other hand, when the remaining power storage amount is less than the power storage amount threshold value, the remaining power storage amount management unit prohibits the preparation process by the disconnection release preparation unit and turns off the switching unit connected in series with the separation target battery in which the abnormality has been resolved. Is done.

ここで、切り離し解除準備部による準備処理が実行されると、切り離し対象電池以外の二次電池から切り離し対象電池へ電流が流れて外部に対して放電可能な蓄電電荷量がさらに減少するおそれがある。そのため、もし仮に残蓄電量が蓄電量閾値に満たない場合に、切り離し解除準備部による準備処理が実行されると、外部に対して放電可能な蓄電電荷量が必要量に対して不足するおそれがある。しかしながら、残蓄電量管理部は、この残蓄電量が蓄電量閾値に満たない場合、切り離し解除準備部による準備処理を禁止して切り離し対象電池以外の二次電池から切り離し対象電池へ電流が流れることを防止するので、外部に対して放電可能な蓄電電荷量が不足するおそれを低減することができる。   Here, when the preparatory process by the separation release preparation unit is executed, there is a possibility that the amount of stored charge that can be discharged to the outside further decreases due to the current flowing from the secondary battery other than the separation target battery to the separation target battery. . Therefore, if the remaining power storage amount is less than the power storage amount threshold and the preparatory process is performed by the disconnection release preparation unit, there is a risk that the amount of stored charge that can be discharged to the outside is insufficient with respect to the required amount. is there. However, when the remaining power storage amount is less than the power storage amount threshold, the remaining power storage amount management unit prohibits the preparatory processing by the disconnection release preparation unit, and current flows from the secondary battery other than the separation target battery to the separation target battery. Therefore, the possibility that the amount of stored charge that can be discharged to the outside is insufficient can be reduced.

また、前記各スイッチング部は、前記各二次電池の、充電を禁止する充電用スイッチング素子と、放電を禁止する放電用スイッチング素子とが直列接続されたものであり、前記切り離し解除準備部は、前記準備処理として、前記切り離し電池電圧が前記接続電池電圧より高い場合、当該切り離し対象電池と直列接続された放電用スイッチング素子をパルス状にオンオフさせ、前記切り離し電池電圧が前記接続電池電圧より低い場合、当該切り離し対象電池と直列接続された充電用スイッチング素子をパルス状にオンオフさせることが好ましい。   Each of the switching units is a series of a charging switching element that prohibits charging of each of the secondary batteries and a discharging switching element that prohibits discharging, and the disconnection release preparation unit includes: When the separation battery voltage is higher than the connection battery voltage as the preparation process, the discharge switching element connected in series with the separation target battery is turned on and off in a pulsed manner, and the separation battery voltage is lower than the connection battery voltage It is preferable that the charging switching element connected in series with the separation target battery is turned on and off in a pulsed manner.

この構成によれば、充電用スイッチング素子と、放電用スイッチング素子とによって、各二次電池の充電電流と放電電流とを個別に禁止することができる。そして、切り離し電池電圧が接続電池電圧より高く、切り離し対象電池を他の二次電池と接続すると切り離し対象電池が放電する場合には、切り離し解除準備部によって、準備処理として当該切り離し対象電池と直列接続された放電用スイッチング素子がパルス状にオンオフされて、切り離し対象電池の放電電流の時間平均量が低減される。その結果、突入電流を低減しつつ、切り離し対象電池と他の二次電池との電圧差を低下させることができる。   According to this configuration, the charging current and the discharging current of each secondary battery can be individually prohibited by the charging switching element and the discharging switching element. When the separation battery voltage is higher than the connection battery voltage and the separation target battery is discharged when the separation target battery is connected to another secondary battery, the separation release preparation unit performs serial connection with the separation target battery as a preparation process. The discharged switching element is turned on and off in pulses, and the time average amount of the discharge current of the battery to be disconnected is reduced. As a result, the voltage difference between the separation target battery and the other secondary battery can be reduced while reducing the inrush current.

そして、切り離し電池電圧が接続電池電圧より低く、切り離し対象電池を他の二次電池と接続すると切り離し対象電池が充電される場合には、切り離し解除準備部によって、準備処理として当該切り離し対象電池と直列接続された充電用スイッチング素子がパルス状にオンオフされて、切り離し対象電池の充電電流の時間平均量が低減されるので、突入電流を低減しつつ、切り離し対象電池と他の二次電池との電圧差を低下させることができる。   When the separation battery voltage is lower than the connection battery voltage and the separation target battery is charged when the separation target battery is connected to another secondary battery, the separation release preparation unit performs serial processing with the separation target battery as a preparation process. Since the connected charging switching element is turned on and off in a pulsed manner, the time average amount of charging current of the separation target battery is reduced, so that the voltage between the separation target battery and another secondary battery is reduced while reducing the inrush current. The difference can be reduced.

また、前記切り離し解除準備部は、前記準備処理において、さらに、前記切り離し電池電圧が前記接続電池電圧より高い場合、前記異常が解消した切り離し対象電池と直列接続された充電用スイッチング素子をオフさせ、前記切り離し電池電圧が前記接続電池電圧より低い場合、当該切り離し対象電池と直列接続された放電用スイッチング素子をオフさせることが好ましい。   In addition, in the preparation process, when the separation battery voltage is higher than the connection battery voltage, the separation release preparation unit turns off the charging switching element connected in series with the separation target battery in which the abnormality is resolved, When the separation battery voltage is lower than the connection battery voltage, it is preferable to turn off the discharge switching element connected in series with the separation target battery.

この構成によれば、前記準備処理において、切り離し電池電圧が接続電池電圧より高く、切り離し対象電池を放電させることによって切り離し対象電池と他の二次電池との電圧差を低下させたい場合に、切り離し解除準備部によって、当該切り離し対象電池と直列接続された充電用スイッチング素子がオフされて、当該切り離し対象電池が充電されることによる前記電位差の増大が防止される。   According to this configuration, in the preparation process, when the separation battery voltage is higher than the connection battery voltage and it is desired to reduce the voltage difference between the separation target battery and another secondary battery by discharging the separation target battery, the separation battery is disconnected. The release preparation unit turns off the charging switching element connected in series with the separation target battery, and prevents the increase in the potential difference due to the separation target battery being charged.

そして、前記準備処理において、切り離し電池電圧が接続電池電圧より低く、切り離し対象電池を充電させることによって切り離し対象電池と他の二次電池との電圧差を低下させたい場合に、切り離し解除準備部によって、当該切り離し対象電池と直列接続された放電用スイッチング素子がオフされて、当該切り離し対象電池が放電されることによる前記電位差の増大が防止される。   And, in the preparation process, when the separation battery voltage is lower than the connection battery voltage and it is desired to reduce the voltage difference between the separation target battery and the other secondary battery by charging the separation target battery, the separation release preparation unit Then, the discharge switching element connected in series with the separation target battery is turned off, and the increase in the potential difference due to the discharge of the separation target battery is prevented.

また、前記複数の二次電池の蓄電電荷量を検出する蓄電電荷量検出部と、前記蓄電電荷量検出部によって検出される各二次電池の蓄電電荷量に基づき、前記切り離し対象電池を除く残余の二次電池の蓄電電荷量の合計を残蓄電量として取得する残蓄電量取得部と、前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ前記切り離し電池電圧と前記接続電池電圧との差が、前記電圧差閾値を超える場合において、前記切り離し電池電圧が前記接続電池電圧より低く、かつ前記残蓄電量取得部によって取得された残蓄電量が予め設定された蓄電量閾値を超えるとき、前記切り離し解除準備部による前記準備処理を許可し、前記切り離し電池電圧が前記接続電池電圧より低く、かつ前記残蓄電量取得部によって取得された残蓄電量が前記蓄電量閾値に満たないとき、前記切り離し解除準備部による前記準備処理を禁止して前記異常が解消した切り離し対象電池と直列接続された充電用スイッチング素子と放電用スイッチング素子とをオフさせる残蓄電量管理部とをさらに備えることが好ましい。   A storage charge amount detection unit that detects a storage charge amount of the plurality of secondary batteries; and a remaining charge that excludes the separation target battery based on the storage charge amount of each secondary battery detected by the storage charge amount detection unit. A remaining storage amount acquisition unit that acquires the total amount of stored charge of the secondary battery as a remaining storage amount, and the abnormality elimination determination unit determines that the abnormality of the separation target battery has been resolved, and the separation battery voltage and the When the difference from the connected battery voltage exceeds the voltage difference threshold, the disconnected battery voltage is lower than the connected battery voltage, and the remaining storage amount acquired by the remaining storage amount acquisition unit is set in advance. When the threshold value is exceeded, the preparation process by the separation release preparation unit is permitted, and the separation battery voltage is lower than the connection battery voltage and is acquired by the remaining storage amount acquisition unit. When the remaining charged amount is less than the charged amount threshold, the charging switching element and the discharging switching element connected in series with the separation target battery in which the abnormality is resolved by prohibiting the preparation process by the separation release preparation unit It is preferable to further include a remaining power storage amount management unit that turns off the power.

この構成によれば、残蓄電量取得部によって、切り離し対象電池を除く残余の二次電池の蓄電電荷量の合計、すなわち外部に対して放電可能な蓄電電荷量が、残蓄電量として取得される。ここで、切り離し電池電圧が接続電池電圧より低い場合、切り離し解除準備部による準備処理が実行されると、切り離し対象電池以外の二次電池が放電して切り離し対象電池が充電されることで外部に対して放電可能な蓄電電荷量が減少する。そこで、このような場合には、この残蓄電量が予め設定された蓄電量閾値を超えているとき、残蓄電量管理部によって、切り離し解除準備部による前記準備処理が許可される。この場合、準備処理によって切り離し対象電池以外の二次電池が放電しても、直ちに残蓄電量が蓄電量閾値を下回るおそれが少ないので、外部に対して放電可能な蓄電電荷量が不足するおそれを低減することができる。   According to this configuration, the remaining storage amount acquisition unit acquires the total stored charge amount of the remaining secondary batteries excluding the separation target battery, that is, the stored charge amount that can be discharged to the outside as the remaining storage amount. . Here, when the separation battery voltage is lower than the connection battery voltage, when the preparation process by the separation release preparation unit is executed, the secondary battery other than the separation target battery is discharged and the separation target battery is charged to the outside. On the other hand, the amount of stored charge that can be discharged is reduced. Therefore, in such a case, when the remaining power storage amount exceeds a preset power storage amount threshold, the preparation process by the separation release preparation unit is permitted by the remaining power storage amount management unit. In this case, even if a secondary battery other than the separation target battery is discharged by the preparation process, there is little possibility that the remaining power storage amount immediately falls below the power storage amount threshold value. Can be reduced.

そして、切り離し電池電圧が接続電池電圧より低く、かつ残蓄電量が蓄電量閾値に満たない場合、残蓄電量管理部によって、切り離し解除準備部による準備処理が禁止され、異常が解消した切り離し対象電池と直列接続された充電用スイッチング素子がオフされて、切り離し対象電池以外の二次電池から切り離し対象電池の充電電流が放電されることが防止される。その結果、残蓄電量がこれ以上さらに蓄電量閾値を下回って減少するおそれが低減されるので、外部に対して放電可能な蓄電電荷量が不足するおそれを低減することができる。このとき、残蓄電量管理部によって、放電用スイッチング素子もオフされるので、切り離し電池電圧がこれ以上低下して切り離し電池電圧と接続電池電圧との差が増大するおそれが低減される。   When the separation battery voltage is lower than the connection battery voltage and the remaining storage amount is less than the storage amount threshold value, the remaining storage amount management unit prohibits the preparation process by the disconnection release preparation unit, and the separation target battery in which the abnormality has been resolved The charging switching element connected in series with the battery is turned off, and the charging current of the separation target battery is prevented from being discharged from the secondary battery other than the separation target battery. As a result, the possibility that the remaining power storage amount will further decrease below the power storage amount threshold is reduced, so that the possibility that the amount of stored charge that can be discharged to the outside will be insufficient can be reduced. At this time, since the discharge switching element is also turned off by the remaining power storage amount management unit, the possibility that the separation battery voltage further decreases and the difference between the separation battery voltage and the connection battery voltage increases is reduced.

また、前記異常判定部は、前記各二次電池の端子電圧、前記各二次電池に流れる電流、及び前記各二次電池の温度のうち少なくとも一つを異常判定用のパラメータとして用いて、当該パラメータが異常状態を示すべく予め設定された異常判定範囲になった場合、当該異常判定範囲になった二次電池に異常有りと判定し、前記異常解消判定部は、前記切り離し対象電池について、前記異常判定部によって異常判定用に用いられたパラメータが正常状態を示すべく予め設定された正常判定範囲になった場合、当該正常判定範囲になった切り離し対象電池の異常が解消したと判定することが好ましい。   Further, the abnormality determination unit uses at least one of a terminal voltage of each secondary battery, a current flowing through each secondary battery, and a temperature of each secondary battery as a parameter for abnormality determination, When the parameter is in an abnormality determination range set in advance to indicate an abnormal state, it is determined that there is an abnormality in the secondary battery that is in the abnormality determination range, and the abnormality elimination determination unit When the parameter used for abnormality determination by the abnormality determination unit falls within a normal determination range set in advance to indicate a normal state, it may be determined that the abnormality of the separation target battery that has become the normal determination range has been resolved. preferable.

この構成によれば、各二次電池の端子電圧、各二次電池に流れる電流、及び各二次電池の温度は、二次電池の状態が反映される主要なパラメータであるので、これらのパラメータのうち少なくとも一つを異常判定用のパラメータとして用いることで、各二次電池における異常の有無を判定することが容易である。   According to this configuration, the terminal voltage of each secondary battery, the current flowing through each secondary battery, and the temperature of each secondary battery are the main parameters that reflect the state of the secondary battery. By using at least one of them as an abnormality determination parameter, it is easy to determine the presence or absence of abnormality in each secondary battery.

また、本発明に係る電源装置は、上述の充放電制御回路と、前記複数の二次電池とを備える。   Moreover, the power supply device according to the present invention includes the above-described charge / discharge control circuit and the plurality of secondary batteries.

この構成によれば、複数の二次電池を備えた電源装置において、複数の二次電池が並列接続された並列回路から、一旦切り離された二次電池を再び並列接続する際に生じるおそれのある突入電流を低減するために電流制限用の抵抗を用いることなく、このような突入電流を低減することができる。   According to this configuration, in a power supply device including a plurality of secondary batteries, there is a possibility that a secondary battery once disconnected from a parallel circuit in which the plurality of secondary batteries are connected in parallel may be connected again in parallel. Such an inrush current can be reduced without using a current limiting resistor to reduce the inrush current.

このような構成の充放電制御回路、及び電源装置によれば、複数の二次電池が並列接続された並列回路から、一旦切り離された二次電池を再び並列接続する際に生じるおそれのある突入電流を低減するために電流制限用の抵抗を用いることなく、このような突入電流を低減することができる。   According to the charge / discharge control circuit and the power supply device having such a configuration, a rush that may occur when a secondary battery once disconnected from a parallel circuit in which a plurality of secondary batteries are connected in parallel is connected again in parallel. Such an inrush current can be reduced without using a current limiting resistor to reduce the current.

本発明の一実施形態に係る電源装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the power supply device which concerns on one Embodiment of this invention. 図1に示す電源装置の動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of an operation of the power supply device illustrated in FIG. 1. 図1に示す電源装置の動作の一例を示すフローチャートである。3 is a flowchart illustrating an example of an operation of the power supply device illustrated in FIG. 1. 図1に示す切り離し解除準備部によるスイッチング素子のパルス駆動動作の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the pulse drive operation | movement of the switching element by the isolation | separation cancellation | release preparation part shown in FIG. 切り離し電池電圧、接続電池電圧、及び残蓄電量に基づく切り離し対象電池ブロックの充電用及び放電用スイッチング素子の制御方法を説明するための説明図である。It is explanatory drawing for demonstrating the control method of the switching element for charge of the isolation | separation object battery block based on the isolation | separation battery voltage, a connection battery voltage, and the remaining electrical storage amount, and a discharge.

以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る電源装置の構成の一例を示すブロック図である。   Embodiments according to the present invention will be described below with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted. FIG. 1 is a block diagram illustrating an example of a configuration of a power supply device according to an embodiment of the present invention.

図1に示す電源装置1は、電池ブロック2,3,4(二次電池)、電圧検出部21,31,41、電流検出部22,32,42、温度検出部23,33,43、放電用スイッチング素子24,34,44、充電用スイッチング素子25,35,45、制御部5、及び接続端子6,7を備えて構成されている。そして、電源装置1から電池ブロック2,3,4を除いた部分が充放電制御回路の一例に相当している。   1 includes battery blocks 2, 3, 4 (secondary batteries), voltage detection units 21, 31, 41, current detection units 22, 32, 42, temperature detection units 23, 33, 43, and discharge. Switching elements 24, 34, 44, charging switching elements 25, 35, 45, a control unit 5, and connection terminals 6, 7. And the part remove | excluding battery block 2,3,4 from the power supply device 1 is equivalent to an example of a charging / discharging control circuit.

接続端子6,7には、発電装置100や負荷装置200が接続される。そして、発電装置100で発電された余剰電力が接続端子6,7を介して電池ブロック2,3,4に充電されたり、電池ブロック2,3,4から接続端子6,7を介して負荷装置200の負荷電流が供給されたりする。   The power generation device 100 and the load device 200 are connected to the connection terminals 6 and 7. The surplus power generated by the power generation device 100 is charged to the battery blocks 2, 3, 4 via the connection terminals 6, 7, or the load device is connected from the battery blocks 2, 3, 4 via the connection terminals 6, 7. 200 load currents are supplied.

また、放電用スイッチング素子24、充電用スイッチング素子25、電池ブロック2、及び電流検出部22が直列に接続された直列回路20と、放電用スイッチング素子34、充電用スイッチング素子35、電池ブロック3、及び電流検出部32が直列に接続された直列回路30と、放電用スイッチング素子44、充電用スイッチング素子45、電池ブロック4、及び電流検出部42が直列に接続された直列回路40とが、接続端子6,7間に、並列に接続されている。   In addition, a series circuit 20 in which the discharging switching element 24, the charging switching element 25, the battery block 2, and the current detection unit 22 are connected in series, the discharging switching element 34, the charging switching element 35, the battery block 3, And the series circuit 30 in which the current detection unit 32 is connected in series, and the series circuit 40 in which the discharge switching element 44, the charging switching element 45, the battery block 4, and the current detection unit 42 are connected in series are connected. The terminals 6 and 7 are connected in parallel.

電池ブロック2,3,4は、それぞれ複数の二次電池Bが例えば直列接続されて構成されている。また、各二次電池Bは、例えば複数の単電池が並列、直列、あるいは並列と直列とが組み合わされた組電池であってもよく、単電池であってもよい。また、電池ブロック2,3,4の代わりに二次電池Bが用いられていてもよい。   Each of the battery blocks 2, 3, and 4 is configured by connecting a plurality of secondary batteries B in series, for example. Each secondary battery B may be, for example, a plurality of unit cells in parallel, series, or a combination battery in which parallel and series are combined, or may be a unit cell. A secondary battery B may be used instead of the battery blocks 2, 3, 4.

各二次電池Bを構成する単電池としては、例えばリチウムイオン二次電池や、ニッケル水素二次電池等、種々の二次電池を用いることができる。   As the single battery constituting each secondary battery B, various secondary batteries such as a lithium ion secondary battery and a nickel hydride secondary battery can be used.

そして、電池ブロック2における各二次電池Bの端子電圧を検出する複数の電圧検出部21、電池ブロック3における各二次電池Bの端子電圧を検出する複数の電圧検出部31、及び電池ブロック4における各二次電池Bの端子電圧を検出する複数の電圧検出部41が設けられている。なお、電圧検出部21,31,41は、各二次電池Bの端子電圧を検出する例に限られず、電池ブロック2,3,4の各端子電圧を検出する構成であってもよい。   A plurality of voltage detectors 21 that detect the terminal voltage of each secondary battery B in the battery block 2, a plurality of voltage detectors 31 that detect the terminal voltage of each secondary battery B in the battery block 3, and the battery block 4. Are provided with a plurality of voltage detectors 41 for detecting the terminal voltage of each secondary battery B. In addition, the voltage detection parts 21, 31, and 41 are not restricted to the example which detects the terminal voltage of each secondary battery B, The structure which detects each terminal voltage of the battery blocks 2, 3, and 4 may be sufficient.

温度検出部23,33,43は、例えばサーミスタや熱電対等の温度センサ、及びアナログデジタルコンバータ等を用いて構成されている。温度検出部23,33,43は、電池ブロック2,3,4の近傍に設けられて電池ブロック2,3,4の各温度を検出する。   The temperature detectors 23, 33, and 43 are configured using, for example, a temperature sensor such as a thermistor or a thermocouple, an analog-digital converter, and the like. The temperature detectors 23, 33, and 43 are provided in the vicinity of the battery blocks 2, 3, and 4 to detect the temperatures of the battery blocks 2, 3, and 4.

温度検出部23,33,43は、それぞれが複数の温度センサを備え、電池ブロック2,3,4に含まれる複数の二次電池Bの温度をそれぞれ検出するようにしてもよく、あるいは各電池ブロック内で隣り合う二次電池B二つに一つの温度センサを設けて、二次電池B二つ毎に温度を検出するようにしてもよい。隣接する二次電池Bの間に温度センサを配設することで、二次電池B二つ毎に温度を検出するようにすれば、温度検出の精度を確保しつつ、温度センサの数を減少させて低コスト化することが可能となる。   Each of the temperature detection units 23, 33, and 43 may include a plurality of temperature sensors and detect the temperatures of the plurality of secondary batteries B included in the battery blocks 2, 3, and 4, or each battery. One temperature sensor may be provided for two secondary batteries B adjacent in the block, and the temperature may be detected for each of the two secondary batteries B. If a temperature sensor is arranged between adjacent secondary batteries B so that the temperature is detected for every two secondary batteries B, the number of temperature sensors is reduced while ensuring the accuracy of temperature detection. Thus, the cost can be reduced.

温度検出部23,33,43が、それぞれ複数のセンサを備える場合、例えば、電池ブロック2,3,4において検出された各二次電池Bの温度のうち、最高の温度を電池ブロック2,3,4の各温度として用いることができる。   When each of the temperature detection units 23, 33, and 43 includes a plurality of sensors, for example, the highest temperature among the temperatures of the secondary batteries B detected in the battery blocks 2, 3, and 4 is set to the battery blocks 2 and 3. , 4 can be used as each temperature.

電流検出部22,32,42は、例えばシャント抵抗や電流変成器、アナログデジタルコンバータ等を用いて構成されている。そして、電流検出部22,32,42は、例えば電池ブロック2,3,4の充電電流をプラスの電流値で、放電電流をマイナスの電流値で表す信号を、制御部5へ出力する。   The current detection units 22, 32, and 42 are configured using, for example, a shunt resistor, a current transformer, an analog digital converter, or the like. Then, the current detection units 22, 32, 42 output, for example, a signal that represents the charging current of the battery blocks 2, 3, 4 with a positive current value and the discharge current with a negative current value to the control unit 5.

放電用スイッチング素子24,34,44、及び充電用スイッチング素子25,35,45としては、例えばpチャネルのFET(Field Effect Transistor)やnチャネルのFETが用いられる。また、放電用スイッチング素子24,34,44は電池ブロック2,3,4の充電電流が寄生ダイオ−ドの順方向になる向きに接続され、充電用スイッチング素子25,35,45は電池ブロック2,3,4の放電電流が寄生ダイオ−ドの順方向になる向きに接続されている。   As the discharge switching elements 24, 34, 44 and the charge switching elements 25, 35, 45, for example, p-channel FETs (Field Effect Transistors) and n-channel FETs are used. The discharging switching elements 24, 34, 44 are connected in a direction in which the charging current of the battery blocks 2, 3, 4 is in the forward direction of the parasitic diode, and the charging switching elements 25, 35, 45 are connected to the battery block 2. , 3 and 4 are connected in such a direction that the forward direction of the parasitic diodes.

これにより、放電用スイッチング素子24,34,44は、充電方向の電流は常時流しつつ、放電方向の電流のみオン、オフするようになっている。また、充電用スイッチング素子25,35,45は、放電方向の電流は常時流しつつ、充電方向の電流のみオン、オフするようになっている。   As a result, the discharging switching elements 24, 34, and 44 are designed to turn on and off only in the discharging direction while constantly flowing in the charging direction. Further, the charging switching elements 25, 35, and 45 are designed to turn on and off only the current in the charging direction while the current in the discharging direction always flows.

なお、三つの直列回路20,30,40が並列接続される例を示したが、当該直列回路は複数並列接続されていればよく、三つに限らない。   In addition, although the example where the three series circuits 20, 30, and 40 are connected in parallel is shown, the series circuit is not limited to three as long as a plurality of series circuits are connected in parallel.

制御部5は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶された不揮発性のROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、その周辺回路等とを備えて構成されている。そして、制御部5は、例えばROMに記憶された制御プログラムを実行することにより、異常判定部51、切り離し制御部52、異常解消判定部53、切り離し解除部54、切り離し解除準備部55、蓄電電荷量検出部56、残蓄電量取得部57、及び残蓄電量管理部58として機能する。   The control unit 5 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a nonvolatile ROM (Read Only Memory) that stores a predetermined control program, and a RAM (Random) that temporarily stores data. Access Memory) and its peripheral circuits and the like. Then, the control unit 5 executes, for example, a control program stored in the ROM, so that the abnormality determination unit 51, the separation control unit 52, the abnormality elimination determination unit 53, the separation release unit 54, the separation release preparation unit 55, the stored charge It functions as an amount detection unit 56, a remaining storage amount acquisition unit 57, and a remaining storage amount management unit 58.

異常判定部51は、各電池ブロック2、3、4の異常の有無を判定する。具体的には、異常判定部51は、例えば、電圧検出部21,31,41によって検出された各二次電池Bの端子電圧をパラメータとして用いて、当該各端子電圧のうちいずれかが、過充電を示す電圧範囲や、過放電を示す電圧範囲に設定された異常判定範囲になった場合、当該異常判定範囲になった二次電池Bを含む電池ブロックに異常有りと判定する。   The abnormality determination unit 51 determines whether or not each battery block 2, 3, 4 is abnormal. Specifically, the abnormality determination unit 51 uses, for example, the terminal voltage of each secondary battery B detected by the voltage detection units 21, 31, 41 as a parameter, and any one of the terminal voltages is excessive. When the abnormality determination range is set to the voltage range indicating charging or the voltage range indicating overdischarge, it is determined that there is an abnormality in the battery block including the secondary battery B in the abnormality determination range.

なお、異常判定部51は、例えば、電圧検出部21,31,41によって検出された各二次電池Bの端子電圧の、各電池ブロック毎の合計値のいずれかが、各電池ブロックの過充電を示す電圧範囲や、過放電を示す電圧範囲に設定された異常判定範囲になった場合、当該異常判定範囲になった電池ブロックに異常有りと判定するようにしてもよい。   In addition, the abnormality determination part 51 is the overcharge of each battery block, for example, either of the total value for each battery block of the terminal voltage of each secondary battery B detected by the voltage detection part 21,31,41. Or an abnormal determination range set in a voltage range indicating overdischarge, it may be determined that there is an abnormality in the battery block in the abnormal determination range.

また、異常判定部51は、例えば、電流検出部22,32,42によって検出された各電池ブロックに流れる電流値をパラメータとして用いて、当該各電流値のうちいずれかが、過電流を示す電流範囲に設定された異常判定範囲になった場合、当該異常判定範囲になった電池ブロックに異常有りと判定する。   In addition, the abnormality determination unit 51 uses, for example, a current value flowing through each battery block detected by the current detection units 22, 32, and 42 as a parameter, and any one of the current values indicates a current indicating an overcurrent. When the abnormality determination range set in the range is reached, it is determined that there is an abnormality in the battery block in the abnormality determination range.

また、異常判定部51は、例えば、温度検出部23,33,43によって検出された各電池ブロックの温度をパラメータとして用いて、当該各温度のうちいずれかが、過度の高温状態を示す温度範囲に設定された異常判定範囲になった場合、当該異常判定範囲になった電池ブロックに異常有りと判定する。   In addition, the abnormality determination unit 51 uses, for example, the temperature of each battery block detected by the temperature detection units 23, 33, and 43 as a parameter, and any one of the temperatures indicates an excessively high temperature state. When the abnormality determination range is set to, it is determined that there is an abnormality in the battery block that is in the abnormality determination range.

なお、異常判定部51は、電圧、電流、及び温度のパラメータに基づいて、電池ブロックの異常を判定する例を示したが、電圧、電流、及び温度のうちいずれか一つのみを用いて、異常を判定してもよく、電圧、電流、及び温度以外の条件に基づいて異常を検出するようにしてもよい。   In addition, although the abnormality determination part 51 showed the example which determines the abnormality of a battery block based on the parameter of a voltage, an electric current, and temperature, using only any one among a voltage, an electric current, and temperature, The abnormality may be determined, and the abnormality may be detected based on conditions other than voltage, current, and temperature.

切り離し制御部52は、異常判定部51によって、各電池ブロックのうちいずれかが異常有りと判定された場合、当該異常有りと判定された電池ブロックを切り離し対象電池ブロック(切り離し対象電池)とし、当該切り離し対象電池ブロックと直列接続された放電用スイッチング素子と充電用スイッチング素子とがオフされて、当該切り離し対象電池ブロックが他の電池ブロックから切り離される。   When the abnormality determination unit 51 determines that any of the battery blocks is abnormal, the disconnection control unit 52 sets the battery block determined to be abnormal as a separation target battery block (detachment target battery), The discharging switching element and the charging switching element connected in series with the separation target battery block are turned off, and the separation target battery block is separated from the other battery blocks.

異常解消判定部53は、切り離し対象電池ブロックの異常が解消したか否かを判定する。具体的には、異常解消判定部53は、切り離し対象電池ブロックについて、異常判定部51によって異常判定用に用いられたパラメータが正常状態を示す正常判定範囲になった場合、当該正常判定範囲になった切り離し対象電池の異常が解消したと判定する。   The abnormality elimination determination unit 53 determines whether or not the abnormality of the separation target battery block has been eliminated. Specifically, when the parameter used for abnormality determination by the abnormality determination unit 51 is in a normal determination range indicating a normal state with respect to the separation target battery block, the abnormality elimination determination unit 53 enters the normal determination range. It is determined that the abnormality of the separation target battery has been resolved.

切り離し解除部54は、異常解消判定部53によって切り離し対象電池ブロックの異常が解消したと判定され、かつ当該異常が解消した切り離し対象電池ブロックの端子電圧である切り離し電池電圧Verrと、切り離し対象電池ブロック以外の電池ブロックの端子電圧である接続電池電圧Vnとの差の絶対値である差分電圧Vdが、予め設定された電圧差閾値Vonに満たない場合、当該異常が解消した切り離し対象電池ブロックと直列接続された放電用スイッチング素子と充電用スイッチング素子とをオンさせる。   The disconnection release unit 54 determines that the abnormality of the separation target battery block has been resolved by the abnormality elimination determination unit 53, and the separation battery voltage Verr that is the terminal voltage of the separation target battery block in which the abnormality has been resolved, and the separation target battery block When the difference voltage Vd, which is the absolute value of the difference from the connected battery voltage Vn, which is the terminal voltage of the battery block other than the battery block, is less than the preset voltage difference threshold Von, the battery block is connected in series with the separation target battery block in which the abnormality has been resolved. The connected discharging switching element and charging switching element are turned on.

切り離し電池電圧Verrとしては、異常が解消した切り離し対象電池ブロックの端子電圧として、電圧検出部により検出された各二次電池Bの端子電圧の当該ブロックにおける合計値が用いられる。また、接続電池電圧Vnとしては、切り離し対象電池ブロック以外の電池ブロックの端子電圧として、電圧検出部により検出された各二次電池Bの端子電圧の電池ブロック毎の合計値が用いられる。   As the separation battery voltage Verr, the total value in the block of the terminal voltage of each secondary battery B detected by the voltage detection unit is used as the terminal voltage of the separation target battery block in which the abnormality has been resolved. Further, as the connection battery voltage Vn, the total value for each battery block of the terminal voltage of each secondary battery B detected by the voltage detection unit is used as the terminal voltage of the battery blocks other than the separation target battery block.

ここで、切り離し対象電池ブロック以外の電池ブロックは並列接続されているから、当該各電池ブロックの端子電圧(電池ブロック毎の二次電池Bの端子電圧の合計値)は、等しくなる。従って、接続電池電圧Vnとしては、切り離し対象電池ブロック以外の各電池ブロックの端子電圧のうち、いずれか一つを用いればよい。なお、接続電池電圧Vnとして、切り離し対象電池ブロック以外の各電池ブロックの端子電圧の平均値を用いるようにしてもよい。   Here, since the battery blocks other than the separation target battery block are connected in parallel, the terminal voltages of the battery blocks (the total value of the terminal voltages of the secondary battery B for each battery block) are equal. Therefore, any one of the terminal voltages of the battery blocks other than the separation target battery block may be used as the connection battery voltage Vn. In addition, you may make it use the average value of the terminal voltage of each battery block other than the separation object battery block as the connection battery voltage Vn.

また、他の電池ブロックから切り離されている切り離し対象電池ブロックを他の電池ブロックに接続した場合に、差分電圧Vdに起因して切り離し対象電池ブロックと他の電池ブロックとの間に流れる電流が、二次電池Bを劣化させたり接続端子6,7間の電圧変動を生じさせたりするおそれが生じるような大電流となる、その大電流を生じさせる差分電圧Vdが、電圧差閾値Vonとして予め設定されている。   In addition, when the separation target battery block that is separated from the other battery block is connected to the other battery block, the current flowing between the separation target battery block and the other battery block due to the differential voltage Vd is A differential voltage Vd that causes a large current that may cause deterioration of the secondary battery B or a voltage fluctuation between the connection terminals 6 and 7 is set in advance as the voltage difference threshold Von. Has been.

切り離し解除準備部55は、異常解消判定部53によって切り離し対象電池ブロックの異常が解消したと判定され、かつ切り離し電池電圧Verrと接続電池電圧Vnとの差が、電圧差閾値Von以上である場合、切り離し対象電池ブロックを他の電池ブロックに接続した場合に上述の大電流が流れるおそれを低減するため、以下の準備処理を実行する。   The separation release preparation unit 55 determines that the abnormality of the separation target battery block has been resolved by the abnormality elimination determination unit 53, and the difference between the separation battery voltage Verr and the connection battery voltage Vn is equal to or greater than the voltage difference threshold Von. In order to reduce the possibility of the above-described large current flowing when the separation target battery block is connected to another battery block, the following preparation process is executed.

切り離し解除準備部55は、切り離し電池電圧Verrが接続電池電圧Vnより高い場合、準備処理として、異常が解消した切り離し対象電池ブロックと直列接続された充電用スイッチング素子をオフさせ、当該切り離し対象電池ブロックと直列接続された放電用スイッチング素子を周期的にパルス状にオンオフさせることで、当該切り離し対象電池ブロックから出力される電流値を、悪影響が生じないような低レベルに制限しつつ、当該切り離し対象電池ブロックを放電させて、差分電圧Vdを減少させる。   When the detachment battery voltage Verr is higher than the connection battery voltage Vn, the detachment release preparation unit 55 turns off the charging switching element connected in series with the detachable battery block in which the abnormality is eliminated as a preparation process, and the detachment target battery block By periodically turning on and off the discharge switching element connected in series in a pulsed manner, the current value output from the battery block to be disconnected is limited to a low level that does not adversely affect the target to be disconnected. The battery block is discharged to reduce the differential voltage Vd.

なお、切り離し解除準備部55は、切り離し電池電圧Verrが接続電池電圧Vnより高い場合、切り離し対象電池ブロック以外の電池ブロックから切り離し対象電池ブロックが充電される方向に電流が流れることはないので、必ずしも異常が解消した切り離し対象電池ブロックと直列接続された充電用スイッチング素子をオフさせる必要はない。しかしながら、当該充電用スイッチング素子をオフさせることで、例えば接続端子6,7に接続された発電装置100からの充電電流も遮断して、より確実に、これ以上当該切り離し対象電池ブロックが充電されて差分電圧Vdが増大することを防止することができる。   Note that when the separation battery voltage Verr is higher than the connection battery voltage Vn, the separation release preparation unit 55 does not necessarily flow in the direction in which the separation target battery block is charged from the battery blocks other than the separation target battery block. It is not necessary to turn off the charging switching element connected in series with the separation target battery block in which the abnormality is eliminated. However, by turning off the charging switching element, for example, the charging current from the power generation device 100 connected to the connection terminals 6 and 7 is also cut off, and the battery block to be separated is more reliably charged. It is possible to prevent the differential voltage Vd from increasing.

一方、切り離し解除準備部55は、切り離し電池電圧Verrが接続電池電圧Vnより低い場合、準備処理として、異常が解消した切り離し対象電池ブロックと直列接続された放電用スイッチング素子をオフさせ、当該切り離し対象電池ブロックと直列接続された充電用スイッチング素子を周期的にパルス状にオンオフさせることで、当該切り離し対象電池ブロックに流れ込む電流値を、悪影響が生じないような低レベルに制限しつつ、当該切り離し対象電池ブロックを充電させ、差分電圧Vdを減少させる。   On the other hand, when the separation battery voltage Verr is lower than the connection battery voltage Vn, the separation release preparation unit 55 turns off the discharge switching element connected in series with the separation target battery block in which the abnormality has been eliminated as a preparation process, By periodically turning on and off the charging switching elements connected in series with the battery block, the current flowing into the battery block to be disconnected is limited to a low level that does not adversely affect the object to be disconnected. The battery block is charged and the differential voltage Vd is decreased.

なお、切り離し解除準備部55は、切り離し電池電圧Verrが接続電池電圧Vnより低い場合、放電用スイッチング素子をオンしても切り離し対象電池ブロックが他の電池ブロックへ放電する方向に電流が流れることはないので、必ずしも異常が解消した切り離し対象電池ブロックと直列接続された放電用スイッチング素子をオフさせる必要はない。しかしながら、当該放電用スイッチング素子をオフさせることで、例えば接続端子6,7に接続された負荷装置200へ流れる電流も遮断して、より確実に、これ以上当該切り離し対象電池ブロックが放電されて差分電圧Vdが増大することを防止することができる。   In addition, when the separation battery voltage Verr is lower than the connection battery voltage Vn, the separation release preparation unit 55 does not cause a current to flow in the direction in which the separation target battery block is discharged to another battery block even if the discharge switching element is turned on. Therefore, it is not always necessary to turn off the discharge switching element connected in series with the separation target battery block in which the abnormality is resolved. However, by turning off the discharge switching element, for example, the current flowing to the load device 200 connected to the connection terminals 6 and 7 is also cut off, and the separation target battery block is discharged more reliably and more reliably. It is possible to prevent the voltage Vd from increasing.

なお、必ずしも放電用スイッチング素子と充電用スイッチング素子とによって、スイッチング部を構成する必要はなく、放電用スイッチング素子と充電用スイッチング素子との直列回路の代わりに、例えばリレースイッチや寄生ダイオードを備えないFET等、双方向に電流を制御可能な単一のスイッチング素子を、スイッチング部として用いてもよい。   Note that it is not always necessary to form a switching unit by the discharging switching element and the charging switching element. For example, a relay switch or a parasitic diode is not provided in place of the series circuit of the discharging switching element and the charging switching element. A single switching element that can control the current in both directions, such as an FET, may be used as the switching unit.

双方向に電流を制御可能な単一のスイッチング素子を、スイッチング部として用いた場合、切り離し解除準備部55は、準備処理として、切り離し電池電圧Verrと接続電池電圧Vnとの大小関係にかかわらず、当該スイッチング素子を周期的にパルス状にオンオフさせる構成とすればよい。   When a single switching element capable of controlling the current in both directions is used as the switching unit, the disconnection release preparation unit 55 performs the preparation process regardless of the magnitude relationship between the disconnection battery voltage Verr and the connection battery voltage Vn. The switching element may be configured to periodically turn on and off in a pulsed manner.

蓄電電荷量検出部56は、電池ブロック2,3,4の蓄電電荷量を検出する。具体的には、蓄電電荷量検出部56は、例えば、電流検出部22,32,42で検出された各電流値を、それぞれ継続的に、例えば単位時間毎に積算することによって、電池ブロック2,3,4に充電されている蓄電電荷量をそれぞれ算出する。   The stored charge amount detection unit 56 detects the stored charge amount of the battery blocks 2, 3, and 4. Specifically, the stored charge amount detection unit 56, for example, continuously accumulates each current value detected by the current detection units 22, 32, and 42, for example, every unit time, whereby the battery block 2 , 3 and 4 are respectively calculated.

なお、蓄電電荷量検出部56は、例えば、電池ブロック2,3,4の端子電圧と蓄電電荷量との間に相関関係があることを利用して、電圧検出部21,31,41で検出された電池ブロック2,3,4の端子電圧(各電池ブロックにおける二次電池Bの端子電圧の合計値)を、電池ブロック2,3,4の蓄電電荷量に換算する構成としてもよい。   The stored charge amount detection unit 56 is detected by the voltage detection units 21, 31, 41 using, for example, the correlation between the terminal voltage of the battery blocks 2, 3, 4 and the stored charge amount. The terminal voltage of the battery blocks 2, 3, 4 (the total value of the terminal voltages of the secondary battery B in each battery block) may be converted into the stored charge amount of the battery blocks 2, 3, 4.

また、蓄電電荷量検出部56は、このようにして得られた各電池ブロックの蓄電電荷量を、温度検出部23,33,43で検出された温度に基づいて補正する構成としてもよい。   Further, the stored charge amount detection unit 56 may be configured to correct the stored charge amount of each battery block thus obtained based on the temperatures detected by the temperature detection units 23, 33, and 43.

残蓄電量取得部57は、蓄電電荷量検出部56によって検出される電池ブロック2,3,4の蓄電電荷量に基づき、切り離し対象電池を除く残余の電池ブロックの蓄電電荷量の合計を残蓄電量Qrとして取得する。なお、残蓄電量取得部57は、例えば、電池ブロック2,3,4の満充電容量の合計すなわち電源装置1全体の満充電容量をQfullとした場合に、満充電容量Qfullに対する、残蓄電量Qrの比率をパーセントで表すことで、残蓄電量QrをSOC(State Of Charge)で表したPSOCを算出するようにしてもよい。   Based on the stored charge amount of the battery blocks 2, 3, and 4 detected by the stored charge amount detection unit 56, the remaining stored charge amount acquisition unit 57 calculates the remaining stored charge amount of the remaining battery blocks excluding the separation target battery. Obtained as quantity Qr. For example, when the total charge capacity of the battery blocks 2, 3, 4, that is, the full charge capacity of the entire power supply device 1 is set to Qfull, the remaining power storage amount acquisition unit 57 stores the remaining power storage amount with respect to the full charge capacity Qfull. By expressing the ratio of Qr as a percentage, PSOC in which the remaining power storage amount Qr is expressed in SOC (State Of Charge) may be calculated.

以下、残蓄電量QrをPSOCとして表す例について説明する。   Hereinafter, an example in which the remaining power storage amount Qr is expressed as PSOC will be described.

残蓄電量管理部58は、切り離し電池電圧Verrが接続電池電圧Vnより低く、かつ残蓄電量取得部57によって算出された残蓄電量PSOCが、予め設定された蓄電量閾値SOCtを超える場合、切り離し解除準備部55による準備処理を許可する。一方、残蓄電量管理部58は、切り離し電池電圧Verrが接続電池電圧Vnより低く、かつ残蓄電量取得部57によって算出された残蓄電量PSOCが、蓄電量閾値SOCtに満たない場合、切り離し解除準備部55による準備処理を禁止して異常が解消した切り離し対象電池と直列接続された充電用スイッチング素子と放電用スイッチング素子とをオフさせる。   The remaining storage amount management unit 58 disconnects when the separation battery voltage Verr is lower than the connection battery voltage Vn and the remaining storage amount PSOC calculated by the remaining storage amount acquisition unit 57 exceeds a preset storage amount threshold SOCt. The preparation process by the release preparation unit 55 is permitted. On the other hand, when the separated battery voltage Verr is lower than the connected battery voltage Vn and the remaining storage amount PSOC calculated by the remaining storage amount acquisition unit 57 is less than the storage amount threshold SOCt, the remaining storage amount management unit 58 releases the separation. The charging switching element and the discharging switching element connected in series with the separation target battery whose abnormality has been eliminated by prohibiting the preparation process by the preparation unit 55 are turned off.

蓄電量閾値SOCtとしては、例えば負荷装置200を安定動作させるために常時確保しておく必要のあるSOC(電荷量)が予め設定されており、例えば40%に設定されている。   As the power storage amount threshold SOCt, for example, an SOC (charge amount) that needs to be constantly secured in order to stably operate the load device 200 is set in advance, for example, 40%.

これにより、残蓄電量PSOCが蓄電量閾値SOCtに満たず、従って電源装置1が放電可能な状態で常時確保しておく必要のあるSOC(電荷量)が不足している場合に、充電用スイッチング素子がオンされて、切り離し対象電池以外の電池ブロック、ずなわち負荷装置200へ電力供給が可能な電池ブロックから、切り離し対象電池へ充電電流が流れて残蓄電量PSOCがさらに減少してしまうことが防止されるようになっている。   As a result, when the remaining storage amount PSOC is less than the storage amount threshold SOCt, and therefore the SOC (charge amount) that needs to be secured at all times in a state where the power supply device 1 can be discharged is insufficient, switching for charging is performed. When the element is turned on, the charging current flows from the battery block other than the separation target battery, that is, the battery block capable of supplying power to the load device 200, to the separation target battery, and the remaining storage amount PSOC is further reduced. Is to be prevented.

次に、上述のように構成された電源装置1の動作について説明する。図2、図3は、図1に示す電源装置1の動作の一例を示すフローチャートである。まず、電圧検出部21,31,41、電流検出部22,32,42、温度検出部23,33,43によって、電池ブロック2、3、4の電圧、電流、温度が電池情報として検出される(ステップS1)。   Next, the operation of the power supply device 1 configured as described above will be described. 2 and 3 are flowcharts showing an example of the operation of the power supply device 1 shown in FIG. First, the voltage, current, and temperature of the battery blocks 2, 3, and 4 are detected as battery information by the voltage detectors 21, 31, and 41, the current detectors 22, 32, and 42, and the temperature detectors 23, 33, and 43. (Step S1).

次に、蓄電電荷量検出部56によって、ステップS1で得られた電池情報に基づいて、電池ブロック2,3,4に充電されている蓄電電荷量がそれぞれ算出される。そして、残蓄電量取得部57によって、残蓄電量PSOCが算出される(ステップS2)。   Next, the stored charge amount detection unit 56 calculates the stored charge amounts charged in the battery blocks 2, 3, and 4 based on the battery information obtained in step S1. Then, the remaining power storage amount PSOC is calculated by the remaining power storage amount acquisition unit 57 (step S2).

具体的には、例えば後述するステップS4において切り離し対象電池ブロックにされている電池ブロックがなければ、残蓄電量取得部57によって、蓄電電荷量検出部56で算出された電池ブロック2,3,4の蓄電電荷量の合計が残蓄電量Qrとして算出され、さらに残蓄電量Qrと満充電容量Qfullとから、残蓄電量PSOCが算出される。   Specifically, for example, if there is no battery block that is set as a separation target battery block in step S4 described below, the battery blocks 2, 3, and 4 calculated by the remaining charge amount detection unit 56 by the remaining charge amount acquisition unit 57 Is calculated as the remaining storage amount Qr, and the remaining storage amount PSOC is calculated from the remaining storage amount Qr and the full charge capacity Qfull.

また、例えば電池ブロック2が切り離し対象電池ブロックにされている場合は、残蓄電量取得部57によって、蓄電電荷量検出部56で算出された電池ブロック3,4の蓄電電荷量の合計が残蓄電量Qrとして算出され、さらに残蓄電量Qrと満充電容量Qfullとから、残蓄電量PSOCが算出される。   For example, when the battery block 2 is a separation target battery block, the remaining storage amount acquisition unit 57 calculates the remaining storage amount of the battery blocks 3 and 4 calculated by the stored charge amount detection unit 56 as the remaining storage amount. The remaining amount of charge PSOC is calculated from the remaining amount of charge Qr and the full charge capacity Qfull.

次に、異常判定部51によって、ステップ1で検出された電池情報を用いて、電池ブロック2、3、4が異常であるか否かの判定が実施され(ステップS3)、いずれも異常でなければ(ステップS3でNO)再びステップS1〜S3を繰り返す。一方、いずれかが異常である場合(ステップS3でYES)、切り離し制御部52によって、当該異常電池ブロックが切り離し対象電池ブロックとして設定されて、当該切り離し対象電池ブロックの放電用及び充電用スイッチング素子がオフされ、当該切り離し対象電池ブロックが他の電池ブロックから切り離される(ステップS4)。   Next, the abnormality determination unit 51 determines whether or not the battery blocks 2, 3, and 4 are abnormal using the battery information detected in step 1 (step S3). (NO in step S3), steps S1 to S3 are repeated again. On the other hand, if any of them is abnormal (YES in step S3), the disconnection control unit 52 sets the abnormal battery block as the target battery block to be disconnected, and the switching element for discharging and charging of the target battery block to be disconnected. The battery block to be disconnected is disconnected from the other battery blocks (step S4).

例えばステップS3において、電池ブロック2が異常であると判定された場合、放電用スイッチング素子24と充電用スイッチング素子25がオフされる。これにより、例えば過充電状態、過放電状態、あるいは高温状態等、なんらかの異常が生じている電池ブロック2が、さらに充放電されることで安全性が低下するおそれを低減することができる。   For example, when it is determined in step S3 that the battery block 2 is abnormal, the discharging switching element 24 and the charging switching element 25 are turned off. Thereby, for example, the battery block 2 in which some abnormality such as an overcharged state, an overdischarged state, or a high temperature state is further charged / discharged can reduce a possibility that safety is lowered.

次に、異常解消判定部53によって、切り離し対象電池ブロックの異常が解消したか否かが判定される(ステップS5)。   Next, it is determined by the abnormality elimination determination unit 53 whether or not the abnormality of the separation target battery block has been eliminated (step S5).

そして、異常が解消していなければ(ステップS5でNO)、切り離し対象電池ブロックを他の電池ブロックから切り離したまま再びステップS1〜S5が繰り返される。一方、異常が解消していれば(ステップS5でYES)、切り離し解除部54によって、異常が解消した切り離し対象電池ブロックの端子電圧が切り離し電池電圧Verrとして取得され(ステップS6)、切り離し対象電池ブロック以外の電池ブロックの端子電圧の平均値が接続電池電圧Vnとして取得される(ステップS7)。   If the abnormality has not been resolved (NO in step S5), steps S1 to S5 are repeated again while the separation target battery block is disconnected from the other battery blocks. On the other hand, if the abnormality has been resolved (YES in step S5), the separation release unit 54 acquires the terminal voltage of the separation target battery block whose abnormality has been resolved as the separation battery voltage Verr (step S6), and the separation target battery block The average value of the terminal voltages of the other battery blocks is acquired as the connection battery voltage Vn (step S7).

さらに、切り離し解除部54によって、切り離し電池電圧Verrと接続電池電圧Vnとの差の絶対値が、差分電圧Vdとして算出される(ステップS8)。   Further, the absolute value of the difference between the separated battery voltage Verr and the connected battery voltage Vn is calculated as the differential voltage Vd by the separation release unit 54 (step S8).

次に、切り離し解除部54によって、この差分電圧Vdと電圧差閾値Vonとが比較される(ステップS11)。この結果、電圧差閾値Vonより差分電圧Vdが小さい場合(ステップS11でYES)、異常が解消した切り離し対象電池ブロックの切り離しを解除したとしても、当該切り離し対象電池ブロックと他の電池ブロックとの間で不都合を生じるような大電流が流れるおそれはないと判断できるため、切り離し解除部54によって、当該切り離し対象電池の放電用及び充電用スイッチング素子がオンされて、切り離しが解除され(ステップS12)、再びステップS1へ移行する。   Next, the separation release unit 54 compares the difference voltage Vd with the voltage difference threshold value Von (step S11). As a result, when the differential voltage Vd is smaller than the voltage difference threshold Von (YES in step S11), even if the separation of the separation target battery block whose abnormality has been resolved is released, the separation target battery block and another battery block are not separated. Therefore, it is possible to determine that there is no possibility that a large current that would cause inconvenience flows through the disconnection release unit 54, the switching element for discharging and charging of the battery to be disconnected is turned on, and the disconnection is released (step S12). The process proceeds to step S1 again.

切り離し対象電池ブロックに設定されていた電池ブロックは、切り離しが解除された後は、通常の電池ブロック(切り離し対象電池ブロック以外の電池ブロック)として取り扱われる。   The battery block set as the separation target battery block is handled as a normal battery block (battery block other than the separation target battery block) after the separation is released.

例えば電池ブロック2が切り離し対象電池ブロックとして設定されており、差分電圧Vdが電圧差閾値Vonよりも小さい場合、ステップS12において放電用スイッチング素子24と充電用スイッチング素子25がオンされて、切り離しが解除され、以後電池ブロック2は切り離し対象電池ブロックではなくなる。   For example, when the battery block 2 is set as the separation target battery block and the differential voltage Vd is smaller than the voltage difference threshold Von, the discharging switching element 24 and the charging switching element 25 are turned on in step S12, and the separation is released. Thereafter, the battery block 2 is no longer the battery block to be disconnected.

一方、差分電圧Vdが電圧差閾値Von以上である場合(ステップS11でNO)は、もし仮に切り離しを解除したとすると、当該切り離し対象電池ブロックと他の電池ブロックとの間で不都合を生じるような大電流が流れるおそれがあると判断できるため、差分電圧Vdを減少させて切り離しを解除可能にするための準備処理を実行するべくステップS13へ移行する。   On the other hand, if the differential voltage Vd is equal to or greater than the voltage difference threshold Von (NO in step S11), if the disconnection is temporarily cancelled, an inconvenience may occur between the target battery block to be disconnected and another battery block. Since it can be determined that a large current may flow, the process proceeds to step S13 to execute a preparation process for reducing the differential voltage Vd so that the separation can be released.

次に、ステップS13において、切り離し解除準備部55によって、切り離し電池電圧Verrと接続電池電圧Vnとが比較される(ステップS13)。この結果、切り離し電池電圧Verrが接続電池電圧Vn以上である場合(ステップS13でYES)はステップS14へ移行し、切り離し解除準備部55によって、異常が解消した切り離し対象電池ブロックの充電用スイッチング素子がオフ、放電用スイッチング素子がパルス駆動される(ステップS14)。   Next, in step S13, the disconnection release preparation unit 55 compares the disconnection battery voltage Verr and the connection battery voltage Vn (step S13). As a result, when the detachable battery voltage Verr is equal to or higher than the connected battery voltage Vn (YES in step S13), the process proceeds to step S14, and the detachment release preparation unit 55 determines the switching element for charging the detachable battery block whose abnormality has been eliminated. Off, the discharge switching element is pulse-driven (step S14).

図4は、切り離し解除準備部55によるスイッチング素子のパルス駆動動作の一例を説明するための説明図である。図4において、横軸は時間、縦軸は放電用スイッチング素子及び充電用スイッチング素子のうち制御対象となるスイッチング素子のオン、オフ動作を示している。   FIG. 4 is an explanatory diagram for explaining an example of the pulse driving operation of the switching element by the separation release preparation unit 55. In FIG. 4, the horizontal axis represents time, and the vertical axis represents the on / off operation of the switching element to be controlled among the switching element for discharging and the switching element for charging.

スイッチオン期間Tonは、スイッチング素子をオンする期間であり、スイッチオフ期間Toffはスイッチング素子をオフする期間である。そして、スイッチオン期間Tonとスイッチオフ期間Toffとが、周期Tcycで繰り返されるようになっている。   The switch-on period Ton is a period for turning on the switching element, and the switch-off period Toff is a period for turning off the switching element. The switch-on period Ton and the switch-off period Toff are repeated with a cycle Tcyc.

スイッチオン期間Tonは、電池ブロック2、3、4が劣化せず、直列回路20、30、40が熱破壊されない等の条件を満たすような適当な時間が設定されている。また、スイッチオフ期間Toffは、差分電圧Vdに応じて電池ブロック間に流れる電流の、周期Tcycの期間中における平均値が悪影響を生じないような低レベルの電流値になるように、設定されている。   The switch-on period Ton is set to an appropriate time such that the battery blocks 2, 3, 4 are not deteriorated and the series circuits 20, 30, 40 are not thermally destroyed. The switch-off period Toff is set so that the average value of the current flowing between the battery blocks according to the differential voltage Vd during the period Tcyc is a low-level current value that does not adversely affect the switch-off period Toff. Yes.

スイッチオン期間Tonとしては、例えば100m秒、スイッチオフ期間Toffとしては例えば900m秒を用いることができる。   As the switch-on period Ton, for example, 100 ms can be used, and as the switch-off period Toff, for example, 900 ms can be used.

具体的には、例えば電池ブロック2が切り離し対象電池ブロックとして設定されており、電池ブロック2の切り離し電池電圧Verrが、切り離されていない電池ブロック3、4の端子電圧の平均値である接続電池電圧Vn以上である場合、ステップS14において、切り離し解除準備部55は、放電用スイッチング素子24をパルス駆動させる。   Specifically, for example, the battery block 2 is set as a separation target battery block, and the separation battery voltage Verr of the battery block 2 is a connection battery voltage that is an average value of the terminal voltages of the battery blocks 3 and 4 that are not separated. When it is Vn or higher, in step S14, the separation release preparation unit 55 drives the discharge switching element 24 in a pulse manner.

これにより、電池ブロック2から電池ブロック3、4に電流が少しずつ流れるため、電池ブロック3、4の劣化や、直列回路30、40の熱破壊を防ぎつつ、電池ブロック2と電池ブロック3、4の端子電圧差である差分電圧Vdを減少させることができる。また電源装置1は、出力可能な蓄電電荷量を、常に蓄電量閾値SOCt以上の一定量を確保しておく必要があるが、切り離し電池電圧Verrが接続電池電圧Vn以上であれば(ステップS13でYES)、電池ブロック3、4は電池ブロック2から流れ込む電流で充電されるか、又は電流が流れないため、電源装置1として確保しなければならない出力可能な蓄電電荷量は増加又は維持されることになり問題はない。   As a result, since current gradually flows from the battery block 2 to the battery blocks 3 and 4, the battery block 2 and the battery blocks 3 and 4 are prevented while preventing deterioration of the battery blocks 3 and 4 and thermal destruction of the series circuits 30 and 40. The differential voltage Vd, which is the terminal voltage difference between, can be reduced. Further, the power supply device 1 always needs to ensure a certain amount of the stored charge amount that can be output that is equal to or greater than the charge amount threshold SOCt, but if the disconnected battery voltage Verr is equal to or greater than the connected battery voltage Vn (in step S13). YES), the battery blocks 3 and 4 are charged with the current flowing from the battery block 2, or the current does not flow, so the amount of output stored charge that must be secured as the power supply device 1 is increased or maintained. There is no problem.

一方ステップS13において、切り離し電池電圧Verrが接続電池電圧Vnより小さい場合(ステップS13でNO)、ステップS15へ移行する。   On the other hand, if the disconnecting battery voltage Verr is smaller than the connected battery voltage Vn in step S13 (NO in step S13), the process proceeds to step S15.

次にステップ15において、残蓄電量管理部58によって残蓄電量PSOCと蓄電量閾値SOCtが比較される(ステップS15)。この結果、残蓄電量PSOCが蓄電量閾値SOCtより大きい場合(ステップS15でYES)、切り離し解除準備部55による準備処理が許可されて、切り離し解除準備部55によって、異常が解消した切り離し対象電池ブロックの充電用スイッチング素子がパルス駆動され、放電用スイッチング素子がオフされる(ステップS16)。   Next, in step 15, the remaining power storage amount management unit 58 compares the remaining power storage amount PSOC with the power storage amount threshold SOCt (step S15). As a result, when the remaining storage amount PSOC is larger than the storage amount threshold SOCt (YES in step S15), the preparation processing by the separation release preparation unit 55 is permitted, and the separation target battery block whose abnormality has been eliminated by the separation release preparation unit 55 The charging switching element is pulse-driven, and the discharging switching element is turned off (step S16).

具体的には、例えば電池ブロック2が切り離し対象電池ブロックとして設定されており、電池ブロック3、4で確保される電源装置1の残蓄電量PSOCが蓄電量閾値SOCtよりも大きい場合(ステップS15でYES)、切り離し解除準備部55によって、充電用スイッチング素子25がパルス駆動される(ステップS16)。   Specifically, for example, when the battery block 2 is set as a separation target battery block, and the remaining power storage amount PSOC of the power supply device 1 secured by the battery blocks 3 and 4 is larger than the power storage amount threshold SOCt (in step S15) YES), the switching element 25 for charging is pulse-driven by the separation release preparation unit 55 (step S16).

これにより、電池ブロック3、4から電池ブロック2へ電流が少しずつ流れるため、電池ブロック2の劣化や、直列回路20熱破壊を防ぎつつ、電池ブロック2と電池ブロック3、4の端子電圧差である差分電圧Vdを減少させることができる。また電源装置1は、出力可能な蓄電電荷量を、常に蓄電量閾値SOCt以上の一定量確保しておく必要があるが、電池ブロック3、4で確保される電源装置1の残蓄電量PSOCは蓄電量閾値SOCtよりも大きいため、残蓄電量PSOCが減少することになっても問題はない。   As a result, current flows little by little from the battery blocks 3 and 4 to the battery block 2, so that the terminal block voltage difference between the battery block 2 and the battery blocks 3 and 4 is prevented while preventing deterioration of the battery block 2 and thermal destruction of the series circuit 20. A certain differential voltage Vd can be reduced. In addition, the power supply device 1 must always secure a certain amount of the stored charge amount that can be output that is equal to or greater than the charge amount threshold SOCt, but the remaining charge amount PSOC of the power supply device 1 secured by the battery blocks 3 and 4 is Since it is larger than the charged amount threshold SOCt, there is no problem even if the remaining charged amount PSOC decreases.

そして、ステップS14、又はステップS16によって、差分電圧Vdが減少されて電圧差閾値Vonを下回ると(ステップS11でYES)、切り離し解除部54によって、当該切り離し対象電池の放電用及び充電用スイッチング素子がオンされて、切り離しが解除される(ステップS12)。   Then, when the differential voltage Vd is decreased and falls below the voltage difference threshold Von in step S14 or step S16 (YES in step S11), the disconnection release unit 54 causes the switching element for discharging and charging of the battery to be disconnected to be disconnected. It is turned on and the separation is released (step S12).

一方、ステップS15において、残蓄電量PSOCが蓄電量閾値SOCt以下の場合(ステップS15でNO)、残蓄電量管理部58によって、切り離し解除準備部55による準備処理が禁止され、異常が解消した切り離し対象電池ブロックの充電用及び放電用スイッチング素子がオフされる(ステップS17)。   On the other hand, in step S15, when the remaining storage amount PSOC is equal to or less than the storage amount threshold SOCt (NO in step S15), the remaining storage amount management unit 58 prohibits the preparation process by the disconnection release preparation unit 55, and the disconnection in which the abnormality has been resolved. The switching element for charging and discharging the target battery block is turned off (step S17).

具体的には、例えば電池ブロック2が切り離し対象電池ブロックとして設定されており、電池ブロック3、4で確保される電源装置1の残蓄電量PSOCが蓄電量閾値SOCt以下の場合(ステップS15でNO)、残蓄電量管理部58によって、放電用スイッチング素子24と充電用スイッチング素子25とが共にオフされる。   Specifically, for example, when the battery block 2 is set as the separation target battery block, and the remaining power storage amount PSOC of the power supply device 1 secured by the battery blocks 3 and 4 is equal to or less than the power storage amount threshold SOCt (NO in step S15) ) The remaining storage amount management unit 58 turns off both the discharging switching element 24 and the charging switching element 25.

これにより、放電可能な電池ブロック3、4において、常時確保しておく必要のある蓄電量閾値SOCtを超える蓄電電荷量が確保できていない状態で電池ブロック2の充電用スイッチング素子25をオンしたときに、電池ブロック3、4から電池ブロック2に電流が流れることにより、使用可能な残蓄電量PSOCがさらに減少してしまうことを防止することができる。このような場合は、発電装置100により電池ブロック3、4が充電されることで、残蓄電量PSOCが蓄電量閾値SOCtよりも大きくなるまで待機する必要がある。   As a result, when the chargeable switching element 25 of the battery block 2 is turned on in a state where the stored charge amount exceeding the stored charge amount threshold SOCt that needs to be secured at all times is not secured in the dischargeable battery blocks 3 and 4 In addition, it is possible to prevent the remaining remaining charge amount PSOC from being further reduced due to the current flowing from the battery blocks 3 and 4 to the battery block 2. In such a case, it is necessary to wait until the remaining power storage amount PSOC becomes larger than the power storage amount threshold SOCt by charging the battery blocks 3 and 4 with the power generation device 100.

ステップS13〜S17によれば、図5に示す説明図のように、切り離し電池電圧Verr、接続電池電圧Vn、及び残蓄電量PSOCに基づく切り離し対象電池ブロックの充電用及び放電用スイッチング素子の制御方法が決定される。   According to steps S13 to S17, as shown in the explanatory diagram of FIG. 5, the control method of the switching element for charging and discharging of the battery block to be disconnected based on the disconnected battery voltage Verr, the connected battery voltage Vn, and the remaining storage amount PSOC. Is determined.

なお、必ずしも蓄電電荷量検出部56、残蓄電量取得部57、及び残蓄電量管理部58を備える必要はなく、ステップS2、S15、S17を実行せず、ステップS13において、切り離し電池電圧Verrが接続電池電圧Vnより小さい場合(ステップS13でNO)、ステップS16へ移行する構成としてもよい。   Note that it is not always necessary to include the stored charge amount detection unit 56, the remaining stored charge amount acquisition unit 57, and the remaining stored charge amount management unit 58. Steps S2, S15, and S17 are not executed, and in step S13, the disconnected battery voltage Verr is When the voltage is smaller than the connected battery voltage Vn (NO in step S13), the configuration may be shifted to step S16.

以上、ステップS1〜S17の処理によれば、複数の二次電池が並列接続された並列回路から、一旦切り離された二次電池を再び並列接続する際に生じるおそれのある突入電流を低減するための電流制限用の抵抗を用いることなく、このような突入電流が生じるおそれを低減することができる。これにより、電源装置の小型化、低コスト化を実現することが可能となる。   As mentioned above, according to the process of step S1-S17, in order to reduce the inrush current which may arise when the secondary battery once disconnected from the parallel circuit where the several secondary battery was connected in parallel is connected in parallel again. The risk of such inrush current can be reduced without using any current limiting resistor. This makes it possible to reduce the size and cost of the power supply device.

本発明に係る電池装置は、携帯型パーソナルコンピュータやデジタルカメラ、携帯電話等の電子機器、電気自動車やハイブリッドカー等の車両、太陽電池や発電装置と二次電池を組み合わせた電源システム等の電池搭載装置、システム等において、好適に利用することができる。   The battery device according to the present invention is equipped with a battery such as a portable personal computer, a digital camera, an electronic device such as a mobile phone, a vehicle such as an electric vehicle or a hybrid car, a power source system combining a solar cell, a power generator and a secondary battery. It can be suitably used in devices, systems, and the like.

1 電源装置
2,3,4 電池ブロック
5 制御部
6,7 接続端子
20,30,40 直列回路
21,31,41 電圧検出部
22,32,42 電流検出部
23,33,43 温度検出部
24,34,44 放電用スイッチング素子
25,35,45 充電用スイッチング素子
51 異常判定部
52 切り離し制御部
53 異常解消判定部
54 切り離し解除部
55 切り離し解除準備部
56 蓄電電荷量検出部
57 残蓄電量取得部
58 残蓄電量管理部
100 発電装置
200 負荷装置
B 二次電池
PSOC 残蓄電量
Qfull 満充電容量
Qr 残蓄電量
SOCt 蓄電量閾値
Tcyc 周期
Toff スイッチオフ期間
Ton スイッチオン期間
Vd 差分電圧
Verr 切り離し電池電圧
Vn 接続電池電圧
Von 電圧差閾値
DESCRIPTION OF SYMBOLS 1 Power supply device 2,3,4 Battery block 5 Control part 6,7 Connection terminal 20,30,40 Series circuit 21,31,41 Voltage detection part 22,32,42 Current detection part 23,33,43 Temperature detection part 24 , 34, 44 Switching element for discharging 25, 35, 45 Switching element for charging 51 Abnormality determining unit 52 Detaching control unit 53 Abnormality canceling determining unit 54 Detaching release unit 55 Detaching release preparation unit 56 Accumulated charge amount detection unit 57 Acquisition of remaining electric charge amount Unit 58 Remaining storage amount management unit 100 Power generation device 200 Load device B Secondary battery PSOC Remaining storage amount Qfull Fully charged capacity Qr Remaining storage amount SOCt Storage amount threshold Tcyc cycle Toff Switch-off period Ton Switch-on period Vd Differential voltage Verr Disconnected battery voltage Vn Connection battery voltage Von Voltage difference threshold

Claims (7)

並列接続される複数の二次電池とそれぞれが直列に接続される複数のスイッチング部と、
前記各二次電池の端子電圧を検出する端子電圧検出部と、
前記各二次電池の異常の有無を判定する異常判定部と、
前記異常判定部によって、前記各二次電池のうちいずれかが異常有りと判定された場合、当該異常有りと判定された二次電池を切り離し対象電池とし、当該切り離し対象電池と直列接続されたスイッチング部をオフさせる切り離し制御部と、
前記切り離し対象電池の異常が解消したか否かを判定する異常解消判定部と、
前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ当該異常が解消した切り離し対象電池において前記端子電圧検出部によって検出された端子電圧である切り離し電池電圧と、前記切り離し対象電池以外の二次電池において前記端子電圧検出部によって検出された端子電圧である接続電池電圧との差が、予め設定された電圧差閾値に満たない場合、当該異常が解消した切り離し対象電池と直列接続されたスイッチング部をオンさせる切り離し解除部と、
前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ前記切り離し電池電圧と前記接続電池電圧との差が、前記電圧差閾値を超える場合、当該異常が解消した切り離し対象電池と直列接続されたスイッチング部をパルス状にオンオフさせる準備処理を実行する切り離し解除準備部と
を備えることを特徴とする充放電制御回路。
A plurality of secondary batteries connected in parallel and a plurality of switching units each connected in series;
A terminal voltage detector for detecting a terminal voltage of each of the secondary batteries;
An abnormality determination unit that determines whether or not each of the secondary batteries is abnormal;
When one of the secondary batteries is determined to be abnormal by the abnormality determination unit, the secondary battery determined to be abnormal is set as a separation target battery, and switching connected in series with the separation target battery A separation control unit for turning off the unit,
An abnormality elimination determination unit for judging whether or not the abnormality of the separation target battery has been eliminated;
The disconnection battery voltage, which is the terminal voltage detected by the terminal voltage detection unit in the disconnection target battery in which the abnormality is determined to be resolved by the abnormality elimination determination unit and the abnormality is resolved, and the separation target If the difference between the secondary battery other than the battery and the connected battery voltage, which is the terminal voltage detected by the terminal voltage detector, is less than the preset voltage difference threshold, it is in series with the battery to be disconnected in which the abnormality has been resolved. A disconnection release unit for turning on the connected switching unit;
When the abnormality elimination determination unit determines that the abnormality of the separation target battery has been resolved, and the difference between the separation battery voltage and the connection battery voltage exceeds the voltage difference threshold, the separation target battery in which the abnormality is resolved And a disconnection release preparation unit that executes a preparation process for turning on and off the switching unit connected in series in a pulsed manner.
前記複数の二次電池の蓄電電荷量を検出する蓄電電荷量検出部と、
前記蓄電電荷量検出部によって検出される各二次電池の蓄電電荷量に基づき、前記切り離し対象電池を除く残余の二次電池の蓄電電荷量の合計を残蓄電量として取得する残蓄電量取得部と、
前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ前記切り離し電池電圧と前記接続電池電圧との差が、前記電圧差閾値を超える場合において、前記残蓄電量取得部によって取得された残蓄電量が予め設定された蓄電量閾値を超えるとき、前記切り離し解除準備部による前記準備処理を許可し、前記残蓄電量取得部によって取得された残蓄電量が前記蓄電量閾値に満たないとき、前記切り離し解除準備部による前記準備処理を禁止して前記異常が解消した切り離し対象電池と直列接続されたスイッチング部をオフさせる残蓄電量管理部とをさらに備えること
を特徴とする請求項1記載の充放電制御回路。
A stored charge amount detection unit for detecting a stored charge amount of the plurality of secondary batteries;
Based on the stored charge amount of each secondary battery detected by the stored charge amount detection unit, the remaining stored charge amount acquisition unit acquires the total stored charge amount of the remaining secondary batteries excluding the separation target battery as the remaining stored charge amount. When,
When the abnormality elimination determination unit determines that the abnormality of the separation target battery has been resolved and the difference between the separation battery voltage and the connected battery voltage exceeds the voltage difference threshold, the remaining power storage amount acquisition unit When the acquired remaining storage amount exceeds a preset storage amount threshold, the preparation processing by the disconnection release preparation unit is permitted, and the remaining storage amount acquired by the remaining storage amount acquisition unit becomes the storage amount threshold. And a remaining storage amount management unit that turns off the switching unit connected in series with the separation target battery in which the abnormality has been resolved by prohibiting the preparation process by the separation release preparation unit when not satisfied. Item 2. The charge / discharge control circuit according to Item 1.
前記各スイッチング部は、
前記各二次電池の、充電を禁止する充電用スイッチング素子と、放電を禁止する放電用スイッチング素子とが直列接続されたものであり、
前記切り離し解除準備部は、前記準備処理として、
前記切り離し電池電圧が前記接続電池電圧より高い場合、当該切り離し対象電池と直列接続された放電用スイッチング素子をパルス状にオンオフさせ、
前記切り離し電池電圧が前記接続電池電圧より低い場合、当該切り離し対象電池と直列接続された充電用スイッチング素子をパルス状にオンオフさせること
を特徴とする請求項1記載の充放電制御回路。
Each of the switching units is
Each of the secondary batteries, a charging switching element that prohibits charging and a discharging switching element that prohibits discharging are connected in series,
The detachment release preparation unit, as the preparation process,
When the disconnection battery voltage is higher than the connection battery voltage, the discharge switching element connected in series with the disconnection target battery is turned on and off in pulses,
The charge / discharge control circuit according to claim 1, wherein when the separation battery voltage is lower than the connection battery voltage, the charging switching element connected in series with the separation target battery is turned on and off in a pulsed manner.
前記切り離し解除準備部は、前記準備処理において、さらに、
前記切り離し電池電圧が前記接続電池電圧より高い場合、前記異常が解消した切り離し対象電池と直列接続された充電用スイッチング素子をオフさせ、
前記切り離し電池電圧が前記接続電池電圧より低い場合、当該切り離し対象電池と直列接続された放電用スイッチング素子をオフさせること
を特徴とする請求項3記載の充放電制御回路。
In the preparation process, the separation release preparation unit further includes:
When the disconnection battery voltage is higher than the connection battery voltage, the switching element for charging connected in series with the disconnection target battery in which the abnormality has been resolved is turned off,
The charge / discharge control circuit according to claim 3, wherein when the separation battery voltage is lower than the connection battery voltage, the switching element for discharge connected in series with the separation target battery is turned off.
前記複数の二次電池の蓄電電荷量を検出する蓄電電荷量検出部と、
前記蓄電電荷量検出部によって検出される各二次電池の蓄電電荷量に基づき、前記切り離し対象電池を除く残余の二次電池の蓄電電荷量の合計を残蓄電量として取得する残蓄電量取得部と、
前記異常解消判定部によって前記切り離し対象電池の異常が解消したと判定され、かつ前記切り離し電池電圧と前記接続電池電圧との差が、前記電圧差閾値を超える場合において、前記切り離し電池電圧が前記接続電池電圧より低く、かつ前記残蓄電量取得部によって取得された残蓄電量が予め設定された蓄電量閾値を超えるとき、前記切り離し解除準備部による前記準備処理を許可し、前記切り離し電池電圧が前記接続電池電圧より低く、かつ前記残蓄電量取得部によって取得された残蓄電量が前記蓄電量閾値に満たないとき、前記切り離し解除準備部による前記準備処理を禁止して前記異常が解消した切り離し対象電池と直列接続された充電用スイッチング素子と放電用スイッチング素子とをオフさせる残蓄電量管理部とをさらに備えること
を特徴とする請求項3又は4記載の充放電制御回路。
A stored charge amount detection unit for detecting a stored charge amount of the plurality of secondary batteries;
Based on the stored charge amount of each secondary battery detected by the stored charge amount detection unit, the remaining stored charge amount acquisition unit acquires the total stored charge amount of the remaining secondary batteries excluding the separation target battery as the remaining stored charge amount. When,
When it is determined that the abnormality of the separation target battery has been eliminated by the abnormality elimination determination unit, and the difference between the separation battery voltage and the connection battery voltage exceeds the voltage difference threshold, the separation battery voltage is the connection When the remaining storage amount acquired by the remaining storage amount acquisition unit is lower than the battery voltage and exceeds a preset storage amount threshold, the preparation processing by the disconnection release preparation unit is permitted, and the disconnected battery voltage is When the remaining storage amount acquired by the remaining storage amount acquisition unit is lower than the connected battery voltage and less than the storage amount threshold, the preparation target by the disconnection release preparation unit is prohibited and the abnormality is resolved And a remaining power storage amount management unit that turns off the charging switching element and the discharging switching element connected in series with the battery. Charge and discharge control circuit according to claim 3 or 4, wherein the door.
前記異常判定部は、前記各二次電池の端子電圧、前記各二次電池に流れる電流、及び前記各二次電池の温度のうち少なくとも一つを異常判定用のパラメータとして用いて、当該パラメータが異常状態を示すべく予め設定された異常判定範囲になった場合、当該異常判定範囲になった二次電池に異常有りと判定し、
前記異常解消判定部は、
前記切り離し対象電池について、前記異常判定部によって異常判定用に用いられたパラメータが正常状態を示すべく予め設定された正常判定範囲になった場合、当該正常判定範囲になった切り離し対象電池の異常が解消したと判定すること
を特徴とする請求項1〜5のいずれか1項に記載の充放電制御回路。
The abnormality determination unit uses at least one of a terminal voltage of each secondary battery, a current flowing through each secondary battery, and a temperature of each secondary battery as a parameter for abnormality determination, and the parameter is When the abnormality determination range is set in advance to indicate an abnormal state, it is determined that there is an abnormality in the secondary battery that is in the abnormality determination range,
The abnormality elimination determination unit
When the parameter used for abnormality determination by the abnormality determination unit is in a normal determination range that is set in advance to indicate a normal state, the abnormality of the separation target battery that has become the normal determination range is detected. The charge / discharge control circuit according to claim 1, wherein the charge / discharge control circuit is determined to be eliminated.
請求項1〜6のいずれか1項に記載の充放電制御回路と、
前記複数の二次電池とを備えること
を特徴とする電源装置。
The charge / discharge control circuit according to any one of claims 1 to 6,
A power supply device comprising the plurality of secondary batteries.
JP2009100715A 2009-04-17 2009-04-17 Charge / discharge control circuit and power supply device Active JP5449840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009100715A JP5449840B2 (en) 2009-04-17 2009-04-17 Charge / discharge control circuit and power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009100715A JP5449840B2 (en) 2009-04-17 2009-04-17 Charge / discharge control circuit and power supply device

Publications (2)

Publication Number Publication Date
JP2010252566A true JP2010252566A (en) 2010-11-04
JP5449840B2 JP5449840B2 (en) 2014-03-19

Family

ID=43314253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009100715A Active JP5449840B2 (en) 2009-04-17 2009-04-17 Charge / discharge control circuit and power supply device

Country Status (1)

Country Link
JP (1) JP5449840B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273417A (en) * 2009-05-20 2010-12-02 Honda Motor Co Ltd Electric vehicle
JP2012182909A (en) * 2011-03-01 2012-09-20 Sony Corp Battery pack, power storage system, electronic apparatus, electric vehicle, electric power system and control system
WO2013065454A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Power supply controller
WO2014024226A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 Electricity storage system
KR20140040101A (en) * 2011-01-18 2014-04-02 티악스 엘엘씨 Differential current monitoring for parallel-connected batteries
JP2014121153A (en) * 2012-12-14 2014-06-30 Sharp Corp Power supply system
JP2014155327A (en) * 2013-02-08 2014-08-25 Toyota Industries Corp On-vehicle power supply device
JP2016101086A (en) * 2014-11-20 2016-05-30 寧徳時代新能源科技股▲分▼有限公司 Battery cabinet management method, device, and battery management system
US9404976B2 (en) 2013-01-22 2016-08-02 Gs Yuasa International Ltd. Energy storage unit connection information acquiring apparatus
JP2017200313A (en) * 2016-04-27 2017-11-02 トヨタ自動車株式会社 Method for controlling charging/discharging of assembled battery
JP2017229152A (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Battery pack
KR20180044750A (en) * 2016-10-24 2018-05-03 한화지상방산 주식회사 Battery system and charge and discharge controlling method for battery packs
JP2020009042A (en) * 2018-07-05 2020-01-16 シャープ株式会社 Power supply device, vehicle, and control method for power supply device
CN111129628A (en) * 2019-12-23 2020-05-08 上海电气国轩新能源科技有限公司 Control method, system, medium and electronic device for charging and discharging of lithium ion battery cell
EP3618218A4 (en) * 2017-04-27 2021-02-24 Envision AESC Japan Ltd. Power supply system, fault diagnosis method for power supply system, and system control device
WO2023199432A1 (en) * 2022-04-13 2023-10-19 株式会社オートネットワーク技術研究所 Abnormality detection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133471A (en) * 1992-09-04 1994-05-13 Pfu Ltd Battery controlling method
JP2002272010A (en) * 2001-03-08 2002-09-20 Kyushu Electric Power Co Inc Charging and discharging circuit of group of batteries connected in series
JP2003226207A (en) * 2002-02-06 2003-08-12 Yazaki Corp Vehicular power supply system
JP2004194481A (en) * 2002-12-13 2004-07-08 Matsushita Electric Ind Co Ltd Battery charging controlling device and battery charging device
JP2004320924A (en) * 2003-04-17 2004-11-11 Matsushita Electric Ind Co Ltd Overcharge protection device for secondary battery, power supply device, and charging control method of secondary battery
JP2005151696A (en) * 2003-11-14 2005-06-09 Sony Corp Battery pack, battery protection processor, and control method of battery protection processor
JP2005176461A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Direct-current uninterruptible power supply unit
JP2008187884A (en) * 2007-01-04 2008-08-14 Toyota Motor Corp Power supply system, vehicle with the same, and its control method
JP2010233290A (en) * 2009-03-26 2010-10-14 Panasonic Corp Battery drive device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06133471A (en) * 1992-09-04 1994-05-13 Pfu Ltd Battery controlling method
JP2002272010A (en) * 2001-03-08 2002-09-20 Kyushu Electric Power Co Inc Charging and discharging circuit of group of batteries connected in series
JP2003226207A (en) * 2002-02-06 2003-08-12 Yazaki Corp Vehicular power supply system
JP2004194481A (en) * 2002-12-13 2004-07-08 Matsushita Electric Ind Co Ltd Battery charging controlling device and battery charging device
JP2004320924A (en) * 2003-04-17 2004-11-11 Matsushita Electric Ind Co Ltd Overcharge protection device for secondary battery, power supply device, and charging control method of secondary battery
JP2005151696A (en) * 2003-11-14 2005-06-09 Sony Corp Battery pack, battery protection processor, and control method of battery protection processor
JP2005176461A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd Direct-current uninterruptible power supply unit
JP2008187884A (en) * 2007-01-04 2008-08-14 Toyota Motor Corp Power supply system, vehicle with the same, and its control method
JP2010233290A (en) * 2009-03-26 2010-10-14 Panasonic Corp Battery drive device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010273417A (en) * 2009-05-20 2010-12-02 Honda Motor Co Ltd Electric vehicle
US9678163B2 (en) 2011-01-18 2017-06-13 Tiax Llc Differential current monitoring for parallel-connected batteries
KR101901680B1 (en) * 2011-01-18 2018-09-27 티악스 엘엘씨 Differential current monitoring for parallel-connected batteries
JP2018066757A (en) * 2011-01-18 2018-04-26 ティアックス エルエルシーTiax Llc Differential current monitoring for parallel-connected batteries
KR20140040101A (en) * 2011-01-18 2014-04-02 티악스 엘엘씨 Differential current monitoring for parallel-connected batteries
JP2014510262A (en) * 2011-01-18 2014-04-24 ティアックス エルエルシー Differential current monitoring for parallel connected batteries
US9028988B2 (en) 2011-03-01 2015-05-12 Sony Corporation Battery pack, electricity storage system, electronic apparatus, electrically driven vehicle, electric power system, and control system
JP2012182909A (en) * 2011-03-01 2012-09-20 Sony Corp Battery pack, power storage system, electronic apparatus, electric vehicle, electric power system and control system
WO2013065454A1 (en) * 2011-11-01 2013-05-10 日産自動車株式会社 Power supply controller
US10074975B2 (en) 2011-11-01 2018-09-11 Nissan Motor Co., Ltd. Power supply controller
WO2014024226A1 (en) * 2012-08-09 2014-02-13 トヨタ自動車株式会社 Electricity storage system
CN104769768A (en) * 2012-08-09 2015-07-08 丰田自动车株式会社 Electricity storage system
JPWO2014024226A1 (en) * 2012-08-09 2016-07-21 トヨタ自動車株式会社 Power storage system
CN104769768B (en) * 2012-08-09 2017-11-14 丰田自动车株式会社 Accumulating system
JP2014121153A (en) * 2012-12-14 2014-06-30 Sharp Corp Power supply system
US9404976B2 (en) 2013-01-22 2016-08-02 Gs Yuasa International Ltd. Energy storage unit connection information acquiring apparatus
JP2014155327A (en) * 2013-02-08 2014-08-25 Toyota Industries Corp On-vehicle power supply device
JP2016101086A (en) * 2014-11-20 2016-05-30 寧徳時代新能源科技股▲分▼有限公司 Battery cabinet management method, device, and battery management system
US9882400B2 (en) 2014-11-20 2018-01-30 Contemporary Amperex Technology Co., Limited Power cabinet management method and apparatus, and battery management system
JP2017200313A (en) * 2016-04-27 2017-11-02 トヨタ自動車株式会社 Method for controlling charging/discharging of assembled battery
JP2017229152A (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Battery pack
WO2017221569A1 (en) * 2016-06-22 2017-12-28 株式会社豊田自動織機 Battery pack
KR102286008B1 (en) 2016-10-24 2021-08-04 한화디펜스 주식회사 Battery system and charge and discharge controlling method for battery packs
KR20180044750A (en) * 2016-10-24 2018-05-03 한화지상방산 주식회사 Battery system and charge and discharge controlling method for battery packs
EP3618218A4 (en) * 2017-04-27 2021-02-24 Envision AESC Japan Ltd. Power supply system, fault diagnosis method for power supply system, and system control device
JP2020009042A (en) * 2018-07-05 2020-01-16 シャープ株式会社 Power supply device, vehicle, and control method for power supply device
JP7133374B2 (en) 2018-07-05 2022-09-08 シャープ株式会社 Power supply, vehicle, and control method for power supply
CN111129628A (en) * 2019-12-23 2020-05-08 上海电气国轩新能源科技有限公司 Control method, system, medium and electronic device for charging and discharging of lithium ion battery cell
CN111129628B (en) * 2019-12-23 2023-08-15 上海电气国轩新能源科技有限公司 Control method, system, medium and electronic equipment for lithium ion battery cell charge and discharge
WO2023199432A1 (en) * 2022-04-13 2023-10-19 株式会社オートネットワーク技術研究所 Abnormality detection device

Also Published As

Publication number Publication date
JP5449840B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5449840B2 (en) Charge / discharge control circuit and power supply device
WO2010103816A1 (en) Charging/discharging control circuit, power source device and method for controlling a power source device
CN102113165B (en) Protection circuit and battery pack
US8305045B2 (en) Charge control circuit, battery pack, and charging system
KR101696160B1 (en) Apparatus, system and method for preventing damage of battery rack using voltage measurement
US8350531B2 (en) Secondary battery charge control method and charge control circuit
US8330427B2 (en) Charge control circuit, and charging device and battery pack incorporated with the same
JP5974500B2 (en) Charge control device with protection function and battery pack
JP5307847B2 (en) Vehicle power supply system
CN103531861B (en) Storage battery and motor vehicle
KR101262524B1 (en) Overcurrent protection apparatus for secondary bettery, protection method and battery pack
EP2385575A1 (en) Battery power supply device, and battery power supply system
US10052967B2 (en) Electric voltage system and method for distributing electrical power in an electric voltage system
JP2010200574A (en) Self-diagnosis circuit and power supply
JP2010104175A (en) Fault diagnosis circuit, power supply device, and fault diagnosis method
KR101684736B1 (en) Overcharge protection apparatus with minimum power consumption
JP2009183105A (en) Charge control circuit, battery pack, and charging system
JP2009005529A (en) Power supply system, power supply control method for power supply system, and power supply control program for power supply system
JP2010233358A (en) Battery protection circuit, battery protection method, power supply unit, and program
JP2012034425A (en) Charging/discharging control circuit of secondary battery, battery pack, and battery power supply system
JP2009296699A (en) Charging control circuit, power supply, and charging control method
JP2009300362A (en) Soc calculation circuit, charge system, and soc calculation method
JP2008131772A (en) Power supply unit
US20180037132A1 (en) Secondary lithium battery for vehicle use
EP3059831A1 (en) Secondary lithium battery for vehicle use

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131225

R150 Certificate of patent or registration of utility model

Ref document number: 5449840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150