JP2010251497A - Method of manufacturing piezoelectric element - Google Patents

Method of manufacturing piezoelectric element Download PDF

Info

Publication number
JP2010251497A
JP2010251497A JP2009098734A JP2009098734A JP2010251497A JP 2010251497 A JP2010251497 A JP 2010251497A JP 2009098734 A JP2009098734 A JP 2009098734A JP 2009098734 A JP2009098734 A JP 2009098734A JP 2010251497 A JP2010251497 A JP 2010251497A
Authority
JP
Japan
Prior art keywords
piezoelectric
piezoelectric ceramic
powder
firing
unfired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009098734A
Other languages
Japanese (ja)
Inventor
Masataka Iwasaki
将任 岩崎
Tsutomu Sakai
努 境
Hiroya Yasuda
浩哉 安田
Masaji Tsuzuki
正詞 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009098734A priority Critical patent/JP2010251497A/en
Publication of JP2010251497A publication Critical patent/JP2010251497A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a piezoelectric element for suppressing the diffusion of Cu in an electrode layer and obtaining stable quality and characteristics in laminating a piezoelectric ceramic layer and a Cu-based electrode layer to fire them. <P>SOLUTION: The method is provided for manufacturing the piezoelectric element which is formed by alternately laminating piezoelectric ceramic layers comprising a lead zirconate titanate-based ceramic and Cu-based electrode layers. The method has: a calcination step of preparing a mixed powder in which Cu<SB>2</SB>O is added to a raw material powder with each powder of a Pb (lead) oxide which is a component material of the lead zirconate titanate-based ceramic, a Ti (titanium) oxide, and a Zr (zirconium) oxide mixed, and calcining the mixed powder under an oxygen partial pressure at which the Cu<SB>2</SB>O is not reduced into Cu and is not oxidized to CuO; a step of manufacturing an unfired piezoelectric ceramic layer which becomes the piezoelectric layer after firing by using the calcined powder obtained by calcination; and a main firing step of alternately laminating the unfired piezoelectric ceramic layer and an unfired Cu-based electrode layer which becomes the electrode layer after firing to fire them. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えばディーゼルエンジンの燃料噴射用インジェクタ等に用いられる圧電素子の製造方法に関する。   The present invention relates to a method for manufacturing a piezoelectric element used in, for example, a fuel injection injector for a diesel engine.

ディーゼルエンジンの燃料噴射用インジェクタとして、圧電効果を利用したピエゾアクチュエータが用いられている。このピエゾアクチュエータは、PZT(チタン酸ジルコン酸鉛;PbZr1-xTixO3)系セラミックからなる圧電セラミック層と、電極層とを交互に積層して焼成した積層型圧電素子からなる。
ところで、PZT系圧電セラミック層は焼成温度が高温(約1100℃)であるため、従来から電極層として耐熱性に優れた貴金属が用いられてきたが、コストダウンを図るためにCu系電極層を用いることが検討されている。しかし、Cuは貴金属に比べて酸化され易いため、焼成時の酸素分圧を低くする必要がある。一方で、酸素分圧が低い場合、圧電セラミック層とCu系電極層の界面の接合が充分でなく、又、圧電セラミック層中のPbが還元されるおそれがある。
Piezo actuators using the piezoelectric effect are used as fuel injection injectors for diesel engines. This piezo actuator is composed of a laminated piezoelectric element obtained by alternately laminating and firing piezoelectric ceramic layers made of PZT (lead zirconate titanate; PbZr 1-x Ti x O 3 ) -based ceramics and electrode layers.
By the way, since the firing temperature of the PZT-based piezoelectric ceramic layer is high (about 1100 ° C.), a noble metal having excellent heat resistance has been conventionally used as the electrode layer. However, in order to reduce the cost, a Cu-based electrode layer is used. Use is under consideration. However, since Cu is more easily oxidized than noble metals, it is necessary to lower the oxygen partial pressure during firing. On the other hand, when the oxygen partial pressure is low, bonding at the interface between the piezoelectric ceramic layer and the Cu-based electrode layer is not sufficient, and Pb in the piezoelectric ceramic layer may be reduced.

又、酸素分圧の低い還元雰囲気で焼成を行った際には圧電セラミック層の絶縁抵抗が低下することが判明している(例えば特許文献1参照)。そのため、特許文献1には、この絶縁抵抗の低下を防止するため、PZT系組成物に、Sr、Ca、Baの少なくとも1種を含む成分系を採用し、さらに、圧電セラミック層にCuOを含有させることが記載されている。
又、Cu系電極を用いた圧電素子として、PZT系圧電体層のAサイトに2価の金属イオンを含み、Bサイトに1価の金属イオン(Na、K)を含む組成が開示されている(例えば特許文献2参照)。
又、PZT系圧電体層のAサイトに1価のCuイオンをドープさせるべく、PZT系の原料粉末にCuOを添加して原料混合物を調製し、その原料混合物を不活性条件下で焼成(仮焼)し、圧電体層を構成するためのセラミック材料を得る手法が開示されている(例えば特許文献3参照)。
It has also been found that the insulation resistance of the piezoelectric ceramic layer decreases when firing in a reducing atmosphere with a low oxygen partial pressure (see, for example, Patent Document 1). Therefore, Patent Document 1 employs a component system containing at least one of Sr, Ca, and Ba in the PZT-based composition in order to prevent this decrease in insulation resistance, and further, CuO x is used in the piezoelectric ceramic layer. The inclusion is described.
In addition, as a piezoelectric element using a Cu-based electrode, a composition containing a divalent metal ion at the A site of the PZT piezoelectric layer and a monovalent metal ion (Na, K) at the B site is disclosed. (For example, refer to Patent Document 2).
In addition, in order to dope the monovalent Cu ions to the A site of the PZT-based piezoelectric layer, CuO is added to the PZT-based raw material powder to prepare a raw material mixture, and the raw material mixture is fired under inert conditions (temporary) A method for obtaining a ceramic material for forming a piezoelectric layer is disclosed (for example, see Patent Document 3).

特許第3923064号公報Japanese Patent No. 3923064 特表2003−529917号公報(請求項9、請求項16)JP 2003-529917 A (Claim 9, Claim 16) 特表2007−507406号公報(請求項4)Japanese translation of PCT publication No. 2007-507406 (Claim 4)

しかしながら、上記した従来技術の場合、焼成時の酸素分圧を低くしたにも関わらず、電極層に含まれるCuが酸化されて圧電セラミック層に拡散し、圧電特性を劣化させたり、焼結を部分的に促進する等の種々の不具合が生じる。この原因は、焼成時に圧電セラミック層中の酸素成分が吐き出されて局所的な酸化雰囲気が生じ、焼成雰囲気が熱力学的に安定であってもCuが酸化するためと考えられる。また、特許文献3のようにCuをPZT系セラミックにドープするために、出発原料としてCuOを用いる手法では、仮焼工程でCuOが未反応もしくはCuイオンが2価で残存し易い。そして、CuOが未反応もしくはCuイオンが2価で残存した仮焼粉末を用いて未焼成圧電セラミック層を形成すると、本焼成中に1価に還元されることに伴い局所的な酸化雰囲気が発生するため、所望の圧電特性を圧電層、ひいては圧電素子が得られない。
従って本発明は、未焼成の圧電セラミック層及びCu系電極層を積層して焼成する際に、電極層のCuの酸化を抑制し、安定した品質や特性が得られる圧電素子の製造方法の提供を目的とする。
However, in the case of the above-described prior art, Cu contained in the electrode layer is oxidized and diffused to the piezoelectric ceramic layer in spite of lowering the oxygen partial pressure during firing, thereby deteriorating the piezoelectric characteristics or sintering. Various problems such as partial acceleration occur. This is presumably because the oxygen component in the piezoelectric ceramic layer is discharged during firing to generate a local oxidizing atmosphere, and Cu is oxidized even if the firing atmosphere is thermodynamically stable. Further, in the technique using CuO as a starting material for doping Cu into a PZT ceramic as in Patent Document 3, CuO is unreacted or Cu ions are likely to remain divalent in the calcination step. Then, when an unfired piezoelectric ceramic layer is formed using a calcined powder in which CuO is unreacted or Cu ions remain divalent, a local oxidizing atmosphere is generated as it is reduced to monovalent during the main firing. Therefore, a piezoelectric layer having desired piezoelectric characteristics, and thus a piezoelectric element cannot be obtained.
Accordingly, the present invention provides a method for manufacturing a piezoelectric element that suppresses Cu oxidation of an electrode layer and obtains stable quality and characteristics when an unfired piezoelectric ceramic layer and a Cu-based electrode layer are laminated and fired. With the goal.

上記課題を解決するため、本発明の圧電素子の製造方法は、チタン酸ジルコン酸鉛系セラミックからなる圧電セラミック層と、Cu系電極層とを交互に積層してなる圧電素子の製造方法であって、
前記チタン酸ジルコン酸鉛系セラミックの構成材料であるPb(鉛)酸化物、Ti(チタン)酸化物、Zr(ジルコニウム)酸化物の各粉末を混合した原料粉末に、CuOを添加した混合粉末を準備し、前記混合粉末を、CuOがCuに還元されず、かつCuOに酸化されない酸素分圧下で仮焼する仮焼工程と、
仮焼して得られた仮焼粉末を用いて焼成後に前記圧電層となる未焼成圧電セラミック層を作製する工程と、
前記未焼成圧電セラミック層と、焼成後に前記電極層となる未焼成Cu系電極層とを交互に積層して焼成する主焼成工程と、を有する。
このようにすると、圧電セラミック組成物中で一価のCuがPZTのAサイトに位置するようになり、結晶中に酸素欠損を生成するため、主焼成時に圧電セラミック層中の酸素成分が吐き出されて局所的な酸化雰囲気が生じることが抑制される。
In order to solve the above-described problems, the piezoelectric element manufacturing method of the present invention is a piezoelectric element manufacturing method in which piezoelectric ceramic layers composed of lead zirconate titanate-based ceramics and Cu-based electrode layers are alternately stacked. And
A mixture of Cu 2 O added to a raw material powder obtained by mixing Pb (lead) oxide, Ti (titanium) oxide, and Zr (zirconium) oxide, which are constituent materials of the lead zirconate titanate ceramic. Preparing a powder, and calcining the mixed powder under an oxygen partial pressure at which Cu 2 O is not reduced to Cu and not oxidized to CuO;
A step of producing an unfired piezoelectric ceramic layer that becomes the piezoelectric layer after firing using the calcined powder obtained by calcining;
And a main firing step of alternately laminating and firing the unfired piezoelectric ceramic layers and unfired Cu-based electrode layers that become the electrode layers after firing.
If it does in this way, since monovalent Cu will be located in the A site of PZT in a piezoelectric ceramic composition, and an oxygen deficiency will be generated in a crystal, the oxygen component in a piezoelectric ceramic layer will be discharged at the time of main firing. Thus, the generation of a local oxidizing atmosphere is suppressed.

前記仮焼工程において、湿った窒素、又は窒素と水素の混合ガスを用いて前記酸素分圧を制御することが好ましい。
このようにすると、CuOがCuに還元されず、かつCuOに酸化されない酸素分圧に調整するのが容易となる。
In the calcination step, it is preferable to control the oxygen partial pressure using wet nitrogen or a mixed gas of nitrogen and hydrogen.
This makes it easy to adjust the oxygen partial pressure so that Cu 2 O is not reduced to Cu and is not oxidized to CuO.

この発明によれば、仮焼工程に供される混合粉末として、従来のようにCuOではなく、CuOを添加させ、その上でCuOがCuに還元されず、かつCuOに酸化されない酸素分圧下で仮焼するようにしているので、CuOが確実にチタン酸ジルコン酸鉛系セラミック材料に反応し、当該チタン酸ジルコン酸鉛系材料に1価のCuイオンを確実かつ安定してドープさせた仮焼粉末を得ることができる。そして、この仮称粉末を用いて形成された未焼成の圧電セラミック層とCu系電極層とを積層して焼成することで、電極層のCuの酸化を抑制し、安定した品質や圧電特性が得られる圧電素子を提供することができる。 According to this invention, Cu 2 O is added as a mixed powder to be subjected to the calcining step instead of CuO as in the past, and Cu 2 O is not reduced to Cu and is not oxidized to CuO. Since calcination is performed under oxygen partial pressure, Cu 2 O surely reacts with the lead zirconate titanate-based ceramic material, and monovalent Cu ions are reliably and stably stabilized in the lead zirconate titanate-based material. Thus, a calcined powder doped can be obtained. Then, the unfired piezoelectric ceramic layer formed using this temporary powder and the Cu-based electrode layer are laminated and fired, thereby suppressing Cu oxidation of the electrode layer and obtaining stable quality and piezoelectric characteristics. A piezoelectric element can be provided.

以下、本発明の実施形態について説明する。
本発明の実施形態に係る圧電素子の製造方法は、チタン酸ジルコン酸鉛系セラミックの構成材料であるPb(鉛)酸化物、Ti(チタン)酸化物、Zr(ジルコニウム)酸化物の各粉末を混合した原料粉末に、CuOを添加した混合粉末を準備し、この混合粉末を、CuOがCuに還元されず、かつCuOに酸化されない酸素分圧下で仮焼する仮焼工程を有する点が特徴である。
Pb、Ti、Zrは、ペロブスカイト型の結晶構造を持つ酸化物強誘電体であるPZT(チタン酸ジルコン酸鉛;PbZr1-xTixO3)系セラミック材料を構成し、PZTは、Zr及び/またはTiが他の金属元素で置換されたものも含む。
ここで、PZT系セラミック材料は、圧電セラミック層全体のうち、90質量%以上含むようにしている。
Hereinafter, embodiments of the present invention will be described.
In the piezoelectric element manufacturing method according to the embodiment of the present invention, each powder of Pb (lead) oxide, Ti (titanium) oxide, and Zr (zirconium) oxide, which are constituent materials of a lead zirconate titanate ceramic, is used. A mixed powder obtained by adding Cu 2 O to the mixed raw material powder is prepared, and the mixed powder is calcined under a partial pressure of oxygen in which Cu 2 O is not reduced to Cu and not oxidized to CuO. The point is a feature.
Pb, Ti, and Zr constitute a PZT (lead zirconate titanate; PbZr 1-x Ti x O 3 ) ceramic material, which is an oxide ferroelectric having a perovskite-type crystal structure. Also included are those in which Ti is substituted with another metal element.
Here, the PZT-based ceramic material is included in 90% by mass or more of the entire piezoelectric ceramic layer.

そして、本実施形態では、1価のCuをPZT系セラミックの構成材料にドープさせてなるものであるが、Pb(鉛)酸化物、Ti(チタン)酸化物、Zr(ジルコニウム)酸化物の各粉末を混合した原料粉末にCuOを添加した混合粉末を以下の酸素分圧下で仮焼すると、CuOを構成する一価のCuがPZTのAサイトに位置するようになり、結晶中に酸素欠損を生成するため、主焼成時に圧電セラミック層中の酸素成分が吐き出されて局所的な酸化雰囲気が生じることが安定して抑制される。
圧電セラミック材料中のPb1molに対し、Cuの含有量をxmolとしたとき、0.001≦x≦0.01を満たすことが好ましい。
xが0.001未満であると酸素欠損の導入量が不十分であるため、局所的な酸化雰囲気の発生により電極層に含まれるCuが酸化され、圧電セラミック層へ拡散するおそれがあり、xが0.01を超えると、チタン酸ジルコン酸鉛系セラミック材料に対するCu(I)が過剰になり、CuOやCuOといった金属酸化物として析出したりして、圧電特性(圧電定数)が低下することがある。
チタン酸ジルコン酸鉛系セラミックの構成材料は、第V族または第VI金属を含んでもよい。第V族または第VI族金属は、PZTのBサイトに位置し、圧電セラミック層に電圧が印加された時の変位量(すなわち圧電定数)を増大させる。第V金属としてはNb又はTa、第VI族金属としてはW又はMoが挙げられる。また、同様の理由で、PZTのAサイトに位置して同様の効果を生じさせる、希土類金属を含んでもよい。希土類金属としては、La、Ce、Ndが挙げられる。
In this embodiment, monovalent Cu is doped into the constituent material of the PZT ceramic, but each of Pb (lead) oxide, Ti (titanium) oxide, and Zr (zirconium) oxide. When the mixed powder obtained by adding Cu 2 O to the raw material powder mixed with the powder is calcined under the following oxygen partial pressure, the monovalent Cu constituting Cu 2 O comes to be located at the A site of PZT, Since oxygen vacancies are generated at this time, it is stably suppressed that the oxygen component in the piezoelectric ceramic layer is discharged during the main firing and a local oxidizing atmosphere is generated.
It is preferable that 0.001 ≦ x ≦ 0.01 is satisfied when the Cu content is xmol with respect to 1 mol of Pb in the piezoelectric ceramic material.
If x is less than 0.001, the amount of oxygen deficiency introduced is insufficient, so that Cu contained in the electrode layer may be oxidized due to the generation of a local oxidizing atmosphere and may diffuse into the piezoelectric ceramic layer. When the value exceeds 0.01, Cu (I) with respect to the lead zirconate titanate ceramic material becomes excessive and precipitates as a metal oxide such as Cu 2 O or CuO, resulting in a decrease in piezoelectric characteristics (piezoelectric constant). There are things to do.
The constituent material of the lead zirconate titanate-based ceramic may include a Group V or VI metal. The Group V or Group VI metal is located at the B site of PZT and increases the amount of displacement (ie, piezoelectric constant) when a voltage is applied to the piezoelectric ceramic layer. Examples of the V metal include Nb or Ta, and examples of the Group VI metal include W or Mo. For the same reason, a rare earth metal that is located at the A site of PZT and produces the same effect may be included. Examples of the rare earth metal include La, Ce, and Nd.

そして、本実施形態では、Pb(鉛)酸化物、Ti(チタン)酸化物、Zr(ジルコニウム)酸化物の各粉末を混合した原料粉末にCuOを添加してなる上記の混合粉末を、CuOがCuに還元されず、かつCuOに酸化されない酸素分圧下で仮焼し、それを粉砕することで仮焼粉末を得る。この酸素分圧は、エリンガムダイヤグラムにおけるCu−CuO平衡曲線より高く、CuO−CuO平衡曲線より低い領域に相当する。
図1は、Cu−CuO平衡曲線、及びCuO−CuO平衡曲線(エリンガムダイヤグラム)を示す。エリンガムダイヤグラムは、気体(酸素)と反応系との間の反応平衡を表し、横軸に温度(焼成温度)、縦軸に酸素分圧の対数(Log(PO))をとっている。
仮焼雰囲気中の酸素分圧をCu−CuO平衡曲線(B)より高くすることで、CuOがCuに還元されず、又、CuO−CuO平衡曲線(A)より低くすることで、CuOがCuOに酸化されない。そのため、仮焼して得られた仮焼粉末を構成するPZT系セラミック中のCuが1価の状態に維持されて確実にドープされることになり、後述する主焼成時に圧電セラミック層中の酸素成分が吐き出されて局所的な酸化雰囲気が生じることが抑制される。
In the present embodiment, Pb (lead) oxide, Ti (titanium) oxide, Zr The mixed powder obtained by adding (zirconium) raw material powder to Cu 2 O mixed with powders of oxides, The calcined powder is obtained by calcining under an oxygen partial pressure where Cu 2 O is not reduced to Cu and not oxidized to CuO, and pulverized. This oxygen partial pressure is higher than the Cu—Cu 2 O equilibrium curve in the Ellingham diagram and corresponds to a region lower than the Cu 2 O—CuO equilibrium curve.
FIG. 1 shows a Cu—Cu 2 O equilibrium curve and a Cu 2 O—CuO equilibrium curve (Ellingham diagram). The Ellingham diagram represents the reaction equilibrium between gas (oxygen) and the reaction system, with the horizontal axis representing temperature (calcination temperature) and the vertical axis representing the logarithm of oxygen partial pressure (Log (PO 2 )).
By making the oxygen partial pressure in the calcining atmosphere higher than the Cu—Cu 2 O equilibrium curve (B), Cu 2 O is not reduced to Cu, and lower than the Cu 2 O—CuO equilibrium curve (A). Thus, Cu 2 O is not oxidized to CuO. Therefore, Cu in the PZT-based ceramic constituting the calcined powder obtained by calcining is maintained in a monovalent state and is reliably doped, and oxygen in the piezoelectric ceramic layer during main firing described later It is suppressed that a component is discharged and a local oxidizing atmosphere is generated.

仮焼は、例えば、700〜900℃で1〜10時間程度とすることができる。
又、仮焼の際の酸素分圧の制御は、湿った窒素、又は湿った窒素と水素の混合ガスを用いることが好ましい。湿った窒素は、例えば窒素ガスを水に通して得られる。
Calcination can be performed, for example, at 700 to 900 ° C. for about 1 to 10 hours.
In addition, it is preferable to use wet nitrogen or a mixed gas of wet nitrogen and hydrogen to control the oxygen partial pressure during calcination. Wet nitrogen is obtained, for example, by passing nitrogen gas through water.

そして、仮焼して得られた仮焼粉末に、バインダとして樹脂(アクリル樹脂等)を数wt%程度混合してスラリーを形成し、このスラリーからグリーンシートを作製して未焼成圧電セラミック層を得ることができる。
又、未焼成Cu系電極層は、Cu粉末又はCu合金の粉末に、バインダとして樹脂(アクリル樹脂、ウレタン系樹脂等)を数wt%程度混合してペーストを形成し、スクリーン印刷等により、このペーストを未焼成圧電セラミック層表面に塗布して得ることができる。未焼成圧電セラミック層との密着性を向上させるため、Cu系電極層を構成するCu又はCu合金の粉末に、PZT系材料の粉末を共材として少量混合させてもよい。
Then, a calcined powder obtained by calcining is mixed with a resin (acrylic resin or the like) as a binder at several wt% to form a slurry, and a green sheet is produced from the slurry to form an unfired piezoelectric ceramic layer. Obtainable.
Further, the unsintered Cu-based electrode layer is formed by mixing a Cu powder or Cu alloy powder with a binder (acrylic resin, urethane-based resin, etc.) of about several wt% as a binder to form a paste. It can be obtained by applying the paste to the surface of the unfired piezoelectric ceramic layer. In order to improve the adhesion to the unfired piezoelectric ceramic layer, a small amount of PZT-based material powder may be mixed as a co-material with Cu or Cu alloy powder constituting the Cu-based electrode layer.

次に,図2に示すように、未焼成圧電セラミック層2xと、未焼成Cu系電極層4x,6xとを交互に積層して未焼成の素子前駆体10xを製造する。素子前駆体10xにおいて、未焼成Cu系電極層4xは図2の右側面に端部が露出し、未焼成Cu系電極層6xは図2の左側面に端部が露出するよう、各Cu系電極層4x,6xが未焼成圧電セラミック層2xを介し、それぞれ互い違いの向きで配置される。
そして、Cu系電極層となるパターンが形成された未焼成圧電セラミック層2を複数個(通常、数10〜数100)積層し、圧着して所定寸法のピースに切断して素子前駆体10xを得ることができる。
Next, as shown in FIG. 2, unfired piezoelectric ceramic layers 2x and unfired Cu-based electrode layers 4x and 6x are alternately laminated to produce an unfired element precursor 10x. In the element precursor 10x, the unfired Cu-based electrode layer 4x is exposed on the right side in FIG. 2, and the unfired Cu-based electrode layer 6x is exposed on the left side in FIG. The electrode layers 4x and 6x are arranged in a staggered direction through the unfired piezoelectric ceramic layer 2x.
Then, a plurality (usually several tens to several hundreds) of unfired piezoelectric ceramic layers 2 formed with a pattern to be a Cu-based electrode layer are laminated, pressure-bonded, and cut into pieces of a predetermined size to obtain an element precursor 10x. Obtainable.

次に、焼成炉内に多孔質の焼成サヤ(図示せず)を配置し、焼成サヤに素子前駆体10xを載置し、必要に応じて雰囲気ガスを導入して脱脂を行った後、主焼成を行う。
脱脂は未焼成の圧電セラミック層2xやCu系電極層4x,6x中のバインダを除去するために行われ、好ましくは、最初にバインダを除去するために乾燥窒素(例えば、250〜400℃、10時間程度、10L/min以上程度のガス流量)を炉内に流す。その後、バインダ除去の際に生じたカーボンを除去するため、水蒸気含有窒素(例えば、500〜700℃、3〜36時間程度、10L/min以上程度のガス流量)を炉内に流す。
Next, a porous firing sheath (not shown) is placed in the firing furnace, the element precursor 10x is placed on the firing sheath, and after degreasing by introducing an atmospheric gas as necessary, Firing is performed.
Degreasing is performed to remove the binder in the unfired piezoelectric ceramic layer 2x and the Cu-based electrode layers 4x and 6x. Preferably, dry nitrogen (for example, 250 to 400 ° C., 10 ° C. is used to remove the binder first. Gas flow of about 10L / min or more). Thereafter, in order to remove carbon generated during binder removal, water vapor-containing nitrogen (for example, 500 to 700 ° C., about 3 to 36 hours, a gas flow rate of about 10 L / min or more) is flowed into the furnace.

主焼成時の雰囲気ガス中の酸素分圧は、Cuの酸化を防止するため、図1のCu−CuO平衡曲線(B)より低くし、かつ圧電セラミック層中のPbが還元されないよう、図1のPb−PbO平衡曲線(C)より高くする。
主焼成温度は、例えば、900〜1050℃で1〜24時間程度とすることができ、主焼成雰囲気は、例えばアルゴンや窒素といった不活性ガスに水素を加えた混合ガスとすることができる。
又、主焼成の際の酸素分圧の制御は、湿った窒素、又は湿った窒素と水素の混合ガスを用いることが好ましい。湿った窒素は、例えば窒素ガスを水に通して得られる。例えば、主焼成雰囲気ガスとして、水分を含む低酸素含有ガス(N-H-HO系)を用いることができる。
In order to prevent the oxidation of Cu, the oxygen partial pressure in the atmospheric gas during the main firing is lower than the Cu—Cu 2 O equilibrium curve (B) in FIG. 1 and Pb in the piezoelectric ceramic layer is not reduced. It is made higher than the Pb-PbO equilibrium curve (C) in FIG.
The main firing temperature can be, for example, 900 to 1050 ° C. for about 1 to 24 hours, and the main firing atmosphere can be a mixed gas obtained by adding hydrogen to an inert gas such as argon or nitrogen.
Moreover, it is preferable to use wet nitrogen or a mixed gas of wet nitrogen and hydrogen to control the oxygen partial pressure during the main firing. Wet nitrogen is obtained, for example, by passing nitrogen gas through water. For example, a low oxygen-containing gas containing moisture (N 2 —H 2 —H 2 O system) can be used as the main firing atmosphere gas.

そして、主焼成を行った後、側面電極及びリードを形成することにより、図3に示す積層型圧電素子10を製造することができる。積層型圧電素子10は、圧電セラミック層2と、Cu系電極層4,6とを交互に積層してなる四角柱状をなす。又、図3の左側面に露出したCu系電極層4の端部同士が側面電極4bで接続され、さらに側面電極4bの上部にリード4cが接続されている。同様に、図3の右側面に露出したCu系電極層6の端部同士が側面電極6bで接続され、さらに側面電極6bの上部にリード6cが接続されている。そして、リード4c、6c間に電圧を印加することで、Cu系電極層4,6間に挟まれた圧電セラミック層2が圧電効果により動作する。   Then, after the main firing, the laminated piezoelectric element 10 shown in FIG. 3 can be manufactured by forming the side electrodes and leads. The laminated piezoelectric element 10 has a quadrangular prism shape formed by alternately laminating piezoelectric ceramic layers 2 and Cu-based electrode layers 4 and 6. Further, the end portions of the Cu-based electrode layer 4 exposed on the left side surface of FIG. 3 are connected to each other by a side electrode 4b, and a lead 4c is connected to the upper portion of the side electrode 4b. Similarly, the end portions of the Cu-based electrode layer 6 exposed on the right side surface of FIG. 3 are connected by the side electrode 6b, and the lead 6c is connected to the upper portion of the side electrode 6b. Then, by applying a voltage between the leads 4c and 6c, the piezoelectric ceramic layer 2 sandwiched between the Cu-based electrode layers 4 and 6 operates due to the piezoelectric effect.

本発明は上記実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
本発明は、チタン酸ジルコン酸鉛系セラミック材料を主にした圧電セラミック層の圧電効果を利用したあらゆる積層型圧電素子に適用することができる。
It goes without saying that the present invention is not limited to the above-described embodiment, but extends to various modifications and equivalents included in the spirit and scope of the present invention.
The present invention can be applied to any multilayer piezoelectric element utilizing the piezoelectric effect of a piezoelectric ceramic layer mainly composed of a lead zirconate titanate ceramic material.

組成がPZT(Pb(Zr0.53Ti0.47)O3+W,Cuとなるように、PbO、ZrO2、TiO2、WO3、Cu2Oを所定量(モル比でPbO:ZrO2:TiO2:WO3:Cu2O=1:0.53:0.47:0.01:0.025)秤量し、混合して混合粉末を得た。この混合粉末を、800℃での酸素分圧が1.013×10-1〜1.013×10-2 Pa(10-6〜10-7 atm)である仮焼雰囲気(図1のA−B各曲線の間の領域)で800℃で2時間仮焼し、その後粉砕して仮焼粉末を得た。仮焼雰囲気は50℃の水蒸気を含ませた窒素とした。
仮焼粉末をXRD測定し、ペロブスカイト単相であることを確認した。
Predetermined amounts of PbO, ZrO 2 , TiO 2 , WO 3 , Cu 2 O (PbO: ZrO 2 : TiO 2 : WO in molar ratio) so that the composition is PZT (Pb (Zr 0.53 Ti 0.47 ) O 3 + W, Cu. 3 : Cu 2 O = 1: 0.53: 0.47: 0.01: 0.025) and weighed and mixed to obtain a mixed powder.The mixed powder had an oxygen partial pressure at 800 ° C. of 1.013 × 10 −1 to 1.013 × 10. -2 Pa (10 -6 to 10 -7 atm) calcined atmosphere (area between curves AB in Fig. 1) for 2 hours at 800 ° C, then pulverized to obtain calcined powder The calcining atmosphere was nitrogen containing 50 ° C. water vapor.
The calcined powder was measured by XRD and confirmed to be a perovskite single phase.

次に、図4に示すようにして、この仮焼粉末を円盤状にプレスした。プレスの過程で、円盤の片面の中心部分にCu粉末40を配置し(図4(b))、その上にCuを含まない仮焼粉末20を配置してプレスすることにより、Cu粉末(実際の圧電素子のCu電極を模したもの)が未焼成の圧電セラミック体に内蔵されたプレス体を作製した(図4(c))。
又、後述する焼結性を評価するため、Cu粉末を内蔵しないプレス体も作製した。
得られたプレス体を、1000℃での酸素分圧が1.013×10-1〜1.013×10-2 Pa(10-6〜10-7 atm)である主焼成雰囲気(図1のB−C各曲線の間の領域)で1000℃で1時間焼成した。この雰囲気は、Cuが安定な焼成ウィンドウ内にあり、焼成雰囲気は50℃の水蒸気と20ppmの水素を含んだ窒素であった。
Next, this calcined powder was pressed into a disk shape as shown in FIG. In the course of pressing, Cu powder 40 is placed at the center of one side of the disk (FIG. 4 (b)), and calcined powder 20 containing no Cu is placed thereon and pressed, so that Cu powder (actual A press body in which a Cu electrode of the piezoelectric element of FIG. 4 was incorporated in an unfired piezoelectric ceramic body was produced (FIG. 4C).
Moreover, in order to evaluate the sintering property mentioned later, the press body which does not incorporate Cu powder was also produced.
The obtained pressed body was subjected to main firing atmosphere ( 10-6 to 10 -7 atm) of oxygen partial pressure at 1000 ° C. of 1.013 × 10 −1 to 1.013 × 10 −2 Pa (each BC in FIG. 1). Calcined at 1000 ° C. for 1 hour in the area between the curves. This atmosphere was in a firing window where Cu was stable, and the firing atmosphere was nitrogen containing 50 ° C. water vapor and 20 ppm hydrogen.

1.焼結性の評価
Cu粉末を内蔵しないプレス体の焼成体に対し、アルキメデス法による吸水率測定(JIS C 2141を参照)を行い、吸水率が0.05wt%以上の試料の焼結性を×と判定した。
2.Cuの拡散の評価
Cu粉末を内蔵したプレス体の焼成体を軸方向の中心で切断し、断面の圧電セラミック層へ、中央部のCu粉末が拡散したか否かを圧電セラミック層の呈色具合を目視して判定した。圧電セラミック層が褐色に変化したものは、Cu粉末が拡散したものと判定した。
又、目視で圧電セラミック層が褐色に変化しなかった試料については、圧電定数d33[pC/N]を測定し、Cuの拡散状態の評価を行った。圧電定数d33[pC/N]は、圧電現象の正効果(圧力→電気)で応力を加え発生する電荷量で表される。圧電定数d33が大きいほど、負荷により発生する電荷量が大きく(アクチュエータ用途では、変位出力量が大きく)なる。そして、圧電セラミック層にCuが拡散すると、圧電特性が低下してd33が小さくなる傾向にある。
得られた結果を表1に示す。
1. Evaluation of sinterability
The sintered body of the pressed body without Cu powder was measured for the water absorption rate by Archimedes method (see JIS C 2141), and the sinterability of the sample having a water absorption rate of 0.05 wt% or more was judged as x.
2. Evaluation of Cu diffusion
Cut the sintered body of the pressed body containing Cu powder at the center in the axial direction, and visually check the color of the piezoelectric ceramic layer to determine whether or not the Cu powder in the center has diffused into the piezoelectric ceramic layer in the cross section. did. When the piezoelectric ceramic layer turned brown, it was determined that the Cu powder was diffused.
For samples in which the piezoelectric ceramic layer did not turn brown visually, the piezoelectric constant d33 [pC / N] was measured to evaluate the Cu diffusion state. The piezoelectric constant d33 [pC / N] is represented by the amount of charge generated by applying stress due to the positive effect of piezoelectricity (pressure → electricity). The larger the piezoelectric constant d33, the larger the amount of charge generated by the load (the greater the displacement output amount for actuator applications). When Cu diffuses into the piezoelectric ceramic layer, the piezoelectric characteristics tend to decrease and d33 tends to decrease.
The obtained results are shown in Table 1.

表1から明らかなように、Pb(鉛)酸化物、Ti(チタン)酸化物、Zr(ジルコニウム)酸化物の各粉末を混合した原料粉末にCuOを添加した混合粉末を仮焼して、その仮焼粉末を圧電セラミック層に用いた実施例1,2の場合、焼結性に優れ、Cuの拡散が見られなかった。
なお、仮焼雰囲気を窒素とした実施例2の方が、仮焼雰囲気を大気とした実施例1に比べて圧電定数d33が大きく、仮焼雰囲気を窒素とするとCuの拡散をさらに抑制できることがわかった。
また、実施例1,2の場合には、圧電定数d33が大きく得られた。このことは、仮焼工程を通じて、1価のCuイオンを安定してチタン酸ジルコン酸鉛系セラミックにドープさせた仮焼粉末が得られたことに由来するものであり、焼成時に当該仮焼粉末製の圧電セラミック層中の酸素成分が吐き出されて局所的な酸化雰囲気が生じることが抑制されたことによるものといえる。
一方、CuOを含まなかった比較例1の場合、焼結性とCuの拡散性がいずれも劣った。
As is clear from Table 1, a mixed powder obtained by adding Cu 2 O to a raw powder obtained by mixing powders of Pb (lead) oxide, Ti (titanium) oxide, and Zr (zirconium) oxide is calcined. In the case of Examples 1 and 2 in which the calcined powder was used for the piezoelectric ceramic layer, the sinterability was excellent and Cu diffusion was not observed.
Note that Example 2 in which the calcination atmosphere is nitrogen has a larger piezoelectric constant d33 than that in Example 1 in which the calcination atmosphere is air, and the diffusion of Cu can be further suppressed when the calcination atmosphere is nitrogen. all right.
In Examples 1 and 2, a large piezoelectric constant d33 was obtained. This is derived from the fact that a calcined powder in which monovalent Cu ions are stably doped into a lead zirconate titanate ceramic was obtained through a calcining process. It can be said that the oxygen component in the manufactured piezoelectric ceramic layer is exhaled and the generation of a local oxidizing atmosphere is suppressed.
On the other hand, in Comparative Example 1 contained no Cu 2 O, the diffusion of the sintering properties and Cu was inferior both.

図5(a)は実施例1のプレス体の断面写真を示し、図5(b)は比較例1のプレス体の断面写真を示す。実施例1の場合、圧電セラミック層へのCu粉末(写真の中央部の黒い筋状のもの)の拡散は見られなかったが、比較例1の場合、圧電セラミック層へ斑点状にCuが拡散するのが目視で確認できた。   5A shows a cross-sectional photograph of the press body of Example 1, and FIG. 5B shows a cross-sectional photograph of the press body of Comparative Example 1. In the case of Example 1, the diffusion of Cu powder (black streak in the center of the photograph) was not observed in the piezoelectric ceramic layer, but in the case of Comparative Example 1, Cu was diffused in the form of spots in the piezoelectric ceramic layer. It was confirmed visually.

Pb−PbO、Cu−CuO平衡曲線、及びCuO−CuO平衡曲線(エリンガムダイヤグラム)を示す図である。Pb-PbO, illustrates Cu-Cu 2 O equilibrium curve, and Cu 2 O-CuO equilibrium curve (Ellingham Diagram). 積層型圧電素子の前駆体(素子前駆体)の構成を示す図である。It is a figure which shows the structure of the precursor (element precursor) of a lamination type piezoelectric element. 積層型圧電素子の構成を示す図である。It is a figure which shows the structure of a lamination type piezoelectric element. Cu粉末が圧電セラミックに内蔵されたプレス体を作製する工程を示す図である。It is a figure which shows the process of producing the press body in which Cu powder was incorporated in the piezoelectric ceramic. 実際のプレス体の断面を示す図である。It is a figure which shows the cross section of an actual press body.

2 圧電セラミック層
2x 未焼成圧電セラミック層
4、6 Cu系電極層
4x、6x 未焼成Cu系電極層
10 積層型圧電素子
10x 素子前駆体
2 Piezoelectric Ceramic Layer 2x Unfired Piezoelectric Ceramic Layer 4, 6 Cu-Based Electrode Layer 4x, 6x Unfired Cu-Based Electrode Layer 10 Multilayer Piezoelectric Element 10x Element Precursor

Claims (2)

チタン酸ジルコン酸鉛系セラミックからなる圧電セラミック層と、Cu系電極層とを交互に積層してなる圧電素子の製造方法であって、
前記チタン酸ジルコン酸鉛系セラミックの構成材料であるPb(鉛)酸化物、Ti(チタン)酸化物、Zr(ジルコニウム)酸化物の各粉末を混合した原料粉末に、CuOを添加した混合粉末を準備し、前記混合粉末を、CuOがCuに還元されず、かつCuOに酸化されない酸素分圧下で仮焼する仮焼工程と、
仮焼して得られた仮焼粉末を用いて焼成後に前記圧電層となる未焼成圧電セラミック層を作製する工程と、
前記未焼成圧電セラミック層と、焼成後に前記電極層となる未焼成Cu系電極層とを交互に積層して焼成する主焼成工程と、を有する圧電素子の製造方法。
A method of manufacturing a piezoelectric element in which piezoelectric ceramic layers composed of lead zirconate titanate-based ceramics and Cu-based electrode layers are alternately laminated,
A mixture of Cu 2 O added to a raw material powder obtained by mixing Pb (lead) oxide, Ti (titanium) oxide, and Zr (zirconium) oxide, which are constituent materials of the lead zirconate titanate ceramic. Preparing a powder, and calcining the mixed powder under an oxygen partial pressure at which Cu 2 O is not reduced to Cu and not oxidized to CuO;
A step of producing an unfired piezoelectric ceramic layer that becomes the piezoelectric layer after firing using the calcined powder obtained by calcining;
A method of manufacturing a piezoelectric element, comprising: a main firing step of alternately laminating and firing the unfired piezoelectric ceramic layers and unfired Cu-based electrode layers that become the electrode layers after firing.
前記仮焼工程において、湿った窒素、又は窒素と水素の混合ガスを用いて前記酸素分圧を制御する請求項1記載の圧電素子の製造方法。   The method for manufacturing a piezoelectric element according to claim 1, wherein in the calcining step, the oxygen partial pressure is controlled using wet nitrogen or a mixed gas of nitrogen and hydrogen.
JP2009098734A 2009-04-15 2009-04-15 Method of manufacturing piezoelectric element Withdrawn JP2010251497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098734A JP2010251497A (en) 2009-04-15 2009-04-15 Method of manufacturing piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098734A JP2010251497A (en) 2009-04-15 2009-04-15 Method of manufacturing piezoelectric element

Publications (1)

Publication Number Publication Date
JP2010251497A true JP2010251497A (en) 2010-11-04

Family

ID=43313519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098734A Withdrawn JP2010251497A (en) 2009-04-15 2009-04-15 Method of manufacturing piezoelectric element

Country Status (1)

Country Link
JP (1) JP2010251497A (en)

Similar Documents

Publication Publication Date Title
JP4873327B2 (en) Piezoelectric element
KR100450075B1 (en) Monolithic multilayer piezoelectric actuator and its process of production
JPWO2007066453A1 (en) Multilayer piezoelectric element and manufacturing method thereof
JP6631854B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor
JP2008156201A (en) Piezoelectric ceramic composition and laminated piezoelectric element
US20120112607A1 (en) Ceramic composition for piezoelectric actuator and piezoelectric actuator including the same
JP2010511586A (en) Piezoelectric material sintered at low temperature based on lead zirconate titanate mixed crystal, manufacturing method thereof, and piezoelectric element including the material
JP5118848B2 (en) Piezoelectric ceramic material, multilayer structure element, and method for producing the ceramic material
JP3969594B2 (en) Piezoelectric element and manufacturing method thereof
JP2010258199A (en) Piezoelectric element and method of manufacturing the same
JP2006265059A (en) Manufacturing method of piezoelectric material and laminated piezoelectric element
JP2007258301A (en) Laminated piezoelectric element, and its manufacturing method
JP4462438B2 (en) Piezoelectric ceramic composition, multilayer piezoelectric element, and method for producing multilayer piezoelectric element
JP3971779B1 (en) Piezoelectric ceramic composition
JP2006269983A (en) Laminating piezoelectric element and its manufacturing method
JP4390082B2 (en) Piezoelectric ceramic composition and multilayer piezoelectric element
JP2010251497A (en) Method of manufacturing piezoelectric element
US20080245991A1 (en) Nickel-Molybdenum-Doped Lead Zirconate Titanate, Method for the Production of a Piezoceramic Component Using Said Lead Zirconate Titanate, and Use of the Piezoceramic Component
JP4735837B2 (en) Method for manufacturing multilayer piezoelectric element and multilayer piezoelectric element
JP2007227483A (en) Laminated ceramic element manufacturing method
JP2015070136A (en) Piezoelectric ceramic electronic component, and method of manufacturing piezoelectric ceramic electronic component
JP5000088B2 (en) Method for manufacturing dielectric ceramic composition and method for manufacturing ceramic capacitor
JP4506187B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP5103859B2 (en) Multilayer piezoelectric ceramic element and manufacturing method thereof
JP2007227482A (en) Laminated ceramic element manufacturing method, and setter

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120703