JP2010251433A - Semiconductor light-receiving element and semiconductor light-receiving device - Google Patents

Semiconductor light-receiving element and semiconductor light-receiving device Download PDF

Info

Publication number
JP2010251433A
JP2010251433A JP2009097519A JP2009097519A JP2010251433A JP 2010251433 A JP2010251433 A JP 2010251433A JP 2009097519 A JP2009097519 A JP 2009097519A JP 2009097519 A JP2009097519 A JP 2009097519A JP 2010251433 A JP2010251433 A JP 2010251433A
Authority
JP
Japan
Prior art keywords
light receiving
receiving element
semiconductor light
electrode
modulation signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009097519A
Other languages
Japanese (ja)
Other versions
JP5396982B2 (en
Inventor
Takeshi Nakada
武志 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2009097519A priority Critical patent/JP5396982B2/en
Publication of JP2010251433A publication Critical patent/JP2010251433A/en
Application granted granted Critical
Publication of JP5396982B2 publication Critical patent/JP5396982B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor light-receiving element capable of adding modulation signals to bias to impress to a light-receiving element without using a bias T and achieving a small-sized and low-cost light-receiving device capable of a modulation bias operation or the like. <P>SOLUTION: The semiconductor light-receiving element includes a conductive semiconductor substrate 6, a light-receiving part formed of a semiconductor layer for converting optical signals to electrical signals, electrodes (2, 3) for electrical signal extraction for extracting the electrical signals converted in the light-receiving part to the outside, and an electrode 5 for modulation signal input. The light-receiving part and the electrodes (2, 3) for the electrical signal extraction are formed on the substrate 6, and the electrode 5 for the modulation signal input is formed, at a location different from the light-receiving part and the electrodes (2, 3) for the electrical signal extraction on the substrate 6 in the state of being insulated from the electrodes (2, 3) for the electrical signal extraction. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体受光素子および半導体受光装置に関する。   The present invention relates to a semiconductor light receiving element and a semiconductor light receiving device.

光通信や光計測等の分野において、光信号を電気信号に変換する素子として、半導体受光素子が使用されている。半導体受光素子は、光信号から電気信号を発生させる受光部を有する半導体積層体に、前記受光部で発生した電気信号を外部に取り出すための電気信号取出用電極としてp型電極とn型電極を形成した基本構造を有する。図1に、半導体受光素子の基本構造の一例を示す。図示のとおり、半導体受光素子は、受光部を有する半導体積層体1と電気信号取出用電極としてのp型またはn型の電極2と前記電極と異型の電極3を有する。前記半導体受光素子では、光信号から電気信号を外部に取り出すに際し、半導体受光素子の光検出特性を高めるため、前記電極2と前記電極3の間に逆バイアス電圧を印加して使用する。このような半導体受光素子等に関する先行技術文献としては、例えば、特許文献1から3がある。   In fields such as optical communication and optical measurement, semiconductor light receiving elements are used as elements that convert optical signals into electrical signals. The semiconductor light-receiving element has a p-type electrode and an n-type electrode as electric signal extraction electrodes for taking out an electric signal generated by the light receiving unit to a semiconductor laminate having a light receiving unit that generates an electric signal from an optical signal. Has the basic structure formed. FIG. 1 shows an example of the basic structure of a semiconductor light receiving element. As shown in the figure, the semiconductor light receiving element has a semiconductor laminate 1 having a light receiving portion, a p-type or n-type electrode 2 as an electric signal extraction electrode, and an electrode 3 different from the above-mentioned electrode. The semiconductor light receiving element is used by applying a reverse bias voltage between the electrode 2 and the electrode 3 in order to enhance the light detection characteristics of the semiconductor light receiving element when an electrical signal is extracted from the optical signal. As prior art documents concerning such a semiconductor light receiving element and the like, there are, for example, Patent Documents 1 to 3.

特許文献1記載の半導体受光素子は、バンドギャップのある波長選択性の層を有し、pn接合を囲む円環状の第2のpn接合を有し、第2のpn接合のp領域と隣接するn領域にまたがるよう電極を設けた半導体受光素子である。   The semiconductor light-receiving element described in Patent Document 1 has a wavelength-selective layer with a band gap, has an annular second pn junction surrounding the pn junction, and is adjacent to the p region of the second pn junction. It is a semiconductor light receiving element provided with electrodes so as to straddle the n region.

特許文献2記載の半導体受光装置は、基板と第1の半導体層と光吸収層と第2の半導体層と第1の電極部と第2の電極部と第3の半導体層とを有する半導体受光装置である。   The semiconductor light receiving device described in Patent Document 2 includes a semiconductor light receiving device including a substrate, a first semiconductor layer, a light absorbing layer, a second semiconductor layer, a first electrode portion, a second electrode portion, and a third semiconductor layer. Device.

特許文献3記載の半導体受光素子は、Si系物質を結晶基板として用い、前記基板の一方側の上の光感受層の上方に透明電極を有し、上記基板の他方側の面に、受光素子を構成する他方側の電極を備えた半導体受光素子である。   The semiconductor light receiving element described in Patent Document 3 uses a Si-based material as a crystal substrate, has a transparent electrode above the photosensitive layer on one side of the substrate, and has a light receiving element on the other side of the substrate. This is a semiconductor light-receiving element provided with the electrode on the other side that constitutes.

上記のような半導体受光素子において、例えば、さらに前記半導体受光素子の光検出特性を高めたい場合、前記光信号に合わせて前記バイアスに変調信号を加えることができる。前記バイアスに変調信号を加えると、例えば、素子特性により利得を得ることができ、例えば、受信する光信号のシグナル対ノイズ比(S/N比)を向上させることができる。この効果は、特に、アバランシェ・フォトダイオード等の増幅機能を内蔵する半導体受光素子において良好に得ることができる。特にアバランシェ・フォトダイオードの受光素子において、変調信号を用いてブレークダウン以上のバイアスを印加する前記受光素子の動作条件は、ゲーテッド・ガイガー・モードと呼ばれ、適用されている。前記半導体受光素子に高速の変調バイアスを外部から印加する場合、バイアス電源にバイアスTを介して高速の変調信号を付加して、前記バイアスを印加する必要がある。バイアスTは、インダクタとコンデンサからなり、例えば、バイアス電源からのバイアスに高速変調信号を重畳的に付加できる電子回路素子である。ここで、例えば、10GHz程度までの動作速度の半導体受光素子は、TOパッケージに実装されることが多く、前記半導体受光素子に変調バイアスを印加する場合は、前記半導体受光素子の外部にバイアスTを接続する必要がある。図2に、半導体受光素子に外部から変調バイアスを印加する場合の回路構成例を示す。図示のとおり、前記回路構成では、半導体受光素子505の外部にバイアスT504を接続して、前記半導体受光素子505とバイアス電源503の間に前記バイアスT504を介在させる。バイアスTは、通常、コネクタ付パッケージに実装された状態で使用され、変調バイアス電源501に接続される。   In the semiconductor light receiving element as described above, for example, when it is desired to further improve the light detection characteristics of the semiconductor light receiving element, a modulation signal can be added to the bias in accordance with the optical signal. When a modulation signal is added to the bias, for example, a gain can be obtained by device characteristics, and for example, a signal-to-noise ratio (S / N ratio) of a received optical signal can be improved. This effect can be obtained particularly well in a semiconductor light receiving element having an amplifying function such as an avalanche photodiode. In particular, in the light receiving element of an avalanche photodiode, the operating condition of the light receiving element that applies a bias higher than the breakdown using a modulation signal is called a gated Geiger mode and is applied. When a high-speed modulation bias is externally applied to the semiconductor light receiving element, it is necessary to apply the bias by adding a high-speed modulation signal to the bias power source via the bias T. The bias T includes an inductor and a capacitor, and is an electronic circuit element that can superimpose a high-speed modulation signal on a bias from a bias power source, for example. Here, for example, a semiconductor light receiving element having an operating speed of up to about 10 GHz is often mounted in a TO package. When a modulation bias is applied to the semiconductor light receiving element, a bias T is applied to the outside of the semiconductor light receiving element. Need to connect. FIG. 2 shows a circuit configuration example when a modulation bias is applied to the semiconductor light receiving element from the outside. As shown in the figure, in the circuit configuration, a bias T504 is connected to the outside of the semiconductor light receiving element 505, and the bias T504 is interposed between the semiconductor light receiving element 505 and a bias power source 503. The bias T is normally used in a state where it is mounted on a package with a connector, and is connected to a modulation bias power source 501.

特開2000−036615号公報JP 2000-036615 A 特開2004−111762号公報JP 2004-111762 A 特開2007−123587号公報Japanese Patent Laid-Open No. 2007-123587

通常使用されるバイアスTの一例では、例えば、15mm×32mm×8.9mm程度のパッケージ(箱)に、Kコネクタ2端子およびDC端子1つと共にバイアスTを収容した状態で使用される。すなわち、例えば、半導体受光素子に変調バイアスを印加する半導体受光装置を構成する場合、パッケージに実装された半導体受光素子に、前述のとおりコネクタ等と共にパッケージに実装されたバイアスTとその接続部を含めるため、前記装置が嵩張る問題がある。また、より小さなパッケージやバイアスTを実現できたとしても、インダクタとコンデンサを互いに干渉しない位置に実装する必要があるため、実装上、相当の面積が必要となる。さらに、バイアスTは、ソレノイド等のインダクタやコンデンサに比較して市販品の種類が少なく、受光装置の設計に合わせて前記バイアスTを選択することは困難である。このように、半導体受光素子に変調バイアスを加える場合、受光素子モジュールの外部にバイアスTやバイアスTモジュールを配置する必要から、装置サイズの増大や回路上の設置面積の増大、コスト高の問題がある。   As an example of the normally used bias T, for example, a package (box) of about 15 mm × 32 mm × 8.9 mm is used in a state where the bias T is accommodated together with two K connector terminals and one DC terminal. That is, for example, in the case of configuring a semiconductor light receiving device that applies a modulation bias to a semiconductor light receiving element, the semiconductor light receiving element mounted on the package includes the bias T mounted on the package together with the connector as described above and its connection portion. Therefore, there is a problem that the device is bulky. Even if a smaller package and bias T can be realized, it is necessary to mount the inductor and the capacitor at a position where they do not interfere with each other, so that a considerable area is required for mounting. Furthermore, there are few types of commercially available bias T compared to inductors and capacitors such as solenoids, and it is difficult to select the bias T according to the design of the light receiving device. As described above, when a modulation bias is applied to the semiconductor light receiving element, it is necessary to dispose the bias T or the bias T module outside the light receiving element module, which increases the size of the device, increases the installation area on the circuit, and increases the cost. is there.

そこで、本発明は、バイアスTを用いなくても、受光素子に印加するバイアスに変調信号を付加でき、小型かつ低コストの、変調バイアス動作可能な受光装置等を実現できる半導体受光素子およびそれを用いた半導体受光装置を提供することを目的とする。   Therefore, the present invention can add a modulation signal to the bias applied to the light receiving element without using the bias T, and realize a small-sized and low-cost light receiving device capable of operating the modulation bias, and the like. An object of the present invention is to provide a semiconductor light receiving device used.

本発明の半導体受光素子は、導電性半導体基板、光信号を電気信号に変換する半導体層から形成された受光部、前記受光部で変換した電気信号を外部に取り出す電気信号取出用電極および変調信号入力用電極を有し、
前記受光部および前記電気信号取出用電極が、前記導電性半導体基板上に形成され、
前記変調信号入力用電極が、前記基板上の前記受光部および前記電気信号取出用電極とは別の場所に、前記電気信号取出用電極と絶縁状態で形成されていることを特徴とする。
The semiconductor light receiving element of the present invention includes a conductive semiconductor substrate, a light receiving portion formed from a semiconductor layer for converting an optical signal into an electric signal, an electric signal extraction electrode for taking out the electric signal converted by the light receiving portion to the outside, and a modulation signal Having input electrodes,
The light receiving portion and the electrical signal extraction electrode are formed on the conductive semiconductor substrate,
The modulation signal input electrode is formed in an insulated state from the electrical signal extraction electrode at a location different from the light receiving portion and the electrical signal extraction electrode on the substrate.

本発明の第1の半導体受光装置は、前記受光部が、前記導電性半導体基板と同型の導電性半導体層と、前記導電性半導体基板と異型の導電性半導体層を含み、前記電気信号取出用電極として、前記導電性半導体基板に電気的に接続される電極と、前記異型の導電性半導体層に電気的に接続される電極とを含む前記本発明の半導体受光素子と、
前記導電性半導体基板に電気的に接続される電極に接続されるインダクタを含むことを特徴とする。
In the first semiconductor light receiving device of the present invention, the light receiving unit includes a conductive semiconductor layer of the same type as the conductive semiconductor substrate, and a conductive semiconductor layer of a different type from the conductive semiconductor substrate. As the electrode, the semiconductor light receiving element of the present invention including an electrode electrically connected to the conductive semiconductor substrate and an electrode electrically connected to the atypical conductive semiconductor layer;
An inductor connected to an electrode electrically connected to the conductive semiconductor substrate is included.

本発明の第2の半導体受光装置は、また、前記本発明の半導体受光素子と、前記変調信号入力用電極に入力する変調信号を発生する変調信号発生装置を含むことを特徴とする。   According to a second aspect of the present invention, there is provided a semiconductor light receiving device including the semiconductor light receiving element of the present invention and a modulation signal generating device for generating a modulation signal to be input to the modulation signal input electrode.

本発明の第3の半導体受光装置は、前記受光部が、前記導電性半導体基板と同型の導電性半導体層と、前記導電性半導体基板と異型の導電性半導体層を含み、前記電気信号取出用電極として、前記導電性半導体基板に電気的に接続される電極と、前記異型の導電性半導体層に電気的に接続される電極とを含む前記本発明の半導体受光素子と、
前記導電性半導体基板に電気的に接続される電極に接続されるインダクタと、
前記変調信号入力用電極に入力する変調信号を発生する変調信号発生装置と
を含むことを特徴とする。
In the third semiconductor light-receiving device of the present invention, the light-receiving portion includes a conductive semiconductor layer having the same type as the conductive semiconductor substrate, and a conductive semiconductor layer having a different type from the conductive semiconductor substrate. As the electrode, the semiconductor light receiving element of the present invention including an electrode electrically connected to the conductive semiconductor substrate and an electrode electrically connected to the atypical conductive semiconductor layer;
An inductor connected to an electrode electrically connected to the conductive semiconductor substrate;
And a modulation signal generator for generating a modulation signal to be input to the modulation signal input electrode.

本発明によれば、バイアスTを用いなくても、受光素子に印加するバイアスに変調信号を付加でき、小型かつ低コストの、変調バイアス動作可能な半導体受光素子等を実現できる。   According to the present invention, a modulation signal can be added to the bias applied to the light receiving element without using the bias T, and a small-sized and low-cost semiconductor light receiving element capable of performing a modulation bias can be realized.

図1は、半導体受光素子の基本構造を示す断面図である。FIG. 1 is a cross-sectional view showing a basic structure of a semiconductor light receiving element. 図2は、半導体受光素子にバイアスTを用いて変調バイアスを印加する場合の回路構成例を示す図である。FIG. 2 is a diagram illustrating a circuit configuration example when a modulation bias is applied to the semiconductor light receiving element using the bias T. 図3は、本発明の半導体受光素子の一実施形態を示す断面図である。FIG. 3 is a cross-sectional view showing an embodiment of the semiconductor light receiving element of the present invention. 図4は、本発明の半導体受光素子の一実施形態を示す断面図である。FIG. 4 is a cross-sectional view showing an embodiment of the semiconductor light receiving element of the present invention. 図5は、本発明の半導体受光素子の一実施形態を示す断面図である。FIG. 5 is a cross-sectional view showing an embodiment of the semiconductor light receiving element of the present invention. 図6は、本発明の半導体受光素子の一実施形態を示す断面図である。FIG. 6 is a cross-sectional view showing an embodiment of the semiconductor light receiving element of the present invention. 図7は、本発明の半導体受光装置の構成例を示す回路図である。FIG. 7 is a circuit diagram showing a configuration example of the semiconductor light receiving device of the present invention. 図8は、本発明の半導体受光素子の一実施形態を示す断面図である。FIG. 8 is a cross-sectional view showing an embodiment of the semiconductor light receiving element of the present invention. 図9は、図8に示す実施形態の裏面を示す背面図である。FIG. 9 is a rear view showing the back surface of the embodiment shown in FIG. 図10は、図8および図9に示す実施形態を実装するチップキャリアの例を示す図である。FIG. 10 is a diagram showing an example of a chip carrier on which the embodiment shown in FIGS. 8 and 9 is mounted. 図11Aは、図10に示すチップキャリアに実装された図8および図9に示す実施形態の、ステムにおける実装例を示す図である。FIG. 11A is a diagram showing a mounting example in the stem of the embodiment shown in FIGS. 8 and 9 mounted on the chip carrier shown in FIG. 図11Bは、本発明の半導体受光素子を含む受光モジュールの例を示す図である。FIG. 11B is a diagram showing an example of a light receiving module including the semiconductor light receiving element of the present invention. 図12は、本発明の半導体受光素子に変調バイアスを印加する場合の回路構成例を示す図である。FIG. 12 is a diagram showing a circuit configuration example when a modulation bias is applied to the semiconductor light receiving element of the present invention. 図13は、本発明の半導体受光素子の一実施形態を示す断面図である。FIG. 13 is a cross-sectional view showing an embodiment of the semiconductor light receiving element of the present invention. 図14は、図13に示す実施形態の裏面を示す背面図である。FIG. 14 is a rear view showing the back surface of the embodiment shown in FIG. 13. 図15は、図13および図14に示す実施形態を示す側面図である。FIG. 15 is a side view showing the embodiment shown in FIGS. 13 and 14.

前述のとおり、本発明の半導体受光素子は、前記受光部および前記電気信号取出用電極が、前記導電性半導体基板上に形成されている。そして、前記変調信号入力用電極が、前記導電性半導体基板上の前記受光部および前記電気信号取出用電極とは別の場所に、前記電気信号取出用電極と絶縁状態で形成されている。図3に、本発明の半導体受光素子の一例の構成を示す。図3は、矢印で示すように半導体受光素子の上面(表面)から信号光が入射する例を示す。図示のとおり、本発明の半導体受光素子は、導電性半導体基板6上に、受光部、ならびに電気信号取出用電極である電極2および電極3が形成され、変調信号入力用電極5が、前記受光部および電極2および電極3とは別の場所に、電極2および電極3と絶縁状態で形成された構成を有する。同図に示す本発明の半導体受光素子は、導電性半導体基板6の上に、導電性半導体基板6から順に、導電性半導体基板6と同型の半導体層7と、光吸収層8と、導電性半導体基板6と異型の半導体層9が積層された半導体積層体1から形成されている。前記受光部は、半導体積層体1の中央のメサ形状の部分に、半導体層(7、8、9)から形成されている。導電性半導体基板6には、絶縁膜4を介して変調信号入力用電極5が形成されている。ただし、本発明の半導体受光素子は、このような図3に示す態様に限定されない。例えば、図3では、前記受光部は、半導体層7と光吸収層8と半導体層9から形成されているが、このような構造に限定されず、半導体層から形成されていればよい。また、図3では、変調信号入力用電極5は、絶縁膜4を介して導電性半導体基板6に形成されているが、このような構造に限定されず、前記電気信号取出用電極(2、3)と絶縁状態で導電性半導体基板6に形成されていればよい。また、同図では、前述のとおり、前記半導体受光素子の表面から信号光が入射する表面入射型の半導体受光素子を示すが、本発明の半導体受光素子は、これには限定されない。このように、本発明の半導体受光素子は、前記変調信号入力用電極5を有するため、バイアスに変調信号を付加するためにバイアスTを使用する必要がなく、変調信号動作を実現する場合のコストを低減でき、実装設計上の自由度を高めることができる。   As described above, in the semiconductor light receiving element of the present invention, the light receiving portion and the electric signal extraction electrode are formed on the conductive semiconductor substrate. The modulation signal input electrode is formed in an insulated state from the electrical signal extraction electrode at a location different from the light receiving portion and the electrical signal extraction electrode on the conductive semiconductor substrate. FIG. 3 shows a configuration of an example of the semiconductor light receiving element of the present invention. FIG. 3 shows an example in which signal light is incident from the upper surface (front surface) of the semiconductor light receiving element as indicated by an arrow. As shown in the figure, in the semiconductor light receiving element of the present invention, a light receiving portion and electrodes 2 and 3 which are electric signal extraction electrodes are formed on a conductive semiconductor substrate 6, and the modulation signal input electrode 5 is provided with the light receiving portion. The electrode 2 and the electrode 3 and the electrode 3 are formed in an insulating state in a place different from the electrode and the electrode 2 and the electrode 3. The semiconductor light-receiving element of the present invention shown in the same figure is formed on a conductive semiconductor substrate 6 in order from the conductive semiconductor substrate 6, a semiconductor layer 7 of the same type as the conductive semiconductor substrate 6, a light absorption layer 8, and a conductive layer. It is formed from a semiconductor stacked body 1 in which a semiconductor substrate 6 and a different type semiconductor layer 9 are stacked. The light receiving portion is formed of a semiconductor layer (7, 8, 9) in a mesa-shaped portion at the center of the semiconductor stacked body 1. A modulation signal input electrode 5 is formed on the conductive semiconductor substrate 6 via an insulating film 4. However, the semiconductor light receiving element of the present invention is not limited to the embodiment shown in FIG. For example, in FIG. 3, the light receiving portion is formed of the semiconductor layer 7, the light absorption layer 8, and the semiconductor layer 9, but is not limited to such a structure, and may be formed of a semiconductor layer. In FIG. 3, the modulation signal input electrode 5 is formed on the conductive semiconductor substrate 6 with the insulating film 4 interposed therebetween. However, the present invention is not limited to such a structure, and the electric signal extraction electrode (2, It is only necessary to be formed on the conductive semiconductor substrate 6 in an insulating state with 3). In addition, in the same figure, as described above, a surface incident type semiconductor light receiving element in which signal light enters from the surface of the semiconductor light receiving element is shown, but the semiconductor light receiving element of the present invention is not limited to this. Thus, since the semiconductor light receiving element of the present invention has the modulation signal input electrode 5, it is not necessary to use the bias T for adding the modulation signal to the bias, and the cost for realizing the modulation signal operation is not required. The degree of freedom in mounting design can be increased.

前記本発明の半導体受光素子において、前記導電性半導体基板は、半導体から形成されている限り、特に制限されない。前記導電性半導体基板としては、例えば、InP基板、GaAs基板を使用でき、例えば、InP基板を好適に使用できる。前記導電性半導体基板は、p型半導体から形成されてもよいし、n型半導体から形成されてもよい。前記受光部は、半導体層から形成され、光信号を電気信号に変換できる限り、特に制限されない。前記受光部は、例えば、前記本発明の半導体受光素子の表面または裏面から入射し、前記受光部まで到達した信号光を光信号として受信する。前記受光部は、例えば、半導体層の積層体において光電効果を生じる部分である。前記受光部は、例えば、p型半導体から形成されたp型半導体層とn型半導体から形成されたn型半導体層から形成される。このような受光部において、前記光電効果を生じる部分は、例えば、pn接合やpin接合等である。このような受光部は、例えば、前記導電性半導体基板上に、前記導電性半導体基板から、前記導電性半導体基板と同型の第1の半導体層、光吸収層、および前記導電性半導体基板と異型の第2の半導体層を順に積層することにより作製できる。前記受光部は、これら以外の他の半導体層を含んでいてもよい。前記第1および第2の半導体層は、例えば、バッファ層である。前記第1の半導体層および前記第2の半導体層は、それぞれ、例えば、エッチング層等の他の層を介して複数層が積層されていてもよい。また、前記受光部は、前記他の半導体層として、導電性コンタクト層や増倍層、電界緩和層を含んでいてもよい。このような受光部は、例えば、前記導電性半導体基板上に前記各層をエピタキシャル成長させることにより作製できる。前記信号光は、前記受光部に対し、前記受光部のどちらの面から入射してもよい。すなわち、前記半導体受光素子は、その表面および裏面の少なくとも一方の面に前記信号光を通過させるための領域(本発明において「信号光通過領域」という)を有していてよい。前記半導体受光素子は、例えば、約500μm角の方形形状で作製することができ、これにより、一枚のウエハから多数の本発明の半導体受光素子を作製でき、歩留まりを向上でき、製造コストを削減できる。製造工程における取り扱いの容易さ等の観点から、前記導電性半導体基板は、一辺の長さが、200μm程度または200μm以上の方形形状に形成されることが好ましい。歩留まり向上の観点からは、前記導電性半導体基板は、平面面積が小さいほうが望ましく、例えば、平面面積が少なくとも1mm以下であることが好ましい。こうすることで、例えば、2インチ基板(2025mmサイズ)を用いて作製した際、前記導電性半導体基板を2000個近く作製できることにより、コスト低減できる。ただし、このようなサイズに限定されない。他方、変調信号入力用電極の形成の観点からは、前記導電性半導体基板は、平面面積は大きいほうが、広帯域の変調信号に対応でき、好ましい。例えば、一辺が250μm〜500μmの方形形状で形成した場合に、歩留りよく、かつ、変調信号入力用電極形成の観点から好適な前記本発明の半導体素子を作製できるが、このような範囲には限定されず、どのようなサイズでもよい。例えば、変調信号入力用電極の観点で特別にダイナミックレンジをあげるため、前記導電性半導体基板は、一辺が最大5mmの方形形状に形成することができる。 In the semiconductor light receiving element of the present invention, the conductive semiconductor substrate is not particularly limited as long as it is formed of a semiconductor. As the conductive semiconductor substrate, for example, an InP substrate or a GaAs substrate can be used, and for example, an InP substrate can be suitably used. The conductive semiconductor substrate may be formed of a p-type semiconductor or an n-type semiconductor. The light receiving portion is not particularly limited as long as it is formed of a semiconductor layer and can convert an optical signal into an electric signal. The light receiving unit receives, for example, signal light that is incident from the front or back surface of the semiconductor light receiving element of the present invention and reaches the light receiving unit as an optical signal. The light receiving portion is, for example, a portion that generates a photoelectric effect in a stacked body of semiconductor layers. The light receiving portion is formed of, for example, a p-type semiconductor layer formed of a p-type semiconductor and an n-type semiconductor layer formed of an n-type semiconductor. In such a light receiving part, the part that produces the photoelectric effect is, for example, a pn junction or a pin junction. Such a light receiving unit is, for example, a first semiconductor layer having the same type as the conductive semiconductor substrate, a light absorption layer, and a different type from the conductive semiconductor substrate on the conductive semiconductor substrate. The second semiconductor layer can be sequentially stacked. The light receiving unit may include other semiconductor layers. The first and second semiconductor layers are, for example, buffer layers. Each of the first semiconductor layer and the second semiconductor layer may be formed by stacking a plurality of layers via other layers such as an etching layer. The light receiving section may include a conductive contact layer, a multiplication layer, and an electric field relaxation layer as the other semiconductor layer. Such a light receiving portion can be produced, for example, by epitaxially growing the respective layers on the conductive semiconductor substrate. The signal light may enter the light receiving unit from any surface of the light receiving unit. That is, the semiconductor light receiving element may have a region for passing the signal light (referred to as “signal light passing region” in the present invention) on at least one of the front surface and the back surface. The semiconductor light-receiving element can be manufactured, for example, in a square shape of about 500 μm square, and thereby, a large number of semiconductor light-receiving elements of the present invention can be manufactured from one wafer, yield can be improved, and manufacturing cost can be reduced. it can. From the viewpoint of ease of handling in the manufacturing process and the like, the conductive semiconductor substrate is preferably formed in a rectangular shape having a side length of about 200 μm or 200 μm. From the viewpoint of improving yield, the conductive semiconductor substrate desirably has a small planar area, and for example, the planar area is preferably at least 1 mm 2 or less. By doing so, for example, when manufacturing using a 2-inch substrate (2025 mm 2 size), nearly 2000 conductive semiconductor substrates can be manufactured, thereby reducing costs. However, it is not limited to such a size. On the other hand, from the viewpoint of forming a modulation signal input electrode, it is preferable that the conductive semiconductor substrate has a large planar area because it can cope with a broadband modulation signal. For example, the semiconductor element of the present invention can be manufactured with a good yield and in terms of forming a modulation signal input electrode when it is formed in a square shape with a side of 250 μm to 500 μm, but it is limited to such a range. Any size is acceptable. For example, in order to increase the dynamic range particularly from the viewpoint of the modulation signal input electrode, the conductive semiconductor substrate can be formed in a rectangular shape with a side of 5 mm at maximum.

前記電気信号取出用電極は、例えば、前記導電性半導体基板に電気的に接続される電極と、前記受光部における前記導電性半導体基板と異なる型の半導体層に電気的に接続される電極を含む。このような電気信号取出用電極は、前記導電性半導体基板や前記異なる型の半導体層に電気的に接続されていればよく、前記導電性半導体基板や前記異なる型の半導体層に直接接続されていてもよいし、例えば、電気的に接続されるべき前記基板または前記異なる型の半導体層に他の層を介して接続されていてもよい。このような電極は、例えば、p型半導体層に接続されるp型電極とn型半導体層に接続されるn型電極である。前記本発明の半導体受光素子は、例えば、前記受光部が光信号を受信する際に、前記導電性半導体基板に電気的に接続される電極と、前記異なる型の半導体層に電気的に接続される電極の間に逆バイアスを印加する。これにより、前記光信号を前記受光部が電気信号に変換し、この電気信号が、電流(以下、「信号電流」ともいう)として前記電気信号取出用電極から出力されることで、前記電気信号を外部に取り出すことができる。   The electrical signal extraction electrode includes, for example, an electrode electrically connected to the conductive semiconductor substrate and an electrode electrically connected to a semiconductor layer of a different type from the conductive semiconductor substrate in the light receiving unit. . Such an electrical signal extraction electrode is only required to be electrically connected to the conductive semiconductor substrate or the different type semiconductor layer, and is directly connected to the conductive semiconductor substrate or the different type semiconductor layer. Alternatively, for example, the substrate to be electrically connected or the semiconductor layer of a different type may be connected via another layer. Such electrodes are, for example, a p-type electrode connected to the p-type semiconductor layer and an n-type electrode connected to the n-type semiconductor layer. For example, when the light receiving unit receives an optical signal, the semiconductor light receiving element of the present invention is electrically connected to an electrode electrically connected to the conductive semiconductor substrate and to the different type semiconductor layer. A reverse bias is applied between the electrodes. As a result, the optical signal is converted into an electrical signal by the light receiving unit, and the electrical signal is output from the electrical signal extraction electrode as a current (hereinafter also referred to as “signal current”). Can be taken out.

前記本発明の半導体受光素子において、前記変調信号入力用電極は、前記半導体受光素子の外部から変調信号を前記導電性半導体基板に入力でき、かつ、前記電気信号取出用電極と絶縁されている限り、特に制限されない。前記変調信号入力用電極は、前記導電性半導体基板上の前記受光部および前記電気信号取出用電極とは別の場所に形成される。前記変調信号入力用電極は、例えば、前記導電性半導体基板の前記受光部および前記電気信号取出用電極と反対側の面に形成されるが、これには限定されない。前記変調信号入力用電極は、グランド(GND)とは接続しない。前記変調信号入力用電極は、例えば、前記導電性半導体基板上に絶縁膜を介して形成できる。前記変調信号入力用電極は、前記導電性半導体基板との間に前記絶縁膜を介して容量を持ち得るものが好ましい。例えば、前記変調信号入力用電極を、導体を用いて構成することで、前記導電性半導体基板との間に前記絶縁膜を介して容量を持たせることができる。前記本発明の半導体受光素子において、前記変調信号入力用電極は、前記絶縁膜上の少なくとも一部に形成されていればよい。すなわち、前記絶縁膜上の全面ではなく、前記絶縁膜上の一部に前記変調信号入力用電極が形成されていれば、前記バイアスに適切に変調信号を付加できる。前記変調信号入力用電極は、前記絶縁膜の端から内側の一定幅の部分には形成されていないことが好ましい。これにより、例えば、前記絶縁膜上に前記変調信号入力用電極を形成する際の、前記絶縁膜に対する位置合わせのズレの許容範囲を拡大できる。しかし、例えば、前記位置合わせを高精度で実施できる装置を用いる場合等、高精度の前記位置合わせを実現できる場合には、前記変調信号入力用電極の前記絶縁膜の端からの距離をより小さくすることができる。前記変調信号は、信号光に応じて適宜選択でき、特に制限されないが、例えば、高速の信号であり、例えば、サイン波、パルス波である。前記変調信号は、例えば、2MHz〜10GHzの高周波信号であるが、これには限定されない。   In the semiconductor light receiving element of the present invention, as long as the modulation signal input electrode can input a modulation signal to the conductive semiconductor substrate from the outside of the semiconductor light receiving element and is insulated from the electric signal extraction electrode. There is no particular restriction. The modulation signal input electrode is formed at a location different from the light receiving portion and the electrical signal extraction electrode on the conductive semiconductor substrate. The modulation signal input electrode is formed, for example, on the surface of the conductive semiconductor substrate opposite to the light receiving portion and the electric signal extraction electrode, but is not limited thereto. The modulation signal input electrode is not connected to the ground (GND). The modulation signal input electrode can be formed on the conductive semiconductor substrate via an insulating film, for example. It is preferable that the modulation signal input electrode can have a capacitance between the conductive semiconductor substrate and the insulating film. For example, by forming the modulation signal input electrode using a conductor, a capacitance can be provided between the conductive semiconductor substrate and the conductive film via the insulating film. In the semiconductor light receiving element of the present invention, the modulation signal input electrode may be formed on at least a part of the insulating film. That is, if the modulation signal input electrode is formed not on the entire surface of the insulating film but on a part of the insulating film, a modulation signal can be appropriately added to the bias. It is preferable that the modulation signal input electrode is not formed in a portion having a constant width inside from the end of the insulating film. Thereby, for example, an allowable range of misalignment with respect to the insulating film when the modulation signal input electrode is formed on the insulating film can be expanded. However, for example, when using the apparatus capable of performing the alignment with high accuracy, such as when using the alignment with high accuracy, the distance from the end of the insulating film of the modulation signal input electrode is made smaller. can do. The modulation signal can be appropriately selected according to the signal light, and is not particularly limited. For example, the modulation signal is a high-speed signal, for example, a sine wave or a pulse wave. The modulation signal is, for example, a high frequency signal of 2 MHz to 10 GHz, but is not limited thereto.

前記絶縁膜は、前記変調信号入力用電極と前記導電性半導体基板の間で容量を発生し、前記変調信号入力用電極と前記導電性半導体基板の間に直流電流が流れるのを防止する。前記絶縁膜は、前記導電性半導体基板の一方の面上に、前記一方の面と同程度のサイズで形成されてもよいし、例えば、スクライブによる素子分離作業効率を低下させないために、前記導電性半導体基板の端から一定距離内側の範囲に形成されてもよい。すなわち、このような素子分離作業効率の低下防止のためには、前記導電性半導体基板の端から内側の一定幅の部分には形成されていないことが好ましい。例えば、前記絶縁膜は、前記導電性半導体基板の端からスクライブ装置のスクライブ刃の幅以上内側の範囲に形成されることが好ましい。例えば、前記スクライブ刃の幅が小さい場合や、スクライブ刃のエッジの角度が小さい場合には、前記一定距離を小さくして問題はない。より具体的には、前記素子分離作業効率の低下防止のためには、前記絶縁膜は、前記導電性半導体基板の端から5μm以上内側の範囲に形成されることが好ましい。前記絶縁膜は、絶縁材料で形成することができる。前記絶縁膜としては、有機誘電体膜および無機誘電体膜のいずれも使用でき、前記有機誘電体膜と前記無機誘電体膜を組み合わせた積層体として前記絶縁膜を形成してもよい。前記絶縁膜として、前記有機誘電体膜や前記無機誘電体膜、前記積層体を使用して、前記変調信号入力用電極と前記導電性半導体基板との間にコンデンサを形成できる。前記有機誘電体膜としては、例えば、ポリイミド膜、BCB膜を使用できるが、これらには制限されない。前記無機誘電体膜を形成する絶縁体としては、例えば、SiNx、SiOx、SiOxNxを使用できるが、これらには制限されない。特に、前記絶縁膜をSiNxで形成することにより、4〜6MV/cm程度の耐圧特性を前記絶縁膜において確保できる。前記絶縁膜は、前記本発明の半導体受光素子の動作電圧に応じて適宜選択できる。例えば、前記絶縁膜は、少なくとも前記本発明の半導体受光素子の動作電圧でのリーク電流を抑制できる厚みを有することが好ましい。前記絶縁膜を厚く形成することで、リーク電流を抑制でき、信号電流の小さな高感度の本発明の半導体受光素子を作製できる。他方、前記絶縁膜は、薄く形成することで、キャパシタとしての容量が増加し、前記変調バイアスの周波数を低くすることが可能となり、また、パルス状変調バイアスを前記導電性半導体基板に付加できる。例えば、前記本発明の半導体受光素子が、動作電圧の低いpinフォトダイオードである場合、動作電圧は5V程度までであることにより、前記絶縁膜に印加されるバイアス電圧は、前記動作電圧以下となる。これにより、リーク電流が小さくなり、例えば、前記絶縁膜を薄く形成できる。すなわち、この場合、前記絶縁膜の厚みに特に制限はないが、例えば、100Å〜2000Åが好ましく、100Å〜500Åであることが好ましい。なお、1Åは、10−10mに等しい。また、例えば、前記本発明の半導体受光素子が、動作電圧の高いアバランシェ・フォトダイオード(APD)である場合、前記絶縁膜としては、耐電圧性の高いものを使用することが好ましい。具体的には、前記本発明の半導体受光素子の動作範囲の電圧において、前記絶縁膜のリーク電流が1μA以下である絶縁膜が好ましい。すなわち、前記本発明の半導体受光素子が、APDである場合、動作電圧に従って膜厚を厚く形成することが好ましい。具体的には、前記本発明の半導体受光素子が、APDである場合、ブレークダウン電圧が30V以上である場合がある。このような本発明の半導体受光素子において、前記絶縁体として、例えばSiNx、SiOx、SiOxNxを用いた場合、例えば、前記絶縁膜を500Å以上に形成すれば、使用電圧が高い場合でもリーク電流を1nA以下に抑えることができ、信号電流に影響を生じない。特に、前記絶縁体が、SiNxである場合、例えば、耐圧3MV/cm程度の絶縁膜を使用できる。この場合、前記絶縁膜は、(ブレークダウン電圧Vb×33)Å以上の厚みで形成されることが好ましい。具体例を挙げると、動作電圧30VのAPDの場合、前記絶縁膜は、990Å以上の厚みで形成されることが好ましい。さらに、この場合、動作電圧が非常に高い場合を除き、後述の反射防止膜の厚みである2039Å以下で形成されることが好ましい。前記本発明の半導体受光素子において、信号光の検出に用いる光電流が小さい場合、特に、前記本発明の半導体受光素子が、アバランシェ・フォトダイオードであり、前記アバランシェ・フォトダイオードで微弱な信号光を検出する場合には、前記絶縁膜が、取り出された信号電流に大きな影響を及ぼすのを防止できることが好ましい。このために、前記絶縁膜としては、前記本発明の半導体受光素子の動作電圧での前記絶縁膜のリーク電流が、約1nAまたは1nA以下である絶縁膜を使用することが好ましい。 The insulating film generates a capacitance between the modulation signal input electrode and the conductive semiconductor substrate, and prevents a direct current from flowing between the modulation signal input electrode and the conductive semiconductor substrate. The insulating film may be formed on one surface of the conductive semiconductor substrate with the same size as the one surface. For example, in order not to reduce element isolation work efficiency by scribe, the conductive film It may be formed in a range within a certain distance from the edge of the conductive semiconductor substrate. That is, in order to prevent such a decrease in element isolation work efficiency, it is preferable that the element is not formed in a portion having a constant width inside from the end of the conductive semiconductor substrate. For example, it is preferable that the insulating film is formed in a range that is more than the width of the scribing blade of the scribing device from the end of the conductive semiconductor substrate. For example, when the width of the scribe blade is small, or when the angle of the edge of the scribe blade is small, there is no problem with reducing the constant distance. More specifically, in order to prevent a decrease in the element isolation work efficiency, it is preferable that the insulating film is formed in an inner area of 5 μm or more from the end of the conductive semiconductor substrate. The insulating film can be formed of an insulating material. As the insulating film, either an organic dielectric film or an inorganic dielectric film can be used, and the insulating film may be formed as a laminated body in which the organic dielectric film and the inorganic dielectric film are combined. A capacitor can be formed between the modulation signal input electrode and the conductive semiconductor substrate by using the organic dielectric film, the inorganic dielectric film, or the laminate as the insulating film. For example, a polyimide film or a BCB film can be used as the organic dielectric film, but the organic dielectric film is not limited thereto. For example, SiNx, SiOx, or SiOxNx can be used as the insulator for forming the inorganic dielectric film, but is not limited thereto. In particular, by forming the insulating film of SiNx, a withstand voltage characteristic of about 4 to 6 MV / cm can be secured in the insulating film. The insulating film can be appropriately selected according to the operating voltage of the semiconductor light receiving element of the present invention. For example, it is preferable that the insulating film has a thickness that can suppress at least a leakage current at an operating voltage of the semiconductor light receiving element of the present invention. By forming the insulating film thick, a leak current can be suppressed, and a highly sensitive semiconductor light receiving element of the present invention with a small signal current can be manufactured. On the other hand, when the insulating film is formed thin, the capacitance as a capacitor increases, the frequency of the modulation bias can be lowered, and a pulsed modulation bias can be added to the conductive semiconductor substrate. For example, when the semiconductor light-receiving element of the present invention is a pin photodiode having a low operating voltage, the operating voltage is up to about 5 V, so that the bias voltage applied to the insulating film is equal to or lower than the operating voltage. . Thereby, the leakage current is reduced, and for example, the insulating film can be formed thin. That is, in this case, the thickness of the insulating film is not particularly limited, but for example, 100 to 2000 mm is preferable, and 100 to 500 mm is preferable. In addition, 1、10 is equal to 10 −10 m. Further, for example, when the semiconductor light receiving element of the present invention is an avalanche photodiode (APD) having a high operating voltage, it is preferable to use an insulating film having a high withstand voltage. Specifically, an insulating film in which the leakage current of the insulating film is 1 μA or less at a voltage in the operating range of the semiconductor light receiving element of the present invention is preferable. That is, when the semiconductor light receiving element of the present invention is an APD, it is preferable that the film is formed thick according to the operating voltage. Specifically, when the semiconductor light receiving element of the present invention is an APD, the breakdown voltage may be 30 V or higher. In such a semiconductor light receiving element of the present invention, when, for example, SiNx, SiOx, or SiOxNx is used as the insulator, for example, if the insulating film is formed to have a thickness of 500 mm or more, the leakage current is 1 nA even when the operating voltage is high. The following can be suppressed, and the signal current is not affected. In particular, when the insulator is SiNx, for example, an insulating film having a breakdown voltage of about 3 MV / cm can be used. In this case, the insulating film is preferably formed with a thickness of (breakdown voltage Vb × 33) Å or more. As a specific example, in the case of an APD with an operating voltage of 30 V, the insulating film is preferably formed with a thickness of 990 mm or more. Further, in this case, except for the case where the operating voltage is very high, it is preferably formed with a thickness of 2039 mm or less which is the thickness of the antireflection film described later. In the semiconductor light receiving device of the present invention, when the photocurrent used for detecting the signal light is small, the semiconductor light receiving device of the present invention is an avalanche photodiode, and the avalanche photodiode emits weak signal light. In the case of detection, it is preferable that the insulating film can prevent a significant influence on the extracted signal current. Therefore, it is preferable to use an insulating film having a leakage current of about 1 nA or 1 nA or less at the operating voltage of the semiconductor light receiving element of the present invention as the insulating film.

前記絶縁膜としては、また、信号光が透過するような誘電体を用いることができる。このような誘電体によれば、前記絶縁膜としての絶縁効果と、信号光の反射を防止する反射防止膜としての反射防止効果を併せ持つ絶縁膜を作製できる。ただし、前記反射防止効果を持たせる場合、反射防止のために、前記絶縁膜の屈折率と厚みの関係を利用するため、厚みに関して設計上の自由度が小さくなる。例えば、SiNxの単層で前記絶縁膜を作製する場合、前記導電性半導体基板と空気の間で信号光の反射率を低減するために、前記絶縁膜は、2000Å程度の厚みを有していてよい。前記反射率低減の観点から好ましい前記絶縁膜の厚みは、前記絶縁膜の屈折率と信号光の波長により変化する。前記絶縁膜は、その厚みをdとすると、下記式(I)で表わされる厚み(d)を有することが好ましい。

(0.9λ/4n)≦d≦(1.1λ/4n) (I)

前記式(I)中、λは、信号光の波長を意味し、nは、前記信号光波長での絶縁膜の屈折率を意味する。例えば、信号光1.55μm、絶縁体の屈折率1.9で計算すると、2039Å×0.9以上、2039Å×1.1以下となる。このように形成することで、絶縁膜としての機能も確保できる。なお、本発明の半導体受光素子は、あらゆる波長の信号光に対応できるが、例えば、1.2μm〜1.6μmの波長を有する信号光に対応できる。本発明の半導体受光素子は、例えば、1.3μmや1.55μm等の波長を有する信号光に対応できる。前記絶縁膜の屈折率(n)は、例えば、SiNから形成される絶縁膜の場合、1.80〜2.10(例えば、1.9)であり、また、例えば、SiONから形成される絶縁膜の場合、1.5〜1.9である。なお、反射防止効果を併せ持つ前記絶縁膜としては、下記式(II)により算出される値に近い屈折率値(n)を持つ材料から形成されるものを好適に使用できる。

n=SQRT(X) (II)

前記式(II)中、nは、絶縁膜の屈折率を意味し、SQRT(X)は、Xの平方根を意味し、X=n1×n2であり、n1は、前記導電性半導体基板の屈折率を意味し、n2は、空気の屈折率を意味する。例えば、n1が、3.53の場合、前記絶縁膜としては、前記式(II)により算出して、n=SQRT(3.53×1)≒1.88に近い値の屈折率値を持つ材料から形成されるものを好適に使用できる。ただし、本発明は、このような範囲に限定されない。このような反射防止層を形成する場合、反射防止層と比較して薄い絶縁膜を用いた本発明の半導体受光素子と同じ容量の変調信号入力用電極を形成するのに必要となる導体の形成面積は広くなる。ここで、前記絶縁膜は、可能な限り薄い方が、容量が増し、広帯域の変調信号を通過させることができる。そのため、例えば、前記反射防止膜としての前記誘電体膜と容量部分の絶縁膜を別々に形成してもよく、こうすることで、前記変調信号入力用電極の特性を向上させることができる。例えば、信号光が通過する領域より広い範囲で反射防止膜を形成しておき、前記反射防止膜の外側部分について、前記絶縁膜を薄く形成することができる。前述のとおり、リーク電流を抑えて信号電流の小さな高感度の半導体受光素子を作製するためには、前記絶縁膜をある程度厚く形成する必要がある。他方、前記絶縁膜の容量を増加させて、広帯域の変調信号を通過させるためには、前記絶縁膜は、ある程度薄く形成する必要がある。この観点から、前記反射防止膜と前記絶縁膜を別々に形成する場合、前記絶縁膜の厚みは、50Å〜1000Åであることが好ましく、100Å〜500Åであることがより好ましい。前記反射防止膜としての前記誘電体膜と容量部分の絶縁膜を別々に形成する場合、例えば、前記反射防止膜として前記誘電体を形成後、前記絶縁膜部分のみエッチング等により膜を薄く形成して(膜減りさせて)絶縁膜を形成することができる。また、前記反射防止膜としての前記誘電体を形成後、前記絶縁膜を形成する箇所のみ前記誘電体を除去し、新たに絶縁膜を形成してもよい。また、前記絶縁膜としての誘電体を形成後、前記反射防止膜を形成する箇所のみ前記誘電体を除去し、次いで新たに前記反射防止膜を形成してもよい。
As the insulating film, a dielectric that transmits signal light can be used. According to such a dielectric, an insulating film having both an insulating effect as the insulating film and an antireflection effect as an antireflection film for preventing reflection of signal light can be produced. However, when the antireflection effect is given, the relationship between the refractive index and the thickness of the insulating film is used for antireflection, so that the degree of freedom in design is reduced with respect to the thickness. For example, when the insulating film is formed of a single layer of SiNx, the insulating film has a thickness of about 2000 mm in order to reduce the reflectance of signal light between the conductive semiconductor substrate and air. Good. The thickness of the insulating film that is preferable from the viewpoint of reducing the reflectance varies depending on the refractive index of the insulating film and the wavelength of the signal light. The insulating film preferably has a thickness (d) represented by the following formula (I), where d is the thickness.

(0.9λ / 4n) ≦ d ≦ (1.1λ / 4n) (I)

In the formula (I), λ means the wavelength of the signal light, and n means the refractive index of the insulating film at the signal light wavelength. For example, when the signal light is calculated to be 1.55 μm and the refractive index of the insulator is 1.9, it is 2039 cm × 0.9 or more and 2039 cm × 1.1 or less. By forming in this way, a function as an insulating film can be secured. The semiconductor light receiving element of the present invention can correspond to signal light having any wavelength, but can correspond to signal light having a wavelength of 1.2 μm to 1.6 μm, for example. The semiconductor light receiving element of the present invention can cope with signal light having a wavelength such as 1.3 μm or 1.55 μm, for example. The refractive index (n) of the insulating film is, for example, 1.80 to 2.10 (for example, 1.9) in the case of an insulating film formed of SiN, and for example, an insulating film formed of SiON. In the case of a film, it is 1.5 to 1.9. In addition, as the insulating film having an antireflection effect, a film formed of a material having a refractive index value (n) close to a value calculated by the following formula (II) can be preferably used.

n = SQRT (X) (II)

In the formula (II), n means the refractive index of the insulating film, SQRT (X) means the square root of X, X = n1 × n2, and n1 is the refraction of the conductive semiconductor substrate. N2 means the refractive index of air. For example, when n1 is 3.53, the insulating film has a refractive index value close to n = SQRT (3.53 × 1) ≈1.88, calculated by the above formula (II). What is formed from material can be used conveniently. However, the present invention is not limited to such a range. In the case of forming such an antireflection layer, formation of a conductor required for forming a modulation signal input electrode having the same capacity as the semiconductor light receiving element of the present invention using a thin insulating film as compared with the antireflection layer. The area becomes wider. Here, as the insulating film is as thin as possible, the capacity is increased and a broadband modulation signal can be passed. For this reason, for example, the dielectric film as the antireflection film and the insulating film of the capacitor portion may be formed separately, whereby the characteristics of the modulation signal input electrode can be improved. For example, the antireflection film can be formed in a wider range than the region through which the signal light passes, and the insulating film can be thinly formed on the outer portion of the antireflection film. As described above, in order to manufacture a highly sensitive semiconductor light receiving element with a small signal current while suppressing a leakage current, it is necessary to form the insulating film thick to some extent. On the other hand, in order to increase the capacity of the insulating film and pass a broadband modulation signal, the insulating film needs to be formed to be thin to some extent. From this viewpoint, when the antireflection film and the insulating film are separately formed, the thickness of the insulating film is preferably 50 to 1000 mm, and more preferably 100 to 500 mm. In the case where the dielectric film as the antireflection film and the insulating film of the capacitor portion are separately formed, for example, after the dielectric is formed as the antireflection film, only the insulating film portion is thinly formed by etching or the like. In this way, an insulating film can be formed. In addition, after forming the dielectric as the antireflection film, the dielectric may be removed only at a location where the insulating film is to be formed, and a new insulating film may be formed. In addition, after forming the dielectric as the insulating film, the dielectric may be removed only at a portion where the antireflection film is to be formed, and then the antireflection film may be newly formed.

前記本発明の半導体受光素子において前記変調信号入力用電極を形成する面と信号光の入射面とが同じである場合、前記変調信号入力用電極は、前記導電性半導体基板の前記入射面における前記信号光が通過する前記信号光通過領域を除く部分に形成されることが好ましい。すなわち、この場合、前記変調信号入力用電極は、前記導電性半導体基板の前記一方の面上の、前記信号光通過領域外の部分に形成されることが好ましい。これにより、前記変調信号入力用電極による前記本発明の半導体受光素子の信号光検出能力への影響を抑制できる。前記変調信号入力用電極は、例えば、導体を含む場合、前記導体によっては前記信号光の10%以上を吸収する場合がある。このような場合に、前記変調信号入力用電極を前記領域外に形成することは、例えば、前記導体による信号光の吸収による受光素子の信号光検出能力への影響を抑制でき、特に効果的である。前記信号光通過領域は、前記導電性半導体基板の入射面における信号光の受光スポットの面積よりも大きな面積を有する形状に形成されることが好ましい。前記信号光通過領域のサイズは、前記信号光の受光スポットの直径等により適宜決定できる。例えば、前記信号光通過領域は、前記導電性半導体基板の入射面における信号光の受光スポットの直径以上の長さの直径を有する円形状に形成することができる。こうすることで、前記変調信号入力用電極を前記信号光通過領域外に形成することにより、前記変調信号入力用電極と前記信号光通過領域を通過する信号光の干渉を防止できる。例えば、前記信号光の受光スポットが円形状であり、前記受光スポットの直径が、前記導電性半導体基板の厚みより小さい場合、前記信号光通過領域は、前記導電性半導体基板の厚み以上の直径を有する円形状であることが好ましい。また、例えば、前記信号光の受光スポットが、円形状であり、前記受光スポットの直径が、前記導電性半導体基板の厚みより大きい場合、前記信号光通過領域は、前記受光スポットの直径以上の直径を有する円形状であることが好ましい。具体的には、前記本発明の半導体受光素子が、厚さ100μmの導電性半導体基板を含み、前記受光スポットの直径が100μmより短い場合、前記信号光通過領域を直径約100μmの円形に形成することで、前記変調信号入力用電極と前記信号光の干渉を防止できる。また、例えば、前記受光スポットの直径が100μmより長い場合、前記信号光通過領域を前記受光スポットの直径と同程度の長さの直径を有する円形に形成することで、前記変調信号入力用電極と前記信号光の干渉を防止できる。さらに、例えば、前記信号光の受光スポットが、楕円形状や長円形状であり、前記受光スポットの長径が、前記導電性半導体基板の厚みより小さい場合、前記信号光通過領域は、前記導電性半導体基板の厚み以上の直径を有する円形状であることが好ましい。また、例えば、前記信号光の受光スポットが、楕円形状や長円形状であり、前記信号光の受光スポットの長径が、前記導電性半導体基板の厚みより大きい場合、前記信号光通過領域は、前記受光スポットの長径以上の直径を有する円形状であることが好ましい。なお、例えば、前記受光スポットが、円形状や楕円形状でない場合は、前記信号光通過領域は、前記受光スポットよりも大きな形状(面積)に形成されていればよい。   In the semiconductor light receiving element of the present invention, when the surface on which the modulation signal input electrode is formed and the incident surface of the signal light are the same, the modulation signal input electrode is formed on the incident surface of the conductive semiconductor substrate. It is preferably formed in a portion excluding the signal light passage region through which signal light passes. That is, in this case, it is preferable that the modulation signal input electrode is formed on a portion outside the signal light passage region on the one surface of the conductive semiconductor substrate. Thereby, the influence of the modulation signal input electrode on the signal light detection capability of the semiconductor light receiving element of the present invention can be suppressed. For example, when the modulation signal input electrode includes a conductor, 10% or more of the signal light may be absorbed depending on the conductor. In such a case, forming the modulation signal input electrode outside the region can suppress the influence on the signal light detection capability of the light receiving element due to the absorption of the signal light by the conductor, and is particularly effective. is there. The signal light passage region is preferably formed in a shape having an area larger than the area of the signal light receiving spot on the incident surface of the conductive semiconductor substrate. The size of the signal light passage region can be appropriately determined depending on the diameter of the light receiving spot of the signal light. For example, the signal light passage region can be formed in a circular shape having a diameter longer than the diameter of the signal light receiving spot on the incident surface of the conductive semiconductor substrate. Thus, by forming the modulation signal input electrode outside the signal light passage region, it is possible to prevent interference between the modulation signal input electrode and the signal light passing through the signal light passage region. For example, when the light receiving spot of the signal light is circular and the diameter of the light receiving spot is smaller than the thickness of the conductive semiconductor substrate, the signal light passing region has a diameter greater than or equal to the thickness of the conductive semiconductor substrate. It is preferable that it has a circular shape. For example, when the light receiving spot of the signal light has a circular shape and the diameter of the light receiving spot is larger than the thickness of the conductive semiconductor substrate, the signal light passing region has a diameter equal to or larger than the diameter of the light receiving spot. It is preferably a circular shape having Specifically, when the semiconductor light receiving element of the present invention includes a conductive semiconductor substrate having a thickness of 100 μm and the diameter of the light receiving spot is shorter than 100 μm, the signal light passing region is formed in a circular shape having a diameter of about 100 μm. Thus, interference between the modulation signal input electrode and the signal light can be prevented. Further, for example, when the diameter of the light receiving spot is longer than 100 μm, the signal light passing region is formed in a circular shape having a diameter approximately the same as the diameter of the light receiving spot, so that the modulation signal input electrode and The interference of the signal light can be prevented. Furthermore, for example, when the light receiving spot of the signal light has an elliptical shape or an oval shape, and the long diameter of the light receiving spot is smaller than the thickness of the conductive semiconductor substrate, the signal light passing region is the conductive semiconductor. A circular shape having a diameter equal to or larger than the thickness of the substrate is preferable. Further, for example, when the light receiving spot of the signal light has an elliptical shape or an oval shape, and the long diameter of the light receiving spot of the signal light is larger than the thickness of the conductive semiconductor substrate, the signal light passing region is A circular shape having a diameter equal to or larger than the major axis of the light receiving spot is preferable. For example, when the light receiving spot is not circular or elliptical, the signal light passing region may be formed in a larger shape (area) than the light receiving spot.

前記変調信号入力用電極は、導体部とパッド電極を含むことが好ましい。これにより、前記変調信号入力用電極を容量を発生する極板としての機能させることができる。特に、前記変調信号入力用電極は、前記絶縁膜を介して前記導電性半導体基板上に形成され、前記導体部が、前記絶縁膜と前記パッド電極との間に配置されていることが好ましい。これにより、前記導体部は、前記導電性半導体基板に、外部変調信号発生装置からの変調信号を伝達することができる。また、前記導体部を、例えばその面積を広げることで前記導電性半導体基板との間に前記絶縁膜を介して容量を発生する電極板として機能させることができる。すなわち、DCブロックとして機能させるために素子容量を大きくすることで、前記本発明の半導体受光素子の特性を向上させることができる。具体的には、前記本発明の半導体受光素子において、低損失で通過させることのできる周波数範囲を広げることができる。   The modulation signal input electrode preferably includes a conductor portion and a pad electrode. As a result, the modulation signal input electrode can function as an electrode plate for generating a capacitance. In particular, it is preferable that the modulation signal input electrode is formed on the conductive semiconductor substrate via the insulating film, and the conductor portion is disposed between the insulating film and the pad electrode. Thereby, the conductor part can transmit the modulation signal from the external modulation signal generator to the conductive semiconductor substrate. Moreover, the said conductor part can be functioned as an electrode plate which generate | occur | produces a capacity | capacitance through the said insulating film between the said conductive semiconductor substrates, for example by expanding the area. That is, by increasing the element capacity in order to function as a DC block, the characteristics of the semiconductor light receiving element of the present invention can be improved. Specifically, in the semiconductor light receiving element of the present invention, the frequency range that can be passed with low loss can be expanded.

前記導体は、単一の金属から形成されてもよいし複数の金属、いわゆる合金から形成されてもよいし、また、複数の金属の層を組み合わせた積層構造を有していてもよい。前記導体を金属で形成することにより、前記導体を薄膜化できる。前記金属としては、例えば、Ti、Pt、Au、Ni、Cr、MoおよびAlのいずれか一つを使用できるが、これらには制限されず、例えば、前記金属と同族の金属を使用することができる。前記金属としては、330℃以上の融点を持つ金属が好ましい。このような金属は、単体および合金のいずれも使用できる。前記導体は、コンデンサの極板としての機能を果たすために必要とされる程度の厚みを有することが好ましい。この観点から、前記導体は、例えば、100Å以上の厚みを有することが好ましいが、特に制限されない。前記導体としては、例えば、600Å〜3500Åの厚みを有するものを好適に使用できるが、これには制限されず、例えば5000Åの厚みを有するものも使用できる。前記導電性半導体基板との密着性を確保するためには、例えば、前記導体は、それぞれ300Å程度のTi層と1000Å程度のAu層を用いることができ、これにより、前記導電性半導体基板上に安定に形成することができる。前記導体が、Ti層とAu層を含む場合、前記Ti層は、100Å〜500Åの厚みを有することが好ましい。前記Au層は、500Å〜3000Åの厚みを有することが好ましい。ただし、前記導体の厚みを厚くする場合、形成時間(電極作製時間)が長くなり、作業時間や原料費等を含む製造コストが増すため、コスト面を考慮すれば、前記導体は、3000Å以下の厚みを有することが好ましい。前述のとおり、前記変調信号入力用電極は、前記絶縁膜の端より一定幅だけ内側の部分には、形成されないことが好ましい。すなわち、前記変調信号入力用電極が、前記導体を含む場合、前記導体は、前記絶縁膜の端より一定距離内側の範囲に形成されることが好ましい。これにより、また、前記変調信号入力用電極と前記導電性半導体基板とのショートを防止して、前記変調信号入力用電極の前記電気信号取出用電極からの絶縁状態を確保できる。前記ショートの防止のためには、前記導体は、前記絶縁膜の端から3μm以上内側までの範囲には形成されないことが好ましい。また、前記導体を形成しない部分を、前記絶縁膜の端より10μm以上内側の部分とする場合、前記本発明の半導体受光素子の作成時のずれや絶縁膜の割れ等を許容でき、製造の歩留りに影響を与えない。   The conductor may be formed of a single metal, may be formed of a plurality of metals, so-called alloys, or may have a laminated structure in which a plurality of metal layers are combined. By forming the conductor with a metal, the conductor can be thinned. As the metal, for example, any one of Ti, Pt, Au, Ni, Cr, Mo, and Al can be used. However, the metal is not limited thereto, and for example, a metal in the same group as the metal may be used. it can. The metal is preferably a metal having a melting point of 330 ° C. or higher. As such a metal, either a simple substance or an alloy can be used. It is preferable that the conductor has a thickness required to function as a capacitor electrode plate. From this viewpoint, the conductor preferably has a thickness of, for example, 100 mm or more, but is not particularly limited. For example, a conductor having a thickness of 600 to 3500 mm can be suitably used as the conductor, but the conductor is not limited thereto, and a conductor having a thickness of 5000 mm can be used. In order to ensure adhesion with the conductive semiconductor substrate, for example, the conductor can be a Ti layer of about 300 mm and an Au layer of about 1000 mm, respectively. It can be formed stably. When the conductor includes a Ti layer and an Au layer, the Ti layer preferably has a thickness of 100 to 500 mm. The Au layer preferably has a thickness of 500 to 3000 mm. However, when the thickness of the conductor is increased, the formation time (electrode preparation time) becomes longer, and the manufacturing cost including working time and raw material cost increases. Therefore, considering the cost, the conductor is 3000 mm or less. It is preferable to have a thickness. As described above, it is preferable that the modulation signal input electrode is not formed in a portion inside the fixed film by a certain width from the end of the insulating film. That is, when the modulation signal input electrode includes the conductor, it is preferable that the conductor is formed within a certain distance inner side from the end of the insulating film. This also prevents a short circuit between the modulation signal input electrode and the conductive semiconductor substrate, and ensures an insulation state of the modulation signal input electrode from the electrical signal extraction electrode. In order to prevent the short circuit, it is preferable that the conductor is not formed in a range of 3 μm or more from the end of the insulating film. In addition, when the portion where the conductor is not formed is a portion which is 10 μm or more inside from the end of the insulating film, it is possible to tolerate a shift in the production of the semiconductor light receiving element of the present invention, a crack of the insulating film, etc. Does not affect.

例えば、前記変調信号入力用電極が、平板状の前記導体部を含む場合、前記導体部の平面面積を1.64×10μm以下にすることにより、TO−56パッケージに搭載可能な前記本発明の半導体受光素子を作製できる。また、前記変調信号入力用電極が、平板状の前記導体部を含む場合、前記導体部の平面面積を3.03×10μm以下にすることにより、TO−8パッケージに搭載可能な前記本発明の半導体受光素子を作製できる。 For example, in the case where the modulation signal input electrode includes the flat plate-like conductor portion, the planar area of the conductor portion is 1.64 × 10 6 μm 2 or less so that it can be mounted on a TO-56 package. The semiconductor light receiving element of the present invention can be produced. Further, when the modulation signal input electrode includes the flat plate-like conductor portion, the planar area of the conductor portion is 3.03 × 10 7 μm 2 or less, so that the mounting on a TO-8 package is possible. The semiconductor light receiving element of the present invention can be produced.

前記パッド電極は、ボンディングワイヤや導電性ペースト、ハンダや共晶合金等の材料を用いて、変調信号発生装置等の外部デバイスと接続するための電極である。これにより、前記パッド電極にワイヤボンドすることで、外部の変調信号発生装置からの変調信号を前記導体部に供給できる。前記パッド電極は、金属で形成でき、例えば、アルミや金を用いて前記導体上に形成できる。前記パッド電極を金属で形成することで、前記パッド電極の外部デバイスとの接続性を向上できる。特に、前記パッド電極をアルミや金で形成することで、配線ワイヤとの接着性が向上する。前記パッド電極は、例えば、一辺が約80μmまたは80μm以下の方形形状で形成することができるが、これには限定されない。すなわち、このようなサイズの方形形状で前記パッド電極を作製した場合、肉眼による製造作業が容易になる利点があるが、例えば、高精度の実装を実現できる装置を用いる場合には、もっと小さなパッド電極を形成することができる。アルミや金で作製した前記パッド電極は、例えば、優れたワイヤボンド特性を持つ。前記パッド電極は、約2000Åまたは2000Å以上の厚さを有することが好ましく、これにより、例えば、配線ワイヤと安定に熱接着することができる。前記パッド電極は、例えば、金メッキ等を用いて、2〜3μm程度まで厚く形成することができ、これにより、例えば、配線ワイヤとより安定に接着することができる。   The pad electrode is an electrode for connecting to an external device such as a modulation signal generator using a material such as a bonding wire, a conductive paste, solder, or a eutectic alloy. Thereby, the modulation signal from an external modulation signal generator can be supplied to the conductor portion by wire bonding to the pad electrode. The pad electrode can be formed of metal, for example, can be formed on the conductor using aluminum or gold. By forming the pad electrode with metal, the connectivity of the pad electrode with an external device can be improved. In particular, the adhesiveness with the wiring wire is improved by forming the pad electrode with aluminum or gold. For example, the pad electrode may be formed in a rectangular shape having a side of about 80 μm or 80 μm or less, but is not limited thereto. That is, when the pad electrode is produced in such a rectangular shape, there is an advantage that the manufacturing work with the naked eye is facilitated. For example, when using a device capable of realizing high-precision mounting, a smaller pad is used. An electrode can be formed. The pad electrode made of aluminum or gold has, for example, excellent wire bond characteristics. The pad electrode preferably has a thickness of about 2000 mm or more than 2000 mm, so that, for example, it can be stably thermally bonded to a wiring wire. The pad electrode can be formed to a thickness of about 2 to 3 μm using, for example, gold plating, and can be more stably adhered to, for example, a wiring wire.

前記本発明の半導体受光素子は、例えば、リソグラフィー、エッチング、拡散、CVD、蒸着、研磨等の半導体加工技術を用いて作製できる。すなわち、前記本発明の半導体受光素子は、例えば、前記導電性半導体基板上に半導体層をエピタキシャル成長させ、受光部を形成した積層体に、前記電気信号取出用電極と前記変調信号入力用電極を形成することにより作製できる。前記本発明の半導体受光素子は、例えば、前記本発明の半導体受光素子を実装可能なチップキャリア上に実装することができる。前記チップキャリアは、例えば、絶縁体から形成され、一方の面に、前記本発明の半導体受光素子等の前記電気信号取出用電極および前記変調信号入力用電極それぞれと配線するための、導体を含む電極パターンを有し、他方の面に、ステムと接続するための金属部分を有する。前記本発明の半導体受光素子等の前記電気信号取出用電極および前記変調信号入力用電極を、それぞれ対応する前記電極パターンと接続する。このようにして前記チップキャリアに搭載した前記本発明の半導体受光素子を、ステムに搭載し、3つの独立したGNDではない端子に配線する。例えば、このパッケージを蓋を封止し、ファイバモジュールを溶接して、通常のCANモジュール(ピグテイルモジュール)のように完成させることができる。   The semiconductor light-receiving element of the present invention can be produced using semiconductor processing techniques such as lithography, etching, diffusion, CVD, vapor deposition, and polishing. That is, in the semiconductor light-receiving element of the present invention, for example, the semiconductor signal is epitaxially grown on the conductive semiconductor substrate, and the electrical signal extraction electrode and the modulation signal input electrode are formed on the stacked body in which the light-receiving portion is formed. It can produce by doing. The semiconductor light receiving element of the present invention can be mounted on a chip carrier on which the semiconductor light receiving element of the present invention can be mounted, for example. The chip carrier is formed of, for example, an insulator, and includes conductors on one surface for wiring with the electrical signal extraction electrode and the modulation signal input electrode, such as the semiconductor light receiving element of the present invention. It has an electrode pattern and has a metal portion for connecting to the stem on the other surface. The electrical signal extraction electrode and the modulation signal input electrode of the semiconductor light receiving element or the like of the present invention are connected to the corresponding electrode patterns. In this way, the semiconductor light receiving element of the present invention mounted on the chip carrier is mounted on a stem and wired to three independent terminals other than GND. For example, the package can be completed like a normal CAN module (pigtail module) by sealing the lid and welding the fiber module.

前記本発明の半導体受光素子は、前記電気信号取出用電極に逆バイアスを印加することで、前記電気信号取出用電極から信号電流を出力させることができる。その際、前記変調信号入力用電極に変調信号を入力することで、前記バイアスに変調信号を追加することができる。前記変調信号入力用電極への前記変調信号の入力は、例えば、前記変調信号を発生可能なあらゆる変調信号発生装置を用いて行うことができる。このような変調信号発生装置は、前記変調信号を発生できる限り、特に制限されない。前記変調信号発生装置は、例えば、変調バイアス電源や、パルス源とアンプの組み合わせ、発振器、発振器と広帯域アンプの組み合わせ、パルスパターンジェネレータ、パルスパターンジェネレータと広帯域アンプの組み合わせなどであるが、これらには限定されない。ここで、前記本発明の半導体受光素子は、例えば、前記導電性半導体基板に電気的に接続されている前記電気信号取出用電極にインダクタを接続して使用することができる。前記インダクタは、例えば、コイル等のインダクタンスを持つ回路素子である。本発明では、例えば、前記インダクタにバイアス電圧および電流を通過させることができる。これにより、前記導電性半導体基板に電気的に接続されている前記電気信号取出用電極から変調信号が逃すことなく、前記半導体積層体に変調信号を入力できる。前記インダクタには、例えば、ソレノイドが含まれる。このように、本発明の半導体受光素子によれば、例えば、DCバイアスに変調信号を付加する光検出回路において、バイアスTを使用しなくても、例えば前記インダクタを使用して、変調バイアス動作が可能な光検出装置等を設計でき、装置サイズの低減や製造コストを削減できる。また、インダクタは、一般にバイアスTに比較して種類が豊富でコストが低いので、本発明の半導体受光素子によれば、前記光検出装置等の装置の設計の自由度も高めることができる。   The semiconductor light receiving element of the present invention can output a signal current from the electrical signal extraction electrode by applying a reverse bias to the electrical signal extraction electrode. At this time, the modulation signal can be added to the bias by inputting the modulation signal to the modulation signal input electrode. The modulation signal can be input to the modulation signal input electrode using, for example, any modulation signal generator capable of generating the modulation signal. Such a modulated signal generator is not particularly limited as long as it can generate the modulated signal. The modulation signal generator is, for example, a modulation bias power supply, a combination of a pulse source and an amplifier, an oscillator, a combination of an oscillator and a wideband amplifier, a pulse pattern generator, a combination of a pulse pattern generator and a wideband amplifier, etc. It is not limited. Here, the semiconductor light receiving element of the present invention can be used, for example, by connecting an inductor to the electrical signal extraction electrode that is electrically connected to the conductive semiconductor substrate. The inductor is a circuit element having an inductance such as a coil, for example. In the present invention, for example, a bias voltage and a current can be passed through the inductor. As a result, the modulation signal can be input to the semiconductor laminate without missing the modulation signal from the electrical signal extraction electrode electrically connected to the conductive semiconductor substrate. The inductor includes, for example, a solenoid. As described above, according to the semiconductor light receiving element of the present invention, for example, in the photodetector circuit for adding the modulation signal to the DC bias, the modulation bias operation can be performed using the inductor, for example, without using the bias T. A possible photodetection device can be designed, and the device size can be reduced and the manufacturing cost can be reduced. In addition, since the inductors are generally more abundant and less expensive than the bias T, according to the semiconductor light receiving element of the present invention, the degree of freedom in designing the device such as the photodetection device can be increased.

前記本発明の半導体受光素子の態様は、前記本発明の効果を奏する限り、特に制限されない。前記本発明の半導体受光素子は、例えば、pinフォトダイオードやアバランシェ・フォトダイオードであるが、これらには限定されない。例えば、前記本発明の半導体受光素子が、アバランシェ・フォトダイオードである場合、前記本発明の半導体受光素子は、ゲーテッドガイガーモードと呼ばれる動作態様をとることができる。すなわち、前記半導体受光素子の動作点を、例えば、DCバイアスを用いてブレークダウン近傍に設定し、前記導電性半導体基板に印加するDCバイアスと、前記変調信号入力用電極から印加する変調信号の振幅の和が、ブレークダウン以上になるように、DCバイアスと同一符号の電圧パルスを前記変調信号として印加することができる。この態様では、ブレークダウンを超えるバイアスを瞬時に印加するため、光子1つを受信する程度まで高感度の信号光検出効果を得ることができる。このようなゲーテッドガイガーモードの動作態様において必要な前記変調信号の振幅は、1V以上であり、振幅が大きいほど、信号光の検出のシグナル対ノイズ比(S/N比)を高くすることができる。このようなゲーテッドガイガーモードの動作態様における前記変調信号の振幅は、例えば、ブレークダウン電圧の10%〜20%であることが好ましいが、この範囲には限定されない。具体的には、前記APDのブレークダウン電圧が、20V〜80Vである場合、前記変調信号の振幅は、2V〜16Vであることが好ましい。また、前記変調信号の振幅は、前記ブレークダウン電圧を超えるためには、1V以上であることが好ましい。前記態様の本発明の半導体受光素子は、例えば、市販のアンプを用いて、光検出回路を形成することができる。前記市販のアンプは、例えば、約13Vまでの高電圧のゲートパルスを生成して、他のデバイスに印加することができ、前記ゲートパルスのパルス幅は、例えば、0.1ns〜100nsであるが、この範囲には限定されない。本発明の半導体受光素子は、広範囲のゲートパルス幅に対応でき、例えば、0.5〜2nsのパルス幅で動作させることができる。このようにして構成した前記光検出回路では、バイアスTを使用する必要がなく、ソレノイド等のインダクタを前記本発明の半導体受光素子に接続するだけで変調バイアス動作が可能となる。このため、前記変調バイアス動作可能な光検出回路は、構造が簡易であり、低コストで実現できる。すなわち、本発明の半導体受光素子によれば、コンパクトで低コストの半導体受光装置を作製することができる。   The aspect of the semiconductor light receiving element of the present invention is not particularly limited as long as the effects of the present invention are exhibited. The semiconductor light receiving element of the present invention is, for example, a pin photodiode or an avalanche photodiode, but is not limited thereto. For example, when the semiconductor light receiving element of the present invention is an avalanche photodiode, the semiconductor light receiving element of the present invention can take an operation mode called a gated Geiger mode. That is, the operating point of the semiconductor light receiving element is set near the breakdown using, for example, a DC bias, the DC bias applied to the conductive semiconductor substrate, and the amplitude of the modulation signal applied from the modulation signal input electrode A voltage pulse having the same sign as that of the DC bias can be applied as the modulation signal so that the sum of the above becomes equal to or greater than the breakdown. In this aspect, since a bias exceeding the breakdown is instantaneously applied, a highly sensitive signal light detection effect can be obtained to the extent that one photon is received. The amplitude of the modulation signal required in such an operation mode of the gated Geiger mode is 1 V or more, and the larger the amplitude, the higher the signal-to-noise ratio (S / N ratio) for detecting signal light. . The amplitude of the modulation signal in such a gated Geiger mode operation mode is preferably, for example, 10% to 20% of the breakdown voltage, but is not limited to this range. Specifically, when the breakdown voltage of the APD is 20V to 80V, the amplitude of the modulation signal is preferably 2V to 16V. The amplitude of the modulation signal is preferably 1 V or more so as to exceed the breakdown voltage. In the semiconductor light receiving element of the present invention of the above aspect, a photodetection circuit can be formed using, for example, a commercially available amplifier. The commercially available amplifier can generate a high-voltage gate pulse of, for example, about 13 V and apply it to other devices, and the pulse width of the gate pulse is, for example, 0.1 ns to 100 ns. The range is not limited. The semiconductor light receiving element of the present invention can cope with a wide range of gate pulse widths, and can be operated with a pulse width of 0.5 to 2 ns, for example. In the photodetection circuit configured as described above, it is not necessary to use the bias T, and the modulation bias operation can be performed only by connecting an inductor such as a solenoid to the semiconductor light receiving element of the present invention. For this reason, the photodetector circuit capable of the modulation bias operation has a simple structure and can be realized at low cost. That is, according to the semiconductor light receiving element of the present invention, a compact and low cost semiconductor light receiving device can be manufactured.

本発明の第1の半導体受光装置は、前述のとおり、前記受光部が、前記導電性半導体基板と同型の導電性半導体層と、前記導電性半導体基板と異型の導電性半導体層を含み、前記電気信号取出用電極として、前記導電性半導体基板に電気的に接続される電極と、前記異型の導電性半導体層に電気的に接続される電極とを含む前記本発明の半導体受光素子と、前記導電性半導体基板に電気的に接続される電極に接続されるインダクタを含む。図7に、前記本発明の半導体受光装置の一例の構成を示す回路図を示す。同図中、点線で囲む部分500が、前記本発明の半導体受光素子と前記インダクタを含む本発明の半導体受光装置の部分である。同図中、電極2が、前記半導体受光素子508における前記導電性半導体基板に電気的に接続される電極である。図示のとおり、前記本発明の半導体受光装置500は、前記本発明の半導体受光素子508と、電極2に接続されるインダクタ507を含む。前記本発明の半導体受光装置において、前記インダクタの構成および機能は、前記本発明の半導体受光素子について説明したとおりである。このような本発明の半導体受光装置は、バイアスTを用いなくてもバイアスに変調信号を付加できる。すなわち、外部のバイアス電源503から、ソレノイドを介して電極取出用電極(2および3)にバイアスを印加できる。この際、変調バイアス電源501からの変調信号を、変調信号入力用電極5に入力できる。このようにして、本発明の半導体受光装置において変調バイアス動作を実現することができる。このような本発明の半導体受光装置は、バイアスTを使用する半導体受光装置と比較して、光検出回路の回路面積を小さく形成でき、小型かつ低コストで作製できる。   As described above, in the first semiconductor light-receiving device of the present invention, the light-receiving unit includes a conductive semiconductor layer that is the same type as the conductive semiconductor substrate, and a conductive semiconductor layer that is different from the conductive semiconductor substrate, As the electrical signal extraction electrode, the semiconductor light receiving element of the present invention including an electrode electrically connected to the conductive semiconductor substrate and an electrode electrically connected to the atypical conductive semiconductor layer, An inductor connected to an electrode electrically connected to the conductive semiconductor substrate is included. FIG. 7 is a circuit diagram showing a configuration of an example of the semiconductor light receiving device of the present invention. In the figure, a portion 500 surrounded by a dotted line is a portion of the semiconductor light receiving device of the present invention including the semiconductor light receiving element of the present invention and the inductor. In the figure, an electrode 2 is an electrode electrically connected to the conductive semiconductor substrate in the semiconductor light receiving element 508. As shown in the figure, the semiconductor light receiving device 500 of the present invention includes the semiconductor light receiving element 508 of the present invention and an inductor 507 connected to the electrode 2. In the semiconductor light receiving device of the present invention, the configuration and function of the inductor are as described for the semiconductor light receiving element of the present invention. Such a semiconductor light receiving device of the present invention can add a modulation signal to the bias without using the bias T. That is, a bias can be applied from the external bias power source 503 to the electrode extraction electrodes (2 and 3) via a solenoid. At this time, the modulation signal from the modulation bias power source 501 can be input to the modulation signal input electrode 5. In this manner, the modulation bias operation can be realized in the semiconductor light receiving device of the present invention. Such a semiconductor light-receiving device of the present invention can be formed with a smaller circuit area of the photodetection circuit and can be manufactured at a lower cost than a semiconductor light-receiving device using a bias T.

本発明の第2の半導体受光装置は、また、前述のとおり、前記本発明の半導体受光素子と、前記変調信号入力用電極に入力する変調信号を発生する変調信号発生装置を含む。図7に、前記本発明の半導体受光装置の一例の構成を示す回路図を示す。同図中、点線で囲む部分500’が、前記本発明の半導体受光素子と前記変調信号発生装置を含む本発明の半導体受光装置の部分である。図示のとおり、前記本発明の半導体受光装置500’は、前記本発明の半導体受光素子508と、前記変調信号入力用電極5に入力する変調信号を発生する変調信号発生装置501を含む。前記変調信号発生装置の構成および機能については、前記本発明の半導体受光素子について説明したとおりである。このような構成の本発明の半導体受光装置は、バイアスTを用いなくてもバイアスに変調信号を付加できる。すなわち、このような本発明の半導体受光装置は、例えば、前記導電性半導体基板に電気的に接続されている前記電気信号取出用電極2にインダクタ507を接続することで、前記電気信号取出用電極2から変調信号を逃すことなく、導電性半導体基板6に変調信号を入力できる。すなわち、外部のバイアス電源503から、ソレノイドを介して電極取出用電極(2および3)にバイアスを印加できる。この際、変調バイアス電源501からの変調信号を、変調信号入力用電極5に入力できる。このようにして、本発明の半導体受光装置において変調バイアス動作を実現することができる。このような本発明の半導体受光装置によれば、バイアスTを使用する半導体受光装置と比較して、バイアスに変調信号を付加する光検出回路を小さな回路面積で、かつ、低コストで形成できる。   As described above, the second semiconductor light receiving device of the present invention includes the semiconductor light receiving element of the present invention and a modulation signal generating device for generating a modulation signal to be input to the modulation signal input electrode. FIG. 7 is a circuit diagram showing a configuration of an example of the semiconductor light receiving device of the present invention. In the figure, a portion 500 'surrounded by a dotted line is a portion of the semiconductor light receiving device of the present invention including the semiconductor light receiving element of the present invention and the modulation signal generating device. As shown, the semiconductor light receiving device 500 ′ of the present invention includes the semiconductor light receiving element 508 of the present invention and a modulation signal generating device 501 that generates a modulation signal to be input to the modulation signal input electrode 5. The configuration and function of the modulation signal generator are as described for the semiconductor light receiving element of the present invention. The semiconductor light-receiving device of the present invention having such a configuration can add a modulation signal to the bias without using the bias T. That is, in such a semiconductor light receiving device of the present invention, for example, the inductor 507 is connected to the electrical signal extraction electrode 2 electrically connected to the conductive semiconductor substrate, so that the electrical signal extraction electrode is connected. The modulation signal can be input to the conductive semiconductor substrate 6 without losing the modulation signal from 2. That is, a bias can be applied from the external bias power source 503 to the electrode extraction electrodes (2 and 3) via a solenoid. At this time, the modulation signal from the modulation bias power source 501 can be input to the modulation signal input electrode 5. In this manner, the modulation bias operation can be realized in the semiconductor light receiving device of the present invention. According to such a semiconductor light receiving device of the present invention, a photodetection circuit for adding a modulation signal to the bias can be formed with a small circuit area and at a low cost as compared with a semiconductor light receiving device using a bias T.

本発明の第3の半導体受光装置は、さらに、前述のとおり、前記受光部が、前記導電性半導体基板と同型の導電性半導体層と、前記導電性半導体基板とは異型の導電性半導体層を含み、前記電気信号取出用電極として、前記導電性半導体基板に電気的に接続される電極と、前記異型の導電性半導体層に電気的に接続される電極とを含む前記本発明の半導体受光素子と、前記導電性半導体基板に電気的に接続される電極に接続されるインダクタと、前記変調信号入力用電極に入力する変調信号を発生する変調信号発生装置とを含む。図7に、前記本発明の半導体受光装置の一例の構成を示す回路図を示す。同図中、点線で囲む部分500”が、前記本発明の半導体受光素子と前記インダクタと前記変調信号発生装置を含む本発明の半導体受光装置の部分である。図中、電極2が、前記半導体受光素子508における前記導電性半導体基板に電気的に接続される電極である。図示のとおり、前記本発明の半導体受光装置500”は、前記本発明の半導体受光素子508と、電極2に接続されるインダクタ507と、前記変調信号入力用電極5に入力する変調信号を発生する変調信号発生装置501とを含む。前記インダクタおよび前記変調信号発生装置については、それぞれ、前述したとおりである。このような本発明の半導体受光装置は、バイアスTを用いなくてもバイアスに変調信号を付加できる。すなわち、外部のバイアス電源503から、インダクタ507を介して電極取出用電極(2および3)にバイアスを印加できる。この際、変調バイアス電源501からの変調信号を、変調信号入力用電極5に入力できる。このようにして、本発明の半導体受光装置において変調バイアス動作を実現することができる。このような本発明の半導体受光装置は、バイアスTを使用する半導体受光装置と比較して、光検出回路の回路面積を小さく形成でき、小型かつ低コストで作製できる。   In the third semiconductor light-receiving device according to the present invention, as described above, the light-receiving portion includes a conductive semiconductor layer having the same type as the conductive semiconductor substrate, and a conductive semiconductor layer having a different type from the conductive semiconductor substrate. The semiconductor light receiving element of the present invention including an electrode electrically connected to the conductive semiconductor substrate and an electrode electrically connected to the atypical conductive semiconductor layer as the electrical signal extraction electrode And an inductor connected to an electrode electrically connected to the conductive semiconductor substrate, and a modulation signal generator for generating a modulation signal to be input to the modulation signal input electrode. FIG. 7 is a circuit diagram showing a configuration of an example of the semiconductor light receiving device of the present invention. In the drawing, a portion 500 "surrounded by a dotted line is a portion of the semiconductor light receiving device of the present invention including the semiconductor light receiving element of the present invention, the inductor, and the modulation signal generating device. In the drawing, the electrode 2 is the semiconductor. The electrode is electrically connected to the conductive semiconductor substrate in the light receiving element 508. As shown in the drawing, the semiconductor light receiving device 500 ″ of the present invention is connected to the semiconductor light receiving element 508 of the present invention and the electrode 2. And a modulation signal generator 501 for generating a modulation signal to be input to the modulation signal input electrode 5. The inductor and the modulation signal generator are as described above. Such a semiconductor light receiving device of the present invention can add a modulation signal to the bias without using the bias T. That is, a bias can be applied from the external bias power source 503 to the electrode extraction electrodes (2 and 3) via the inductor 507. At this time, the modulation signal from the modulation bias power source 501 can be input to the modulation signal input electrode 5. In this manner, the modulation bias operation can be realized in the semiconductor light receiving device of the present invention. Such a semiconductor light-receiving device of the present invention can be formed with a smaller circuit area of the photodetection circuit and can be manufactured at a lower cost than a semiconductor light-receiving device using a bias T.

次に、本発明の半導体受光素子について、図面を参照しながら説明する。ただし、以下の実施形態は、例示であり、本発明は、以下の実施形態により制限および限定されない。   Next, the semiconductor light receiving element of the present invention will be described with reference to the drawings. However, the following embodiment is an exemplification, and the present invention is not limited or limited by the following embodiment.

[実施形態1]
本実施形態では、本発明の半導体受光素子の一例を示す。本実施形態では、信号光が半導体受光素子の上面(表面)から入射する本発明の半導体受光素子の例として示す。図3に、本実施形態の半導体受光素子の構成を示す。図示のとおり、本実施形態の半導体受光素子は、導電性半導体基板6と、後述する受光部と、前記電気信号取出用電極(2および3)と、変調信号入力用電極5を含む。前記受光部および電気信号取出用電極(2および3)は、基板6の上に形成され、変調信号入力用電極5は、基板6上の前記受光部および前記電気信号取出用電極とは別の場所に、前記電気信号取出用電極と絶縁状態で形成されている。本実施形態では、導電性半導体基板上6に、導電性半導体基板6から順に、導電性半導体基板6と同型の第1の導電性半導体層7と、光吸収層8と、導電性半導体基板6と異型の第2の導電性半導体層9が積層されて、本実施形態の半導体受光素子が形成されている。本実施形態では、前記受光部は、前記導電性半導体基板6上の中央に、光吸収層8を含むメサ形状の半導体層の積層体から形成されている。このような受光部は、例えば、導電性半導体基板6の上に、第1の導電性半導体層7、光吸収層8および第2の導電性半導体層9をエピタキシャル成長させることにより作製することができる。なお、前記受光部は、これら層以外の層を含む半導体層の積層体から形成されていてもよい。前述のとおり、導電性半導体基板6には、第1の導電性半導体層7に接続され、導電性半導体基板6と電気的に接続される電極2と、第2の導電性半導体層9に接続される電極3と変調信号入力用電極5が形成されている。本実施形態では、変調信号入力用電極5は、導電性半導体基板6の上に、絶縁膜4を介して形成されている。すなわち、本実施形態では、導電性半導体基板6の裏面に絶縁膜4が形成され、絶縁膜4の一部に、変調信号入力用電極5が形成されている。電極2および電極3は、例えば、外部のDCバイアス電源と接続することができる。変調信号入力用電源5は、例えば、外部の変調信号発生装置に接続することができる。
[Embodiment 1]
In this embodiment, an example of the semiconductor light receiving element of the present invention is shown. In the present embodiment, an example of the semiconductor light receiving element of the present invention in which signal light enters from the upper surface (surface) of the semiconductor light receiving element is shown. FIG. 3 shows the configuration of the semiconductor light receiving element of this embodiment. As shown in the figure, the semiconductor light receiving element of the present embodiment includes a conductive semiconductor substrate 6, a light receiving portion described later, the electric signal extraction electrodes (2 and 3), and a modulation signal input electrode 5. The light receiving portion and the electric signal extraction electrode (2 and 3) are formed on the substrate 6, and the modulation signal input electrode 5 is different from the light receiving portion and the electric signal extraction electrode on the substrate 6. It is formed in a place in an insulated state from the electrical signal extraction electrode. In the present embodiment, a first conductive semiconductor layer 7 having the same type as that of the conductive semiconductor substrate 6, a light absorption layer 8, and the conductive semiconductor substrate 6 are formed on the conductive semiconductor substrate 6 in order from the conductive semiconductor substrate 6. The second type semiconductor conductive layer 9 different from the above is laminated to form the semiconductor light receiving element of this embodiment. In the present embodiment, the light receiving portion is formed of a mesa-shaped semiconductor layer stack including the light absorption layer 8 in the center on the conductive semiconductor substrate 6. Such a light receiving portion can be produced by, for example, epitaxially growing the first conductive semiconductor layer 7, the light absorption layer 8, and the second conductive semiconductor layer 9 on the conductive semiconductor substrate 6. . The light receiving portion may be formed of a stacked body of semiconductor layers including layers other than these layers. As described above, the conductive semiconductor substrate 6 is connected to the first conductive semiconductor layer 7, and is connected to the electrode 2 electrically connected to the conductive semiconductor substrate 6 and the second conductive semiconductor layer 9. The electrode 3 and the modulation signal input electrode 5 are formed. In this embodiment, the modulation signal input electrode 5 is formed on the conductive semiconductor substrate 6 via the insulating film 4. That is, in this embodiment, the insulating film 4 is formed on the back surface of the conductive semiconductor substrate 6, and the modulation signal input electrode 5 is formed on a part of the insulating film 4. The electrode 2 and the electrode 3 can be connected to an external DC bias power source, for example. The modulation signal input power source 5 can be connected to an external modulation signal generator, for example.

本実施形態では、例えば、前記受光部に光信号を受信させる際に、電極2と電極3の間に逆バイアスを印加する。これにより、前記光信号を前記受光部が電気信号に変換し、この電気信号が、信号電流として電極2および電極3から出力されることで、前記電気信号を外部に取り出すことができる。ここで、本実施形態では、例えば、前記逆バイアスを印加する際に、外部の変調信号発生装置から、前記変調信号入力用電極5に変調信号を入力することができる。これにより、前記バイアスに変調信号を追加することができ、本実施形態の半導体受光素子の素子特性により利得を得ることが出来、光信号のS/N比を向上させることが出来る。   In the present embodiment, for example, a reverse bias is applied between the electrode 2 and the electrode 3 when the light receiving unit receives an optical signal. Accordingly, the light signal is converted into an electric signal by the light receiving unit, and the electric signal is output from the electrode 2 and the electrode 3 as a signal current, so that the electric signal can be extracted to the outside. Here, in the present embodiment, for example, when the reverse bias is applied, a modulation signal can be input to the modulation signal input electrode 5 from an external modulation signal generator. Thereby, a modulation signal can be added to the bias, a gain can be obtained by the element characteristics of the semiconductor light receiving element of this embodiment, and the S / N ratio of the optical signal can be improved.

[実施形態2]
本実施形態では、本発明の半導体受光素子の別の例を示す。本実施形態の半導体受光素子は、前記実施形態1における変調信号入力用端子5が、導体部10とパッド電極11を含むこと以外は、前記実施形態1と同じ構成を有する。図4に、本実施形態の半導体受光素子の構成を示す。図示のとおり、本実施形態の半導体受光素子は、変調信号入力用電極5が、導体部10とパッド電極11を含む以外は、図3の半導体受光素子と同じである。なお、図4において、図3と同じ構成要素には、同一の符号を付している。変調信号入力用電極5は、絶縁膜4の上に導体部10を形成し、その上にパッド電極11を形成することで構成されている。導体部10は、単一の金属から形成されてもよいし複数の金属、いわゆる合金から形成されてもよいし、また、複数の金属の層を組み合わせた積層構造を有していてもよい。パッド電極11は、金属で形成でき、ワイヤボンドにより外部デバイスと接続できる。
[Embodiment 2]
In this embodiment, another example of the semiconductor light receiving element of the present invention is shown. The semiconductor light receiving element of the present embodiment has the same configuration as that of the first embodiment except that the modulation signal input terminal 5 in the first embodiment includes the conductor portion 10 and the pad electrode 11. FIG. 4 shows the configuration of the semiconductor light receiving element of this embodiment. As shown in the drawing, the semiconductor light receiving element of this embodiment is the same as the semiconductor light receiving element of FIG. 3 except that the modulation signal input electrode 5 includes a conductor portion 10 and a pad electrode 11. In FIG. 4, the same components as those in FIG. 3 are denoted by the same reference numerals. The modulation signal input electrode 5 is configured by forming a conductor portion 10 on an insulating film 4 and forming a pad electrode 11 thereon. The conductor part 10 may be formed from a single metal, may be formed from a plurality of metals, so-called alloys, or may have a laminated structure in which a plurality of metal layers are combined. The pad electrode 11 can be formed of metal and can be connected to an external device by wire bonding.

本実施形態でも、前記実施形態1と同様に、電極2と電極3の間に逆バイアスを印加することにより、外部に電気信号を外部に取り出すことができる。また、変調信号入力用電極5に変調信号を入力することにより、前記バイアスに変調信号を追加することができ、半導体受光素子の素子特性により利得を得ることが出来、光信号のS/N比を向上させることが出来る。本実施形態では、さらに、変調信号入力用電極5を導体部10とパッド電極11で構成したことにより、例えば、導体部10の面積を広げることにより、導電性半導体基板6との間に絶縁膜4を介して容量を発生する電極板として機能させることができる。これにより、本実施形態の半導体受光素子において、低損失で通過させることのできる周波数範囲を広げることができる。   Also in the present embodiment, as in the first embodiment, by applying a reverse bias between the electrode 2 and the electrode 3, an electric signal can be extracted to the outside. Also, by inputting a modulation signal to the modulation signal input electrode 5, a modulation signal can be added to the bias, gain can be obtained by the element characteristics of the semiconductor light receiving element, and the S / N ratio of the optical signal. Can be improved. In the present embodiment, the modulation signal input electrode 5 is further composed of the conductor portion 10 and the pad electrode 11. For example, by increasing the area of the conductor portion 10, an insulating film is formed between the conductive semiconductor substrate 6 and the insulating film. 4 can function as an electrode plate for generating capacitance. Thereby, in the semiconductor light receiving element of this embodiment, the frequency range that can be passed with low loss can be expanded.

本実施形態において、導体部10は、絶縁膜4の端より一定距離内側の部分には形成しないようにすることができる。これにより、前記絶縁膜4の上に前記変調信号入力用電極5を形成する際の、前記絶縁膜4に対する位置合わせのズレの許容範囲を拡大できる。また、前記変調信号入力用電極5と前記導電性半導体基板6とのショートを防止して、前記変調信号入力用電極5の前記電気信号取出用電極(2および3)からの絶縁状態を確保できる。   In the present embodiment, the conductor portion 10 can be prevented from being formed in a portion inside the fixed distance from the end of the insulating film 4. Thereby, an allowable range of misalignment with respect to the insulating film 4 when the modulation signal input electrode 5 is formed on the insulating film 4 can be expanded. Further, a short circuit between the modulation signal input electrode 5 and the conductive semiconductor substrate 6 can be prevented, and an insulation state of the modulation signal input electrode 5 from the electrical signal extraction electrodes (2 and 3) can be secured. .

[実施形態3]
本実施形態では、本発明の半導体受光素子の別の例を示す。本実施形態の半導体受光素子は、信号光が導電性半導体基板の下面(裏面)から入射する構成を有する以外は、前記実施形態2と同様の構成を有する。図5に、本実施形態の半導体受光素子の構成を示す。図示のとおり、本実施形態の半導体受光素子は、導電性半導体基板6が、裏面に、受光部に対して入射する信号光を通過させる信号光通過領域12を有し、変調信号入力用電極5が、前記導電性半導体基板6の裏面上の、前記信号光通過領域12よりも外の部分に形成されている。これ以外は、本実施形態の半導体受光素子は、図4の半導体受光素子と同じである。なお、図5において、図4と同じ構成要素には、同一の符号を付している。
[Embodiment 3]
In this embodiment, another example of the semiconductor light receiving element of the present invention is shown. The semiconductor light receiving element of the present embodiment has the same configuration as that of the second embodiment, except that the signal light is incident from the lower surface (back surface) of the conductive semiconductor substrate. FIG. 5 shows the configuration of the semiconductor light receiving element of this embodiment. As shown in the figure, in the semiconductor light receiving element of this embodiment, the conductive semiconductor substrate 6 has a signal light passage region 12 through which signal light incident on the light receiving portion passes on the back surface, and the modulation signal input electrode 5. Is formed on the back surface of the conductive semiconductor substrate 6 outside the signal light passage region 12. Except for this, the semiconductor light receiving element of this embodiment is the same as the semiconductor light receiving element of FIG. In FIG. 5, the same components as those in FIG. 4 are denoted by the same reference numerals.

本実施形態でも、前記実施形態2と同じ効果を得ることができる。本実施形態では、特に、導電性半導体基板6の信号光通過領域外の部分に変調信号入力用電極5を形成したことから、変調信号入力用電極5による半導体受光素子の信号光検出能力への影響を抑制できる。具体的には、例えば、前記変調信号入力用電極5と前記信号光通過領域12を通過する信号光の干渉等を防止できる。   Also in this embodiment, the same effect as in the second embodiment can be obtained. In this embodiment, in particular, since the modulation signal input electrode 5 is formed outside the signal light passage region of the conductive semiconductor substrate 6, the modulation signal input electrode 5 can improve the signal light detection capability of the semiconductor light receiving element. The influence can be suppressed. Specifically, for example, interference of signal light passing through the modulation signal input electrode 5 and the signal light passage region 12 can be prevented.

[実施形態4]
本実施形態では、本発明の半導体受光素子の別の例を示す。本実施形態の半導体受光素子は、導電性半導体基板の信号光通過領域に誘電体から形成される反射防止膜を形成した以外は、前記実施形態3と同様の構成を有する。図6に、本実施形態の半導体受光素子の構成を示す。図示のとおり、本実施形態の半導体受光素子は、導電性半導体基板6における信号光通過領域12の上に反射防止膜13を形成し、反射防止膜12とは別に、導電性半導体基板6の裏面における信号光通過領域12の外側の部分に、反射防止膜13よりも厚みの薄い絶縁膜4を形成したことを除き、前記実施形態3と同じである。このような反射防止膜13および絶縁膜4は、例えば、導電性半導体基板6の裏面に誘電体を用いて反射防止膜13を形成後、絶縁膜4の部分のみエッチング等により膜を薄く形成することにより、絶縁膜4を形成することができる。また、誘電体を用いて反射防止膜13を形成後、絶縁膜4の部分となる箇所のみ前記誘電体を除去し、新たに絶縁膜4を形成してもよい。また、導電性半導体基板6の裏面に誘電体を用いて絶縁膜4を形成後、反射防止膜13を形成する箇所のみ前記誘電体を除去し、次いで新たに前記誘電体を用いて反射防止膜13を形成してもよい。
[Embodiment 4]
In this embodiment, another example of the semiconductor light receiving element of the present invention is shown. The semiconductor light receiving element of the present embodiment has the same configuration as that of the third embodiment except that an antireflection film formed of a dielectric is formed in the signal light passage region of the conductive semiconductor substrate. FIG. 6 shows the configuration of the semiconductor light receiving element of this embodiment. As shown in the figure, in the semiconductor light receiving element of this embodiment, an antireflection film 13 is formed on the signal light passage region 12 in the conductive semiconductor substrate 6, and the back surface of the conductive semiconductor substrate 6 is separated from the antireflection film 12. The third embodiment is the same as the third embodiment except that the insulating film 4 having a thickness smaller than that of the antireflection film 13 is formed on the outside of the signal light passage region 12 in FIG. For example, after forming the antireflection film 13 using a dielectric on the back surface of the conductive semiconductor substrate 6, the antireflection film 13 and the insulating film 4 are thinly formed by etching or the like only on the insulating film 4. Thus, the insulating film 4 can be formed. Further, after the antireflection film 13 is formed using a dielectric, the dielectric may be removed only at a portion that becomes a portion of the insulating film 4 and a new insulating film 4 may be formed. In addition, after the insulating film 4 is formed on the back surface of the conductive semiconductor substrate 6 using a dielectric, the dielectric is removed only at a portion where the antireflection film 13 is formed, and then the antireflection film is newly formed using the dielectric. 13 may be formed.

絶縁膜は、可能な限り薄い方が、容量が増し、本実施形態の半導体受光素子において広帯域の変調信号を通過させることが可能となる。そのため、本実施形態のように、反射防止層13を形成した場合、例えば、反射防止層を形成せずに薄い絶縁膜を用いた本発明の半導体受光素子と同じ容量の変調信号入力用電極を形成するためには、導体部10の形成面積を広くする必要がある。そこで、本実施形態のように、信号光通過領域外の部分に、反射防止膜よりも厚みの薄い絶縁膜を形成することにより、反射防止効果と大きな容量の両方の効果を得ることができる。   As the insulating film is as thin as possible, the capacitance increases, and a broadband modulated signal can be passed through the semiconductor light receiving element of this embodiment. Therefore, when the antireflection layer 13 is formed as in this embodiment, for example, a modulation signal input electrode having the same capacity as the semiconductor light receiving element of the present invention using a thin insulating film without forming the antireflection layer is provided. In order to form, it is necessary to widen the formation area of the conductor part 10. Therefore, as in the present embodiment, by forming an insulating film having a thickness smaller than that of the antireflection film in a portion outside the signal light passage region, both the antireflection effect and the large capacitance can be obtained.

次に、特に、変調信号入力用電極が導体部を含む本発明の半導体受光素子における導体部の設計態様について、前記実施形態2および前記実施形態3を例にして具体的に説明する。すなわち、前記実施形態2の半導体受光素子では、導体部10の容量を大きくすることで、半導体受光素子の光検出特性を向上させることができる。よって、本実施形態の半導体素子では、導体部10の容量が可能な限り大きくなるよう、変調信号入力用電極5のサイズや形状を設計することができる。すなわち、例えば、前記実施形態2において、例えば、導電性半導体基板6を500μm×500μmのサイズの表面を有する正方形形状に形成した場合、絶縁膜4は、導電性半導体基板6の裏面において490μm×490μm程度に形成することができる。この場合、導体部10は、例えば、絶縁膜4の端よりも3μm内側に形成するとして、484μm×484μmのサイズまで広く形成することができる。ここで、導電性半導体基板6は均一な導体であることから、導電性半導体基板6と変調信号入力用電極5の間で有効な電極面積は、変調信号入力用電極5の面積で規定される。従って、変調信号入力用電極5が前記サイズを有する場合、導電性半導体基板6と変調信号入力用電極5の間で有効な電極面積は、最大2.34×10μmまで拡大できる。 Next, in particular, the design aspect of the conductor part in the semiconductor light receiving element of the present invention in which the modulation signal input electrode includes the conductor part will be specifically described with reference to the second and third embodiments. That is, in the semiconductor light receiving element of the second embodiment, the light detection characteristics of the semiconductor light receiving element can be improved by increasing the capacitance of the conductor portion 10. Therefore, in the semiconductor element of this embodiment, the size and shape of the modulation signal input electrode 5 can be designed so that the capacitance of the conductor portion 10 is as large as possible. That is, for example, in the second embodiment, for example, when the conductive semiconductor substrate 6 is formed in a square shape having a surface with a size of 500 μm × 500 μm, the insulating film 4 is 490 μm × 490 μm on the back surface of the conductive semiconductor substrate 6. Can be formed to the extent. In this case, the conductor part 10 can be formed widely up to a size of 484 μm × 484 μm, for example, if it is formed 3 μm inside the end of the insulating film 4. Here, since the conductive semiconductor substrate 6 is a uniform conductor, the effective electrode area between the conductive semiconductor substrate 6 and the modulation signal input electrode 5 is defined by the area of the modulation signal input electrode 5. . Therefore, when the modulation signal input electrode 5 has the above-mentioned size, the effective electrode area between the conductive semiconductor substrate 6 and the modulation signal input electrode 5 can be expanded up to 2.34 × 10 5 μm 2 .

また、例えば、実施形態3において、例えば、導電性半導体基板6を500μm×500μmのサイズの表面を有する正方形形状に形成し、絶縁膜4を、導電性半導体基板6の裏面において490μm×490μm程度の外周サイズとなるよう形成した場合の導電性半導体基板6と変調信号入力用電極5の間で有効な電極面積は次のようになる。導体部10は、例えば、絶縁膜4の端よりも3μm内側に形成するとして、484μm×484μmのサイズまで広く形成することができる。信号光の光スポットが直径(受光径)20μmの円形であり、信号光と変調信号入力用電極5が干渉しないための信号光通過領域12を、100μm程度の直径を有する円形に形成した場合、次のようになる。すなわち、「変調信号入力用電極5の平面面積−信号光通過領域12の面積」により計算して、2.34×10μm−3.14×50μm×50μmより、前記有効電極面積は、最大2.26×10μmまで拡大できる。 Further, for example, in the third embodiment, for example, the conductive semiconductor substrate 6 is formed in a square shape having a surface with a size of 500 μm × 500 μm, and the insulating film 4 is about 490 μm × 490 μm on the back surface of the conductive semiconductor substrate 6. The effective electrode area between the conductive semiconductor substrate 6 and the modulation signal input electrode 5 when formed to have an outer peripheral size is as follows. For example, the conductor 10 can be formed widely up to a size of 484 μm × 484 μm assuming that it is formed 3 μm inside from the end of the insulating film 4. When the light spot of the signal light is a circle having a diameter (light receiving diameter) of 20 μm, and the signal light passing region 12 for preventing the signal light and the modulation signal input electrode 5 from interfering is formed in a circle having a diameter of about 100 μm, It becomes as follows. That is, the effective electrode area is calculated from “the plane area of the modulation signal input electrode 5−the area of the signal light passing region 12”, and from 2.34 × 10 5 μm 2 −3.14 × 50 μm × 50 μm, It can be expanded to a maximum of 2.26 × 10 5 μm 2 .

また、例えば、TO−56型のステムに、チップキャリア搭載済の前記実施形態2または前記実施形態3の半導体受光素子を搭載する場合、前記ステムの端子配置にもよるが、例えば、3つのピン端子が配置された前記ステム上に搭載できるチップキャリアの大きさは、約1.5mm×1.5mmサイズである。このようなチップキャリア上の周辺部に、端子パターンとして100μm×100μmのサイズのパッドを配置する場合、前記チップキャリアの周辺から100μm内側まで、前記実施形態の半導体受光素子を配置できる。よって、この場合、前記チップキャリアに搭載できる前記実施形態の半導体受光素子の最大サイズは、1.3mm×1.3mmとなる。この場合、絶縁膜4の形成範囲は、例えば、最大1.290mm×1.290mmのサイズに設計できる。そして、導体部10の形成範囲の面積は、前記実施形態2では、1.284mm×1.284mmまで拡大できる。また、前記実施形態3の場合には、信号光の受光スポットが直径20μmの円形状で、信号光通過領域12を直径約100μmの円形状に形成した場合、「導体部10の外径面積−信号光通過領域12の面積」より計算して、導体部10の面積は、1.284mm×1.284mm−3.14×50μm×50μm=1.64×10μmまで拡大できる。 For example, when mounting the semiconductor light receiving element of the second embodiment or the third embodiment in which the chip carrier is mounted on a TO-56 type stem, for example, three pins are used depending on the terminal arrangement of the stem. The size of the chip carrier that can be mounted on the stem where the terminals are arranged is about 1.5 mm × 1.5 mm. In the case where pads having a size of 100 μm × 100 μm are arranged as a terminal pattern in the peripheral portion on such a chip carrier, the semiconductor light receiving element of the embodiment can be arranged from the periphery of the chip carrier to the inside of 100 μm. Therefore, in this case, the maximum size of the semiconductor light receiving element of the embodiment that can be mounted on the chip carrier is 1.3 mm × 1.3 mm. In this case, the formation range of the insulating film 4 can be designed to a maximum size of 1.290 mm × 1.290 mm, for example. And the area of the formation range of the conductor part 10 can be expanded to 1.284 mm x 1.284 mm in the said Embodiment 2. FIG. In the case of the third embodiment, when the light receiving spot of the signal light has a circular shape with a diameter of 20 μm and the signal light passage region 12 has a circular shape with a diameter of about 100 μm, “the outer diameter area of the conductor portion 10− The area of the conductor 10 can be expanded to 1.284 mm × 1.284 mm−3.14 × 50 μm × 50 μm = 1.64 × 10 6 μm 2 calculated from “the area of the signal light passing region 12”.

また、例えば、前記実施形態2または前記実施形態3の半導体受光素子を、TO−8型のステムのようなより大きなパッケージに搭載する場合、導体部10のサイズは、次のようにして設計することができる。すなわち、TO−8型のステムでは、より大きな実装面積(例えば、5.72mm×5.72mm程度)を取ることができるので、チップキャリアの最大サイズは、5.72mm×5.72mmに形成できる。このようなチップキャリアに搭載できる最大の前記半導体受光素子のサイズは、平面面積にして5.52mm×5.52mmとなる。そして、このサイズの前記半導体受光素子で形成できる絶縁膜4の最大面積は、5.51mm×5.51mmである。よって、前記実施形態2の場合には、導体部10の形成範囲は、5.504mm×5.504mmまで拡大できる。前記実施形態3の場合には、信号光の受光スポットが直径20μmの円形状で、信号光通過領域12を直径約100μmの円形状に形成した場合、「導体部10の外径面積−信号光通過領域12の面積」より計算して、導体部10の面積は、5.504mm×5.504mm−3.14×50μm×50μm=3.03×10μmまで拡大できる。なお、前述した以上に大きな本発明の半導体受光素子も作製できるが、パッケージに搭載できるという観点からは、前記導体部10の平面面積は、1.6×10μm〜3.03×10μmであることが好ましい。 For example, when the semiconductor light receiving element of the second embodiment or the third embodiment is mounted in a larger package such as a TO-8 type stem, the size of the conductor portion 10 is designed as follows. be able to. That is, since a larger mounting area (for example, about 5.72 mm × 5.72 mm) can be taken with the TO-8 type stem, the maximum size of the chip carrier can be formed to 5.72 mm × 5.72 mm. . The maximum size of the semiconductor light receiving element that can be mounted on such a chip carrier is 5.52 mm × 5.52 mm in terms of a planar area. The maximum area of the insulating film 4 that can be formed by the semiconductor light receiving element of this size is 5.51 mm × 5.51 mm. Therefore, in the case of the said Embodiment 2, the formation range of the conductor part 10 can be expanded to 5.504 mm x 5.504 mm. In the case of the third embodiment, when the light receiving spot of the signal light has a circular shape with a diameter of 20 μm and the signal light passage region 12 has a circular shape with a diameter of about 100 μm, “the outer diameter area of the conductor portion 10−signal light” The area of the conductor 10 can be expanded to 5.504 mm × 5.504 mm−3.14 × 50 μm × 50 μm = 3.03 × 10 7 μm 2 calculated from the “area of the passing region 12”. Although the semiconductor light receiving element of the present invention larger than that described above can be produced, the planar area of the conductor portion 10 is 1.6 × 10 2 μm 2 to 3.03 × 10 from the viewpoint that it can be mounted on a package. It is preferably 7 μm 2 .

次に、本発明の半導体受光装置について、図面を参照しながら説明する。ただし、以下の実施形態は、例示であり、本発明は、以下の実施形態により制限および限定されない。   Next, the semiconductor light receiving device of the present invention will be described with reference to the drawings. However, the following embodiment is an exemplification, and the present invention is not limited or limited by the following embodiment.

[実施形態5]
本実施形態では、本発明の半導体受光装置の一例を示す。本実施形態では、本発明の半導体受光素子とインダクタを含む本発明の半導体受光装置の例を示す。図7に、本実施形態の半導体受光装置の構成を示す回路図を示す。図中、一点鎖線で示す部分500が、本実施形態の半導体受光装置を構成する部分である。図示のとおり、本実施形態の半導体受光装置は、本発明の半導体受光素子508とインダクタ507を含む。本実施形態では、本発明の半導体受光素子は、実施形態1から4のいずれかである。すなわち、前記受光部が、導電性半導体基板6と同型の導電性半導体層7と、導電性半導体基板6とは異型の導電性半導体層9を含み、前記電気信号取出用電極として、導電性半導体層7に接続されて導電性半導体基板6に電気的に接続される電極2と、前記異型の導電性半導体層9に電気的に接続される電極3とを含む本発明の半導体受光素子である。インダクタ507は、第1の導電性半導体層7に電気的に接続される電極2に接続される、例えばソレノイドである。本実施形態では、例えば、前記受光部が光信号を受信する際に、電極2と電極3の間に、例えば外部のDCバイアス電源から逆バイアスを印加する。これにより、前記受光部が光信号を電気信号に変換し、この電気信号が、信号電流として電極2および電極3から出力されることで、前記電気信号を外部に取り出すことができる。ここで、本実施形態では、例えば、前記逆バイアスを印加する際に、外部の変調信号発生装置501から、前記変調信号入力用電極5に変調信号を入力することができる。これにより、前記バイアスに変調信号を追加することができ、本実施形態の半導体受光素子の素子特性により利得を得ることが出来、受光する光信号のS/N比を向上させることが出来る。
[Embodiment 5]
In this embodiment, an example of the semiconductor light receiving device of the present invention is shown. In the present embodiment, an example of the semiconductor light receiving device of the present invention including the semiconductor light receiving element of the present invention and an inductor is shown. FIG. 7 is a circuit diagram showing the configuration of the semiconductor light receiving device of this embodiment. In the drawing, a portion 500 indicated by a one-dot chain line is a portion constituting the semiconductor light receiving device of the present embodiment. As illustrated, the semiconductor light receiving device of this embodiment includes a semiconductor light receiving element 508 and an inductor 507 of the present invention. In the present embodiment, the semiconductor light receiving element of the present invention is any one of the first to fourth embodiments. That is, the light receiving portion includes a conductive semiconductor layer 7 of the same type as that of the conductive semiconductor substrate 6 and a conductive semiconductor layer 9 of a different type from the conductive semiconductor substrate 6, and a conductive semiconductor is used as the electrical signal extraction electrode. The semiconductor light-receiving element of the present invention includes an electrode 2 connected to the layer 7 and electrically connected to the conductive semiconductor substrate 6 and an electrode 3 electrically connected to the atypical conductive semiconductor layer 9. . The inductor 507 is, for example, a solenoid connected to the electrode 2 that is electrically connected to the first conductive semiconductor layer 7. In the present embodiment, for example, when the light receiving unit receives an optical signal, a reverse bias is applied between the electrode 2 and the electrode 3 from, for example, an external DC bias power source. Thereby, the said light-receiving part converts an optical signal into an electric signal, and this electric signal is output from the electrode 2 and the electrode 3 as a signal current, Therefore The said electric signal can be taken out outside. Here, in this embodiment, for example, when the reverse bias is applied, a modulation signal can be input to the modulation signal input electrode 5 from the external modulation signal generator 501. Thereby, a modulation signal can be added to the bias, a gain can be obtained by the element characteristics of the semiconductor light receiving element of the present embodiment, and the S / N ratio of the received optical signal can be improved.

本実施形態の半導体受光装置では、バイアスTを用いなくても半導体受光素子に印加するバイアスに変調信号を付加できる。すなわち、このような本発明の半導体受光装置500は、バイアスTを使用する半導体受光装置と比較して、光検出回路の回路面積を小さく形成でき、小型かつ低コストで作製できる。   In the semiconductor light receiving device of this embodiment, a modulation signal can be added to the bias applied to the semiconductor light receiving element without using the bias T. That is, in the semiconductor light receiving device 500 of the present invention, the circuit area of the photodetection circuit can be made smaller than that of the semiconductor light receiving device using the bias T, and the semiconductor light receiving device 500 can be manufactured in a small size and at low cost.

[実施形態6]
本実施形態では、本発明の半導体受光装置の別の例を示す。本実施形態では、本発明の半導体受光素子と、変調信号入力用電極に入力する変調信号を発生する変調信号発生装置を含む本発明の半導体受光装置の例を示す。図7に、本実施形態の半導体受光装置の構成を示す回路図を示す。図中、鎖線で示す部分500’が、本実施形態の半導体受光装置を構成する部分である。図示のとおり、本実施形態の半導体受光装置は、本発明の半導体受光素子508と変調信号発生装置501を含む。具体的には、本実施形態では、前記本発明の半導体受光素子は、実施形態1から4のいずれかである。変調信号発生装置501は、例えば、本発明の半導体受光素子508において光信号のシグナル対ノイズ比を向上させることができるサイン波やパルス波等の変調信号を発生可能な装置であり、例えば、変調バイアス電源や、パルス源とアンプの組み合わせ等である。
[Embodiment 6]
In the present embodiment, another example of the semiconductor light receiving device of the present invention is shown. In the present embodiment, an example of the semiconductor light receiving device of the present invention including the semiconductor light receiving element of the present invention and a modulation signal generating device for generating a modulation signal to be input to the modulation signal input electrode is shown. FIG. 7 is a circuit diagram showing the configuration of the semiconductor light receiving device of this embodiment. In the drawing, a portion 500 ′ indicated by a chain line is a portion constituting the semiconductor light receiving device of the present embodiment. As illustrated, the semiconductor light receiving device of this embodiment includes a semiconductor light receiving element 508 and a modulation signal generating device 501 of the present invention. Specifically, in the present embodiment, the semiconductor light receiving element of the present invention is any one of the first to fourth embodiments. The modulation signal generation device 501 is a device that can generate a modulation signal such as a sine wave or a pulse wave that can improve the signal-to-noise ratio of an optical signal in the semiconductor light receiving element 508 of the present invention. For example, a bias power source or a combination of a pulse source and an amplifier.

本実施形態の半導体受光装置は、例えば、前記導電性半導体基板6に電気的に接続されている電極2にインダクタ507を接続することで、前記電気信号取出用電極2から変調信号を逃すことなく、実施形態5と同様にして、優れた変調バイアス動作を実現できる。本実施形態の半導体受光装置によれば、バイアスTを使用する半導体受光装置と比較して、バイアスに変調信号を付加する光検出回路を小さな回路面積で、かつ、低コストで形成できる。   In the semiconductor light receiving device of this embodiment, for example, the inductor 507 is connected to the electrode 2 electrically connected to the conductive semiconductor substrate 6 so that the modulation signal is not missed from the electric signal extraction electrode 2. As in the fifth embodiment, an excellent modulation bias operation can be realized. According to the semiconductor light receiving device of the present embodiment, the photodetection circuit for adding a modulation signal to the bias can be formed with a small circuit area and at a low cost as compared with the semiconductor light receiving device using the bias T.

[実施形態7]
本実施形態では、本発明の半導体受光装置の別の例を示す。本実施形態では、本発明の半導体受光素子と、インダクタと、変調信号入力用電極に入力する変調信号を発生する変調信号発生装置を含む本発明の半導体受光装置の例を示す。図7に、本実施形態の半導体受光装置の構成を示す回路図を示す。図中、一点鎖線で示す部分500”が、本実施形態の半導体受光装置を構成する部分である。図示のとおり、本実施形態の半導体受光装置は、本発明の半導体受光素子508と、インダクタ507と、変調信号発生装置501を含む。具体的には、本実施形態では、前記本発明の半導体受光素子は、前記実施形態1から4のいずれかである。すなわち、本発明の半導体受光素子508は、前記受光部が、導電性半導体基板6と同型の導電性半導体層7と、導電性半導体基板6とは異型の導電性半導体層9を含み、前記電気信号取出用電極として、導電性半導体基板6に電気的に接続される電極2と、異型の導電性半導体層9に電気的に接続される電極3とを含む本発明の半導体受光素子である。インダクタ507は、導電性半導体基板6と電気的に接続される電極2に接続される、例えばソレノイドである。変調信号発生装置501は、例えば、本発明の半導体受光素子において光信号のシグナル対ノイズ比を向上させることができるサイン波やパルス波等の変調信号を発生可能な装置であり、例えば、変調バイアス電源や、パルス源とアンプの組み合わせ等である。
[Embodiment 7]
In the present embodiment, another example of the semiconductor light receiving device of the present invention is shown. In the present embodiment, an example of a semiconductor light receiving device of the present invention including a semiconductor light receiving element of the present invention, an inductor, and a modulation signal generating device that generates a modulation signal input to a modulation signal input electrode is shown. FIG. 7 is a circuit diagram showing the configuration of the semiconductor light receiving device of this embodiment. In the drawing, a portion 500 ″ indicated by a one-dot chain line is a portion constituting the semiconductor light receiving device of the present embodiment. As illustrated, the semiconductor light receiving device of the present embodiment includes the semiconductor light receiving element 508 of the present invention and the inductor 507. And a modulation signal generator 501. Specifically, in the present embodiment, the semiconductor light receiving element of the present invention is any one of Embodiments 1 to 4. That is, the semiconductor light receiving element 508 of the present invention. The light receiving portion includes a conductive semiconductor layer 7 of the same type as that of the conductive semiconductor substrate 6 and a conductive semiconductor layer 9 of a different type from that of the conductive semiconductor substrate 6, and a conductive semiconductor is used as the electrical signal extraction electrode. The semiconductor light receiving element of the present invention includes an electrode 2 electrically connected to the substrate 6 and an electrode 3 electrically connected to the atypical conductive semiconductor layer 9. The inductor 507 is the conductive semiconductor substrate 6. And Den For example, the modulation signal generator 501 is a sine wave or pulse that can improve the signal-to-noise ratio of the optical signal in the semiconductor light receiving element of the present invention. A device capable of generating a modulated signal such as a wave, such as a modulation bias power supply or a combination of a pulse source and an amplifier.

本実施形態の半導体受光装置500”は、バイアスTを用いなくてもバイアスに変調信号を付加でき、実施形態5や実施形態6と同様にして、優れた変調バイアス動作を実現できる。すなわち、このような本発明の半導体受光装置は、バイアスTを使用する半導体受光装置と比較して、光検出回路の回路面積を小さく形成でき、小型かつ低コストで作製できる。   The semiconductor light receiving device 500 ″ of this embodiment can add a modulation signal to the bias without using the bias T, and can realize an excellent modulation bias operation in the same manner as in the fifth and sixth embodiments. Such a semiconductor light-receiving device of the present invention can be formed with a smaller circuit area of the photodetection circuit than a semiconductor light-receiving device using a bias T, and can be manufactured in a small size and at low cost.

次に、本発明の半導体受光素子および本発明の半導体受光装置について、図面を参照しながらさらに具体的に説明する。ただし、以下の実施形態は、例示であり、本発明は、以下の実施形態により制限および限定されない。   Next, the semiconductor light receiving element of the present invention and the semiconductor light receiving device of the present invention will be described more specifically with reference to the drawings. However, the following embodiment is an exemplification, and the present invention is not limited or limited by the following embodiment.

[実施形態8]
本実施形態では、本発明の半導体受光素子のさらに別の例を示す。本実施形態では、信号光が半導体受光素子の裏面から入射するメサ型の本発明の半導体受光素子の例を示す。本実施形態の半導体受光素子は、アバランシェ・フォトダイオードである。図8に、本実施形態の半導体受光素子の構成を示す断面図を示す。図9に、本実施形態の半導体受光素子の裏面を示す背面図を示す。図8は、図9のII−II間の断面を示す。図示のとおり、本実施形態の半導体受光素子は、導電性半導体基板6、半導体層から形成された受光部、前記受光部で変換した電気信号を外部に取り出す電気信号取出用電極(2および3)および変調信号入力用電極5を含む。具体的には、前記受光部および電気信号取出用電極(2および3)が、基板6の上に形成され、変調信号入力用電極5が、基板6の上の前記受光部および電気信号取出用電極(2および3)とは別の場所に、前記電気信号取出用電極(2および3)と絶縁状態で形成されている。前記本発明の半導体受光素子は、導電性半導体基板であるN型InP基板6の上に、N型InP基板6から順に、n型バッファ層7(InAlAs、厚さ0.5μm)と、増倍層ならびに電界緩和層8’(InAlAs、増倍層の厚さ1.0μm、電界緩和層の厚さ0.1μm)と、光吸収層8(i−InGaAs、厚さ1.2μm)と、p型バッファ層9(p−InAlAs、厚さ0.5μm)と、p型コンタクト層9’(p−InGaAs、厚さ0.2μm)とが積層された積層体から形成されている。このような半導体積層体1は、例えば、N型InP基板6の上に、n型バッファ層7、増倍層ならびに電界緩和層8’、光吸収層8、p型バッファ層9およびp型コンタクト層9’をエピタキシャル成長させることにより作製することができる。本実施形態では、N型InP基板6からエピタキシャル層側が、表面側である。本実施形態の半導体受光素子は、導電性半導体基板6の裏面中央に、前記受光部に入射する信号光を通過させる信号光通過領域12を有する。本実施形態では、前記受光部は、信号光通過領域12の上方に位置し、前記導電性半導体基板6上に形成され、光吸収層8を含む半導体層の積層体から形成されている。本実施形態では、電気信号取出用電極として、エピタキシャル層に接続される2つの型の電極(2および3)が形成されている。すなわち、導電性半導体基板6上に、n型バッファ層7に接続されてN型InP基板6と電気的に接続されるn型電極2とp型バッファ層に接続されるp型電極3が形成されている。N型InP基板6の裏面には、SiNxから形成される絶縁膜4(厚さ2000Å)が、形成されており、この絶縁膜4の上に、変調信号入力用電極5が形成されている。変調信号入力用電極5は、導体部10とパッド電極11を含み、絶縁膜4の裏面に、500ÅのTi層と1000ÅのAu層を積層した導体部10を形成し、導体部10の上に、導体10の一部に、4000ÅのAuから形成されるパッド電極11が形成されている。導体部10は、信号光通過領域12とは距離(w1)を置いて形成されており、かつ、絶縁膜4の端から距離(w2)内側に形成されている。すなわち、導体部10は、絶縁膜4の端から前記距離幅(w2)の部分には形成されていない。電極2および電極3は、外部のDCバイアス電源と接続可能に形成されている。変調信号入力用電源5は、例えば、電極パッド11を外部の変調信号発生装置にワイヤボンドすることにより接続できる。本実施形態の半導体受光素子は、例えば、下記実施形態9に一例を示す本発明の半導体受光装置において使用できる。本実施形態の半導体受光素子は、例えば、図10に一例を示すチップキャリア905に搭載することができる。図示のとおり、チップキャリア905には、3つの端子(端子901、端子902および端子903)が装備されている。例えば、前記3つの端子は、それぞれ、本実施形態の半導体受光素子のp型電極3、n型電極2および変調信号入力用電極5に割り当てられる。このようなチップキャリア905は、点線で示す範囲904(搭載可能なチップサイズの最大限界)内に収まるサイズの半導体素子を搭載できる。このようなチップキャリア905に対し、本実施形態の半導体受光素子の表面と、チップキャリア905の表面を向かい合わせて実装する。次いで、チップキャリア905上の変調信号入力用電極5に対応する端子と変調信号入力用電極5とを金ワイヤで接続する。p型電極3およびn型電極2についても、チップキャリア上の対応する端子と接続する。このようにチップキャリア上に実装した本実施形態の半導体受光素子は、例えば、図11Aに一例を示すような、少なくとも3つの端子(102、103、104)を持つTO−56ステム101の上に搭載することができる。すなわち、チップキャリア905の上の3つの端子(901、902、903)を、ステム101の3つの端子に、それぞれ最短の距離となるようワイヤ106で接続する。最後に、ステム101の上部を覆うよう、例えばガラス付の蓋を溶接等により封止し、レンズやファイバピグテイルをアライメントし、溶接等によりこれらを接続し、図11Bに一例を示すような受光モジュールとすることができる。本実施形態の半導体受光素子は、例えば、70V±10V程度で動作可能である。
[Eighth embodiment]
In the present embodiment, still another example of the semiconductor light receiving element of the present invention is shown. In the present embodiment, an example of a mesa-type semiconductor light receiving element of the present invention in which signal light enters from the back surface of the semiconductor light receiving element is shown. The semiconductor light receiving element of this embodiment is an avalanche photodiode. FIG. 8 is a cross-sectional view showing the configuration of the semiconductor light receiving element of this embodiment. FIG. 9 is a rear view showing the back surface of the semiconductor light receiving element of this embodiment. FIG. 8 shows a cross section taken along line II-II in FIG. As shown in the figure, the semiconductor light-receiving element of this embodiment includes a conductive semiconductor substrate 6, a light-receiving unit formed from a semiconductor layer, and an electric signal extraction electrode (2 and 3) for extracting an electric signal converted by the light-receiving unit to the outside. And a modulation signal input electrode 5. Specifically, the light receiving portion and the electric signal extraction electrodes (2 and 3) are formed on the substrate 6, and the modulation signal input electrode 5 is provided on the substrate 6 for the light reception portion and the electric signal extraction. The electric signal extraction electrodes (2 and 3) are formed in an insulating state at a place different from the electrodes (2 and 3). The semiconductor light-receiving element of the present invention has an n-type buffer layer 7 (InAlAs, thickness 0.5 μm) and a multiplication on the N-type InP substrate 6 which is a conductive semiconductor substrate in order from the N-type InP substrate 6. Layer and electric field relaxation layer 8 ′ (InAlAs, multiplication layer thickness 1.0 μm, electric field relaxation layer thickness 0.1 μm), light absorption layer 8 (i-InGaAs, thickness 1.2 μm), p The p-type contact layer 9 ′ (p-InGaAs, thickness 0.2 μm) and the p-type buffer layer 9 (p-InAlAs, thickness 0.5 μm) are stacked. Such a semiconductor stacked body 1 includes, for example, an n-type buffer layer 7, a multiplication layer and an electric field relaxation layer 8 ′, a light absorption layer 8, a p-type buffer layer 9, and a p-type contact on an N-type InP substrate 6. The layer 9 ′ can be produced by epitaxial growth. In the present embodiment, the epitaxial layer side from the N-type InP substrate 6 is the surface side. The semiconductor light receiving element of this embodiment has a signal light passage region 12 that allows signal light incident on the light receiving portion to pass in the center of the back surface of the conductive semiconductor substrate 6. In the present embodiment, the light receiving portion is located above the signal light passage region 12, is formed on the conductive semiconductor substrate 6, and is formed of a stacked body of semiconductor layers including the light absorption layer 8. In this embodiment, two types of electrodes (2 and 3) connected to the epitaxial layer are formed as the electrical signal extraction electrodes. That is, the n-type electrode 2 connected to the n-type buffer layer 7 and electrically connected to the N-type InP substrate 6 and the p-type electrode 3 connected to the p-type buffer layer are formed on the conductive semiconductor substrate 6. Has been. An insulating film 4 (thickness 2000 mm) made of SiNx is formed on the back surface of the N-type InP substrate 6, and a modulation signal input electrode 5 is formed on the insulating film 4. The modulation signal input electrode 5 includes a conductor portion 10 and a pad electrode 11, and a conductor portion 10 in which a 500 Ti Ti layer and a 1000 Au Au layer are laminated is formed on the back surface of the insulating film 4. A pad electrode 11 made of 4000 Au Au is formed on a part of the conductor 10. The conductor portion 10 is formed at a distance (w1) from the signal light passage region 12 and is formed on the distance (w2) inside from the end of the insulating film 4. That is, the conductor portion 10 is not formed in the distance width (w2) from the end of the insulating film 4. The electrodes 2 and 3 are formed so as to be connectable to an external DC bias power source. The modulation signal input power source 5 can be connected, for example, by wire bonding the electrode pad 11 to an external modulation signal generator. The semiconductor light-receiving element of this embodiment can be used in, for example, the semiconductor light-receiving device of the present invention shown as an example in Embodiment 9 below. The semiconductor light receiving element of the present embodiment can be mounted on, for example, a chip carrier 905 shown as an example in FIG. As illustrated, the chip carrier 905 is equipped with three terminals (terminal 901, terminal 902, and terminal 903). For example, the three terminals are respectively assigned to the p-type electrode 3, the n-type electrode 2, and the modulation signal input electrode 5 of the semiconductor light receiving element of this embodiment. Such a chip carrier 905 can mount a semiconductor element having a size that falls within a range 904 (maximum limit of mountable chip size) indicated by a dotted line. The chip carrier 905 is mounted with the surface of the semiconductor light receiving element of the present embodiment and the surface of the chip carrier 905 facing each other. Next, the terminal corresponding to the modulation signal input electrode 5 on the chip carrier 905 and the modulation signal input electrode 5 are connected by a gold wire. The p-type electrode 3 and the n-type electrode 2 are also connected to corresponding terminals on the chip carrier. Thus, the semiconductor light receiving element of this embodiment mounted on the chip carrier is formed on the TO-56 stem 101 having at least three terminals (102, 103, 104) as shown in FIG. 11A as an example. Can be installed. That is, the three terminals (901, 902, 903) on the chip carrier 905 are connected to the three terminals of the stem 101 by the wires 106 so as to have the shortest distances. Finally, a lid with glass, for example, is sealed by welding or the like so as to cover the upper portion of the stem 101, the lens or fiber pigtail is aligned, and these are connected by welding or the like. It can be a module. The semiconductor light receiving element of this embodiment can operate at about 70V ± 10V, for example.

本実施形態の半導体受光素子は、例えば、前記受光モジュールを用いて、図12に一例を示す回路に接続して動作させることができる。すなわち、例えば、光を検出するに際し、p型電極3およびn型電極2にDCバイアスを接続する。本実施形態では、n電極2には、ソレノイド507を介して、DCバイアス電源503からDCバイアスを印加する。ここで、DCバイアスは、例えば、アバランシェ・フォトダイオードのブレークダウン近傍に設定することができる。変調信号入力用電極5には、光信号を受信するタイミングに合わせて、例えば、パルス源501から変調信号としてパルス電圧を印加することができる。これにより、1光子まで感度を持つ光検出器として動作することが可能となる。また、この際、必要に応じて前記受光モジュールの冷却等を行うことで、感度をさらに向上させることができる。変調信号入力用電極5には、変調信号発生装置501から、例えば、電圧振幅が5Vであり、パルス幅が5nsであり、繰り返し周期が50nsのパルス電圧を印加することができる。このようにして動作させる本実施形態の半導体受光素子は、例えば、動作温度を適宜設定し、DCバイアスを調整することにより、光子検出可能な利得を持たせることができる。p型電極3からは、前記タイミングに合わせて入射した光子の検出信号が、例えば、信号取出し抵抗506により、電気信号として出力される。このように、本実施形態の半導体受光素子508を用いた光検出回路では、バイアスTは不要であり、インダクタ507のみを接続して、バイアスに変調信号を付加でき、光検出回路をコンパクトに低コストで構成できる。   The semiconductor light receiving element of this embodiment can be operated by connecting to a circuit shown in FIG. 12 using the light receiving module, for example. That is, for example, when detecting light, a DC bias is connected to the p-type electrode 3 and the n-type electrode 2. In the present embodiment, a DC bias is applied to the n electrode 2 from a DC bias power source 503 via a solenoid 507. Here, the DC bias can be set near the breakdown of the avalanche photodiode, for example. For example, a pulse voltage can be applied as a modulation signal from the pulse source 501 to the modulation signal input electrode 5 in accordance with the timing of receiving an optical signal. Thereby, it becomes possible to operate as a photodetector having sensitivity up to one photon. At this time, the sensitivity can be further improved by cooling the light receiving module as required. For example, a pulse voltage having a voltage amplitude of 5 V, a pulse width of 5 ns, and a repetition period of 50 ns can be applied to the modulation signal input electrode 5 from the modulation signal generator 501. The semiconductor light-receiving element of this embodiment that is operated in this manner can have a gain capable of detecting photons by, for example, appropriately setting the operating temperature and adjusting the DC bias. From the p-type electrode 3, a detection signal of a photon incident in accordance with the timing is output as an electric signal by a signal extraction resistor 506, for example. As described above, in the photodetection circuit using the semiconductor light receiving element 508 of the present embodiment, the bias T is unnecessary, and only the inductor 507 can be connected to add a modulation signal to the bias. Can be configured at cost.

[実施形態9]
本実施形態では、本発明の半導体受光素子のさらに別の例を示す。本実施形態の半導体受光素子は、導電性半導体基板の裏面部分の構造が異なる以外は、実施形態8の半導体受光素子と同じ構成を有する。図13に、本実施形態の半導体受光素子の構成を示す断面図を示す。図14に、本実施形態の半導体受光素子の裏面を示す背面図を示す。図13は、図14のIII−III間の断面を示す。さらに、図15に、本実施形態の半導体受光素子の側面図を示す。図示のとおり、本実施形態の半導体受光素子は、導電性半導体基板6の裏面において、信号光通過領域12の上に反射防止膜13を有し、信号光通過領域外の部分上に、導電性半導体基板6の端まで絶縁膜4を有する。前記信号光通過領域外の部分の絶縁膜4は、反射防止膜13より薄く形成されている。本実施形態では、反射防止膜13を設けたことから、実施形態8よりも導体部10の形成面積を広くとっている。本実施形態の半導体受光素子は、例えば、次のようにして作製できる。まず、実施形態8と同様にして作製した導電性半導体基板6の裏面全体に反射防止膜12となる誘電体膜を形成する。次いで、信号光通過領域12を残して、前記誘電体膜の他の部分を例えばエッチングにより除去する。次いで、信号光通過領域の外側で、N型InP基板6の裏面の周縁までの部分に、厚さ500Åの絶縁膜4を形成し、この絶縁膜4の上に、変調信号入力用電極の導体部10(500ÅのTi層と1000ÅのAu層を積層体)を、絶縁膜4の端から一定距離w3(例えば3μm)内側までの部分に形成する。導体部10の上に、変調信号入力用電極のパッド電極11(100μm×100μmの平面面積サイズ)を、Auを用いて4000Åの厚さで形成する。
[Embodiment 9]
In the present embodiment, still another example of the semiconductor light receiving element of the present invention is shown. The semiconductor light receiving element of this embodiment has the same configuration as that of the semiconductor light receiving element of Embodiment 8 except that the structure of the back surface portion of the conductive semiconductor substrate is different. FIG. 13 is a cross-sectional view showing the configuration of the semiconductor light receiving element of this embodiment. FIG. 14 is a rear view showing the back surface of the semiconductor light receiving element of this embodiment. FIG. 13 shows a cross section taken along line III-III in FIG. Further, FIG. 15 shows a side view of the semiconductor light receiving element of this embodiment. As shown in the figure, the semiconductor light receiving element of the present embodiment has an antireflection film 13 on the signal light passage region 12 on the back surface of the conductive semiconductor substrate 6, and has a conductive property on a portion outside the signal light passage region. The insulating film 4 is provided up to the end of the semiconductor substrate 6. The insulating film 4 outside the signal light passage region is formed thinner than the antireflection film 13. In this embodiment, since the antireflection film 13 is provided, the formation area of the conductor portion 10 is larger than that in the eighth embodiment. The semiconductor light receiving element of this embodiment can be manufactured as follows, for example. First, a dielectric film serving as the antireflection film 12 is formed on the entire back surface of the conductive semiconductor substrate 6 manufactured in the same manner as in the eighth embodiment. Next, the other part of the dielectric film is removed by, for example, etching, leaving the signal light passage region 12. Next, an insulating film 4 having a thickness of 500 mm is formed outside the signal light passage region and on the periphery of the back surface of the N-type InP substrate 6, and the modulation signal input electrode conductor is formed on the insulating film 4. The portion 10 (a laminate of a 500 Ti Ti layer and a 1000 Au Au layer) is formed in a portion from the end of the insulating film 4 to the inner side of a predetermined distance w3 (for example, 3 μm). A pad electrode 11 (100 μm × 100 μm planar area size) of a modulation signal input electrode is formed on the conductor portion 10 with a thickness of 4000 mm using Au.

本実施形態の半導体受光素子は、例えば、5.72mm×5.72mmのサイズのチップキャリアに搭載でき、TO−8型パッケージに搭載できる。本実施形態の半導体受光素子では、変調信号入力用電極5の導体部10は、3.03×10μmの平面面積まで拡大でき、変調信号入力用電極5は、導電性半導体基板6との間に約69nFの容量を持つことができる。本実施形態の半導体素子も、図12に一例を示す回路に接続して動作させることができる。例えば、本実施形態の半導体受光素子を接続した光検出回路では、例えば、2MHz付近以上で5Ω以下のインピーダンスが期待でき、2MHz〜10GHzの帯域を含む変調バイアス信号を導電性半導体基板6に印加できる。本実施形態の半導体受光素子を用いた光検出回路では、バイアスTは不要であり、外部回路にインダクタを付加するだけで、変調バイアス動作が可能となり、光検出回路をコンパクトに低コストで構成できる。 The semiconductor light receiving element of this embodiment can be mounted on, for example, a chip carrier having a size of 5.72 mm × 5.72 mm, and can be mounted on a TO-8 type package. In the semiconductor light receiving element of this embodiment, the conductor portion 10 of the modulation signal input electrode 5 can be expanded to a plane area of 3.03 × 10 7 μm 2 , and the modulation signal input electrode 5 is connected to the conductive semiconductor substrate 6. Can have a capacity of about 69 nF. The semiconductor element of this embodiment can also be operated by being connected to the circuit shown in FIG. For example, in the photodetection circuit to which the semiconductor light receiving element of this embodiment is connected, an impedance of, for example, 2 MHz or more and 5Ω or less can be expected, and a modulation bias signal including a band of 2 MHz to 10 GHz can be applied to the conductive semiconductor substrate 6. . In the photodetection circuit using the semiconductor light receiving element of the present embodiment, the bias T is unnecessary, and the modulation bias operation can be performed only by adding an inductor to the external circuit, and the photodetection circuit can be configured compactly and at low cost. .

[実施形態10]
本実施形態では、本発明の半導体受光素子とインダクタを含む本発明の半導体受光装置の例を示す。図7に、本実施形態の半導体受光装置の構成を示す回路図を示す。同図中、点線で囲む部分500が、本実施形態の半導体受光装置の部分である。図示のとおり、本実施形態の半導体受光装置500は、本発明の半導体受光素子508とインダクタ507を含む。本発明の半導体受光素子508としては、例えば、実施形態8または実施形態9の半導体受光素子を用いることができる。インダクタ507は、例えば、ソレノイドであり、n型電極2に接続される。本実施形態の半導体受光装置500では、バイアスTを用いなくてもDCバイアス電源503からのバイアスに変調信号を付加でき、電気信号取出抵抗506から高いシグナル対ノイズ比(S/N比)で電気信号を取り出すことができる。すなわち、本実施形態の半導体受光装置500は、バイアスTを使用する半導体受光装置と比較して、光検出回路の回路面積を小さく形成でき、小型かつ低コストで作製できる。
[Embodiment 10]
In the present embodiment, an example of the semiconductor light receiving device of the present invention including the semiconductor light receiving element of the present invention and an inductor is shown. FIG. 7 is a circuit diagram showing the configuration of the semiconductor light receiving device of this embodiment. In the figure, a portion 500 surrounded by a dotted line is a portion of the semiconductor light receiving device of this embodiment. As illustrated, the semiconductor light receiving device 500 of the present embodiment includes a semiconductor light receiving element 508 and an inductor 507 of the present invention. As the semiconductor light receiving element 508 of the present invention, for example, the semiconductor light receiving element of Embodiment 8 or Embodiment 9 can be used. The inductor 507 is a solenoid, for example, and is connected to the n-type electrode 2. In the semiconductor light receiving device 500 of this embodiment, a modulation signal can be added to the bias from the DC bias power source 503 without using the bias T, and the electric signal extraction resistor 506 can be used with a high signal-to-noise ratio (S / N ratio). The signal can be extracted. That is, the semiconductor light receiving device 500 of this embodiment can be formed with a smaller circuit area of the photodetection circuit, and can be manufactured at a lower cost, compared to the semiconductor light receiving device using the bias T.

[実施形態11]
本実施形態では、本発明の半導体受光素子と変調信号発生装置を含む本発明の半導体受光装置の例を示す。図7に、本実施形態の半導体受光装置の構成を示す回路図を示す。同図中、点線で囲む部分500’が、本実施形態の半導体受光装置の部分である。図示のとおり、本実施形態の半導体受光装置500’は、本発明の半導体受光素子508と変調信号発生装置501を含む。本発明の半導体受光素子508としては、例えば、実施形態8または実施形態9の半導体受光素子を用いることができる。変調信号発生装置501は、例えば、変調バイアス電源または、パルス源とアンプの組み合わせである。本実施形態の半導体受光装置500’は、例えば、図示のとおり、n型電極2にインダクタ507を接続することで、n型電極2から変調信号を逃すことなく、半導体受光素子500’の導電性半導体基板6に変調信号を入力できる。すなわち、半導体受光素子500’の変調バイアス動作を実現でき、電気信号取出抵抗506から高いシグナル対ノイズ比(S/N比)で電気信号を取り出すことができる。このような本発明の半導体受光装置500’によれば、バイアスTを使用する半導体受光装置と比較して、バイアスに変調信号を付加する光検出回路を小さな回路面積で、かつ、低コストで形成できる。なお、前記インダクタ507を接続した同図の点線500”で囲まれる部分は、本発明の半導体受光素子508とインダクタ507と変調信号発生装置501を含む本発明の半導体受光装置500”である。
[Embodiment 11]
In the present embodiment, an example of the semiconductor light receiving device of the present invention including the semiconductor light receiving element of the present invention and the modulation signal generating device is shown. FIG. 7 is a circuit diagram showing the configuration of the semiconductor light receiving device of this embodiment. In the figure, a portion 500 ′ surrounded by a dotted line is a portion of the semiconductor light receiving device of the present embodiment. As shown in the figure, a semiconductor light receiving device 500 ′ of this embodiment includes a semiconductor light receiving element 508 and a modulation signal generating device 501 of the present invention. As the semiconductor light receiving element 508 of the present invention, for example, the semiconductor light receiving element of Embodiment 8 or Embodiment 9 can be used. The modulation signal generator 501 is, for example, a modulation bias power source or a combination of a pulse source and an amplifier. In the semiconductor light receiving device 500 ′ of this embodiment, for example, as shown in the drawing, an inductor 507 is connected to the n-type electrode 2 so that the modulation signal does not escape from the n-type electrode 2 and the conductivity of the semiconductor light-receiving element 500 ′. A modulation signal can be input to the semiconductor substrate 6. That is, the modulation bias operation of the semiconductor light receiving element 500 ′ can be realized, and an electric signal can be extracted from the electric signal extraction resistor 506 with a high signal-to-noise ratio (S / N ratio). According to such a semiconductor light receiving device 500 ′ of the present invention, a photodetection circuit for adding a modulation signal to a bias can be formed with a small circuit area and at a low cost, as compared with a semiconductor light receiving device using a bias T. it can. A portion surrounded by a dotted line 500 "in the figure to which the inductor 507 is connected is the semiconductor light receiving device 500" of the present invention including the semiconductor light receiving element 508 of the present invention, the inductor 507, and the modulation signal generator 501.

1 半導体積層体
2、3 電気信号取出用電極
4 絶縁膜
5 変調信号入力用電極
6 導電性半導体基板
7 第1の半導体層
8’ 増倍層および電界緩和層
8 光吸収層
9 第2の半導体層
9’ 半導体層(パッシベーション層)
10 導体部
11 パッド電極
12 信号光通過領域
13 反射防止膜
14 受光部を含む部分
101 ステム
102、103、104 端子
106 ワイヤ
107 半導体受光素子
108 光ファイバ
109 光コネクタ
501 変調信号発生装置
502 変調信号
503 バイアス電源
504 バイアスT
505、508 半導体受光素子
506 電気信号取出抵抗(電流電圧変換素子)
507 インダクタ
500、500’、500” 半導体受光装置
901、902、903 端子
904 搭載可能なチップサイズの最大限界
905 チップキャリア

DESCRIPTION OF SYMBOLS 1 Semiconductor laminated body 2, 3 Electrical signal extraction electrode 4 Insulating film 5 Modulation signal input electrode 6 Conductive semiconductor substrate 7 1st semiconductor layer 8 'Multiplication layer and electric field relaxation layer 8 Light absorption layer 9 2nd semiconductor Layer 9 'Semiconductor layer (passivation layer)
DESCRIPTION OF SYMBOLS 10 Conductor part 11 Pad electrode 12 Signal light passage area 13 Antireflection film 14 Part 101 including a light-receiving part Stem 102, 103, 104 Terminal 106 Wire 107 Semiconductor light receiving element 108 Optical fiber 109 Optical connector 501 Modulation signal generator 502 Modulation signal 503 Bias power supply 504 Bias T
505, 508 Semiconductor light receiving element 506 Electric signal extraction resistance (current-voltage conversion element)
507 Inductor 500, 500 ', 500 "Semiconductor light receiving device 901, 902, 903 Terminal 904 Maximum limit of mountable chip size 905 Chip carrier

Claims (14)

導電性半導体基板、光信号を電気信号に変換する半導体層から形成された受光部、前記受光部で変換した電気信号を外部に取り出す電気信号取出用電極および変調信号入力用電極を有し、
前記受光部および前記電気信号取出用電極が、前記導電性半導体基板上に形成され、
前記変調信号入力用電極が、前記導電性半導体基板上の前記受光部および前記電気信号取出用電極とは別の場所に、前記電気信号取出用電極と絶縁状態で形成されていることを特徴とする半導体受光素子。
A conductive semiconductor substrate, a light receiving portion formed from a semiconductor layer that converts an optical signal into an electric signal, an electric signal extraction electrode that takes out the electric signal converted by the light receiving portion, and a modulation signal input electrode;
The light receiving portion and the electrical signal extraction electrode are formed on the conductive semiconductor substrate,
The modulation signal input electrode is formed in an insulated state from the electrical signal extraction electrode at a location different from the light receiving portion and the electrical signal extraction electrode on the conductive semiconductor substrate. A semiconductor light receiving element.
さらに絶縁膜を有し、前記変調信号入力用電極が、導体部とパッド電極を含み、前記変調信号入力用電極が、前記絶縁膜を介して、前記導電性半導体基板の前記受光部および前記電気信号取出用電極と反対側の面に形成され、
前記導体部が、前記絶縁膜と前記パッド電極の間に配置されていることを特徴とする請求項1記載の半導体受光素子。
The modulation signal input electrode further includes a conductor portion and a pad electrode, and the modulation signal input electrode is interposed between the light receiving portion and the electrical conductor of the conductive semiconductor substrate via the insulation film. Formed on the opposite side of the signal extraction electrode,
The semiconductor light receiving element according to claim 1, wherein the conductor portion is disposed between the insulating film and the pad electrode.
前記変調信号入力用電極が、前記絶縁膜上の一部に形成されていることを特徴とする請求項2記載の半導体受光素子。   3. The semiconductor light receiving element according to claim 2, wherein the modulation signal input electrode is formed on a part of the insulating film. 前記変調信号入力用電極が、前記絶縁膜の端から内側の一定幅の部分には形成されていないことを特徴とする請求項2または3記載の半導体受光素子。   4. The semiconductor light receiving element according to claim 2, wherein the modulation signal input electrode is not formed in a portion having a constant width inside from an end of the insulating film. 前記導電性半導体基板の一方の基板面に、前記受光部に対して入射する信号光を通過させる信号光通過領域が形成され、
前記変調信号入力用電極が、前記一方の基板面上の、前記信号光通過領域外の部分に形成されていることを特徴とする請求項1から4のいずれか一項に記載の半導体受光素子。
On one substrate surface of the conductive semiconductor substrate, a signal light passage region that allows signal light incident on the light receiving portion to pass is formed,
5. The semiconductor light receiving element according to claim 1, wherein the modulation signal input electrode is formed on a portion of the one substrate surface outside the signal light passage region. 6. .
前記導電性半導体基板の前記一方の基板面における前記信号光通過領域上に反射防止膜が形成され、前記一方の基板面上の、前記信号光通過領域外の部分に絶縁膜が形成され、
前記信号光通過領域外の部分の前記絶縁膜の厚みが、前記反射防止膜の厚みより薄いことを特徴とする請求項5記載の半導体受光素子。
An antireflection film is formed on the signal light passage region on the one substrate surface of the conductive semiconductor substrate, and an insulating film is formed on a portion outside the signal light passage region on the one substrate surface,
6. The semiconductor light receiving element according to claim 5, wherein the thickness of the insulating film outside the signal light passage region is thinner than the thickness of the antireflection film.
前記導電性半導体基板が、n型半導体から形成されていることを特徴とする請求項1から6のいずれか一項に記載の半導体受光素子。   The semiconductor light receiving element according to claim 1, wherein the conductive semiconductor substrate is formed of an n-type semiconductor. 前記導電性半導体基板が、InP基板から形成されていることを特徴とする請求項1から7のいずれか一項に記載の半導体受光素子。   The semiconductor light-receiving element according to claim 1, wherein the conductive semiconductor substrate is formed of an InP substrate. アバランシェ・フォトダイオードであることを特徴とする請求項1から8のいずれか一項に記載の半導体受光素子。   9. The semiconductor light receiving element according to claim 1, wherein the semiconductor light receiving element is an avalanche photodiode. 前記変調信号入力用電極が、絶縁膜を介して前記導電性半導体基板上に形成され、前記絶縁膜が、SiNx、SiOxおよびSiOxNxからなる群から選択される少なくとも一つの絶縁体から形成されていることを特徴とする請求項1から9のいずれか一項に記載の半導体受光素子。   The modulation signal input electrode is formed on the conductive semiconductor substrate via an insulating film, and the insulating film is formed of at least one insulator selected from the group consisting of SiNx, SiOx, and SiOxNx. The semiconductor light-receiving element according to claim 1, wherein the light-receiving element is a semiconductor light-receiving element. 前記受光部が、前記導電性半導体基板と同型の導電性半導体層と、前記導電性半導体基板と異型の導電性半導体層を含み、前記電気信号取出用電極として、前記導電性半導体基板に電気的に接続される電極と、前記異型の導電性半導体層に電気的に接続される電極とを含む請求項1から10のいずれか一項に記載の半導体受光素子。   The light receiving portion includes a conductive semiconductor layer of the same type as the conductive semiconductor substrate, and a conductive semiconductor layer of a different type from the conductive semiconductor substrate, and is electrically connected to the conductive semiconductor substrate as the electric signal extraction electrode. The semiconductor light receiving element according to claim 1, further comprising: an electrode connected to the electrode; and an electrode electrically connected to the atypical conductive semiconductor layer. 請求項11に記載の半導体受光素子と、
前記導電性半導体基板に電気的に接続される電極に接続されるインダクタを含むことを特徴とする半導体受光装置。
A semiconductor light receiving element according to claim 11;
A semiconductor light receiving device comprising an inductor connected to an electrode electrically connected to the conductive semiconductor substrate.
請求項1から11のいずれか一項に記載の半導体受光素子と、前記変調信号入力用電極に入力する変調信号を発生する変調信号発生装置を含むことを特徴とする半導体受光装置。   12. A semiconductor light receiving device comprising: the semiconductor light receiving element according to claim 1; and a modulation signal generating device that generates a modulation signal to be input to the modulation signal input electrode. 前記半導体受光素子の前記変調信号入力用電極に入力する変調信号を発生する変調信号発生装置をさらに含むことを特徴とする請求項12記載の半導体受光装置。

13. The semiconductor light receiving device according to claim 12, further comprising a modulation signal generating device that generates a modulation signal to be input to the modulation signal input electrode of the semiconductor light receiving element.

JP2009097519A 2009-04-13 2009-04-13 Semiconductor light receiving element and semiconductor light receiving device Expired - Fee Related JP5396982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009097519A JP5396982B2 (en) 2009-04-13 2009-04-13 Semiconductor light receiving element and semiconductor light receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009097519A JP5396982B2 (en) 2009-04-13 2009-04-13 Semiconductor light receiving element and semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JP2010251433A true JP2010251433A (en) 2010-11-04
JP5396982B2 JP5396982B2 (en) 2014-01-22

Family

ID=43313468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009097519A Expired - Fee Related JP5396982B2 (en) 2009-04-13 2009-04-13 Semiconductor light receiving element and semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JP5396982B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016655A (en) * 2017-07-04 2019-01-31 日本電信電話株式会社 Light receiving element and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105903A (en) * 1977-02-28 1978-09-14 Nec Corp Photo receiving device
JPH0487377A (en) * 1990-07-31 1992-03-19 Toshiba Corp Semiconductor photodetector
JP2004119719A (en) * 2002-09-26 2004-04-15 Toshiba Matsushita Display Technology Co Ltd Diode for optical sensor and image input circuit using same, and method of driving image input circuit
JP2006332287A (en) * 2005-05-25 2006-12-07 Toshiba Matsushita Display Technology Co Ltd Thin film diode
WO2007102430A1 (en) * 2006-03-06 2007-09-13 Nihon University Optical communication wavelength band high speed single photon detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53105903A (en) * 1977-02-28 1978-09-14 Nec Corp Photo receiving device
JPH0487377A (en) * 1990-07-31 1992-03-19 Toshiba Corp Semiconductor photodetector
JP2004119719A (en) * 2002-09-26 2004-04-15 Toshiba Matsushita Display Technology Co Ltd Diode for optical sensor and image input circuit using same, and method of driving image input circuit
JP2006332287A (en) * 2005-05-25 2006-12-07 Toshiba Matsushita Display Technology Co Ltd Thin film diode
WO2007102430A1 (en) * 2006-03-06 2007-09-13 Nihon University Optical communication wavelength band high speed single photon detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019016655A (en) * 2017-07-04 2019-01-31 日本電信電話株式会社 Light receiving element and manufacturing method

Also Published As

Publication number Publication date
JP5396982B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
US7038288B2 (en) Front side illuminated photodiode with backside bump
US6774448B1 (en) High speed detectors having integrated electrical components
JP5842393B2 (en) Light receiving device, optical receiver using the same, and method for manufacturing light receiving device
KR20120085748A (en) Infrared sensor
JP2014038155A (en) Optoelectrical integrated package module
US9621279B2 (en) Optical receiver circuit
JP2014038910A (en) Photoelectric integrated package module
US20180102356A1 (en) Transient Voltage Suppression Diodes with Reduced Harmonics, and Methods of Making and Using
JP4291521B2 (en) Semiconductor light receiving element, semiconductor light receiving device, semiconductor device, optical module, and optical transmission device
US9647768B2 (en) Monolithic optical receiver and a method for manufacturing same
CN112490302B (en) Multi-electrode high-speed photoelectric detector and preparation method thereof
KR101660943B1 (en) Near-infrared photodetector and image sensor employing the same and manufacturing method thereof
JP5396982B2 (en) Semiconductor light receiving element and semiconductor light receiving device
JP2017228569A (en) Avalanche photodiode and manufacturing method of the same
JPWO2013146406A1 (en) Waveguide-coupled MSM type photodiode
JP2011187508A (en) Optical receiver device
JP2011192873A (en) Wide-wavelength-band photodetector array
TW202031035A (en) Image sensor
CN108574018A (en) Optical receiver module and optical module
JP5044319B2 (en) Semiconductor device
US20030218229A1 (en) Photosensitive semiconductor diode device with passive matching circuit
US10895683B1 (en) Semiconductor device
WO2023199403A1 (en) Light-receiving element
JP2020061444A (en) Optical device
JPH09223816A (en) Semiconductor photo detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees